x86: voluntary leave_mm before entering ACPI C3
[linux-2.6] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60
61 #define ACPI_PROCESSOR_COMPONENT        0x01000000
62 #define ACPI_PROCESSOR_CLASS            "processor"
63 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER       "power"
66 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS                (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD                     1       /* 1us */
74 #define C3_OVERHEAD                     1       /* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p)         (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86
87 #ifndef CONFIG_CPU_IDLE
88 /*
89  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93  * reduce history for more aggressive entry into C3
94  */
95 static unsigned int bm_history __read_mostly =
96     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100
101 #endif
102
103 /*
104  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
105  * For now disable this. Probably a bug somewhere else.
106  *
107  * To skip this limit, boot/load with a large max_cstate limit.
108  */
109 static int set_max_cstate(const struct dmi_system_id *id)
110 {
111         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
112                 return 0;
113
114         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
115                " Override with \"processor.max_cstate=%d\"\n", id->ident,
116                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
117
118         max_cstate = (long)id->driver_data;
119
120         return 0;
121 }
122
123 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
124    callers to only run once -AK */
125 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
126         { set_max_cstate, "IBM ThinkPad R40e", {
127           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
128           DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
129         { set_max_cstate, "IBM ThinkPad R40e", {
130           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
132         { set_max_cstate, "IBM ThinkPad R40e", {
133           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134           DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
135         { set_max_cstate, "IBM ThinkPad R40e", {
136           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137           DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
138         { set_max_cstate, "IBM ThinkPad R40e", {
139           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140           DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
141         { set_max_cstate, "IBM ThinkPad R40e", {
142           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143           DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
144         { set_max_cstate, "IBM ThinkPad R40e", {
145           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146           DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
147         { set_max_cstate, "IBM ThinkPad R40e", {
148           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149           DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
150         { set_max_cstate, "IBM ThinkPad R40e", {
151           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152           DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
153         { set_max_cstate, "IBM ThinkPad R40e", {
154           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155           DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
156         { set_max_cstate, "IBM ThinkPad R40e", {
157           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
159         { set_max_cstate, "IBM ThinkPad R40e", {
160           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161           DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
162         { set_max_cstate, "IBM ThinkPad R40e", {
163           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164           DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
165         { set_max_cstate, "IBM ThinkPad R40e", {
166           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167           DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
168         { set_max_cstate, "IBM ThinkPad R40e", {
169           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170           DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
171         { set_max_cstate, "IBM ThinkPad R40e", {
172           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173           DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
174         { set_max_cstate, "Medion 41700", {
175           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
176           DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
177         { set_max_cstate, "Clevo 5600D", {
178           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
180          (void *)2},
181         {},
182 };
183
184 static inline u32 ticks_elapsed(u32 t1, u32 t2)
185 {
186         if (t2 >= t1)
187                 return (t2 - t1);
188         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
189                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
190         else
191                 return ((0xFFFFFFFF - t1) + t2);
192 }
193
194 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
195 {
196         if (t2 >= t1)
197                 return PM_TIMER_TICKS_TO_US(t2 - t1);
198         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
199                 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
200         else
201                 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
202 }
203
204 static void acpi_safe_halt(void)
205 {
206         current_thread_info()->status &= ~TS_POLLING;
207         /*
208          * TS_POLLING-cleared state must be visible before we
209          * test NEED_RESCHED:
210          */
211         smp_mb();
212         if (!need_resched())
213                 safe_halt();
214         current_thread_info()->status |= TS_POLLING;
215 }
216
217 #ifndef CONFIG_CPU_IDLE
218
219 static void
220 acpi_processor_power_activate(struct acpi_processor *pr,
221                               struct acpi_processor_cx *new)
222 {
223         struct acpi_processor_cx *old;
224
225         if (!pr || !new)
226                 return;
227
228         old = pr->power.state;
229
230         if (old)
231                 old->promotion.count = 0;
232         new->demotion.count = 0;
233
234         /* Cleanup from old state. */
235         if (old) {
236                 switch (old->type) {
237                 case ACPI_STATE_C3:
238                         /* Disable bus master reload */
239                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
240                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
241                         break;
242                 }
243         }
244
245         /* Prepare to use new state. */
246         switch (new->type) {
247         case ACPI_STATE_C3:
248                 /* Enable bus master reload */
249                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
250                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
251                 break;
252         }
253
254         pr->power.state = new;
255
256         return;
257 }
258
259 static atomic_t c3_cpu_count;
260
261 /* Common C-state entry for C2, C3, .. */
262 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
263 {
264         if (cstate->space_id == ACPI_CSTATE_FFH) {
265                 /* Call into architectural FFH based C-state */
266                 acpi_processor_ffh_cstate_enter(cstate);
267         } else {
268                 int unused;
269                 /* IO port based C-state */
270                 inb(cstate->address);
271                 /* Dummy wait op - must do something useless after P_LVL2 read
272                    because chipsets cannot guarantee that STPCLK# signal
273                    gets asserted in time to freeze execution properly. */
274                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
275         }
276 }
277 #endif /* !CONFIG_CPU_IDLE */
278
279 #ifdef ARCH_APICTIMER_STOPS_ON_C3
280
281 /*
282  * Some BIOS implementations switch to C3 in the published C2 state.
283  * This seems to be a common problem on AMD boxen, but other vendors
284  * are affected too. We pick the most conservative approach: we assume
285  * that the local APIC stops in both C2 and C3.
