2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
54 kmem_zone_t *xfs_ifork_zone;
55 kmem_zone_t *xfs_inode_zone;
56 kmem_zone_t *xfs_chashlist_zone;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
72 * Make sure that the extents in the given memory buffer
87 for (i = 0; i < nrecs; i++) {
88 ep = xfs_iext_get_ext(ifp, i);
89 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
90 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
92 xfs_bmbt_disk_get_all(&rec, &irec);
94 xfs_bmbt_get_all(&rec, &irec);
95 if (fmt == XFS_EXTFMT_NOSTATE)
96 ASSERT(irec.br_state == XFS_EXT_NORM);
100 #define xfs_validate_extents(ifp, nrecs, disk, fmt)
104 * Check that none of the inode's in the buffer have a next
105 * unlinked field of 0.
117 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
119 for (i = 0; i < j; i++) {
120 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
121 i * mp->m_sb.sb_inodesize);
122 if (!dip->di_next_unlinked) {
123 xfs_fs_cmn_err(CE_ALERT, mp,
124 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
126 ASSERT(dip->di_next_unlinked);
133 * This routine is called to map an inode number within a file
134 * system to the buffer containing the on-disk version of the
135 * inode. It returns a pointer to the buffer containing the
136 * on-disk inode in the bpp parameter, and in the dip parameter
137 * it returns a pointer to the on-disk inode within that buffer.
139 * If a non-zero error is returned, then the contents of bpp and
140 * dipp are undefined.
142 * Use xfs_imap() to determine the size and location of the
143 * buffer to read from disk.
161 * Call the space management code to find the location of the
165 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
168 "xfs_inotobp: xfs_imap() returned an "
169 "error %d on %s. Returning error.", error, mp->m_fsname);
174 * If the inode number maps to a block outside the bounds of the
175 * file system then return NULL rather than calling read_buf
176 * and panicing when we get an error from the driver.
178 if ((imap.im_blkno + imap.im_len) >
179 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
181 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
182 "of the file system %s. Returning EINVAL.",
183 (unsigned long long)imap.im_blkno,
184 imap.im_len, mp->m_fsname);
185 return XFS_ERROR(EINVAL);
189 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
190 * default to just a read_buf() call.
192 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
193 (int)imap.im_len, XFS_BUF_LOCK, &bp);
197 "xfs_inotobp: xfs_trans_read_buf() returned an "
198 "error %d on %s. Returning error.", error, mp->m_fsname);
201 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
203 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
204 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
205 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
206 XFS_RANDOM_ITOBP_INOTOBP))) {
207 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
208 xfs_trans_brelse(tp, bp);
210 "xfs_inotobp: XFS_TEST_ERROR() returned an "
211 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
212 return XFS_ERROR(EFSCORRUPTED);
215 xfs_inobp_check(mp, bp);
218 * Set *dipp to point to the on-disk inode in the buffer.
220 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
222 *offset = imap.im_boffset;
228 * This routine is called to map an inode to the buffer containing
229 * the on-disk version of the inode. It returns a pointer to the
230 * buffer containing the on-disk inode in the bpp parameter, and in
231 * the dip parameter it returns a pointer to the on-disk inode within
234 * If a non-zero error is returned, then the contents of bpp and
235 * dipp are undefined.
237 * If the inode is new and has not yet been initialized, use xfs_imap()
238 * to determine the size and location of the buffer to read from disk.
239 * If the inode has already been mapped to its buffer and read in once,
240 * then use the mapping information stored in the inode rather than
241 * calling xfs_imap(). This allows us to avoid the overhead of looking
242 * at the inode btree for small block file systems (see xfs_dilocate()).
243 * We can tell whether the inode has been mapped in before by comparing
244 * its disk block address to 0. Only uninitialized inodes will have
245 * 0 for the disk block address.
263 if (ip->i_blkno == (xfs_daddr_t)0) {
265 * Call the space management code to find the location of the
269 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
270 XFS_IMAP_LOOKUP | imap_flags)))
274 * If the inode number maps to a block outside the bounds
275 * of the file system then return NULL rather than calling
276 * read_buf and panicing when we get an error from the
279 if ((imap.im_blkno + imap.im_len) >
280 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
282 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
283 "(imap.im_blkno (0x%llx) "
284 "+ imap.im_len (0x%llx)) > "
285 " XFS_FSB_TO_BB(mp, "
286 "mp->m_sb.sb_dblocks) (0x%llx)",
287 (unsigned long long) imap.im_blkno,
288 (unsigned long long) imap.im_len,
289 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
291 return XFS_ERROR(EINVAL);
295 * Fill in the fields in the inode that will be used to
296 * map the inode to its buffer from now on.
298 ip->i_blkno = imap.im_blkno;
299 ip->i_len = imap.im_len;
300 ip->i_boffset = imap.im_boffset;
303 * We've already mapped the inode once, so just use the
304 * mapping that we saved the first time.
306 imap.im_blkno = ip->i_blkno;
307 imap.im_len = ip->i_len;
308 imap.im_boffset = ip->i_boffset;
310 ASSERT(bno == 0 || bno == imap.im_blkno);
313 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
314 * default to just a read_buf() call.
316 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
317 (int)imap.im_len, XFS_BUF_LOCK, &bp);
320 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
321 "xfs_trans_read_buf() returned error %d, "
322 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
323 error, (unsigned long long) imap.im_blkno,
324 (unsigned long long) imap.im_len);
330 * Validate the magic number and version of every inode in the buffer
331 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
332 * No validation is done here in userspace (xfs_repair).
334 #if !defined(__KERNEL__)
337 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
338 #else /* usual case */
342 for (i = 0; i < ni; i++) {
346 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
347 (i << mp->m_sb.sb_inodelog));
348 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
349 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
350 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
351 XFS_ERRTAG_ITOBP_INOTOBP,
352 XFS_RANDOM_ITOBP_INOTOBP))) {
353 if (imap_flags & XFS_IMAP_BULKSTAT) {
354 xfs_trans_brelse(tp, bp);
355 return XFS_ERROR(EINVAL);
359 "Device %s - bad inode magic/vsn "
360 "daddr %lld #%d (magic=%x)",
361 XFS_BUFTARG_NAME(mp->m_ddev_targp),
362 (unsigned long long)imap.im_blkno, i,
363 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
365 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
367 xfs_trans_brelse(tp, bp);
368 return XFS_ERROR(EFSCORRUPTED);
372 xfs_inobp_check(mp, bp);
375 * Mark the buffer as an inode buffer now that it looks good
377 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
380 * Set *dipp to point to the on-disk inode in the buffer.
382 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
388 * Move inode type and inode format specific information from the
389 * on-disk inode to the in-core inode. For fifos, devs, and sockets
390 * this means set if_rdev to the proper value. For files, directories,
391 * and symlinks this means to bring in the in-line data or extent
392 * pointers. For a file in B-tree format, only the root is immediately
393 * brought in-core. The rest will be in-lined in if_extents when it
394 * is first referenced (see xfs_iread_extents()).
401 xfs_attr_shortform_t *atp;
405 ip->i_df.if_ext_max =
406 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
410 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
411 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
412 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
413 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
414 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
415 (unsigned long long)ip->i_ino,
416 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
417 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
419 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
420 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
422 return XFS_ERROR(EFSCORRUPTED);
425 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
426 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
427 "corrupt dinode %Lu, forkoff = 0x%x.",
428 (unsigned long long)ip->i_ino,
429 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
430 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
432 return XFS_ERROR(EFSCORRUPTED);
435 switch (ip->i_d.di_mode & S_IFMT) {
440 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
441 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
443 return XFS_ERROR(EFSCORRUPTED);
446 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
452 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
453 case XFS_DINODE_FMT_LOCAL:
455 * no local regular files yet
457 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
458 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
460 "(local format for regular file).",
461 (unsigned long long) ip->i_ino);
462 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
465 return XFS_ERROR(EFSCORRUPTED);
468 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
469 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
470 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
472 "(bad size %Ld for local inode).",
473 (unsigned long long) ip->i_ino,
474 (long long) di_size);
475 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
478 return XFS_ERROR(EFSCORRUPTED);
482 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
484 case XFS_DINODE_FMT_EXTENTS:
485 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
487 case XFS_DINODE_FMT_BTREE:
488 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
491 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
493 return XFS_ERROR(EFSCORRUPTED);
498 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
499 return XFS_ERROR(EFSCORRUPTED);
504 if (!XFS_DFORK_Q(dip))
506 ASSERT(ip->i_afp == NULL);
507 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
508 ip->i_afp->if_ext_max =
509 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
510 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
511 case XFS_DINODE_FMT_LOCAL:
512 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
513 size = be16_to_cpu(atp->hdr.totsize);
514 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
516 case XFS_DINODE_FMT_EXTENTS:
517 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
519 case XFS_DINODE_FMT_BTREE:
520 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
523 error = XFS_ERROR(EFSCORRUPTED);
527 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
529 xfs_idestroy_fork(ip, XFS_DATA_FORK);
535 * The file is in-lined in the on-disk inode.
536 * If it fits into if_inline_data, then copy
537 * it there, otherwise allocate a buffer for it
538 * and copy the data there. Either way, set
539 * if_data to point at the data.
540 * If we allocate a buffer for the data, make
541 * sure that its size is a multiple of 4 and
542 * record the real size in i_real_bytes.
555 * If the size is unreasonable, then something
556 * is wrong and we just bail out rather than crash in
557 * kmem_alloc() or memcpy() below.
559 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
560 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
562 "(bad size %d for local fork, size = %d).",
563 (unsigned long long) ip->i_ino, size,
564 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
565 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
567 return XFS_ERROR(EFSCORRUPTED);
569 ifp = XFS_IFORK_PTR(ip, whichfork);
572 ifp->if_u1.if_data = NULL;
573 else if (size <= sizeof(ifp->if_u2.if_inline_data))
574 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
576 real_size = roundup(size, 4);
577 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
579 ifp->if_bytes = size;
580 ifp->if_real_bytes = real_size;
582 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
583 ifp->if_flags &= ~XFS_IFEXTENTS;
584 ifp->if_flags |= XFS_IFINLINE;
589 * The file consists of a set of extents all
590 * of which fit into the on-disk inode.
591 * If there are few enough extents to fit into
592 * the if_inline_ext, then copy them there.
593 * Otherwise allocate a buffer for them and copy
594 * them into it. Either way, set if_extents
595 * to point at the extents.
603 xfs_bmbt_rec_t *ep, *dp;
609 ifp = XFS_IFORK_PTR(ip, whichfork);
610 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
611 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
614 * If the number of extents is unreasonable, then something
615 * is wrong and we just bail out rather than crash in
616 * kmem_alloc() or memcpy() below.
618 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
619 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
620 "corrupt inode %Lu ((a)extents = %d).",
621 (unsigned long long) ip->i_ino, nex);
622 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
624 return XFS_ERROR(EFSCORRUPTED);
627 ifp->if_real_bytes = 0;
629 ifp->if_u1.if_extents = NULL;
630 else if (nex <= XFS_INLINE_EXTS)
631 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
633 xfs_iext_add(ifp, 0, nex);
635 ifp->if_bytes = size;
637 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
638 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
639 for (i = 0; i < nex; i++, dp++) {
640 ep = xfs_iext_get_ext(ifp, i);
641 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
643 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
646 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
648 if (whichfork != XFS_DATA_FORK ||
649 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
650 if (unlikely(xfs_check_nostate_extents(
652 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
655 return XFS_ERROR(EFSCORRUPTED);
658 ifp->if_flags |= XFS_IFEXTENTS;
663 * The file has too many extents to fit into
664 * the inode, so they are in B-tree format.
665 * Allocate a buffer for the root of the B-tree
666 * and copy the root into it. The i_extents
667 * field will remain NULL until all of the
668 * extents are read in (when they are needed).
676 xfs_bmdr_block_t *dfp;
682 ifp = XFS_IFORK_PTR(ip, whichfork);
683 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
684 size = XFS_BMAP_BROOT_SPACE(dfp);
685 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
688 * blow out if -- fork has less extents than can fit in
689 * fork (fork shouldn't be a btree format), root btree
690 * block has more records than can fit into the fork,
691 * or the number of extents is greater than the number of
694 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
695 || XFS_BMDR_SPACE_CALC(nrecs) >
696 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
697 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
698 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
699 "corrupt inode %Lu (btree).",
700 (unsigned long long) ip->i_ino);
701 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
703 return XFS_ERROR(EFSCORRUPTED);
706 ifp->if_broot_bytes = size;
707 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
708 ASSERT(ifp->if_broot != NULL);
710 * Copy and convert from the on-disk structure
711 * to the in-memory structure.
