Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999,2007
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/cache.h>
31 #include <linux/interrupt.h>
32 #include <linux/cpu.h>
33 #include <linux/timex.h>
34 #include <linux/bootmem.h>
35 #include <asm/ipl.h>
36 #include <asm/setup.h>
37 #include <asm/sigp.h>
38 #include <asm/pgalloc.h>
39 #include <asm/irq.h>
40 #include <asm/s390_ext.h>
41 #include <asm/cpcmd.h>
42 #include <asm/tlbflush.h>
43 #include <asm/timer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/cpu.h>
47 #include "entry.h"
48
49 /*
50  * An array with a pointer the lowcore of every CPU.
51  */
52 struct _lowcore *lowcore_ptr[NR_CPUS];
53 EXPORT_SYMBOL(lowcore_ptr);
54
55 cpumask_t cpu_online_map = CPU_MASK_NONE;
56 EXPORT_SYMBOL(cpu_online_map);
57
58 cpumask_t cpu_possible_map = CPU_MASK_ALL;
59 EXPORT_SYMBOL(cpu_possible_map);
60
61 static struct task_struct *current_set[NR_CPUS];
62
63 static u8 smp_cpu_type;
64 static int smp_use_sigp_detection;
65
66 enum s390_cpu_state {
67         CPU_STATE_STANDBY,
68         CPU_STATE_CONFIGURED,
69 };
70
71 DEFINE_MUTEX(smp_cpu_state_mutex);
72 int smp_cpu_polarization[NR_CPUS];
73 static int smp_cpu_state[NR_CPUS];
74 static int cpu_management;
75
76 static DEFINE_PER_CPU(struct cpu, cpu_devices);
77
78 static void smp_ext_bitcall(int, ec_bit_sig);
79
80 /*
81  * Structure and data for __smp_call_function_map(). This is designed to
82  * minimise static memory requirements. It also looks cleaner.
83  */
84 static DEFINE_SPINLOCK(call_lock);
85
86 struct call_data_struct {
87         void (*func) (void *info);
88         void *info;
89         cpumask_t started;
90         cpumask_t finished;
91         int wait;
92 };
93
94 static struct call_data_struct *call_data;
95
96 /*
97  * 'Call function' interrupt callback
98  */
99 static void do_call_function(void)
100 {
101         void (*func) (void *info) = call_data->func;
102         void *info = call_data->info;
103         int wait = call_data->wait;
104
105         cpu_set(smp_processor_id(), call_data->started);
106         (*func)(info);
107         if (wait)
108                 cpu_set(smp_processor_id(), call_data->finished);;
109 }
110
111 static void __smp_call_function_map(void (*func) (void *info), void *info,
112                                     int wait, cpumask_t map)
113 {
114         struct call_data_struct data;
115         int cpu, local = 0;
116
117         /*
118          * Can deadlock when interrupts are disabled or if in wrong context.
119          */
120         WARN_ON(irqs_disabled() || in_irq());
121
122         /*
123          * Check for local function call. We have to have the same call order
124          * as in on_each_cpu() because of machine_restart_smp().
125          */
126         if (cpu_isset(smp_processor_id(), map)) {
127                 local = 1;
128                 cpu_clear(smp_processor_id(), map);
129         }
130
131         cpus_and(map, map, cpu_online_map);
132         if (cpus_empty(map))
133                 goto out;
134
135         data.func = func;
136         data.info = info;
137         data.started = CPU_MASK_NONE;
138         data.wait = wait;
139         if (wait)
140                 data.finished = CPU_MASK_NONE;
141
142         call_data = &data;
143
144         for_each_cpu_mask(cpu, map)
145                 smp_ext_bitcall(cpu, ec_call_function);
146
147         /* Wait for response */
148         while (!cpus_equal(map, data.started))
149                 cpu_relax();
150         if (wait)
151                 while (!cpus_equal(map, data.finished))
152                         cpu_relax();
153 out:
154         if (local) {
155                 local_irq_disable();
156                 func(info);
157                 local_irq_enable();
158         }
159 }
160
161 /*
162  * smp_call_function:
163  * @func: the function to run; this must be fast and non-blocking
164  * @info: an arbitrary pointer to pass to the function
165  * @wait: if true, wait (atomically) until function has completed on other CPUs
166  *
167  * Run a function on all other CPUs.