286  */
287 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
288                                    struct acpi_processor_cx *cx)
289 {
290         struct acpi_processor_power *pwr = &pr->power;
291         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
292
293         /*
294          * Check, if one of the previous states already marked the lapic
295          * unstable
296          */
297         if (pwr->timer_broadcast_on_state < state)
298                 return;
299
300         if (cx->type >= type)
301                 pr->power.timer_broadcast_on_state = state;
302 }
303
304 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
305 {
306         unsigned long reason;
307
308         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
309                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
310
311         clockevents_notify(reason, &pr->id);
312 }
313
314 /* Power(C) State timer broadcast control */
315 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
316                                        struct acpi_processor_cx *cx,
317                                        int broadcast)
318 {
319         int state = cx - pr->power.states;
320
321         if (state >= pr->power.timer_broadcast_on_state) {
322                 unsigned long reason;
323
324                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
325                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
326                 clockevents_notify(reason, &pr->id);
327         }
328 }
329
330 #else
331
332 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
333                                    struct acpi_processor_cx *cstate) { }
334 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
335 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
336                                        struct acpi_processor_cx *cx,
337                                        int broadcast)
338 {
339 }
340
341 #endif
342
343 /*
344  * Suspend / resume control
345  */
346 static int acpi_idle_suspend;
347
348 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
349 {
350         acpi_idle_suspend = 1;
351         return 0;
352 }
353
354 int acpi_processor_resume(struct acpi_device * device)
355 {
356         acpi_idle_suspend = 0;
357         return 0;
358 }
359
360 #ifndef CONFIG_CPU_IDLE
361 static void acpi_processor_idle(void)
362 {
363         struct acpi_processor *pr = NULL;
364         struct acpi_processor_cx *cx = NULL;
365         struct acpi_processor_cx *next_state = NULL;
366         int sleep_ticks = 0;
367         u32 t1, t2 = 0;
368
369         /*
370          * Interrupts must be disabled during bus mastering calculations and
371          * for C2/C3 transitions.
372          */
373         local_irq_disable();
374
375         pr = processors[smp_processor_id()];
376         if (!pr) {
377                 local_irq_enable();
378                 return;
379         }
380
381         /*
382          * Check whether we truly need to go idle, or should
383          * reschedule:
384          */
385         if (unlikely(need_resched())) {
386                 local_irq_enable();
387                 return;
388         }
389
390         cx = pr->power.state;
391         if (!cx || acpi_idle_suspend) {
392                 if (pm_idle_save)
393                         pm_idle_save();
394                 else
395                         acpi_safe_halt();
396                 return;
397         }
398
399         /*
400          * Check BM Activity
401          * -----------------
402          * Check for bus mastering activity (if required), record, and check
403          * for demotion.
404          */
405         if (pr->flags.bm_check) {
406                 u32 bm_status = 0;
407                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
408
409                 if (diff > 31)
410                         diff = 31;
411
412                 pr->power.bm_activity <<= diff;
413
414                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
415                 if (bm_status) {
416                         pr->power.bm_activity |= 0x1;
417                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
418                 }
419                 /*
420                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
421                  * the true state of bus mastering activity; forcing us to
422                  * manually check the BMIDEA bit of each IDE channel.
423                  */
424                 else if (errata.piix4.bmisx) {
425                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
426                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
427                                 pr->power.bm_activity |= 0x1;
428                 }
429
430                 pr->power.bm_check_timestamp = jiffies;
431
432                 /*
433                  * If bus mastering is or was active this jiffy, demote
434                  * to avoid a faulty transition.  Note that the processor
435                  * won't enter a low-power state during this call (to this
436                  * function) but should upon the next.
437                  *
438                  * TBD: A better policy might be to fallback to the demotion
439                  *      state (use it for this quantum only) istead of
440                  *      demoting -- and rely on duration as our sole demotion
441                  *      qualification.  This may, however, introduce DMA
442                  *      issues (e.g. floppy DMA transfer overrun/underrun).
443                  */
444                 if ((pr->power.bm_activity & 0x1) &&
445                     cx->demotion.threshold.bm) {
446                         local_irq_enable();
447                         next_state = cx->demotion.state;
448                         goto end;
449                 }
450         }
451
452 #ifdef CONFIG_HOTPLUG_CPU
453         /*
454          * Check for P_LVL2_UP flag before entering C2 and above on
455          * an SMP system. We do it here instead of doing it at _CST/P_LVL
456          * detection phase, to work cleanly with logical CPU hotplug.
457          */
458         if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
459             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
460                 cx = &pr->power.states[ACPI_STATE_C1];
461 #endif
462
463         /*
464          * Sleep:
465          * ------
466          * Invoke the current Cx state to put the processor to sleep.
467          */
468         if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
469                 current_thread_info()->status &= ~TS_POLLING;
470                 /*
471                  * TS_POLLING-cleared state must be visible before we
472                  * test NEED_RESCHED:
473                  */
474                 smp_mb();
475                 if (need_resched()) {
476                         current_thread_info()->status |= TS_POLLING;
477                         local_irq_enable();
478                         return;
479                 }
480         }
481
482         switch (cx->type) {
483
484         case ACPI_STATE_C1:
485                 /*
486                  * Invoke C1.
487                  * Use the appropriate idle routine, the one that would
488                  * be used without acpi C-states.
489                  */
490                 if (pm_idle_save)
491                         pm_idle_save();
492                 else
493                         acpi_safe_halt();
494
495                 /*
496                  * TBD: Can't get time duration while in C1, as resumes
497                  *      go to an ISR rather than here.  Need to instrument
498                  *      base interrupt handler.
499                  *
500                  * Note: the TSC better not stop in C1, sched_clock() will
501                  *       skew otherwise.
502                  */
503                 sleep_ticks = 0xFFFFFFFF;
504                 break;
505
506         case ACPI_STATE_C2:
507                 /* Get start time (ticks) */
508                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
509                 /* Tell the scheduler that we are going deep-idle: */
510                 sched_clock_idle_sleep_event();
511                 /* Invoke C2 */
512                 acpi_state_timer_broadcast(pr, cx, 1);
513                 acpi_cstate_enter(cx);
514                 /* Get end time (ticks) */
515                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
516
517 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
518                 /* TSC halts in C2, so notify users */
519                 mark_tsc_unstable("possible TSC halt in C2");
520 #endif
521                 /* Compute time (ticks) that we were actually asleep */
522                 sleep_ticks = ticks_elapsed(t1, t2);
523
524                 /* Tell the scheduler how much we idled: */
525                 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
526
527                 /* Re-enable interrupts */
528                 local_irq_enable();
529                 /* Do not account our idle-switching overhead: */
530                 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
531
532                 current_thread_info()->status |= TS_POLLING;
533                 acpi_state_timer_broadcast(pr, cx, 0);
534                 break;
535
536         case ACPI_STATE_C3:
537                 acpi_unlazy_tlb(smp_processor_id());
538                 /*
539                  * Must be done before busmaster disable as we might
540                  * need to access HPET !