713 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
714 ifp->if_broot, size);
715 ifp->if_flags &= ~XFS_IFEXTENTS;
716 ifp->if_flags |= XFS_IFBROOT;
722 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
725 * buf = on-disk representation
726 * dip = native representation
727 * dir = direction - +ve -> disk to native
728 * -ve -> native to disk
731 xfs_xlate_dinode_core(
733 xfs_dinode_core_t *dip,
736 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
737 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
738 xfs_arch_t arch = ARCH_CONVERT;
742 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
743 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
744 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
745 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
746 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
747 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
748 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
749 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
750 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
753 memcpy(mem_core->di_pad, buf_core->di_pad,
754 sizeof(buf_core->di_pad));
756 memcpy(buf_core->di_pad, mem_core->di_pad,
757 sizeof(buf_core->di_pad));
760 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
762 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
764 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
766 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
768 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
770 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
772 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
774 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
775 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
776 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
777 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
778 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
779 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
780 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
781 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
782 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
783 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
784 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
793 if (di_flags & XFS_DIFLAG_ANY) {
794 if (di_flags & XFS_DIFLAG_REALTIME)
795 flags |= XFS_XFLAG_REALTIME;
796 if (di_flags & XFS_DIFLAG_PREALLOC)
797 flags |= XFS_XFLAG_PREALLOC;
798 if (di_flags & XFS_DIFLAG_IMMUTABLE)
799 flags |= XFS_XFLAG_IMMUTABLE;
800 if (di_flags & XFS_DIFLAG_APPEND)
801 flags |= XFS_XFLAG_APPEND;
802 if (di_flags & XFS_DIFLAG_SYNC)
803 flags |= XFS_XFLAG_SYNC;
804 if (di_flags & XFS_DIFLAG_NOATIME)
805 flags |= XFS_XFLAG_NOATIME;
806 if (di_flags & XFS_DIFLAG_NODUMP)
807 flags |= XFS_XFLAG_NODUMP;
808 if (di_flags & XFS_DIFLAG_RTINHERIT)
809 flags |= XFS_XFLAG_RTINHERIT;
810 if (di_flags & XFS_DIFLAG_PROJINHERIT)
811 flags |= XFS_XFLAG_PROJINHERIT;
812 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
813 flags |= XFS_XFLAG_NOSYMLINKS;
814 if (di_flags & XFS_DIFLAG_EXTSIZE)
815 flags |= XFS_XFLAG_EXTSIZE;
816 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
817 flags |= XFS_XFLAG_EXTSZINHERIT;
818 if (di_flags & XFS_DIFLAG_NODEFRAG)
819 flags |= XFS_XFLAG_NODEFRAG;
829 xfs_dinode_core_t *dic = &ip->i_d;
831 return _xfs_dic2xflags(dic->di_flags) |
832 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
837 xfs_dinode_core_t *dic)
839 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
840 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
844 * Given a mount structure and an inode number, return a pointer
845 * to a newly allocated in-core inode corresponding to the given
848 * Initialize the inode's attributes and extent pointers if it
849 * already has them (it will not if the inode has no links).
865 ASSERT(xfs_inode_zone != NULL);
867 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
870 spin_lock_init(&ip->i_flags_lock);
873 * Get pointer's to the on-disk inode and the buffer containing it.
874 * If the inode number refers to a block outside the file system
875 * then xfs_itobp() will return NULL. In this case we should
876 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
877 * know that this is a new incore inode.
879 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
881 kmem_zone_free(xfs_inode_zone, ip);
886 * Initialize inode's trace buffers.
887 * Do this before xfs_iformat in case it adds entries.
889 #ifdef XFS_BMAP_TRACE
890 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
892 #ifdef XFS_BMBT_TRACE
893 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
896 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
898 #ifdef XFS_ILOCK_TRACE
899 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
901 #ifdef XFS_DIR2_TRACE
902 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
906 * If we got something that isn't an inode it means someone
907 * (nfs or dmi) has a stale handle.
909 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
910 kmem_zone_free(xfs_inode_zone, ip);
911 xfs_trans_brelse(tp, bp);
913 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
914 "dip->di_core.di_magic (0x%x) != "
915 "XFS_DINODE_MAGIC (0x%x)",
916 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
919 return XFS_ERROR(EINVAL);
923 * If the on-disk inode is already linked to a directory
924 * entry, copy all of the inode into the in-core inode.
925 * xfs_iformat() handles copying in the inode format
926 * specific information.
927 * Otherwise, just get the truly permanent information.
929 if (dip->di_core.di_mode) {
930 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
932 error = xfs_iformat(ip, dip);
934 kmem_zone_free(xfs_inode_zone, ip);
935 xfs_trans_brelse(tp, bp);
937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 "xfs_iformat() returned error %d",
944 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
945 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
946 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
947 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
960 ip->i_df.if_ext_max =
961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
964 INIT_LIST_HEAD(&ip->i_reclaim);
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
977 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 ip->i_d.di_nlink = ip->i_d.di_onlink;
979 ip->i_d.di_onlink = 0;
980 ip->i_d.di_projid = 0;
983 ip->i_delayed_blks = 0;
986 * Mark the buffer containing the inode as something to keep
987 * around for a while. This helps to keep recently accessed
988 * meta-data in-core longer.
990 XFS_BUF_SET_REF(bp, XFS_INO_REF);
993 * Use xfs_trans_brelse() to release the buffer containing the
994 * on-disk inode, because it was acquired with xfs_trans_read_buf()
995 * in xfs_itobp() above. If tp is NULL, this is just a normal
996 * brelse(). If we're within a transaction, then xfs_trans_brelse()
997 * will only release the buffer if it is not dirty within the
998 * transaction. It will be OK to release the buffer in this case,
999 * because inodes on disk are never destroyed and we will be
1000 * locking the new in-core inode before putting it in the hash
1001 * table where other processes can find it. Thus we don't have
1002 * to worry about the inode being changed just because we released
1005 xfs_trans_brelse(tp, bp);
1011 * Read in extents from a btree-format inode.
1012 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1022 xfs_extnum_t nextents;
1025 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1026 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1028 return XFS_ERROR(EFSCORRUPTED);
1030 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1031 size = nextents * sizeof(xfs_bmbt_rec_t);
1032 ifp = XFS_IFORK_PTR(ip, whichfork);
1035 * We know that the size is valid (it's checked in iformat_btree)
1037 ifp->if_lastex = NULLEXTNUM;
1038 ifp->if_bytes = ifp->if_real_bytes = 0;
1039 ifp->if_flags |= XFS_IFEXTENTS;
1040 xfs_iext_add(ifp, 0, nextents);
1041 error = xfs_bmap_read_extents(tp, ip, whichfork);
1043 xfs_iext_destroy(ifp);
1044 ifp->if_flags &= ~XFS_IFEXTENTS;
1047 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
1052 * Allocate an inode on disk and return a copy of its in-core version.
1053 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1054 * appropriately within the inode. The uid and gid for the inode are
1055 * set according to the contents of the given cred structure.
1057 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1058 * has a free inode available, call xfs_iget()
1059 * to obtain the in-core version of the allocated inode. Finally,
1060 * fill in the inode and log its initial contents. In this case,
1061 * ialloc_context would be set to NULL and call_again set to false.
1063 * If xfs_dialloc() does not have an available inode,
1064 * it will replenish its supply by doing an allocation. Since we can
1065 * only do one allocation within a transaction without deadlocks, we
1066 * must commit the current transaction before returning the inode itself.
1067 * In this case, therefore, we will set call_again to true and return.
1068 * The caller should then commit the current transaction, start a new
1069 * transaction, and call xfs_ialloc() again to actually get the inode.
1071 * To ensure that some other process does not grab the inode that
1072 * was allocated during the first call to xfs_ialloc(), this routine
1073 * also returns the [locked] bp pointing to the head of the freelist
1074 * as ialloc_context. The caller should hold this buffer across
1075 * the commit and pass it back into this routine on the second call.
1087 xfs_buf_t **ialloc_context,
1088 boolean_t *call_again,
1098 * Call the space management code to pick
1099 * the on-disk inode to be allocated.
1101 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1102 ialloc_context, call_again, &ino);
1106 if (*call_again || ino == NULLFSINO) {
1110 ASSERT(*ialloc_context == NULL);
1113 * Get the in-core inode with the lock held exclusively.
1114 * This is because we're setting fields here we need
1115 * to prevent others from looking at until we're done.
1117 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1118 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1125 ip->i_d.di_mode = (__uint16_t)mode;
1126 ip->i_d.di_onlink = 0;
1127 ip->i_d.di_nlink = nlink;
1128 ASSERT(ip->i_d.di_nlink == nlink);
1129 ip->i_d.di_uid = current_fsuid(cr);
1130 ip->i_d.di_gid = current_fsgid(cr);
1131 ip->i_d.di_projid = prid;
1132 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1135 * If the superblock version is up to where we support new format
1136 * inodes and this is currently an old format inode, then change
1137 * the inode version number now. This way we only do the conversion
1138 * here rather than here and in the flush/logging code.
1140 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1141 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1142 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1144 * We've already zeroed the old link count, the projid field,
1145 * and the pad field.
1150 * Project ids won't be stored on disk if we are using a version 1 inode.
1152 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1153 xfs_bump_ino_vers2(tp, ip);
1155 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1156 ip->i_d.di_gid = pip->i_d.di_gid;
1157 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1158 ip->i_d.di_mode |= S_ISGID;
1163 * If the group ID of the new file does not match the effective group
1164 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1165 * (and only if the irix_sgid_inherit compatibility variable is set).
1167 if ((irix_sgid_inherit) &&
1168 (ip->i_d.di_mode & S_ISGID) &&
1169 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1170 ip->i_d.di_mode &= ~S_ISGID;
1173 ip->i_d.di_size = 0;
1174 ip->i_d.di_nextents = 0;
1175 ASSERT(ip->i_d.di_nblocks == 0);
1176 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1178 * di_gen will have been taken care of in xfs_iread.
1180 ip->i_d.di_extsize = 0;
1181 ip->i_d.di_dmevmask = 0;
1182 ip->i_d.di_dmstate = 0;
1183 ip->i_d.di_flags = 0;
1184 flags = XFS_ILOG_CORE;
1185 switch (mode & S_IFMT) {
1190 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1191 ip->i_df.if_u2.if_rdev = rdev;
1192 ip->i_df.if_flags = 0;
1193 flags |= XFS_ILOG_DEV;
1197 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1200 if ((mode & S_IFMT) == S_IFDIR) {
1201 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1202 di_flags |= XFS_DIFLAG_RTINHERIT;
1203 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1204 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1205 ip->i_d.di_extsize = pip->i_d.di_extsize;
1207 } else if ((mode & S_IFMT) == S_IFREG) {
1208 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1209 di_flags |= XFS_DIFLAG_REALTIME;
1210 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1212 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1213 di_flags |= XFS_DIFLAG_EXTSIZE;
1214 ip->i_d.di_extsize = pip->i_d.di_extsize;
1217 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1218 xfs_inherit_noatime)
1219 di_flags |= XFS_DIFLAG_NOATIME;
1220 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1222 di_flags |= XFS_DIFLAG_NODUMP;
1223 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1225 di_flags |= XFS_DIFLAG_SYNC;
1226 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1227 xfs_inherit_nosymlinks)
1228 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1229 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1230 di_flags |= XFS_DIFLAG_PROJINHERIT;
1231 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1232 xfs_inherit_nodefrag)
1233 di_flags |= XFS_DIFLAG_NODEFRAG;
1234 ip->i_d.di_flags |= di_flags;
1238 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1239 ip->i_df.if_flags = XFS_IFEXTENTS;
1240 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1241 ip->i_df.if_u1.if_extents = NULL;
1247 * Attribute fork settings for new inode.
1249 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1250 ip->i_d.di_anextents = 0;
1253 * Log the new values stuffed into the inode.
1255 xfs_trans_log_inode(tp, ip, flags);
1257 /* now that we have an i_mode we can setup inode ops and unlock */
1258 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1265 * Check to make sure that there are no blocks allocated to the
1266 * file beyond the size of the file. We don't check this for
1267 * files with fixed size extents or real time extents, but we
1268 * at least do it for regular files.
1277 xfs_fileoff_t map_first;
1279 xfs_bmbt_irec_t imaps[2];
1281 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1284 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1288 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1290 * The filesystem could be shutting down, so bmapi may return
1293 if (xfs_bmapi(NULL, ip, map_first,
1295 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1297 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1300 ASSERT(nimaps == 1);
1301 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1306 * Calculate the last possible buffered byte in a file. This must
1307 * include data that was buffered beyond the EOF by the write code.
1308 * This also needs to deal with overflowing the xfs_fsize_t type
1309 * which can happen for sizes near the limit.
1311 * We also need to take into account any blocks beyond the EOF. It
1312 * may be the case that they were buffered by a write which failed.
1313 * In that case the pages will still be in memory, but the inode size
1314 * will never have been updated.
1321 xfs_fsize_t last_byte;
1322 xfs_fileoff_t last_block;
1323 xfs_fileoff_t size_last_block;
1326 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1330 * Only check for blocks beyond the EOF if the extents have
1331 * been read in. This eliminates the need for the inode lock,
1332 * and it also saves us from looking when it really isn't
1335 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1336 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1344 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1345 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1347 last_byte = XFS_FSB_TO_B(mp, last_block);
1348 if (last_byte < 0) {
1349 return XFS_MAXIOFFSET(mp);
1351 last_byte += (1 << mp->m_writeio_log);
1352 if (last_byte < 0) {
1353 return XFS_MAXIOFFSET(mp);
1358 #if defined(XFS_RW_TRACE)
1364 xfs_fsize_t new_size,
1365 xfs_off_t toss_start,
1366 xfs_off_t toss_finish)
1368 if (ip->i_rwtrace == NULL) {
1372 ktrace_enter(ip->i_rwtrace,
1375 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1376 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1377 (void*)((long)flag),
1378 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1379 (void*)(unsigned long)(new_size & 0xffffffff),
1380 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1381 (void*)(unsigned long)(toss_start & 0xffffffff),
1382 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1383 (void*)(unsigned long)(toss_finish & 0xffffffff),
1384 (void*)(unsigned long)current_cpu(),
1385 (void*)(unsigned long)current_pid(),
1391 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1395 * Start the truncation of the file to new_size. The new size
1396 * must be smaller than the current size. This routine will
1397 * clear the buffer and page caches of file data in the removed
1398 * range, and xfs_itruncate_finish() will remove the underlying
1401 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1402 * must NOT have the inode lock held at all. This is because we're
1403 * calling into the buffer/page cache code and we can't hold the
1404 * inode lock when we do so.