168  *
169  * You must not call this function with disabled interrupts, from a
170  * hardware interrupt handler or from a bottom half.
171  */
172 int smp_call_function(void (*func) (void *info), void *info, int wait)
173 {
174         cpumask_t map;
175
176         spin_lock(&call_lock);
177         map = cpu_online_map;
178         cpu_clear(smp_processor_id(), map);
179         __smp_call_function_map(func, info, wait, map);
180         spin_unlock(&call_lock);
181         return 0;
182 }
183 EXPORT_SYMBOL(smp_call_function);
184
185 /*
186  * smp_call_function_single:
187  * @cpu: the CPU where func should run
188  * @func: the function to run; this must be fast and non-blocking
189  * @info: an arbitrary pointer to pass to the function
190  * @wait: if true, wait (atomically) until function has completed on other CPUs
191  *
192  * Run a function on one processor.
193  *
194  * You must not call this function with disabled interrupts, from a
195  * hardware interrupt handler or from a bottom half.
196  */
197 int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
198                              int wait)
199 {
200         spin_lock(&call_lock);
201         __smp_call_function_map(func, info, wait, cpumask_of_cpu(cpu));
202         spin_unlock(&call_lock);
203         return 0;
204 }
205 EXPORT_SYMBOL(smp_call_function_single);
206
207 /**
208  * smp_call_function_mask(): Run a function on a set of other CPUs.
209  * @mask: The set of cpus to run on.  Must not include the current cpu.
210  * @func: The function to run. This must be fast and non-blocking.
211  * @info: An arbitrary pointer to pass to the function.
212  * @wait: If true, wait (atomically) until function has completed on other CPUs.
213  *
214  * Returns 0 on success, else a negative status code.
215  *
216  * If @wait is true, then returns once @func has returned; otherwise
217  * it returns just before the target cpu calls @func.
218  *
219  * You must not call this function with disabled interrupts or from a
220  * hardware interrupt handler or from a bottom half handler.
221  */
222 int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info,
223                            int wait)
224 {
225         spin_lock(&call_lock);
226         cpu_clear(smp_processor_id(), mask);
227         __smp_call_function_map(func, info, wait, mask);
228         spin_unlock(&call_lock);
229         return 0;
230 }
231 EXPORT_SYMBOL(smp_call_function_mask);
232
233 void smp_send_stop(void)
234 {
235         int cpu, rc;
236
237         /* Disable all interrupts/machine checks */
238         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
239
240         /* write magic number to zero page (absolute 0) */
241         lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
242
243         /* stop all processors */
244         for_each_online_cpu(cpu) {
245                 if (cpu == smp_processor_id())
246                         continue;
247                 do {
248                         rc = signal_processor(cpu, sigp_stop);
249                 } while (rc == sigp_busy);
250
251                 while (!smp_cpu_not_running(cpu))
252                         cpu_relax();
253         }
254 }
255
256 /*
257  * This is the main routine where commands issued by other
258  * cpus are handled.
259  */
260
261 static void do_ext_call_interrupt(__u16 code)
262 {
263         unsigned long bits;
264
265         /*
266          * handle bit signal external calls
267          *
268          * For the ec_schedule signal we have to do nothing. All the work
269          * is done automatically when we return from the interrupt.
270          */
271         bits = xchg(&S390_lowcore.ext_call_fast, 0);
272
273         if (test_bit(ec_call_function, &bits))
274                 do_call_function();
275 }
276
277 /*
278  * Send an external call sigp to another cpu and return without waiting
279  * for its completion.
280  */
281 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
282 {
283         /*
284          * Set signaling bit in lowcore of target cpu and kick it
285          */
286         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
287         while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
288                 udelay(10);
289 }
290
291 #ifndef CONFIG_64BIT
292 /*
293  * this function sends a 'purge tlb' signal to another CPU.