541                  */
542                 acpi_state_timer_broadcast(pr, cx, 1);
543                 /*
544                  * disable bus master
545                  * bm_check implies we need ARB_DIS
546                  * !bm_check implies we need cache flush
547                  * bm_control implies whether we can do ARB_DIS
548                  *
549                  * That leaves a case where bm_check is set and bm_control is
550                  * not set. In that case we cannot do much, we enter C3
551                  * without doing anything.
552                  */
553                 if (pr->flags.bm_check && pr->flags.bm_control) {
554                         if (atomic_inc_return(&c3_cpu_count) ==
555                             num_online_cpus()) {
556                                 /*
557                                  * All CPUs are trying to go to C3
558                                  * Disable bus master arbitration
559                                  */
560                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
561                         }
562                 } else if (!pr->flags.bm_check) {
563                         /* SMP with no shared cache... Invalidate cache  */
564                         ACPI_FLUSH_CPU_CACHE();
565                 }
566
567                 /* Get start time (ticks) */
568                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
569                 /* Invoke C3 */
570                 /* Tell the scheduler that we are going deep-idle: */
571                 sched_clock_idle_sleep_event();
572                 acpi_cstate_enter(cx);
573                 /* Get end time (ticks) */
574                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
575                 if (pr->flags.bm_check && pr->flags.bm_control) {
576                         /* Enable bus master arbitration */
577                         atomic_dec(&c3_cpu_count);
578                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
579                 }
580
581 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
582                 /* TSC halts in C3, so notify users */
583                 mark_tsc_unstable("TSC halts in C3");
584 #endif
585                 /* Compute time (ticks) that we were actually asleep */
586                 sleep_ticks = ticks_elapsed(t1, t2);
587                 /* Tell the scheduler how much we idled: */
588                 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
589
590                 /* Re-enable interrupts */
591                 local_irq_enable();
592                 /* Do not account our idle-switching overhead: */
593                 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
594
595                 current_thread_info()->status |= TS_POLLING;
596                 acpi_state_timer_broadcast(pr, cx, 0);
597                 break;
598
599         default:
600                 local_irq_enable();
601                 return;
602         }
603         cx->usage++;
604         if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
605                 cx->time += sleep_ticks;
606
607         next_state = pr->power.state;
608
609 #ifdef CONFIG_HOTPLUG_CPU
610         /* Don't do promotion/demotion */
611         if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
612             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
613                 next_state = cx;
614                 goto end;
615         }
616 #endif
617
618         /*
619          * Promotion?
620          * ----------
621          * Track the number of longs (time asleep is greater than threshold)
622          * and promote when the count threshold is reached.  Note that bus
623          * mastering activity may prevent promotions.
624          * Do not promote above max_cstate.
625          */
626         if (cx->promotion.state &&
627             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
628                 if (sleep_ticks > cx->promotion.threshold.ticks &&
629                   cx->promotion.state->latency <= system_latency_constraint()) {
630                         cx->promotion.count++;
631                         cx->demotion.count = 0;
632                         if (cx->promotion.count >=
633                             cx->promotion.threshold.count) {
634                                 if (pr->flags.bm_check) {
635                                         if (!
636                                             (pr->power.bm_activity & cx->
637                                              promotion.threshold.bm)) {
638                                                 next_state =
639                                                     cx->promotion.state;
640                                                 goto end;
641                                         }
642                                 } else {
643                                         next_state = cx->promotion.state;
644                                         goto end;
645                                 }
646                         }
647                 }
648         }
649
650         /*
651          * Demotion?
652          * ---------
653          * Track the number of shorts (time asleep is less than time threshold)
654          * and demote when the usage threshold is reached.
655          */
656         if (cx->demotion.state) {
657                 if (sleep_ticks < cx->demotion.threshold.ticks) {
658                         cx->demotion.count++;
659                         cx->promotion.count = 0;
660                         if (cx->demotion.count >= cx->demotion.threshold.count) {
661                                 next_state = cx->demotion.state;
662                                 goto end;
663                         }
664                 }
665         }
666
667       end:
668         /*
669          * Demote if current state exceeds max_cstate
670          * or if the latency of the current state is unacceptable
671          */
672         if ((pr->power.state - pr->power.states) > max_cstate ||
673                 pr->power.state->latency > system_latency_constraint()) {
674                 if (cx->demotion.state)
675                         next_state = cx->demotion.state;
676         }
677
678         /*
679          * New Cx State?
680          * -------------
681          * If we're going to start using a new Cx state we must clean up
682          * from the previous and prepare to use the new.
683          */
684         if (next_state != pr->power.state)
685                 acpi_processor_power_activate(pr, next_state);
686 }
687
688 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
689 {
690         unsigned int i;
691         unsigned int state_is_set = 0;
692         struct acpi_processor_cx *lower = NULL;
693         struct acpi_processor_cx *higher = NULL;
694         struct acpi_processor_cx *cx;
695
696
697         if (!pr)
698                 return -EINVAL;
699
700         /*
701          * This function sets the default Cx state policy (OS idle handler).
702          * Our scheme is to promote quickly to C2 but more conservatively
703          * to C3.  We're favoring C2  for its characteristics of low latency
704          * (quick response), good power savings, and ability to allow bus
705          * mastering activity.  Note that the Cx state policy is completely
706          * customizable and can be altered dynamically.