1406 * We need to wait for any direct I/Os in flight to complete before we
1407 * proceed with the truncate. This is needed to prevent the extents
1408 * being read or written by the direct I/Os from being removed while the
1409 * I/O is in flight as there is no other method of synchronising
1410 * direct I/O with the truncate operation. Also, because we hold
1411 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1412 * started until the truncate completes and drops the lock. Essentially,
1413 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1414 * between direct I/Os and the truncate operation.
1416 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1417 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1418 * in the case that the caller is locking things out of order and
1419 * may not be able to call xfs_itruncate_finish() with the inode lock
1420 * held without dropping the I/O lock. If the caller must drop the
1421 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1422 * must be called again with all the same restrictions as the initial
1426 xfs_itruncate_start(
1429 xfs_fsize_t new_size)
1431 xfs_fsize_t last_byte;
1432 xfs_off_t toss_start;
1436 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1437 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1438 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1439 (flags == XFS_ITRUNC_MAYBE));
1444 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1447 * Call toss_pages or flushinval_pages to get rid of pages
1448 * overlapping the region being removed. We have to use
1449 * the less efficient flushinval_pages in the case that the
1450 * caller may not be able to finish the truncate without
1451 * dropping the inode's I/O lock. Make sure
1452 * to catch any pages brought in by buffers overlapping
1453 * the EOF by searching out beyond the isize by our
1454 * block size. We round new_size up to a block boundary
1455 * so that we don't toss things on the same block as
1456 * new_size but before it.
1458 * Before calling toss_page or flushinval_pages, make sure to
1459 * call remapf() over the same region if the file is mapped.
1460 * This frees up mapped file references to the pages in the
1461 * given range and for the flushinval_pages case it ensures
1462 * that we get the latest mapped changes flushed out.
1464 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1465 toss_start = XFS_FSB_TO_B(mp, toss_start);
1466 if (toss_start < 0) {
1468 * The place to start tossing is beyond our maximum
1469 * file size, so there is no way that the data extended
1474 last_byte = xfs_file_last_byte(ip);
1475 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1477 if (last_byte > toss_start) {
1478 if (flags & XFS_ITRUNC_DEFINITE) {
1479 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1481 bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1486 if (new_size == 0) {
1487 ASSERT(VN_CACHED(vp) == 0);
1493 * Shrink the file to the given new_size. The new
1494 * size must be smaller than the current size.
1495 * This will free up the underlying blocks
1496 * in the removed range after a call to xfs_itruncate_start()
1497 * or xfs_atruncate_start().
1499 * The transaction passed to this routine must have made
1500 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1501 * This routine may commit the given transaction and
1502 * start new ones, so make sure everything involved in
1503 * the transaction is tidy before calling here.
1504 * Some transaction will be returned to the caller to be
1505 * committed. The incoming transaction must already include
1506 * the inode, and both inode locks must be held exclusively.
1507 * The inode must also be "held" within the transaction. On
1508 * return the inode will be "held" within the returned transaction.
1509 * This routine does NOT require any disk space to be reserved
1510 * for it within the transaction.
1512 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1513 * and it indicates the fork which is to be truncated. For the
1514 * attribute fork we only support truncation to size 0.
1516 * We use the sync parameter to indicate whether or not the first
1517 * transaction we perform might have to be synchronous. For the attr fork,
1518 * it needs to be so if the unlink of the inode is not yet known to be
1519 * permanent in the log. This keeps us from freeing and reusing the
1520 * blocks of the attribute fork before the unlink of the inode becomes
1523 * For the data fork, we normally have to run synchronously if we're
1524 * being called out of the inactive path or we're being called
1525 * out of the create path where we're truncating an existing file.
1526 * Either way, the truncate needs to be sync so blocks don't reappear
1527 * in the file with altered data in case of a crash. wsync filesystems
1528 * can run the first case async because anything that shrinks the inode
1529 * has to run sync so by the time we're called here from inactive, the
1530 * inode size is permanently set to 0.
1532 * Calls from the truncate path always need to be sync unless we're
1533 * in a wsync filesystem and the file has already been unlinked.
1535 * The caller is responsible for correctly setting the sync parameter.
1536 * It gets too hard for us to guess here which path we're being called
1537 * out of just based on inode state.
1540 xfs_itruncate_finish(
1543 xfs_fsize_t new_size,
1547 xfs_fsblock_t first_block;
1548 xfs_fileoff_t first_unmap_block;
1549 xfs_fileoff_t last_block;
1550 xfs_filblks_t unmap_len=0;
1555 xfs_bmap_free_t free_list;
1558 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1559 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1560 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1561 ASSERT(*tp != NULL);
1562 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1563 ASSERT(ip->i_transp == *tp);
1564 ASSERT(ip->i_itemp != NULL);
1565 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1569 mp = (ntp)->t_mountp;
1570 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1573 * We only support truncating the entire attribute fork.
1575 if (fork == XFS_ATTR_FORK) {
1578 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1579 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1581 * The first thing we do is set the size to new_size permanently
1582 * on disk. This way we don't have to worry about anyone ever
1583 * being able to look at the data being freed even in the face
1584 * of a crash. What we're getting around here is the case where
1585 * we free a block, it is allocated to another file, it is written
1586 * to, and then we crash. If the new data gets written to the
1587 * file but the log buffers containing the free and reallocation
1588 * don't, then we'd end up with garbage in the blocks being freed.
1589 * As long as we make the new_size permanent before actually
1590 * freeing any blocks it doesn't matter if they get writtten to.
1592 * The callers must signal into us whether or not the size
1593 * setting here must be synchronous. There are a few cases
1594 * where it doesn't have to be synchronous. Those cases
1595 * occur if the file is unlinked and we know the unlink is
1596 * permanent or if the blocks being truncated are guaranteed
1597 * to be beyond the inode eof (regardless of the link count)
1598 * and the eof value is permanent. Both of these cases occur
1599 * only on wsync-mounted filesystems. In those cases, we're
1600 * guaranteed that no user will ever see the data in the blocks
1601 * that are being truncated so the truncate can run async.
1602 * In the free beyond eof case, the file may wind up with
1603 * more blocks allocated to it than it needs if we crash
1604 * and that won't get fixed until the next time the file
1605 * is re-opened and closed but that's ok as that shouldn't
1606 * be too many blocks.
1608 * However, we can't just make all wsync xactions run async
1609 * because there's one call out of the create path that needs
1610 * to run sync where it's truncating an existing file to size
1611 * 0 whose size is > 0.
1613 * It's probably possible to come up with a test in this
1614 * routine that would correctly distinguish all the above
1615 * cases from the values of the function parameters and the
1616 * inode state but for sanity's sake, I've decided to let the
1617 * layers above just tell us. It's simpler to correctly figure
1618 * out in the layer above exactly under what conditions we
1619 * can run async and I think it's easier for others read and
1620 * follow the logic in case something has to be changed.
1621 * cscope is your friend -- rcc.
1623 * The attribute fork is much simpler.
1625 * For the attribute fork we allow the caller to tell us whether
1626 * the unlink of the inode that led to this call is yet permanent
1627 * in the on disk log. If it is not and we will be freeing extents
1628 * in this inode then we make the first transaction synchronous
1629 * to make sure that the unlink is permanent by the time we free
1632 if (fork == XFS_DATA_FORK) {
1633 if (ip->i_d.di_nextents > 0) {
1634 ip->i_d.di_size = new_size;
1635 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1638 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1639 if (ip->i_d.di_anextents > 0)
1640 xfs_trans_set_sync(ntp);
1642 ASSERT(fork == XFS_DATA_FORK ||
1643 (fork == XFS_ATTR_FORK &&
1644 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1645 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1648 * Since it is possible for space to become allocated beyond
1649 * the end of the file (in a crash where the space is allocated
1650 * but the inode size is not yet updated), simply remove any
1651 * blocks which show up between the new EOF and the maximum
1652 * possible file size. If the first block to be removed is
1653 * beyond the maximum file size (ie it is the same as last_block),
1654 * then there is nothing to do.
1656 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1657 ASSERT(first_unmap_block <= last_block);
1659 if (last_block == first_unmap_block) {
1662 unmap_len = last_block - first_unmap_block + 1;
1666 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1667 * will tell us whether it freed the entire range or
1668 * not. If this is a synchronous mount (wsync),
1669 * then we can tell bunmapi to keep all the
1670 * transactions asynchronous since the unlink
1671 * transaction that made this inode inactive has
1672 * already hit the disk. There's no danger of
1673 * the freed blocks being reused, there being a
1674 * crash, and the reused blocks suddenly reappearing
1675 * in this file with garbage in them once recovery
1678 XFS_BMAP_INIT(&free_list, &first_block);
1679 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1680 first_unmap_block, unmap_len,
1681 XFS_BMAPI_AFLAG(fork) |
1682 (sync ? 0 : XFS_BMAPI_ASYNC),
1683 XFS_ITRUNC_MAX_EXTENTS,
1684 &first_block, &free_list,
1688 * If the bunmapi call encounters an error,
1689 * return to the caller where the transaction
1690 * can be properly aborted. We just need to
1691 * make sure we're not holding any resources
1692 * that we were not when we came in.
1694 xfs_bmap_cancel(&free_list);
1699 * Duplicate the transaction that has the permanent
1700 * reservation and commit the old transaction.
1702 error = xfs_bmap_finish(tp, &free_list, first_block,
1707 * If the bmap finish call encounters an error,
1708 * return to the caller where the transaction
1709 * can be properly aborted. We just need to
1710 * make sure we're not holding any resources
1711 * that we were not when we came in.
1713 * Aborting from this point might lose some
1714 * blocks in the file system, but oh well.
1716 xfs_bmap_cancel(&free_list);
1719 * If the passed in transaction committed
1720 * in xfs_bmap_finish(), then we want to
1721 * add the inode to this one before returning.
1722 * This keeps things simple for the higher
1723 * level code, because it always knows that
1724 * the inode is locked and held in the
1725 * transaction that returns to it whether
1726 * errors occur or not. We don't mark the
1727 * inode dirty so that this transaction can
1728 * be easily aborted if possible.
1730 xfs_trans_ijoin(ntp, ip,
1731 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1732 xfs_trans_ihold(ntp, ip);
1739 * The first xact was committed,
1740 * so add the inode to the new one.
1741 * Mark it dirty so it will be logged
1742 * and moved forward in the log as
1743 * part of every commit.
1745 xfs_trans_ijoin(ntp, ip,
1746 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1747 xfs_trans_ihold(ntp, ip);
1748 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1750 ntp = xfs_trans_dup(ntp);
1751 (void) xfs_trans_commit(*tp, 0, NULL);
1753 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1754 XFS_TRANS_PERM_LOG_RES,
1755 XFS_ITRUNCATE_LOG_COUNT);
1757 * Add the inode being truncated to the next chained
1760 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1761 xfs_trans_ihold(ntp, ip);
1766 * Only update the size in the case of the data fork, but
1767 * always re-log the inode so that our permanent transaction
1768 * can keep on rolling it forward in the log.
1770 if (fork == XFS_DATA_FORK) {
1771 xfs_isize_check(mp, ip, new_size);
1772 ip->i_d.di_size = new_size;
1774 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1775 ASSERT((new_size != 0) ||
1776 (fork == XFS_ATTR_FORK) ||
1777 (ip->i_delayed_blks == 0));
1778 ASSERT((new_size != 0) ||
1779 (fork == XFS_ATTR_FORK) ||
1780 (ip->i_d.di_nextents == 0));
1781 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1789 * Do the first part of growing a file: zero any data in the last
1790 * block that is beyond the old EOF. We need to do this before
1791 * the inode is joined to the transaction to modify the i_size.
1792 * That way we can drop the inode lock and call into the buffer
1793 * cache to get the buffer mapping the EOF.
1798 xfs_fsize_t new_size,
1803 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1804 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1805 ASSERT(new_size > ip->i_d.di_size);
1808 * Zero any pages that may have been created by
1809 * xfs_write_file() beyond the end of the file
1810 * and any blocks between the old and new file sizes.
1812 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1813 ip->i_d.di_size, new_size);
1820 * This routine is called to extend the size of a file.
1821 * The inode must have both the iolock and the ilock locked
1822 * for update and it must be a part of the current transaction.
1823 * The xfs_igrow_start() function must have been called previously.
1824 * If the change_flag is not zero, the inode change timestamp will
1831 xfs_fsize_t new_size,
1834 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1835 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1836 ASSERT(ip->i_transp == tp);
1837 ASSERT(new_size > ip->i_d.di_size);
1840 * Update the file size. Update the inode change timestamp
1841 * if change_flag set.