294  */
295 static void smp_ptlb_callback(void *info)
296 {
297         __tlb_flush_local();
298 }
299
300 void smp_ptlb_all(void)
301 {
302         on_each_cpu(smp_ptlb_callback, NULL, 1);
303 }
304 EXPORT_SYMBOL(smp_ptlb_all);
305 #endif /* ! CONFIG_64BIT */
306
307 /*
308  * this function sends a 'reschedule' IPI to another CPU.
309  * it goes straight through and wastes no time serializing
310  * anything. Worst case is that we lose a reschedule ...
311  */
312 void smp_send_reschedule(int cpu)
313 {
314         smp_ext_bitcall(cpu, ec_schedule);
315 }
316
317 /*
318  * parameter area for the set/clear control bit callbacks
319  */
320 struct ec_creg_mask_parms {
321         unsigned long orvals[16];
322         unsigned long andvals[16];
323 };
324
325 /*
326  * callback for setting/clearing control bits
327  */
328 static void smp_ctl_bit_callback(void *info)
329 {
330         struct ec_creg_mask_parms *pp = info;
331         unsigned long cregs[16];
332         int i;
333
334         __ctl_store(cregs, 0, 15);
335         for (i = 0; i <= 15; i++)
336                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
337         __ctl_load(cregs, 0, 15);
338 }
339
340 /*
341  * Set a bit in a control register of all cpus
342  */
343 void smp_ctl_set_bit(int cr, int bit)
344 {
345         struct ec_creg_mask_parms parms;
346
347         memset(&parms.orvals, 0, sizeof(parms.orvals));
348         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
349         parms.orvals[cr] = 1 << bit;
350         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
351 }
352 EXPORT_SYMBOL(smp_ctl_set_bit);
353
354 /*
355  * Clear a bit in a control register of all cpus
356  */
357 void smp_ctl_clear_bit(int cr, int bit)
358 {
359         struct ec_creg_mask_parms parms;
360
361         memset(&parms.orvals, 0, sizeof(parms.orvals));
362         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
363         parms.andvals[cr] = ~(1L << bit);
364         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
365 }
366 EXPORT_SYMBOL(smp_ctl_clear_bit);
367
368 /*
369  * In early ipl state a temp. logically cpu number is needed, so the sigp
370  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
371  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
372  */
373 #define CPU_INIT_NO     1
374
375 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
376
377 /*
378  * zfcpdump_prefix_array holds prefix registers for the following scenario:
379  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
380  * save its prefix registers, since they get lost, when switching from 31 bit
381  * to 64 bit.
382  */
383 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
384         __attribute__((__section__(".data")));
385
386 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
387 {
388         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
389                 return;
390         if (cpu >= NR_CPUS) {
391                 printk(KERN_WARNING "Registers for cpu %i not saved since dump "
392                        "kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS);
393                 return;
394         }
395         zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
396         __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
397         while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
398                sigp_busy)
399                 cpu_relax();
400         memcpy(zfcpdump_save_areas[cpu],
401                (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
402                SAVE_AREA_SIZE);
403 #ifdef CONFIG_64BIT
404         /* copy original prefix register */
405         zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
406 #endif
407 }
408
409 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
410 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
411
412 #else
413
414 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
415
416 #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */
417
418 static int cpu_stopped(int cpu)
419 {
420         __u32 status;
421
422         /* Check for stopped state */
423         if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
424             sigp_status_stored) {
425                 if (status & 0x40)
426                         return 1;
427         }
428         return 0;
429 }
430
431 static int cpu_known(int cpu_id)
432 {
433         int cpu;
434
435         for_each_present_cpu(cpu) {
436                 if (__cpu_logical_map[cpu] == cpu_id)
437                         return 1;
438         }
439         return 0;
440 }
441
442 static int smp_rescan_cpus_sigp(cpumask_t avail)
443 {
444         int cpu_id, logical_cpu;
445
446         logical_cpu = first_cpu(avail);
447         if (logical_cpu == NR_CPUS)
448                 return 0;
449         for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
450                 if (cpu_known(cpu_id))