707          */
708
709         /* startup state */
710         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
711                 cx = &pr->power.states[i];
712                 if (!cx->valid)
713                         continue;
714
715                 if (!state_is_set)
716                         pr->power.state = cx;
717                 state_is_set++;
718                 break;
719         }
720
721         if (!state_is_set)
722                 return -ENODEV;
723
724         /* demotion */
725         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
726                 cx = &pr->power.states[i];
727                 if (!cx->valid)
728                         continue;
729
730                 if (lower) {
731                         cx->demotion.state = lower;
732                         cx->demotion.threshold.ticks = cx->latency_ticks;
733                         cx->demotion.threshold.count = 1;
734                         if (cx->type == ACPI_STATE_C3)
735                                 cx->demotion.threshold.bm = bm_history;
736                 }
737
738                 lower = cx;
739         }
740
741         /* promotion */
742         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
743                 cx = &pr->power.states[i];
744                 if (!cx->valid)
745                         continue;
746
747                 if (higher) {
748                         cx->promotion.state = higher;
749                         cx->promotion.threshold.ticks = cx->latency_ticks;
750                         if (cx->type >= ACPI_STATE_C2)
751                                 cx->promotion.threshold.count = 4;
752                         else
753                                 cx->promotion.threshold.count = 10;
754                         if (higher->type == ACPI_STATE_C3)
755                                 cx->promotion.threshold.bm = bm_history;
756                 }
757
758                 higher = cx;
759         }
760
761         return 0;
762 }
763 #endif /* !CONFIG_CPU_IDLE */
764
765 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
766 {
767
768         if (!pr)
769                 return -EINVAL;
770
771         if (!pr->pblk)
772                 return -ENODEV;
773
774         /* if info is obtained from pblk/fadt, type equals state */
775         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
776         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
777
778 #ifndef CONFIG_HOTPLUG_CPU
779         /*
780          * Check for P_LVL2_UP flag before entering C2 and above on
781          * an SMP system.
782          */
783         if ((num_online_cpus() > 1) &&
784             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
785                 return -ENODEV;
786 #endif
787
788         /* determine C2 and C3 address from pblk */
789         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
790         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
791
792         /* determine latencies from FADT */
793         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
794         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
795
796         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
797                           "lvl2[0x%08x] lvl3[0x%08x]\n",
798                           pr->power.states[ACPI_STATE_C2].address,
799                           pr->power.states[ACPI_STATE_C3].address));
800
801         return 0;
802 }
803
804 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
805 {
806         if (!pr->power.states[ACPI_STATE_C1].valid) {
807                 /* set the first C-State to C1 */
808                 /* all processors need to support C1 */
809                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
810                 pr->power.states[ACPI_STATE_C1].valid = 1;
811         }
812         /* the C0 state only exists as a filler in our array */
813         pr->power.states[ACPI_STATE_C0].valid = 1;
814         return 0;
815 }
816
817 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
818 {
819         acpi_status status = 0;
820         acpi_integer count;
821         int current_count;
822         int i;
823         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
824         union acpi_object *cst;
825
826
827         if (nocst)
828                 return -ENODEV;
829
830         current_count = 0;
831
832         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
833         if (ACPI_FAILURE(status)) {
834                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
835                 return -ENODEV;
836         }
837
838         cst = buffer.pointer;
839
840         /* There must be at least 2 elements */
841         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
842                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
843                 status = -EFAULT;
844                 goto end;
845         }
846
847         count = cst->package.elements[0].integer.value;
848
849         /* Validate number of power states. */
850         if (count < 1 || count != cst->package.count - 1) {
851                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
852                 status = -EFAULT;
853                 goto end;
854         }
855
856         /* Tell driver that at least _CST is supported. */
857         pr->flags.has_cst = 1;
858
859         for (i = 1; i <= count; i++) {
860                 union acpi_object *element;
861                 union acpi_object *obj;
862                 struct acpi_power_register *reg;
863                 struct acpi_processor_cx cx;
864
865                 memset(&cx, 0, sizeof(cx));
866
867                 element = &(cst->package.elements[i]);
868                 if (element->type != ACPI_TYPE_PACKAGE)
869                         continue;
870
871                 if (element->package.count != 4)
872                         continue;
873
874                 obj = &(element->package.elements[0]);
875
876                 if (obj->type != ACPI_TYPE_BUFFER)
877                         continue;
878
879                 reg = (struct acpi_power_register *)obj->buffer.pointer;
880
881                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
882                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
883                         continue;
884
885                 /* There should be an easy way to extract an integer... */
886                 obj = &(element->package.elements[1]);
887                 if (obj->type != ACPI_TYPE_INTEGER)
888                         continue;
889
890                 cx.type = obj->integer.value;
891                 /*
892                  * Some buggy BIOSes won't list C1 in _CST -
893                  * Let acpi_processor_get_power_info_default() handle them later
894                  */
895                 if (i == 1 && cx.type != ACPI_STATE_C1)
896                         current_count++;
897
898                 cx.address = reg->address;
899                 cx.index = current_count + 1;
900
901                 cx.space_id = ACPI_CSTATE_SYSTEMIO;
902                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
903                         if (acpi_processor_ffh_cstate_probe
904                                         (pr->id, &cx, reg) == 0) {
905                                 cx.space_id = ACPI_CSTATE_FFH;
906                         } else if (cx.type != ACPI_STATE_C1) {
907                                 /*
908                                  * C1 is a special case where FIXED_HARDWARE
909                                  * can be handled in non-MWAIT way as well.
910                                  * In that case, save this _CST entry info.
911                                  * That is, we retain space_id of SYSTEM_IO for
912                                  * halt based C1.
913                                  * Otherwise, ignore this info and continue.
914                                  */
915                                 continue;
916                         }
917                 }
918
919                 obj = &(element->package.elements[2]);
920                 if (obj->type != ACPI_TYPE_INTEGER)
921                         continue;
922
923                 cx.latency = obj->integer.value;
924
925                 obj = &(element->package.elements[3]);
926                 if (obj->type != ACPI_TYPE_INTEGER)
927                         continue;
928
929                 cx.power = obj->integer.value;
930
931                 current_count++;
932                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
933
934                 /*
935                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
936                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
937                  */
938                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
939                         printk(KERN_WARNING
940                                "Limiting number of power states to max (%d)\n",
941                                ACPI_PROCESSOR_MAX_POWER);
942                         printk(KERN_WARNING
943                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
944                         break;
945                 }
946         }
947
948         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
949                           current_count));
950
951         /* Validate number of power states discovered */
952         if (current_count < 2)
953                 status = -EFAULT;
954
955       end:
956         kfree(buffer.pointer);
957
958         return status;
959 }
960
961 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
962 {
963
964         if (!cx->address)
965                 return;
966
967         /*
968          * C2 latency must be less than or equal to 100
969          * microseconds.