1843 ip->i_d.di_size = new_size;
1845 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1846 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1852 * This is called when the inode's link count goes to 0.
1853 * We place the on-disk inode on a list in the AGI. It
1854 * will be pulled from this list when the inode is freed.
1866 xfs_agnumber_t agno;
1867 xfs_daddr_t agdaddr;
1874 ASSERT(ip->i_d.di_nlink == 0);
1875 ASSERT(ip->i_d.di_mode != 0);
1876 ASSERT(ip->i_transp == tp);
1880 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1881 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1884 * Get the agi buffer first. It ensures lock ordering
1887 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1888 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1893 * Validate the magic number of the agi block.
1895 agi = XFS_BUF_TO_AGI(agibp);
1897 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1898 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1899 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1900 XFS_RANDOM_IUNLINK))) {
1901 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1902 xfs_trans_brelse(tp, agibp);
1903 return XFS_ERROR(EFSCORRUPTED);
1906 * Get the index into the agi hash table for the
1907 * list this inode will go on.
1909 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1911 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1912 ASSERT(agi->agi_unlinked[bucket_index]);
1913 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1915 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1917 * There is already another inode in the bucket we need
1918 * to add ourselves to. Add us at the front of the list.
1919 * Here we put the head pointer into our next pointer,
1920 * and then we fall through to point the head at us.
1922 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1926 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1927 ASSERT(dip->di_next_unlinked);
1928 /* both on-disk, don't endian flip twice */
1929 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1930 offset = ip->i_boffset +
1931 offsetof(xfs_dinode_t, di_next_unlinked);
1932 xfs_trans_inode_buf(tp, ibp);
1933 xfs_trans_log_buf(tp, ibp, offset,
1934 (offset + sizeof(xfs_agino_t) - 1));
1935 xfs_inobp_check(mp, ibp);
1939 * Point the bucket head pointer at the inode being inserted.
1942 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1943 offset = offsetof(xfs_agi_t, agi_unlinked) +
1944 (sizeof(xfs_agino_t) * bucket_index);
1945 xfs_trans_log_buf(tp, agibp, offset,
1946 (offset + sizeof(xfs_agino_t) - 1));
1951 * Pull the on-disk inode from the AGI unlinked list.
1964 xfs_agnumber_t agno;
1965 xfs_daddr_t agdaddr;
1967 xfs_agino_t next_agino;
1968 xfs_buf_t *last_ibp;
1969 xfs_dinode_t *last_dip = NULL;
1971 int offset, last_offset = 0;
1976 * First pull the on-disk inode from the AGI unlinked list.
1980 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1981 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1984 * Get the agi buffer first. It ensures lock ordering
1987 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1988 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1991 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1992 error, mp->m_fsname);
1996 * Validate the magic number of the agi block.
1998 agi = XFS_BUF_TO_AGI(agibp);
2000 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2001 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2002 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2003 XFS_RANDOM_IUNLINK_REMOVE))) {
2004 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2006 xfs_trans_brelse(tp, agibp);
2008 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2010 return XFS_ERROR(EFSCORRUPTED);
2013 * Get the index into the agi hash table for the
2014 * list this inode will go on.
2016 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2018 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2019 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2020 ASSERT(agi->agi_unlinked[bucket_index]);
2022 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2024 * We're at the head of the list. Get the inode's
2025 * on-disk buffer to see if there is anyone after us
2026 * on the list. Only modify our next pointer if it
2027 * is not already NULLAGINO. This saves us the overhead
2028 * of dealing with the buffer when there is no need to
2031 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2034 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2035 error, mp->m_fsname);
2038 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2039 ASSERT(next_agino != 0);
2040 if (next_agino != NULLAGINO) {
2041 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2042 offset = ip->i_boffset +
2043 offsetof(xfs_dinode_t, di_next_unlinked);
2044 xfs_trans_inode_buf(tp, ibp);
2045 xfs_trans_log_buf(tp, ibp, offset,
2046 (offset + sizeof(xfs_agino_t) - 1));
2047 xfs_inobp_check(mp, ibp);
2049 xfs_trans_brelse(tp, ibp);
2052 * Point the bucket head pointer at the next inode.
2054 ASSERT(next_agino != 0);
2055 ASSERT(next_agino != agino);
2056 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2057 offset = offsetof(xfs_agi_t, agi_unlinked) +
2058 (sizeof(xfs_agino_t) * bucket_index);
2059 xfs_trans_log_buf(tp, agibp, offset,
2060 (offset + sizeof(xfs_agino_t) - 1));
2063 * We need to search the list for the inode being freed.
2065 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2067 while (next_agino != agino) {
2069 * If the last inode wasn't the one pointing to
2070 * us, then release its buffer since we're not
2071 * going to do anything with it.
2073 if (last_ibp != NULL) {
2074 xfs_trans_brelse(tp, last_ibp);
2076 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2077 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2078 &last_ibp, &last_offset);
2081 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2082 error, mp->m_fsname);
2085 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2086 ASSERT(next_agino != NULLAGINO);
2087 ASSERT(next_agino != 0);
2090 * Now last_ibp points to the buffer previous to us on
2091 * the unlinked list. Pull us from the list.
2093 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2096 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2097 error, mp->m_fsname);
2100 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2101 ASSERT(next_agino != 0);
2102 ASSERT(next_agino != agino);
2103 if (next_agino != NULLAGINO) {
2104 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2105 offset = ip->i_boffset +
2106 offsetof(xfs_dinode_t, di_next_unlinked);
2107 xfs_trans_inode_buf(tp, ibp);
2108 xfs_trans_log_buf(tp, ibp, offset,
2109 (offset + sizeof(xfs_agino_t) - 1));
2110 xfs_inobp_check(mp, ibp);
2112 xfs_trans_brelse(tp, ibp);
2115 * Point the previous inode on the list to the next inode.
2117 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2118 ASSERT(next_agino != 0);
2119 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2120 xfs_trans_inode_buf(tp, last_ibp);
2121 xfs_trans_log_buf(tp, last_ibp, offset,
2122 (offset + sizeof(xfs_agino_t) - 1));
2123 xfs_inobp_check(mp, last_ibp);
2128 static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2130 return (((ip->i_itemp == NULL) ||
2131 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2132 (ip->i_update_core == 0));
2137 xfs_inode_t *free_ip,
2141 xfs_mount_t *mp = free_ip->i_mount;
2142 int blks_per_cluster;
2145 int i, j, found, pre_flushed;
2149 xfs_inode_t *ip, **ip_found;
2150 xfs_inode_log_item_t *iip;
2151 xfs_log_item_t *lip;
2154 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2155 blks_per_cluster = 1;
2156 ninodes = mp->m_sb.sb_inopblock;
2157 nbufs = XFS_IALLOC_BLOCKS(mp);
2159 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2160 mp->m_sb.sb_blocksize;
2161 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2162 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2165 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2167 for (j = 0; j < nbufs; j++, inum += ninodes) {
2168 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2169 XFS_INO_TO_AGBNO(mp, inum));
2173 * Look for each inode in memory and attempt to lock it,
2174 * we can be racing with flush and tail pushing here.
2175 * any inode we get the locks on, add to an array of
2176 * inode items to process later.
2178 * The get the buffer lock, we could beat a flush
2179 * or tail pushing thread to the lock here, in which
2180 * case they will go looking for the inode buffer
2181 * and fail, we need some other form of interlock
2185 for (i = 0; i < ninodes; i++) {
2186 ih = XFS_IHASH(mp, inum + i);
2187 read_lock(&ih->ih_lock);
2188 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2189 if (ip->i_ino == inum + i)
2193 /* Inode not in memory or we found it already,
2196 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2197 read_unlock(&ih->ih_lock);
2201 if (xfs_inode_clean(ip)) {
2202 read_unlock(&ih->ih_lock);
2206 /* If we can get the locks then add it to the
2207 * list, otherwise by the time we get the bp lock
2208 * below it will already be attached to the
2212 /* This inode will already be locked - by us, lets
2216 if (ip == free_ip) {
2217 if (xfs_iflock_nowait(ip)) {
2218 xfs_iflags_set(ip, XFS_ISTALE);
2219 if (xfs_inode_clean(ip)) {
2222 ip_found[found++] = ip;
2225 read_unlock(&ih->ih_lock);
2229 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2230 if (xfs_iflock_nowait(ip)) {
2231 xfs_iflags_set(ip, XFS_ISTALE);
2233 if (xfs_inode_clean(ip)) {
2235 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2237 ip_found[found++] = ip;
2240 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2244 read_unlock(&ih->ih_lock);
2247 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2248 mp->m_bsize * blks_per_cluster,
2252 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2254 if (lip->li_type == XFS_LI_INODE) {
2255 iip = (xfs_inode_log_item_t *)lip;
2256 ASSERT(iip->ili_logged == 1);
2257 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2259 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2261 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2264 lip = lip->li_bio_list;
2267 for (i = 0; i < found; i++) {
2272 ip->i_update_core = 0;
2274 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2278 iip->ili_last_fields = iip->ili_format.ilf_fields;
2279 iip->ili_format.ilf_fields = 0;
2280 iip->ili_logged = 1;
2282 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2285 xfs_buf_attach_iodone(bp,
2286 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2287 xfs_istale_done, (xfs_log_item_t *)iip);
2288 if (ip != free_ip) {
2289 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2293 if (found || pre_flushed)
2294 xfs_trans_stale_inode_buf(tp, bp);
2295 xfs_trans_binval(tp, bp);
2298 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2302 * This is called to return an inode to the inode free list.
2303 * The inode should already be truncated to 0 length and have
2304 * no pages associated with it. This routine also assumes that
2305 * the inode is already a part of the transaction.
2307 * The on-disk copy of the inode will have been added to the list
2308 * of unlinked inodes in the AGI. We need to remove the inode from
2309 * that list atomically with respect to freeing it here.
2315 xfs_bmap_free_t *flist)
2319 xfs_ino_t first_ino;
2321 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2322 ASSERT(ip->i_transp == tp);
2323 ASSERT(ip->i_d.di_nlink == 0);
2324 ASSERT(ip->i_d.di_nextents == 0);
2325 ASSERT(ip->i_d.di_anextents == 0);
2326 ASSERT((ip->i_d.di_size == 0) ||
2327 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2328 ASSERT(ip->i_d.di_nblocks == 0);
2331 * Pull the on-disk inode from the AGI unlinked list.
2333 error = xfs_iunlink_remove(tp, ip);
2338 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2342 ip->i_d.di_mode = 0; /* mark incore inode as free */
2343 ip->i_d.di_flags = 0;
2344 ip->i_d.di_dmevmask = 0;
2345 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2346 ip->i_df.if_ext_max =
2347 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2348 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2349 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2351 * Bump the generation count so no one will be confused
2352 * by reincarnations of this inode.
2355 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2358 xfs_ifree_cluster(ip, tp, first_ino);
2365 * Reallocate the space for if_broot based on the number of records
2366 * being added or deleted as indicated in rec_diff. Move the records
2367 * and pointers in if_broot to fit the new size. When shrinking this
2368 * will eliminate holes between the records and pointers created by
2369 * the caller. When growing this will create holes to be filled in
2372 * The caller must not request to add more records than would fit in
2373 * the on-disk inode root. If the if_broot is currently NULL, then
2374 * if we adding records one will be allocated. The caller must also
2375 * not request that the number of records go below zero, although
2376 * it can go to zero.
2378 * ip -- the inode whose if_broot area is changing
2379 * ext_diff -- the change in the number of records, positive or negative,
2380 * requested for the if_broot array.
2390 xfs_bmbt_block_t *new_broot;
2397 * Handle the degenerate case quietly.
2399 if (rec_diff == 0) {
2403 ifp = XFS_IFORK_PTR(ip, whichfork);
2406 * If there wasn't any memory allocated before, just
2407 * allocate it now and get out.
2409 if (ifp->if_broot_bytes == 0) {
2410 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2411 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2413 ifp->if_broot_bytes = (int)new_size;
2418 * If there is already an existing if_broot, then we need
2419 * to realloc() it and shift the pointers to their new
2420 * location. The records don't change location because
2421 * they are kept butted up against the btree block header.
2423 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2424 new_max = cur_max + rec_diff;
2425 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2426 ifp->if_broot = (xfs_bmbt_block_t *)
2427 kmem_realloc(ifp->if_broot,
2429 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2431 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2432 ifp->if_broot_bytes);
2433 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2435 ifp->if_broot_bytes = (int)new_size;
2436 ASSERT(ifp->if_broot_bytes <=
2437 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2438 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2443 * rec_diff is less than 0. In this case, we are shrinking the
2444 * if_broot buffer. It must already exist. If we go to zero
2445 * records, just get rid of the root and clear the status bit.
2447 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2448 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2449 new_max = cur_max + rec_diff;
2450 ASSERT(new_max >= 0);
2452 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2456 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2458 * First copy over the btree block header.
2460 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2463 ifp->if_flags &= ~XFS_IFBROOT;
2467 * Only copy the records and pointers if there are any.
2471 * First copy the records.
2473 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2474 ifp->if_broot_bytes);
2475 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2477 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2480 * Then copy the pointers.
2482 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2483 ifp->if_broot_bytes);
2484 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2486 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2488 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2489 ifp->if_broot = new_broot;
2490 ifp->if_broot_bytes = (int)new_size;
2491 ASSERT(ifp->if_broot_bytes <=
2492 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2498 * This is called when the amount of space needed for if_data
2499 * is increased or decreased. The change in size is indicated by
2500 * the number of bytes that need to be added or deleted in the
2501 * byte_diff parameter.
2503 * If the amount of space needed has decreased below the size of the
2504 * inline buffer, then switch to using the inline buffer. Otherwise,
2505 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2506 * to what is needed.
2508 * ip -- the inode whose if_data area is changing
2509 * byte_diff -- the change in the number of bytes, positive or negative,
2510 * requested for the if_data array.
2522 if (byte_diff == 0) {
2526 ifp = XFS_IFORK_PTR(ip, whichfork);
2527 new_size = (int)ifp->if_bytes + byte_diff;
2528 ASSERT(new_size >= 0);
2530 if (new_size == 0) {
2531 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2532 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2534 ifp->if_u1.if_data = NULL;
2536 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2538 * If the valid extents/data can fit in if_inline_ext/data,
2539 * copy them from the malloc'd vector and free it.
2541 if (ifp->if_u1.if_data == NULL) {
2542 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2543 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2544 ASSERT(ifp->if_real_bytes != 0);
2545 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2547 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2548 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2553 * Stuck with malloc/realloc.
2554 * For inline data, the underlying buffer must be
2555 * a multiple of 4 bytes in size so that it can be
2556 * logged and stay on word boundaries. We enforce
2559 real_size = roundup(new_size, 4);
2560 if (ifp->if_u1.if_data == NULL) {
2561 ASSERT(ifp->if_real_bytes == 0);
2562 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2563 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2565 * Only do the realloc if the underlying size
2566 * is really changing.
2568 if (ifp->if_real_bytes != real_size) {
2569 ifp->if_u1.if_data =
2570 kmem_realloc(ifp->if_u1.if_data,
2576 ASSERT(ifp->if_real_bytes == 0);
2577 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2578 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2582 ifp->if_real_bytes = real_size;
2583 ifp->if_bytes = new_size;
2584 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2591 * Map inode to disk block and offset.
2593 * mp -- the mount point structure for the current file system
2594 * tp -- the current transaction
2595 * ino -- the inode number of the inode to be located
2596 * imap -- this structure is filled in with the information necessary
2597 * to retrieve the given inode from disk
2598 * flags -- flags to pass to xfs_dilocate indicating whether or not
2599 * lookups in the inode btree were OK or not
2609 xfs_fsblock_t fsbno;
2614 fsbno = imap->im_blkno ?
2615 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2616 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2620 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2621 imap->im_len = XFS_FSB_TO_BB(mp, len);
2622 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2623 imap->im_ioffset = (ushort)off;
2624 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2635 ifp = XFS_IFORK_PTR(ip, whichfork);
2636 if (ifp->if_broot != NULL) {
2637 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2638 ifp->if_broot = NULL;
2642 * If the format is local, then we can't have an extents
2643 * array so just look for an inline data array. If we're
2644 * not local then we may or may not have an extents list,
2645 * so check and free it up if we do.
2647 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2648 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2649 (ifp->if_u1.if_data != NULL)) {
2650 ASSERT(ifp->if_real_bytes != 0);
2651 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2652 ifp->if_u1.if_data = NULL;
2653 ifp->if_real_bytes = 0;
2655 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2656 ((ifp->if_flags & XFS_IFEXTIREC) ||
2657 ((ifp->if_u1.if_extents != NULL) &&
2658 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2659 ASSERT(ifp->if_real_bytes != 0);
2660 xfs_iext_destroy(ifp);
2662 ASSERT(ifp->if_u1.if_extents == NULL ||
2663 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2664 ASSERT(ifp->if_real_bytes == 0);
2665 if (whichfork == XFS_ATTR_FORK) {
2666 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2672 * This is called free all the memory associated with an inode.
2673 * It must free the inode itself and any buffers allocated for
2674 * if_extents/if_data and if_broot. It must also free the lock
2675 * associated with the inode.
2682 switch (ip->i_d.di_mode & S_IFMT) {
2686 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2690 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2691 mrfree(&ip->i_lock);
2692 mrfree(&ip->i_iolock);
2693 freesema(&ip->i_flock);
2694 #ifdef XFS_BMAP_TRACE
2695 ktrace_free(ip->i_xtrace);
2697 #ifdef XFS_BMBT_TRACE
2698 ktrace_free(ip->i_btrace);
2701 ktrace_free(ip->i_rwtrace);
2703 #ifdef XFS_ILOCK_TRACE
2704 ktrace_free(ip->i_lock_trace);
2706 #ifdef XFS_DIR2_TRACE
2707 ktrace_free(ip->i_dir_trace);
2710 /* XXXdpd should be able to assert this but shutdown
2711 * is leaving the AIL behind. */
2712 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2713 XFS_FORCED_SHUTDOWN(ip->i_mount));
2714 xfs_inode_item_destroy(ip);
2716 kmem_zone_free(xfs_inode_zone, ip);
2721 * Increment the pin count of the given buffer.
2722 * This value is protected by ipinlock spinlock in the mount structure.
2728 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2730 atomic_inc(&ip->i_pincount);
2734 * Decrement the pin count of the given inode, and wake up
2735 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2736 * inode must have been previously pinned with a call to xfs_ipin().
2742 ASSERT(atomic_read(&ip->i_pincount) > 0);
2744 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2747 * If the inode is currently being reclaimed, the link between
2748 * the bhv_vnode and the xfs_inode will be broken after the
2749 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2750 * set, then we can move forward and mark the linux inode dirty
2751 * knowing that it is still valid as it won't freed until after
2752 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2753 * i_flags_lock is used to synchronise the setting of the
2754 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2755 * can execute atomically w.r.t to reclaim by holding this lock
2758 * However, we still need to issue the unpin wakeup call as the
2759 * inode reclaim may be blocked waiting for the inode to become
2763 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2764 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
2765 struct inode *inode = NULL;
2768 inode = vn_to_inode(vp);
2769 BUG_ON(inode->i_state & I_CLEAR);
2771 /* make sync come back and flush this inode */
2772 if (!(inode->i_state & (I_NEW|I_FREEING)))
2773 mark_inode_dirty_sync(inode);
2775 spin_unlock(&ip->i_flags_lock);
2776 wake_up(&ip->i_ipin_wait);
2781 * This is called to wait for the given inode to be unpinned.
2782 * It will sleep until this happens. The caller must have the
2783 * inode locked in at least shared mode so that the buffer cannot
2784 * be subsequently pinned once someone is waiting for it to be
2791 xfs_inode_log_item_t *iip;
2794 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2796 if (atomic_read(&ip->i_pincount) == 0) {
2801 if (iip && iip->ili_last_lsn) {
2802 lsn = iip->ili_last_lsn;
2808 * Give the log a push so we don't wait here too long.
2810 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2812 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2817 * xfs_iextents_copy()
2819 * This is called to copy the REAL extents (as opposed to the delayed
2820 * allocation extents) from the inode into the given buffer. It
2821 * returns the number of bytes copied into the buffer.
2823 * If there are no delayed allocation extents, then we can just
2824 * memcpy() the extents into the buffer. Otherwise, we need to
2825 * examine each extent in turn and skip those which are delayed.
2830 xfs_bmbt_rec_t *buffer,
2834 xfs_bmbt_rec_t *dest_ep;
2836 #ifdef XFS_BMAP_TRACE
2837 static char fname[] = "xfs_iextents_copy";
2842 xfs_fsblock_t start_block;
2844 ifp = XFS_IFORK_PTR(ip, whichfork);
2845 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2846 ASSERT(ifp->if_bytes > 0);
2848 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2849 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2853 * There are some delayed allocation extents in the
2854 * inode, so copy the extents one at a time and skip
2855 * the delayed ones. There must be at least one
2856 * non-delayed extent.
2860 for (i = 0; i < nrecs; i++) {
2861 ep = xfs_iext_get_ext(ifp, i);
2862 start_block = xfs_bmbt_get_startblock(ep);
2863 if (ISNULLSTARTBLOCK(start_block)) {
2865 * It's a delayed allocation extent, so skip it.
2870 /* Translate to on disk format */
2871 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2872 (__uint64_t*)&dest_ep->l0);
2873 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2874 (__uint64_t*)&dest_ep->l1);
2878 ASSERT(copied != 0);
2879 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
2881 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2885 * Each of the following cases stores data into the same region
2886 * of the on-disk inode, so only one of them can be valid at
2887 * any given time. While it is possible to have conflicting formats
2888 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2889 * in EXTENTS format, this can only happen when the fork has
2890 * changed formats after being modified but before being flushed.
2891 * In these cases, the format always takes precedence, because the
2892 * format indicates the current state of the fork.
2899 xfs_inode_log_item_t *iip,
2906 #ifdef XFS_TRANS_DEBUG
2909 static const short brootflag[2] =
2910 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2911 static const short dataflag[2] =
2912 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2913 static const short extflag[2] =
2914 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2918 ifp = XFS_IFORK_PTR(ip, whichfork);
2920 * This can happen if we gave up in iformat in an error path,
2921 * for the attribute fork.
2924 ASSERT(whichfork == XFS_ATTR_FORK);
2927 cp = XFS_DFORK_PTR(dip, whichfork);
2929 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2930 case XFS_DINODE_FMT_LOCAL:
2931 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2932 (ifp->if_bytes > 0)) {
2933 ASSERT(ifp->if_u1.if_data != NULL);
2934 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2935 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2939 case XFS_DINODE_FMT_EXTENTS:
2940 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2941 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2942 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2943 (ifp->if_bytes == 0));
2944 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2945 (ifp->if_bytes > 0));
2946 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2947 (ifp->if_bytes > 0)) {
2948 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2949 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2954 case XFS_DINODE_FMT_BTREE:
2955 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2956 (ifp->if_broot_bytes > 0)) {
2957 ASSERT(ifp->if_broot != NULL);
2958 ASSERT(ifp->if_broot_bytes <=
2959 (XFS_IFORK_SIZE(ip, whichfork) +
2960 XFS_BROOT_SIZE_ADJ));
2961 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2962 (xfs_bmdr_block_t *)cp,
2963 XFS_DFORK_SIZE(dip, mp, whichfork));
2967 case XFS_DINODE_FMT_DEV:
2968 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2969 ASSERT(whichfork == XFS_DATA_FORK);
2970 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2974 case XFS_DINODE_FMT_UUID:
2975 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2976 ASSERT(whichfork == XFS_DATA_FORK);
2977 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2991 * xfs_iflush() will write a modified inode's changes out to the
2992 * inode's on disk home. The caller must have the inode lock held
2993 * in at least shared mode and the inode flush semaphore must be
2994 * held as well. The inode lock will still be held upon return from
2995 * the call and the caller is free to unlock it.
2996 * The inode flush lock will be unlocked when the inode reaches the disk.
2997 * The flags indicate how the inode's buffer should be written out.
3004 xfs_inode_log_item_t *iip;
3012 int clcount; /* count of inodes clustered */
3014 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3017 XFS_STATS_INC(xs_iflush_count);
3019 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3020 ASSERT(issemalocked(&(ip->i_flock)));
3021 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3022 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3028 * If the inode isn't dirty, then just release the inode
3029 * flush lock and do nothing.
3031 if ((ip->i_update_core == 0) &&
3032 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3033 ASSERT((iip != NULL) ?
3034 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3040 * We can't flush the inode until it is unpinned, so
3041 * wait for it. We know noone new can pin it, because
3042 * we are holding the inode lock shared and you need
3043 * to hold it exclusively to pin the inode.
3045 xfs_iunpin_wait(ip);
3048 * This may have been unpinned because the filesystem is shutting
3049 * down forcibly. If that's the case we must not write this inode
3050 * to disk, because the log record didn't make it to disk!
3052 if (XFS_FORCED_SHUTDOWN(mp)) {
3053 ip->i_update_core = 0;
3055 iip->ili_format.ilf_fields = 0;
3057 return XFS_ERROR(EIO);
3061 * Get the buffer containing the on-disk inode.
3063 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3070 * Decide how buffer will be flushed out. This is done before
3071 * the call to xfs_iflush_int because this field is zeroed by it.
3073 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3075 * Flush out the inode buffer according to the directions
3076 * of the caller. In the cases where the caller has given
3077 * us a choice choose the non-delwri case. This is because
3078 * the inode is in the AIL and we need to get it out soon.
3081 case XFS_IFLUSH_SYNC:
3082 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3085 case XFS_IFLUSH_ASYNC:
3086 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3089 case XFS_IFLUSH_DELWRI:
3099 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3100 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3101 case XFS_IFLUSH_DELWRI:
3104 case XFS_IFLUSH_ASYNC:
3107 case XFS_IFLUSH_SYNC:
3118 * First flush out the inode that xfs_iflush was called with.
3120 error = xfs_iflush_int(ip, bp);
3127 * see if other inodes can be gathered into this write
3130 ip->i_chash->chl_buf = bp;
3132 ch = XFS_CHASH(mp, ip->i_blkno);
3133 s = mutex_spinlock(&ch->ch_lock);
3136 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3138 * Do an un-protected check to see if the inode is dirty and
3139 * is a candidate for flushing. These checks will be repeated
3140 * later after the appropriate locks are acquired.