970          */
971         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
972                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
973                                   "latency too large [%d]\n", cx->latency));
974                 return;
975         }
976
977         /*
978          * Otherwise we've met all of our C2 requirements.
979          * Normalize the C2 latency to expidite policy
980          */
981         cx->valid = 1;
982
983 #ifndef CONFIG_CPU_IDLE
984         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
985 #else
986         cx->latency_ticks = cx->latency;
987 #endif
988
989         return;
990 }
991
992 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
993                                            struct acpi_processor_cx *cx)
994 {
995         static int bm_check_flag;
996
997
998         if (!cx->address)
999                 return;
1000
1001         /*
1002          * C3 latency must be less than or equal to 1000
1003          * microseconds.
1004          */
1005         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1006                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1007                                   "latency too large [%d]\n", cx->latency));
1008                 return;
1009         }
1010
1011         /*
1012          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1013          * DMA transfers are used by any ISA device to avoid livelock.
1014          * Note that we could disable Type-F DMA (as recommended by
1015          * the erratum), but this is known to disrupt certain ISA
1016          * devices thus we take the conservative approach.
1017          */
1018         else if (errata.piix4.fdma) {
1019                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1020                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
1021                 return;
1022         }
1023
1024         /* All the logic here assumes flags.bm_check is same across all CPUs */
1025         if (!bm_check_flag) {
1026                 /* Determine whether bm_check is needed based on CPU  */
1027                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1028                 bm_check_flag = pr->flags.bm_check;
1029         } else {
1030                 pr->flags.bm_check = bm_check_flag;
1031         }
1032
1033         if (pr->flags.bm_check) {
1034                 if (!pr->flags.bm_control) {
1035                         if (pr->flags.has_cst != 1) {
1036                                 /* bus mastering control is necessary */
1037                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1038                                         "C3 support requires BM control\n"));
1039                                 return;
1040                         } else {
1041                                 /* Here we enter C3 without bus mastering */
1042                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1043                                         "C3 support without BM control\n"));
1044                         }
1045                 }
1046         } else {
1047                 /*
1048                  * WBINVD should be set in fadt, for C3 state to be
1049                  * supported on when bm_check is not required.
1050                  */
1051                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1052                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1053                                           "Cache invalidation should work properly"
1054                                           " for C3 to be enabled on SMP systems\n"));
1055                         return;
1056                 }
1057                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1058         }
1059
1060         /*
1061          * Otherwise we've met all of our C3 requirements.
1062          * Normalize the C3 latency to expidite policy.  Enable
1063          * checking of bus mastering status (bm_check) so we can
1064          * use this in our C3 policy
1065          */
1066         cx->valid = 1;
1067
1068 #ifndef CONFIG_CPU_IDLE
1069         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1070 #else
1071         cx->latency_ticks = cx->latency;
1072 #endif
1073
1074         return;
1075 }
1076
1077 static int acpi_processor_power_verify(struct acpi_processor *pr)
1078 {
1079         unsigned int i;
1080         unsigned int working = 0;
1081
1082         pr->power.timer_broadcast_on_state = INT_MAX;
1083
1084         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1085                 struct acpi_processor_cx *cx = &pr->power.states[i];
1086
1087                 switch (cx->type) {
1088                 case ACPI_STATE_C1:
1089                         cx->valid = 1;
1090                         break;
1091
1092                 case ACPI_STATE_C2:
1093                         acpi_processor_power_verify_c2(cx);
1094                         if (cx->valid)
1095                                 acpi_timer_check_state(i, pr, cx);
1096                         break;
1097
1098                 case ACPI_STATE_C3:
1099                         acpi_processor_power_verify_c3(pr, cx);
1100                         if (cx->valid)
1101                                 acpi_timer_check_state(i, pr, cx);
1102                         break;
1103                 }
1104
1105                 if (cx->valid)
1106                         working++;
1107         }
1108
1109         acpi_propagate_timer_broadcast(pr);
1110
1111         return (working);
1112 }
1113
1114 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1115 {
1116         unsigned int i;
1117         int result;
1118
1119
1120         /* NOTE: the idle thread may not be running while calling
1121          * this function */
1122
1123         /* Zero initialize all the C-states info. */
1124         memset(pr->power.states, 0, sizeof(pr->power.states));
1125
1126         result = acpi_processor_get_power_info_cst(pr);
1127         if (result == -ENODEV)
1128                 result = acpi_processor_get_power_info_fadt(pr);
1129
1130         if (result)
1131                 return result;
1132
1133         acpi_processor_get_power_info_default(pr);
1134
1135         pr->power.count = acpi_processor_power_verify(pr);
1136
1137 #ifndef CONFIG_CPU_IDLE
1138         /*
1139          * Set Default Policy
1140          * ------------------
1141          * Now that we know which states are supported, set the default
1142          * policy.  Note that this policy can be changed dynamically
1143          * (e.g. encourage deeper sleeps to conserve battery life when
1144          * not on AC).