3143 if ((iq->i_update_core == 0) &&
3145 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3146 xfs_ipincount(iq) == 0) {
3151 * Try to get locks. If any are unavailable,
3152 * then this inode cannot be flushed and is skipped.
3155 /* get inode locks (just i_lock) */
3156 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3157 /* get inode flush lock */
3158 if (xfs_iflock_nowait(iq)) {
3159 /* check if pinned */
3160 if (xfs_ipincount(iq) == 0) {
3161 /* arriving here means that
3162 * this inode can be flushed.
3163 * first re-check that it's
3167 if ((iq->i_update_core != 0)||
3169 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3171 error = xfs_iflush_int(iq, bp);
3175 goto cluster_corrupt_out;
3184 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3187 mutex_spinunlock(&ch->ch_lock, s);
3190 XFS_STATS_INC(xs_icluster_flushcnt);
3191 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3195 * If the buffer is pinned then push on the log so we won't
3196 * get stuck waiting in the write for too long.
3198 if (XFS_BUF_ISPINNED(bp)){
3199 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3202 if (flags & INT_DELWRI) {
3203 xfs_bdwrite(mp, bp);
3204 } else if (flags & INT_ASYNC) {
3205 xfs_bawrite(mp, bp);
3207 error = xfs_bwrite(mp, bp);
3213 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3214 xfs_iflush_abort(ip);
3216 * Unlocks the flush lock
3218 return XFS_ERROR(EFSCORRUPTED);
3220 cluster_corrupt_out:
3221 /* Corruption detected in the clustering loop. Invalidate the
3222 * inode buffer and shut down the filesystem.
3224 mutex_spinunlock(&ch->ch_lock, s);
3227 * Clean up the buffer. If it was B_DELWRI, just release it --
3228 * brelse can handle it with no problems. If not, shut down the
3229 * filesystem before releasing the buffer.
3231 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3235 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3239 * Just like incore_relse: if we have b_iodone functions,
3240 * mark the buffer as an error and call them. Otherwise
3241 * mark it as stale and brelse.
3243 if (XFS_BUF_IODONE_FUNC(bp)) {
3244 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3248 XFS_BUF_ERROR(bp,EIO);
3256 xfs_iflush_abort(iq);
3258 * Unlocks the flush lock
3260 return XFS_ERROR(EFSCORRUPTED);
3269 xfs_inode_log_item_t *iip;
3272 #ifdef XFS_TRANS_DEBUG
3277 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3278 ASSERT(issemalocked(&(ip->i_flock)));
3279 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3280 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3287 * If the inode isn't dirty, then just release the inode
3288 * flush lock and do nothing.
3290 if ((ip->i_update_core == 0) &&
3291 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3296 /* set *dip = inode's place in the buffer */
3297 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3300 * Clear i_update_core before copying out the data.
3301 * This is for coordination with our timestamp updates
3302 * that don't hold the inode lock. They will always
3303 * update the timestamps BEFORE setting i_update_core,
3304 * so if we clear i_update_core after they set it we
3305 * are guaranteed to see their updates to the timestamps.
3306 * I believe that this depends on strongly ordered memory
3307 * semantics, but we have that. We use the SYNCHRONIZE
3308 * macro to make sure that the compiler does not reorder
3309 * the i_update_core access below the data copy below.
3311 ip->i_update_core = 0;
3315 * Make sure to get the latest atime from the Linux inode.
3317 xfs_synchronize_atime(ip);
3319 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3320 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3321 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3322 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3323 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3326 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3327 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3328 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3329 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3330 ip->i_ino, ip, ip->i_d.di_magic);
3333 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3335 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3336 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3337 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3338 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3339 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3343 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3345 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3346 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3347 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3348 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3349 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3350 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3355 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3356 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3357 XFS_RANDOM_IFLUSH_5)) {
3358 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3359 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3361 ip->i_d.di_nextents + ip->i_d.di_anextents,
3366 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3367 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3368 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3369 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3370 ip->i_ino, ip->i_d.di_forkoff, ip);
3374 * bump the flush iteration count, used to detect flushes which
3375 * postdate a log record during recovery.
3378 ip->i_d.di_flushiter++;
3381 * Copy the dirty parts of the inode into the on-disk
3382 * inode. We always copy out the core of the inode,
3383 * because if the inode is dirty at all the core must
3386 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3388 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3389 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3390 ip->i_d.di_flushiter = 0;
3393 * If this is really an old format inode and the superblock version
3394 * has not been updated to support only new format inodes, then
3395 * convert back to the old inode format. If the superblock version
3396 * has been updated, then make the conversion permanent.
3398 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3399 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3400 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3401 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3405 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3406 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3409 * The superblock version has already been bumped,
3410 * so just make the conversion to the new inode
3413 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3414 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3415 ip->i_d.di_onlink = 0;
3416 dip->di_core.di_onlink = 0;
3417 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3418 memset(&(dip->di_core.di_pad[0]), 0,
3419 sizeof(dip->di_core.di_pad));
3420 ASSERT(ip->i_d.di_projid == 0);
3424 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3428 if (XFS_IFORK_Q(ip)) {
3430 * The only error from xfs_iflush_fork is on the data fork.
3432 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3434 xfs_inobp_check(mp, bp);
3437 * We've recorded everything logged in the inode, so we'd
3438 * like to clear the ilf_fields bits so we don't log and
3439 * flush things unnecessarily. However, we can't stop
3440 * logging all this information until the data we've copied
3441 * into the disk buffer is written to disk. If we did we might
3442 * overwrite the copy of the inode in the log with all the
3443 * data after re-logging only part of it, and in the face of
3444 * a crash we wouldn't have all the data we need to recover.
3446 * What we do is move the bits to the ili_last_fields field.
3447 * When logging the inode, these bits are moved back to the
3448 * ilf_fields field. In the xfs_iflush_done() routine we
3449 * clear ili_last_fields, since we know that the information
3450 * those bits represent is permanently on disk. As long as
3451 * the flush completes before the inode is logged again, then
3452 * both ilf_fields and ili_last_fields will be cleared.
3454 * We can play with the ilf_fields bits here, because the inode
3455 * lock must be held exclusively in order to set bits there
3456 * and the flush lock protects the ili_last_fields bits.
3457 * Set ili_logged so the flush done
3458 * routine can tell whether or not to look in the AIL.
3459 * Also, store the current LSN of the inode so that we can tell
3460 * whether the item has moved in the AIL from xfs_iflush_done().
3461 * In order to read the lsn we need the AIL lock, because
3462 * it is a 64 bit value that cannot be read atomically.
3464 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3465 iip->ili_last_fields = iip->ili_format.ilf_fields;
3466 iip->ili_format.ilf_fields = 0;
3467 iip->ili_logged = 1;
3469 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3471 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3475 * Attach the function xfs_iflush_done to the inode's
3476 * buffer. This will remove the inode from the AIL
3477 * and unlock the inode's flush lock when the inode is
3478 * completely written to disk.
3480 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3481 xfs_iflush_done, (xfs_log_item_t *)iip);
3483 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3484 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3487 * We're flushing an inode which is not in the AIL and has
3488 * not been logged but has i_update_core set. For this
3489 * case we can use a B_DELWRI flush and immediately drop
3490 * the inode flush lock because we can avoid the whole
3491 * AIL state thing. It's OK to drop the flush lock now,
3492 * because we've already locked the buffer and to do anything
3493 * you really need both.
3496 ASSERT(iip->ili_logged == 0);
3497 ASSERT(iip->ili_last_fields == 0);
3498 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3506 return XFS_ERROR(EFSCORRUPTED);
3511 * Flush all inactive inodes in mp.
3521 XFS_MOUNT_ILOCK(mp);
3527 /* Make sure we skip markers inserted by sync */
3528 if (ip->i_mount == NULL) {
3533 vp = XFS_ITOV_NULL(ip);
3535 XFS_MOUNT_IUNLOCK(mp);
3536 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3540 ASSERT(vn_count(vp) == 0);
3543 } while (ip != mp->m_inodes);
3545 XFS_MOUNT_IUNLOCK(mp);
3549 * xfs_iaccess: check accessibility of inode for mode.
3558 mode_t orgmode = mode;
3559 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3561 if (mode & S_IWUSR) {
3562 umode_t imode = inode->i_mode;
3564 if (IS_RDONLY(inode) &&
3565 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3566 return XFS_ERROR(EROFS);
3568 if (IS_IMMUTABLE(inode))
3569 return XFS_ERROR(EACCES);
3573 * If there's an Access Control List it's used instead of
3576 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3577 return error ? XFS_ERROR(error) : 0;
3579 if (current_fsuid(cr) != ip->i_d.di_uid) {
3581 if (!in_group_p((gid_t)ip->i_d.di_gid))
3586 * If the DACs are ok we don't need any capability check.
3588 if ((ip->i_d.di_mode & mode) == mode)
3591 * Read/write DACs are always overridable.
3592 * Executable DACs are overridable if at least one exec bit is set.
3594 if (!(orgmode & S_IXUSR) ||
3595 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3596 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3599 if ((orgmode == S_IRUSR) ||
3600 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3601 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3604 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3606 return XFS_ERROR(EACCES);
3608 return XFS_ERROR(EACCES);
3612 * xfs_iroundup: round up argument to next power of two
3621 if ((v & (v - 1)) == 0)
3623 ASSERT((v & 0x80000000) == 0);
3624 if ((v & (v + 1)) == 0)
3626 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3630 if ((v & (v + 1)) == 0)
3637 #ifdef XFS_ILOCK_TRACE
3638 ktrace_t *xfs_ilock_trace_buf;
3641 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3643 ktrace_enter(ip->i_lock_trace,
3645 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3646 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3647 (void *)ra, /* caller of ilock */
3648 (void *)(unsigned long)current_cpu(),
3649 (void *)(unsigned long)current_pid(),
3650 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3655 * Return a pointer to the extent record at file index idx.
3659 xfs_ifork_t *ifp, /* inode fork pointer */
3660 xfs_extnum_t idx) /* index of target extent */
3663 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3664 return ifp->if_u1.if_ext_irec->er_extbuf;
3665 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3666 xfs_ext_irec_t *erp; /* irec pointer */
3667 int erp_idx = 0; /* irec index */
3668 xfs_extnum_t page_idx = idx; /* ext index in target list */
3670 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3671 return &erp->er_extbuf[page_idx];
3672 } else if (ifp->if_bytes) {
3673 return &ifp->if_u1.if_extents[idx];
3680 * Insert new item(s) into the extent records for incore inode
3681 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3685 xfs_ifork_t *ifp, /* inode fork pointer */
3686 xfs_extnum_t idx, /* starting index of new items */
3687 xfs_extnum_t count, /* number of inserted items */
3688 xfs_bmbt_irec_t *new) /* items to insert */
3690 xfs_bmbt_rec_t *ep; /* extent record pointer */
3691 xfs_extnum_t i; /* extent record index */
3693 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3694 xfs_iext_add(ifp, idx, count);
3695 for (i = idx; i < idx + count; i++, new++) {
3696 ep = xfs_iext_get_ext(ifp, i);
3697 xfs_bmbt_set_all(ep, new);
3702 * This is called when the amount of space required for incore file
3703 * extents needs to be increased. The ext_diff parameter stores the
3704 * number of new extents being added and the idx parameter contains
3705 * the extent index where the new extents will be added. If the new
3706 * extents are being appended, then we just need to (re)allocate and
3707 * initialize the space. Otherwise, if the new extents are being
3708 * inserted into the middle of the existing entries, a bit more work
3709 * is required to make room for the new extents to be inserted. The
3710 * caller is responsible for filling in the new extent entries upon
3715 xfs_ifork_t *ifp, /* inode fork pointer */
3716 xfs_extnum_t idx, /* index to begin adding exts */
3717 int ext_diff) /* number of extents to add */
3719 int byte_diff; /* new bytes being added */
3720 int new_size; /* size of extents after adding */
3721 xfs_extnum_t nextents; /* number of extents in file */
3723 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3724 ASSERT((idx >= 0) && (idx <= nextents));
3725 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3726 new_size = ifp->if_bytes + byte_diff;
3728 * If the new number of extents (nextents + ext_diff)
3729 * fits inside the inode, then continue to use the inline
3732 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3733 if (idx < nextents) {
3734 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3735 &ifp->if_u2.if_inline_ext[idx],
3736 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3737 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3739 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3740 ifp->if_real_bytes = 0;
3741 ifp->if_lastex = nextents + ext_diff;
3744 * Otherwise use a linear (direct) extent list.
3745 * If the extents are currently inside the inode,
3746 * xfs_iext_realloc_direct will switch us from
3747 * inline to direct extent allocation mode.
3749 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3750 xfs_iext_realloc_direct(ifp, new_size);
3751 if (idx < nextents) {
3752 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3753 &ifp->if_u1.if_extents[idx],
3754 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3755 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3758 /* Indirection array */
3760 xfs_ext_irec_t *erp;
3764 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3765 if (ifp->if_flags & XFS_IFEXTIREC) {
3766 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3768 xfs_iext_irec_init(ifp);
3769 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3770 erp = ifp->if_u1.if_ext_irec;
3772 /* Extents fit in target extent page */
3773 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3774 if (page_idx < erp->er_extcount) {
3775 memmove(&erp->er_extbuf[page_idx + ext_diff],
3776 &erp->er_extbuf[page_idx],
3777 (erp->er_extcount - page_idx) *
3778 sizeof(xfs_bmbt_rec_t));
3779 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3781 erp->er_extcount += ext_diff;
3782 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3784 /* Insert a new extent page */
3786 xfs_iext_add_indirect_multi(ifp,
3787 erp_idx, page_idx, ext_diff);
3790 * If extent(s) are being appended to the last page in
3791 * the indirection array and the new extent(s) don't fit
3792 * in the page, then erp is NULL and erp_idx is set to
3793 * the next index needed in the indirection array.
3796 int count = ext_diff;
3799 erp = xfs_iext_irec_new(ifp, erp_idx);
3800 erp->er_extcount = count;
3801 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3808 ifp->if_bytes = new_size;
3812 * This is called when incore extents are being added to the indirection
3813 * array and the new extents do not fit in the target extent list. The
3814 * erp_idx parameter contains the irec index for the target extent list
3815 * in the indirection array, and the idx parameter contains the extent
3816 * index within the list. The number of extents being added is stored
3817 * in the count parameter.
3819 * |-------| |-------|
3820 * | | | | idx - number of extents before idx
3822 * | | | | count - number of extents being inserted at idx
3823 * |-------| |-------|
3824 * | count | | nex2 | nex2 - number of extents after idx + count
3825 * |-------| |-------|
3828 xfs_iext_add_indirect_multi(
3829 xfs_ifork_t *ifp, /* inode fork pointer */
3830 int erp_idx, /* target extent irec index */
3831 xfs_extnum_t idx, /* index within target list */
3832 int count) /* new extents being added */
3834 int byte_diff; /* new bytes being added */
3835 xfs_ext_irec_t *erp; /* pointer to irec entry */
3836 xfs_extnum_t ext_diff; /* number of extents to add */
3837 xfs_extnum_t ext_cnt; /* new extents still needed */
3838 xfs_extnum_t nex2; /* extents after idx + count */
3839 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3840 int nlists; /* number of irec's (lists) */
3842 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3843 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3844 nex2 = erp->er_extcount - idx;
3845 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3848 * Save second part of target extent list
3849 * (all extents past */
3851 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3852 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3853 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3854 erp->er_extcount -= nex2;
3855 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3856 memset(&erp->er_extbuf[idx], 0, byte_diff);
3860 * Add the new extents to the end of the target
3861 * list, then allocate new irec record(s) and
3862 * extent buffer(s) as needed to store the rest
3863 * of the new extents.
3866 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3868 erp->er_extcount += ext_diff;
3869 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3870 ext_cnt -= ext_diff;
3874 erp = xfs_iext_irec_new(ifp, erp_idx);
3875 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3876 erp->er_extcount = ext_diff;
3877 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3878 ext_cnt -= ext_diff;
3881 /* Add nex2 extents back to indirection array */
3883 xfs_extnum_t ext_avail;
3886 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3887 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3890 * If nex2 extents fit in the current page, append
3891 * nex2_ep after the new extents.
3893 if (nex2 <= ext_avail) {
3894 i = erp->er_extcount;
3897 * Otherwise, check if space is available in the
3900 else if ((erp_idx < nlists - 1) &&
3901 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3902 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3905 /* Create a hole for nex2 extents */
3906 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3907 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3910 * Final choice, create a new extent page for
3915 erp = xfs_iext_irec_new(ifp, erp_idx);
3917 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3918 kmem_free(nex2_ep, byte_diff);
3919 erp->er_extcount += nex2;
3920 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3925 * This is called when the amount of space required for incore file
3926 * extents needs to be decreased. The ext_diff parameter stores the
3927 * number of extents to be removed and the idx parameter contains
3928 * the extent index where the extents will be removed from.
3930 * If the amount of space needed has decreased below the linear
3931 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3932 * extent array. Otherwise, use kmem_realloc() to adjust the
3933 * size to what is needed.
3937 xfs_ifork_t *ifp, /* inode fork pointer */
3938 xfs_extnum_t idx, /* index to begin removing exts */
3939 int ext_diff) /* number of extents to remove */
3941 xfs_extnum_t nextents; /* number of extents in file */
3942 int new_size; /* size of extents after removal */
3944 ASSERT(ext_diff > 0);
3945 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3946 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3948 if (new_size == 0) {
3949 xfs_iext_destroy(ifp);
3950 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3951 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3952 } else if (ifp->if_real_bytes) {
3953 xfs_iext_remove_direct(ifp, idx, ext_diff);
3955 xfs_iext_remove_inline(ifp, idx, ext_diff);
3957 ifp->if_bytes = new_size;
3961 * This removes ext_diff extents from the inline buffer, beginning
3962 * at extent index idx.
3965 xfs_iext_remove_inline(
3966 xfs_ifork_t *ifp, /* inode fork pointer */
3967 xfs_extnum_t idx, /* index to begin removing exts */
3968 int ext_diff) /* number of extents to remove */
3970 int nextents; /* number of extents in file */
3972 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3973 ASSERT(idx < XFS_INLINE_EXTS);
3974 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3975 ASSERT(((nextents - ext_diff) > 0) &&
3976 (nextents - ext_diff) < XFS_INLINE_EXTS);
3978 if (idx + ext_diff < nextents) {
3979 memmove(&ifp->if_u2.if_inline_ext[idx],
3980 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3981 (nextents - (idx + ext_diff)) *
3982 sizeof(xfs_bmbt_rec_t));
3983 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3984 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3986 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3987 ext_diff * sizeof(xfs_bmbt_rec_t));
3992 * This removes ext_diff extents from a linear (direct) extent list,
3993 * beginning at extent index idx. If the extents are being removed
3994 * from the end of the list (ie. truncate) then we just need to re-
3995 * allocate the list to remove the extra space. Otherwise, if the
3996 * extents are being removed from the middle of the existing extent
3997 * entries, then we first need to move the extent records beginning
3998 * at idx + ext_diff up in the list to overwrite the records being
3999 * removed, then remove the extra space via kmem_realloc.
4002 xfs_iext_remove_direct(
4003 xfs_ifork_t *ifp, /* inode fork pointer */
4004 xfs_extnum_t idx, /* index to begin removing exts */
4005 int ext_diff) /* number of extents to remove */
4007 xfs_extnum_t nextents; /* number of extents in file */
4008 int new_size; /* size of extents after removal */
4010 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4011 new_size = ifp->if_bytes -
4012 (ext_diff * sizeof(xfs_bmbt_rec_t));
4013 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4015 if (new_size == 0) {
4016 xfs_iext_destroy(ifp);
4019 /* Move extents up in the list (if needed) */
4020 if (idx + ext_diff < nextents) {
4021 memmove(&ifp->if_u1.if_extents[idx],
4022 &ifp->if_u1.if_extents[idx + ext_diff],
4023 (nextents - (idx + ext_diff)) *
4024 sizeof(xfs_bmbt_rec_t));
4026 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4027 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4029 * Reallocate the direct extent list. If the extents
4030 * will fit inside the inode then xfs_iext_realloc_direct
4031 * will switch from direct to inline extent allocation
4034 xfs_iext_realloc_direct(ifp, new_size);
4035 ifp->if_bytes = new_size;
4039 * This is called when incore extents are being removed from the
4040 * indirection array and the extents being removed span multiple extent
4041 * buffers. The idx parameter contains the file extent index where we
4042 * want to begin removing extents, and the count parameter contains
4043 * how many extents need to be removed.
4045 * |-------| |-------|
4046 * | nex1 | | | nex1 - number of extents before idx
4047 * |-------| | count |
4048 * | | | | count - number of extents being removed at idx
4049 * | count | |-------|
4050 * | | | nex2 | nex2 - number of extents after idx + count
4051 * |-------| |-------|
4054 xfs_iext_remove_indirect(
4055 xfs_ifork_t *ifp, /* inode fork pointer */
4056 xfs_extnum_t idx, /* index to begin removing extents */
4057 int count) /* number of extents to remove */
4059 xfs_ext_irec_t *erp; /* indirection array pointer */
4060 int erp_idx = 0; /* indirection array index */
4061 xfs_extnum_t ext_cnt; /* extents left to remove */
4062 xfs_extnum_t ext_diff; /* extents to remove in current list */
4063 xfs_extnum_t nex1; /* number of extents before idx */
4064 xfs_extnum_t nex2; /* extents after idx + count */
4065 int nlists; /* entries in indirection array */
4066 int page_idx = idx; /* index in target extent list */
4068 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4069 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4070 ASSERT(erp != NULL);
4071 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4075 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4076 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4078 * Check for deletion of entire list;
4079 * xfs_iext_irec_remove() updates extent offsets.
4081 if (ext_diff == erp->er_extcount) {
4082 xfs_iext_irec_remove(ifp, erp_idx);
4083 ext_cnt -= ext_diff;
4086 ASSERT(erp_idx < ifp->if_real_bytes /
4088 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4095 /* Move extents up (if needed) */
4097 memmove(&erp->er_extbuf[nex1],
4098 &erp->er_extbuf[nex1 + ext_diff],
4099 nex2 * sizeof(xfs_bmbt_rec_t));
4101 /* Zero out rest of page */
4102 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4103 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4104 /* Update remaining counters */
4105 erp->er_extcount -= ext_diff;
4106 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4107 ext_cnt -= ext_diff;
4112 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4113 xfs_iext_irec_compact(ifp);
4117 * Create, destroy, or resize a linear (direct) block of extents.
4120 xfs_iext_realloc_direct(
4121 xfs_ifork_t *ifp, /* inode fork pointer */
4122 int new_size) /* new size of extents */
4124 int rnew_size; /* real new size of extents */
4126 rnew_size = new_size;
4128 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4129 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4130 (new_size != ifp->if_real_bytes)));
4132 /* Free extent records */
4133 if (new_size == 0) {
4134 xfs_iext_destroy(ifp);
4136 /* Resize direct extent list and zero any new bytes */
4137 else if (ifp->if_real_bytes) {
4138 /* Check if extents will fit inside the inode */
4139 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4140 xfs_iext_direct_to_inline(ifp, new_size /
4141 (uint)sizeof(xfs_bmbt_rec_t));
4142 ifp->if_bytes = new_size;
4145 if ((new_size & (new_size - 1)) != 0) {
4146 rnew_size = xfs_iroundup(new_size);
4148 if (rnew_size != ifp->if_real_bytes) {
4149 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4150 kmem_realloc(ifp->if_u1.if_extents,
4155 if (rnew_size > ifp->if_real_bytes) {
4156 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4157 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4158 rnew_size - ifp->if_real_bytes);
4162 * Switch from the inline extent buffer to a direct
4163 * extent list. Be sure to include the inline extent
4164 * bytes in new_size.
4167 new_size += ifp->if_bytes;
4168 if ((new_size & (new_size - 1)) != 0) {
4169 rnew_size = xfs_iroundup(new_size);
4171 xfs_iext_inline_to_direct(ifp, rnew_size);
4173 ifp->if_real_bytes = rnew_size;
4174 ifp->if_bytes = new_size;
4178 * Switch from linear (direct) extent records to inline buffer.
4181 xfs_iext_direct_to_inline(
4182 xfs_ifork_t *ifp, /* inode fork pointer */
4183 xfs_extnum_t nextents) /* number of extents in file */
4185 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4186 ASSERT(nextents <= XFS_INLINE_EXTS);
4188 * The inline buffer was zeroed when we switched
4189 * from inline to direct extent allocation mode,
4190 * so we don't need to clear it here.
4192 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4193 nextents * sizeof(xfs_bmbt_rec_t));
4194 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4195 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4196 ifp->if_real_bytes = 0;
4200 * Switch from inline buffer to linear (direct) extent records.
4201 * new_size should already be rounded up to the next power of 2
4202 * by the caller (when appropriate), so use new_size as it is.
4203 * However, since new_size may be rounded up, we can't update
4204 * if_bytes here. It is the caller's responsibility to update
4205 * if_bytes upon return.
4208 xfs_iext_inline_to_direct(
4209 xfs_ifork_t *ifp, /* inode fork pointer */
4210 int new_size) /* number of extents in file */
4212 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4213 kmem_alloc(new_size, KM_SLEEP);
4214 memset(ifp->if_u1.if_extents, 0, new_size);
4215 if (ifp->if_bytes) {
4216 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4218 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4219 sizeof(xfs_bmbt_rec_t));
4221 ifp->if_real_bytes = new_size;
4225 * Resize an extent indirection array to new_size bytes.
4228 xfs_iext_realloc_indirect(
4229 xfs_ifork_t *ifp, /* inode fork pointer */
4230 int new_size) /* new indirection array size */
4232 int nlists; /* number of irec's (ex lists) */
4233 int size; /* current indirection array size */
4235 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4236 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4237 size = nlists * sizeof(xfs_ext_irec_t);
4238 ASSERT(ifp->if_real_bytes);
4239 ASSERT((new_size >= 0) && (new_size != size));
4240 if (new_size == 0) {
4241 xfs_iext_destroy(ifp);
4243 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4244 kmem_realloc(ifp->if_u1.if_ext_irec,
4245 new_size, size, KM_SLEEP);
4250 * Switch from indirection array to linear (direct) extent allocations.