1145          */
1146         result = acpi_processor_set_power_policy(pr);
1147         if (result)
1148                 return result;
1149 #endif
1150
1151         /*
1152          * if one state of type C2 or C3 is available, mark this
1153          * CPU as being "idle manageable"
1154          */
1155         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1156                 if (pr->power.states[i].valid) {
1157                         pr->power.count = i;
1158                         if (pr->power.states[i].type >= ACPI_STATE_C2)
1159                                 pr->flags.power = 1;
1160                 }
1161         }
1162
1163         return 0;
1164 }
1165
1166 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1167 {
1168         struct acpi_processor *pr = seq->private;
1169         unsigned int i;
1170
1171
1172         if (!pr)
1173                 goto end;
1174
1175         seq_printf(seq, "active state:            C%zd\n"
1176                    "max_cstate:              C%d\n"
1177                    "bus master activity:     %08x\n"
1178                    "maximum allowed latency: %d usec\n",
1179                    pr->power.state ? pr->power.state - pr->power.states : 0,
1180                    max_cstate, (unsigned)pr->power.bm_activity,
1181                    system_latency_constraint());
1182
1183         seq_puts(seq, "states:\n");
1184
1185         for (i = 1; i <= pr->power.count; i++) {
1186                 seq_printf(seq, "   %cC%d:                  ",
1187                            (&pr->power.states[i] ==
1188                             pr->power.state ? '*' : ' '), i);
1189
1190                 if (!pr->power.states[i].valid) {
1191                         seq_puts(seq, "<not supported>\n");
1192                         continue;
1193                 }
1194
1195                 switch (pr->power.states[i].type) {
1196                 case ACPI_STATE_C1:
1197                         seq_printf(seq, "type[C1] ");
1198                         break;
1199                 case ACPI_STATE_C2:
1200                         seq_printf(seq, "type[C2] ");
1201                         break;
1202                 case ACPI_STATE_C3:
1203                         seq_printf(seq, "type[C3] ");
1204                         break;
1205                 default:
1206                         seq_printf(seq, "type[--] ");
1207                         break;
1208                 }
1209
1210                 if (pr->power.states[i].promotion.state)
1211                         seq_printf(seq, "promotion[C%zd] ",
1212                                    (pr->power.states[i].promotion.state -
1213                                     pr->power.states));
1214                 else
1215                         seq_puts(seq, "promotion[--] ");
1216
1217                 if (pr->power.states[i].demotion.state)
1218                         seq_printf(seq, "demotion[C%zd] ",
1219                                    (pr->power.states[i].demotion.state -
1220                                     pr->power.states));
1221                 else
1222                         seq_puts(seq, "demotion[--] ");
1223
1224                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1225                            pr->power.states[i].latency,
1226                            pr->power.states[i].usage,
1227                            (unsigned long long)pr->power.states[i].time);
1228         }
1229
1230       end:
1231         return 0;
1232 }
1233
1234 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1235 {
1236         return single_open(file, acpi_processor_power_seq_show,
1237                            PDE(inode)->data);
1238 }
1239
1240 static const struct file_operations acpi_processor_power_fops = {
1241         .open = acpi_processor_power_open_fs,
1242         .read = seq_read,
1243         .llseek = seq_lseek,
1244         .release = single_release,
1245 };
1246
1247 #ifndef CONFIG_CPU_IDLE
1248
1249 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1250 {
1251         int result = 0;
1252
1253
1254         if (!pr)
1255                 return -EINVAL;
1256
1257         if (nocst) {
1258                 return -ENODEV;
1259         }
1260
1261         if (!pr->flags.power_setup_done)
1262                 return -ENODEV;
1263
1264         /* Fall back to the default idle loop */
1265         pm_idle = pm_idle_save;
1266         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
1267
1268         pr->flags.power = 0;
1269         result = acpi_processor_get_power_info(pr);
1270         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1271                 pm_idle = acpi_processor_idle;
1272
1273         return result;
1274 }
1275
1276 #ifdef CONFIG_SMP
1277 static void smp_callback(void *v)
1278 {
1279         /* we already woke the CPU up, nothing more to do */
1280 }
1281
1282 /*
1283  * This function gets called when a part of the kernel has a new latency
1284  * requirement.  This means we need to get all processors out of their C-state,
1285  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1286  * wakes them all right up.
1287  */
1288 static int acpi_processor_latency_notify(struct notifier_block *b,
1289                 unsigned long l, void *v)
1290 {
1291         smp_call_function(smp_callback, NULL, 0, 1);
1292         return NOTIFY_OK;
1293 }
1294
1295 static struct notifier_block acpi_processor_latency_notifier = {
1296         .notifier_call = acpi_processor_latency_notify,
1297 };
1298
1299 #endif
1300
1301 #else /* CONFIG_CPU_IDLE */
1302
1303 /**
1304  * acpi_idle_bm_check - checks if bus master activity was detected
1305  */
1306 static int acpi_idle_bm_check(void)
1307 {
1308         u32 bm_status = 0;
1309
1310         acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1311         if (bm_status)
1312                 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1313         /*
1314          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1315          * the true state of bus mastering activity; forcing us to
1316          * manually check the BMIDEA bit of each IDE channel.
1317          */
1318         else if (errata.piix4.bmisx) {
1319                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1320                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1321                         bm_status = 1;
1322         }
1323         return bm_status;
1324 }
1325
1326 /**
1327  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1328  * @pr: the processor
1329  * @target: the new target state
1330  */
1331 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1332                                            struct acpi_processor_cx *target)
1333 {
1334         if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1335                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1336                 pr->flags.bm_rld_set = 0;
1337         }
1338
1339         if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1340                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1341                 pr->flags.bm_rld_set = 1;
1342         }
1343 }
1344
1345 /**
1346  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1347  * @cx: cstate data
1348  */
1349 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1350 {
1351         if (cx->space_id == ACPI_CSTATE_FFH) {
1352                 /* Call into architectural FFH based C-state */
1353                 acpi_processor_ffh_cstate_enter(cx);
1354         } else {
1355                 int unused;
1356                 /* IO port based C-state */
1357                 inb(cx->address);
1358                 /* Dummy wait op - must do something useless after P_LVL2 read
1359                    because chipsets cannot guarantee that STPCLK# signal
1360                    gets asserted in time to freeze execution properly. */
1361                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1362         }
1363 }
1364
1365 /**
1366  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1367  * @dev: the target CPU
1368  * @state: the state data
1369  *
1370  * This is equivalent to the HALT instruction.
1371  */
1372 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1373                               struct cpuidle_state *state)
1374 {
1375         struct acpi_processor *pr;
1376         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1377         pr = processors[smp_processor_id()];
1378
1379         if (unlikely(!pr))
1380                 return 0;
1381
1382         if (pr->flags.bm_check)
1383                 acpi_idle_update_bm_rld(pr, cx);
1384
1385         acpi_safe_halt();
1386
1387         cx->usage++;
1388
1389         return 0;
1390 }
1391
1392 /**
1393  * acpi_idle_enter_simple - enters an ACPI state without BM handling
1394  * @dev: the target CPU
1395  * @state: the state data
1396  */
1397 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1398                                   struct cpuidle_state *state)
1399 {
1400         struct acpi_processor *pr;
1401         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1402         u32 t1, t2;
1403         int sleep_ticks = 0;
1404
1405         pr = processors[smp_processor_id()];
1406
1407         if (unlikely(!pr))
1408                 return 0;
1409
1410         if (acpi_idle_suspend)
1411                 return(acpi_idle_enter_c1(dev, state));
1412
1413         local_irq_disable();
1414         current_thread_info()->status &= ~TS_POLLING;
1415         /*
1416          * TS_POLLING-cleared state must be visible before we test
1417          * NEED_RESCHED:
1418          */
1419         smp_mb();
1420
1421         if (unlikely(need_resched())) {
1422                 current_thread_info()->status |= TS_POLLING;
1423                 local_irq_enable();
1424                 return 0;
1425         }
1426
1427         acpi_unlazy_tlb(smp_processor_id());
1428         /*
1429          * Must be done before busmaster disable as we might need to
1430          * access HPET !
1431          */
1432         acpi_state_timer_broadcast(pr, cx, 1);
1433
1434         if (pr->flags.bm_check)
1435                 acpi_idle_update_bm_rld(pr, cx);
1436
1437         if (cx->type == ACPI_STATE_C3)
1438                 ACPI_FLUSH_CPU_CACHE();
1439
1440         t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1441         /* Tell the scheduler that we are going deep-idle: */
1442         sched_clock_idle_sleep_event();
1443         acpi_idle_do_entry(cx);
1444         t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1445
1446 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1447         /* TSC could halt in idle, so notify users */
1448         mark_tsc_unstable("TSC halts in idle");;
1449 #endif
1450         sleep_ticks = ticks_elapsed(t1, t2);
1451
1452         /* Tell the scheduler how much we idled: */
1453         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1454
1455         local_irq_enable();
1456         current_thread_info()->status |= TS_POLLING;
1457
1458         cx->usage++;
1459
1460         acpi_state_timer_broadcast(pr, cx, 0);
1461         cx->time += sleep_ticks;
1462         return ticks_elapsed_in_us(t1, t2);
1463 }
1464
1465 static int c3_cpu_count;
1466 static DEFINE_SPINLOCK(c3_lock);
1467
1468 /**
1469  * acpi_idle_enter_bm - enters C3 with proper BM handling
1470  * @dev: the target CPU
1471  * @state: the state data
1472  *
1473  * If BM is detected, the deepest non-C3 idle state is entered instead.
1474  */
1475 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1476                               struct cpuidle_state *state)
1477 {
1478         struct acpi_processor *pr;
1479         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1480         u32 t1, t2;
1481         int sleep_ticks = 0;
1482
1483         pr = processors[smp_processor_id()];
1484
1485         if (unlikely(!pr))
1486                 return 0;
1487
1488         if (acpi_idle_suspend)
1489                 return(acpi_idle_enter_c1(dev, state));
1490
1491         if (acpi_idle_bm_check()) {
1492                 if (dev->safe_state) {
1493                         return dev->safe_state->enter(dev, dev->safe_state);
1494                 } else {
1495                         acpi_safe_halt();
1496                         return 0;
1497                 }
1498         }
1499
1500         local_irq_disable();
1501         current_thread_info()->status &= ~TS_POLLING;
1502         /*
1503          * TS_POLLING-cleared state must be visible before we test
1504          * NEED_RESCHED:
1505          */
1506         smp_mb();
1507
1508         if (unlikely(need_resched())) {
1509                 current_thread_info()->status |= TS_POLLING;
1510                 local_irq_enable();
1511                 return 0;
1512         }
1513
1514         /* Tell the scheduler that we are going deep-idle: */
1515         sched_clock_idle_sleep_event();
1516         /*
1517          * Must be done before busmaster disable as we might need to
1518          * access HPET !
1519          */
1520         acpi_state_timer_broadcast(pr, cx, 1);
1521
1522         acpi_idle_update_bm_rld(pr, cx);
1523
1524         /*
1525          * disable bus master
1526          * bm_check implies we need ARB_DIS
1527          * !bm_check implies we need cache flush
1528          * bm_control implies whether we can do ARB_DIS
1529          *
1530          * That leaves a case where bm_check is set and bm_control is
1531          * not set. In that case we cannot do much, we enter C3
1532          * without doing anything.
1533          */
1534         if (pr->flags.bm_check && pr->flags.bm_control) {
1535                 spin_lock(&c3_lock);
1536                 c3_cpu_count++;
1537                 /* Disable bus master arbitration when all CPUs are in C3 */
1538                 if (c3_cpu_count == num_online_cpus())
1539                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1540                 spin_unlock(&c3_lock);
1541         } else if (!pr->flags.bm_check) {
1542                 ACPI_FLUSH_CPU_CACHE();
1543         }
1544
1545         t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1546         acpi_idle_do_entry(cx);
1547         t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1548
1549         /* Re-enable bus master arbitration */
1550         if (pr->flags.bm_check && pr->flags.bm_control) {
1551                 spin_lock(&c3_lock);
1552                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1553                 c3_cpu_count--;
1554                 spin_unlock(&c3_lock);
1555         }
1556
1557 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1558         /* TSC could halt in idle, so notify users */
1559         mark_tsc_unstable("TSC halts in idle");
1560 #endif
1561         sleep_ticks = ticks_elapsed(t1, t2);
1562         /* Tell the scheduler how much we idled: */
1563         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1564
1565         local_irq_enable();
1566         current_thread_info()->status |= TS_POLLING;
1567
1568         cx->usage++;
1569
1570         acpi_state_timer_broadcast(pr, cx, 0);
1571         cx->time += sleep_ticks;
1572         return ticks_elapsed_in_us(t1, t2);
1573 }
1574
1575 struct cpuidle_driver acpi_idle_driver = {
1576         .name =         "acpi_idle",
1577         .owner =        THIS_MODULE,
1578 };
1579
1580 /**
1581  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1582  * @pr: the ACPI processor
1583  */
1584 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1585 {
1586         int i, count = 0;
1587         struct acpi_processor_cx *cx;
1588         struct cpuidle_state *state;
1589         struct cpuidle_device *dev = &pr->power.dev;
1590
1591         if (!pr->flags.power_setup_done)
1592                 return -EINVAL;
1593
1594         if (pr->flags.power == 0) {
1595                 return -EINVAL;
1596         }
1597
1598         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1599                 cx = &pr->power.states[i];
1600                 state = &dev->states[count];
1601
1602                 if (!cx->valid)
1603                         continue;
1604
1605 #ifdef CONFIG_HOTPLUG_CPU
1606                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1607                     !pr->flags.has_cst &&
1608                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1609                         continue;
1610 #endif
1611                 cpuidle_set_statedata(state, cx);
1612
1613                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1614                 state->exit_latency = cx->latency;
1615                 state->target_residency = cx->latency * 6;
1616                 state->power_usage = cx->power;
1617
1618                 state->flags = 0;
1619                 switch (cx->type) {
1620                         case ACPI_STATE_C1:
1621                         state->flags |= CPUIDLE_FLAG_SHALLOW;
1622                         state->enter = acpi_idle_enter_c1;
1623                         dev->safe_state = state;
1624                         break;
1625
1626                         case ACPI_STATE_C2:
1627                         state->flags |= CPUIDLE_FLAG_BALANCED;
1628                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1629                         state->enter = acpi_idle_enter_simple;
1630                         dev->safe_state = state;
1631                         break;
1632
1633                         case ACPI_STATE_C3:
1634                         state->flags |= CPUIDLE_FLAG_DEEP;
1635                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1636                         state->flags |= CPUIDLE_FLAG_CHECK_BM;
1637                         state->enter = pr->flags.bm_check ?