4253 xfs_iext_indirect_to_direct(
4254 xfs_ifork_t *ifp) /* inode fork pointer */
4256 xfs_bmbt_rec_t *ep; /* extent record pointer */
4257 xfs_extnum_t nextents; /* number of extents in file */
4258 int size; /* size of file extents */
4260 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4261 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4262 ASSERT(nextents <= XFS_LINEAR_EXTS);
4263 size = nextents * sizeof(xfs_bmbt_rec_t);
4265 xfs_iext_irec_compact_full(ifp);
4266 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4268 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4269 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4270 ifp->if_flags &= ~XFS_IFEXTIREC;
4271 ifp->if_u1.if_extents = ep;
4272 ifp->if_bytes = size;
4273 if (nextents < XFS_LINEAR_EXTS) {
4274 xfs_iext_realloc_direct(ifp, size);
4279 * Free incore file extents.
4283 xfs_ifork_t *ifp) /* inode fork pointer */
4285 if (ifp->if_flags & XFS_IFEXTIREC) {
4289 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4290 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4291 xfs_iext_irec_remove(ifp, erp_idx);
4293 ifp->if_flags &= ~XFS_IFEXTIREC;
4294 } else if (ifp->if_real_bytes) {
4295 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4296 } else if (ifp->if_bytes) {
4297 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4298 sizeof(xfs_bmbt_rec_t));
4300 ifp->if_u1.if_extents = NULL;
4301 ifp->if_real_bytes = 0;
4306 * Return a pointer to the extent record for file system block bno.
4308 xfs_bmbt_rec_t * /* pointer to found extent record */
4309 xfs_iext_bno_to_ext(
4310 xfs_ifork_t *ifp, /* inode fork pointer */
4311 xfs_fileoff_t bno, /* block number to search for */
4312 xfs_extnum_t *idxp) /* index of target extent */
4314 xfs_bmbt_rec_t *base; /* pointer to first extent */
4315 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4316 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4317 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4318 int high; /* upper boundary in search */
4319 xfs_extnum_t idx = 0; /* index of target extent */
4320 int low; /* lower boundary in search */
4321 xfs_extnum_t nextents; /* number of file extents */
4322 xfs_fileoff_t startoff = 0; /* start offset of extent */
4324 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4325 if (nextents == 0) {
4330 if (ifp->if_flags & XFS_IFEXTIREC) {
4331 /* Find target extent list */
4333 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4334 base = erp->er_extbuf;
4335 high = erp->er_extcount - 1;
4337 base = ifp->if_u1.if_extents;
4338 high = nextents - 1;
4340 /* Binary search extent records */
4341 while (low <= high) {
4342 idx = (low + high) >> 1;
4344 startoff = xfs_bmbt_get_startoff(ep);
4345 blockcount = xfs_bmbt_get_blockcount(ep);
4346 if (bno < startoff) {
4348 } else if (bno >= startoff + blockcount) {
4351 /* Convert back to file-based extent index */
4352 if (ifp->if_flags & XFS_IFEXTIREC) {
4353 idx += erp->er_extoff;
4359 /* Convert back to file-based extent index */
4360 if (ifp->if_flags & XFS_IFEXTIREC) {
4361 idx += erp->er_extoff;
4363 if (bno >= startoff + blockcount) {
4364 if (++idx == nextents) {
4367 ep = xfs_iext_get_ext(ifp, idx);
4375 * Return a pointer to the indirection array entry containing the
4376 * extent record for filesystem block bno. Store the index of the
4377 * target irec in *erp_idxp.
4379 xfs_ext_irec_t * /* pointer to found extent record */
4380 xfs_iext_bno_to_irec(
4381 xfs_ifork_t *ifp, /* inode fork pointer */
4382 xfs_fileoff_t bno, /* block number to search for */
4383 int *erp_idxp) /* irec index of target ext list */
4385 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4386 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4387 int erp_idx; /* indirection array index */
4388 int nlists; /* number of extent irec's (lists) */
4389 int high; /* binary search upper limit */
4390 int low; /* binary search lower limit */
4392 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4393 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4397 while (low <= high) {
4398 erp_idx = (low + high) >> 1;
4399 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4400 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4401 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4403 } else if (erp_next && bno >=
4404 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4410 *erp_idxp = erp_idx;
4415 * Return a pointer to the indirection array entry containing the
4416 * extent record at file extent index *idxp. Store the index of the
4417 * target irec in *erp_idxp and store the page index of the target
4418 * extent record in *idxp.
4421 xfs_iext_idx_to_irec(
4422 xfs_ifork_t *ifp, /* inode fork pointer */
4423 xfs_extnum_t *idxp, /* extent index (file -> page) */
4424 int *erp_idxp, /* pointer to target irec */
4425 int realloc) /* new bytes were just added */
4427 xfs_ext_irec_t *prev; /* pointer to previous irec */
4428 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4429 int erp_idx; /* indirection array index */
4430 int nlists; /* number of irec's (ex lists) */
4431 int high; /* binary search upper limit */
4432 int low; /* binary search lower limit */
4433 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4435 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4436 ASSERT(page_idx >= 0 && page_idx <=
4437 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4438 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4443 /* Binary search extent irec's */
4444 while (low <= high) {
4445 erp_idx = (low + high) >> 1;
4446 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4447 prev = erp_idx > 0 ? erp - 1 : NULL;
4448 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4449 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4451 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4452 (page_idx == erp->er_extoff + erp->er_extcount &&
4455 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4456 erp->er_extcount == XFS_LINEAR_EXTS) {
4460 erp = erp_idx < nlists ? erp + 1 : NULL;
4463 page_idx -= erp->er_extoff;
4468 *erp_idxp = erp_idx;
4473 * Allocate and initialize an indirection array once the space needed
4474 * for incore extents increases above XFS_IEXT_BUFSZ.
4478 xfs_ifork_t *ifp) /* inode fork pointer */
4480 xfs_ext_irec_t *erp; /* indirection array pointer */
4481 xfs_extnum_t nextents; /* number of extents in file */
4483 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4484 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4485 ASSERT(nextents <= XFS_LINEAR_EXTS);
4487 erp = (xfs_ext_irec_t *)
4488 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4490 if (nextents == 0) {
4491 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4492 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4493 } else if (!ifp->if_real_bytes) {
4494 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4495 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4496 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4498 erp->er_extbuf = ifp->if_u1.if_extents;
4499 erp->er_extcount = nextents;
4502 ifp->if_flags |= XFS_IFEXTIREC;
4503 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4504 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4505 ifp->if_u1.if_ext_irec = erp;
4511 * Allocate and initialize a new entry in the indirection array.
4515 xfs_ifork_t *ifp, /* inode fork pointer */
4516 int erp_idx) /* index for new irec */
4518 xfs_ext_irec_t *erp; /* indirection array pointer */
4519 int i; /* loop counter */
4520 int nlists; /* number of irec's (ex lists) */
4522 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4523 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4525 /* Resize indirection array */
4526 xfs_iext_realloc_indirect(ifp, ++nlists *
4527 sizeof(xfs_ext_irec_t));
4529 * Move records down in the array so the
4530 * new page can use erp_idx.
4532 erp = ifp->if_u1.if_ext_irec;
4533 for (i = nlists - 1; i > erp_idx; i--) {
4534 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4536 ASSERT(i == erp_idx);
4538 /* Initialize new extent record */
4539 erp = ifp->if_u1.if_ext_irec;
4540 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4541 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4542 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4543 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4544 erp[erp_idx].er_extcount = 0;
4545 erp[erp_idx].er_extoff = erp_idx > 0 ?
4546 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4547 return (&erp[erp_idx]);
4551 * Remove a record from the indirection array.
4554 xfs_iext_irec_remove(
4555 xfs_ifork_t *ifp, /* inode fork pointer */
4556 int erp_idx) /* irec index to remove */
4558 xfs_ext_irec_t *erp; /* indirection array pointer */
4559 int i; /* loop counter */
4560 int nlists; /* number of irec's (ex lists) */
4562 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4563 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4564 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4565 if (erp->er_extbuf) {
4566 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4568 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4570 /* Compact extent records */
4571 erp = ifp->if_u1.if_ext_irec;
4572 for (i = erp_idx; i < nlists - 1; i++) {
4573 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4576 * Manually free the last extent record from the indirection
4577 * array. A call to xfs_iext_realloc_indirect() with a size
4578 * of zero would result in a call to xfs_iext_destroy() which
4579 * would in turn call this function again, creating a nasty
4583 xfs_iext_realloc_indirect(ifp,
4584 nlists * sizeof(xfs_ext_irec_t));
4586 kmem_free(ifp->if_u1.if_ext_irec,
4587 sizeof(xfs_ext_irec_t));
4589 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4593 * This is called to clean up large amounts of unused memory allocated
4594 * by the indirection array. Before compacting anything though, verify
4595 * that the indirection array is still needed and switch back to the
4596 * linear extent list (or even the inline buffer) if possible. The
4597 * compaction policy is as follows:
4599 * Full Compaction: Extents fit into a single page (or inline buffer)
4600 * Full Compaction: Extents occupy less than 10% of allocated space
4601 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4602 * No Compaction: Extents occupy at least 50% of allocated space
4605 xfs_iext_irec_compact(
4606 xfs_ifork_t *ifp) /* inode fork pointer */
4608 xfs_extnum_t nextents; /* number of extents in file */
4609 int nlists; /* number of irec's (ex lists) */
4611 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4612 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4613 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4615 if (nextents == 0) {
4616 xfs_iext_destroy(ifp);
4617 } else if (nextents <= XFS_INLINE_EXTS) {
4618 xfs_iext_indirect_to_direct(ifp);
4619 xfs_iext_direct_to_inline(ifp, nextents);
4620 } else if (nextents <= XFS_LINEAR_EXTS) {
4621 xfs_iext_indirect_to_direct(ifp);
4622 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4623 xfs_iext_irec_compact_full(ifp);
4624 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4625 xfs_iext_irec_compact_pages(ifp);
4630 * Combine extents from neighboring extent pages.
4633 xfs_iext_irec_compact_pages(
4634 xfs_ifork_t *ifp) /* inode fork pointer */
4636 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4637 int erp_idx = 0; /* indirection array index */
4638 int nlists; /* number of irec's (ex lists) */
4640 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4641 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4642 while (erp_idx < nlists - 1) {
4643 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4645 if (erp_next->er_extcount <=
4646 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4647 memmove(&erp->er_extbuf[erp->er_extcount],
4648 erp_next->er_extbuf, erp_next->er_extcount *
4649 sizeof(xfs_bmbt_rec_t));
4650 erp->er_extcount += erp_next->er_extcount;
4652 * Free page before removing extent record
4653 * so er_extoffs don't get modified in
4654 * xfs_iext_irec_remove.
4656 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4657 erp_next->er_extbuf = NULL;
4658 xfs_iext_irec_remove(ifp, erp_idx + 1);
4659 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4667 * Fully compact the extent records managed by the indirection array.
4670 xfs_iext_irec_compact_full(
4671 xfs_ifork_t *ifp) /* inode fork pointer */
4673 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4674 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4675 int erp_idx = 0; /* extent irec index */
4676 int ext_avail; /* empty entries in ex list */
4677 int ext_diff; /* number of exts to add */
4678 int nlists; /* number of irec's (ex lists) */
4680 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4681 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4682 erp = ifp->if_u1.if_ext_irec;
4683 ep = &erp->er_extbuf[erp->er_extcount];
4685 ep_next = erp_next->er_extbuf;
4686 while (erp_idx < nlists - 1) {
4687 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4688 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4689 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4690 erp->er_extcount += ext_diff;
4691 erp_next->er_extcount -= ext_diff;
4692 /* Remove next page */
4693 if (erp_next->er_extcount == 0) {
4695 * Free page before removing extent record
4696 * so er_extoffs don't get modified in
4697 * xfs_iext_irec_remove.
4699 kmem_free(erp_next->er_extbuf,
4700 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4701 erp_next->er_extbuf = NULL;
4702 xfs_iext_irec_remove(ifp, erp_idx + 1);
4703 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4704 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4705 /* Update next page */
4707 /* Move rest of page up to become next new page */
4708 memmove(erp_next->er_extbuf, ep_next,
4709 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4710 ep_next = erp_next->er_extbuf;
4711 memset(&ep_next[erp_next->er_extcount], 0,
4712 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4713 sizeof(xfs_bmbt_rec_t));
4715 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4717 if (erp_idx < nlists)
4718 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4722 ep = &erp->er_extbuf[erp->er_extcount];
4724 ep_next = erp_next->er_extbuf;
4729 * This is called to update the er_extoff field in the indirection
4730 * array when extents have been added or removed from one of the
4731 * extent lists. erp_idx contains the irec index to begin updating
4732 * at and ext_diff contains the number of extents that were added
4736 xfs_iext_irec_update_extoffs(
4737 xfs_ifork_t *ifp, /* inode fork pointer */
4738 int erp_idx, /* irec index to update */
4739 int ext_diff) /* number of new extents */
4741 int i; /* loop counter */
4742 int nlists; /* number of irec's (ex lists */
4744 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4745 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4746 for (i = erp_idx; i < nlists; i++) {
4747 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;