1638                                         acpi_idle_enter_bm :
1639                                         acpi_idle_enter_simple;
1640                         break;
1641                 }
1642
1643                 count++;
1644         }
1645
1646         dev->state_count = count;
1647
1648         if (!count)
1649                 return -EINVAL;
1650
1651         return 0;
1652 }
1653
1654 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1655 {
1656         int ret;
1657
1658         if (!pr)
1659                 return -EINVAL;
1660
1661         if (nocst) {
1662                 return -ENODEV;
1663         }
1664
1665         if (!pr->flags.power_setup_done)
1666                 return -ENODEV;
1667
1668         cpuidle_pause_and_lock();
1669         cpuidle_disable_device(&pr->power.dev);
1670         acpi_processor_get_power_info(pr);
1671         acpi_processor_setup_cpuidle(pr);
1672         ret = cpuidle_enable_device(&pr->power.dev);
1673         cpuidle_resume_and_unlock();
1674
1675         return ret;
1676 }
1677
1678 #endif /* CONFIG_CPU_IDLE */
1679
1680 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1681                               struct acpi_device *device)
1682 {
1683         acpi_status status = 0;
1684         static int first_run;
1685         struct proc_dir_entry *entry = NULL;
1686         unsigned int i;
1687
1688
1689         if (!first_run) {
1690                 dmi_check_system(processor_power_dmi_table);
1691                 max_cstate = acpi_processor_cstate_check(max_cstate);
1692                 if (max_cstate < ACPI_C_STATES_MAX)
1693                         printk(KERN_NOTICE
1694                                "ACPI: processor limited to max C-state %d\n",
1695                                max_cstate);
1696                 first_run++;
1697 #if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
1698                 register_latency_notifier(&acpi_processor_latency_notifier);
1699 #endif
1700         }
1701
1702         if (!pr)
1703                 return -EINVAL;
1704
1705         if (acpi_gbl_FADT.cst_control && !nocst) {
1706                 status =
1707                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1708                 if (ACPI_FAILURE(status)) {
1709                         ACPI_EXCEPTION((AE_INFO, status,
1710                                         "Notifying BIOS of _CST ability failed"));
1711                 }
1712         }
1713
1714         acpi_processor_get_power_info(pr);
1715         pr->flags.power_setup_done = 1;
1716
1717         /*
1718          * Install the idle handler if processor power management is supported.
1719          * Note that we use previously set idle handler will be used on
1720          * platforms that only support C1.
1721          */
1722         if ((pr->flags.power) && (!boot_option_idle_override)) {
1723 #ifdef CONFIG_CPU_IDLE
1724                 acpi_processor_setup_cpuidle(pr);
1725                 pr->power.dev.cpu = pr->id;
1726                 if (cpuidle_register_device(&pr->power.dev))
1727                         return -EIO;
1728 #endif
1729
1730                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1731                 for (i = 1; i <= pr->power.count; i++)
1732                         if (pr->power.states[i].valid)
1733                                 printk(" C%d[C%d]", i,
1734                                        pr->power.states[i].type);
1735                 printk(")\n");
1736
1737 #ifndef CONFIG_CPU_IDLE
1738                 if (pr->id == 0) {
1739                         pm_idle_save = pm_idle;
1740                         pm_idle = acpi_processor_idle;
1741                 }
1742 #endif
1743         }
1744
1745         /* 'power' [R] */
1746         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1747                                   S_IRUGO, acpi_device_dir(device));
1748         if (!entry)
1749                 return -EIO;
1750         else {
1751                 entry->proc_fops = &acpi_processor_power_fops;
1752                 entry->data = acpi_driver_data(device);
1753                 entry->owner = THIS_MODULE;
1754         }
1755
1756         return 0;
1757 }
1758
1759 int acpi_processor_power_exit(struct acpi_processor *pr,
1760                               struct acpi_device *device)
1761 {
1762 #ifdef CONFIG_CPU_IDLE
1763         if ((pr->flags.power) && (!boot_option_idle_override))
1764                 cpuidle_unregister_device(&pr->power.dev);
1765 #endif
1766         pr->flags.power_setup_done = 0;
1767
1768         if (acpi_device_dir(device))
1769                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1770                                   acpi_device_dir(device));
1771
1772 #ifndef CONFIG_CPU_IDLE
1773
1774         /* Unregister the idle handler when processor #0 is removed. */
1775         if (pr->id == 0) {
1776                 pm_idle = pm_idle_save;
1777
1778                 /*
1779                  * We are about to unload the current idle thread pm callback
1780                  * (pm_idle), Wait for all processors to update cached/local
1781                  * copies of pm_idle before proceeding.
1782                  */
1783                 cpu_idle_wait();
1784 #ifdef CONFIG_SMP
1785                 unregister_latency_notifier(&acpi_processor_latency_notifier);
1786 #endif
1787         }
1788 #endif
1789
1790         return 0;
1791 }