451                         continue;
452                 __cpu_logical_map[logical_cpu] = cpu_id;
453                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
454                 if (!cpu_stopped(logical_cpu))
455                         continue;
456                 cpu_set(logical_cpu, cpu_present_map);
457                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
458                 logical_cpu = next_cpu(logical_cpu, avail);
459                 if (logical_cpu == NR_CPUS)
460                         break;
461         }
462         return 0;
463 }
464
465 static int smp_rescan_cpus_sclp(cpumask_t avail)
466 {
467         struct sclp_cpu_info *info;
468         int cpu_id, logical_cpu, cpu;
469         int rc;
470
471         logical_cpu = first_cpu(avail);
472         if (logical_cpu == NR_CPUS)
473                 return 0;
474         info = kmalloc(sizeof(*info), GFP_KERNEL);
475         if (!info)
476                 return -ENOMEM;
477         rc = sclp_get_cpu_info(info);
478         if (rc)
479                 goto out;
480         for (cpu = 0; cpu < info->combined; cpu++) {
481                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
482                         continue;
483                 cpu_id = info->cpu[cpu].address;
484                 if (cpu_known(cpu_id))
485                         continue;
486                 __cpu_logical_map[logical_cpu] = cpu_id;
487                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
488                 cpu_set(logical_cpu, cpu_present_map);
489                 if (cpu >= info->configured)
490                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
491                 else
492                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
493                 logical_cpu = next_cpu(logical_cpu, avail);
494                 if (logical_cpu == NR_CPUS)
495                         break;
496         }
497 out:
498         kfree(info);
499         return rc;
500 }
501
502 static int __smp_rescan_cpus(void)
503 {
504         cpumask_t avail;
505
506         cpus_xor(avail, cpu_possible_map, cpu_present_map);
507         if (smp_use_sigp_detection)
508                 return smp_rescan_cpus_sigp(avail);
509         else
510                 return smp_rescan_cpus_sclp(avail);
511 }
512
513 static void __init smp_detect_cpus(void)
514 {
515         unsigned int cpu, c_cpus, s_cpus;
516         struct sclp_cpu_info *info;
517         u16 boot_cpu_addr, cpu_addr;
518
519         c_cpus = 1;
520         s_cpus = 0;
521         boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
522         info = kmalloc(sizeof(*info), GFP_KERNEL);
523         if (!info)
524                 panic("smp_detect_cpus failed to allocate memory\n");
525         /* Use sigp detection algorithm if sclp doesn't work. */
526         if (sclp_get_cpu_info(info)) {
527                 smp_use_sigp_detection = 1;
528                 for (cpu = 0; cpu <= 65535; cpu++) {
529                         if (cpu == boot_cpu_addr)
530                                 continue;
531                         __cpu_logical_map[CPU_INIT_NO] = cpu;
532                         if (!cpu_stopped(CPU_INIT_NO))
533                                 continue;
534                         smp_get_save_area(c_cpus, cpu);
535                         c_cpus++;
536                 }
537                 goto out;
538         }
539
540         if (info->has_cpu_type) {
541                 for (cpu = 0; cpu < info->combined; cpu++) {
542                         if (info->cpu[cpu].address == boot_cpu_addr) {
543                                 smp_cpu_type = info->cpu[cpu].type;
544                                 break;
545                         }
546                 }
547         }
548
549         for (cpu = 0; cpu < info->combined; cpu++) {
550                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
551                         continue;
552                 cpu_addr = info->cpu[cpu].address;
553                 if (cpu_addr == boot_cpu_addr)
554                         continue;
555                 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
556                 if (!cpu_stopped(CPU_INIT_NO)) {
557                         s_cpus++;
558                         continue;
559                 }
560                 smp_get_save_area(c_cpus, cpu_addr);
561                 c_cpus++;
562         }
563 out:
564         kfree(info);
565         printk(KERN_INFO "CPUs: %d configured, %d standby\n", c_cpus, s_cpus);
566         get_online_cpus();
567         __smp_rescan_cpus();
568         put_online_cpus();
569 }
570
571 /*
572  *      Activate a secondary processor.
573  */
574 int __cpuinit start_secondary(void *cpuvoid)
575 {
576         /* Setup the cpu */
577         cpu_init();
578         preempt_disable();
579         /* Enable TOD clock interrupts on the secondary cpu. */
580         init_cpu_timer();
581 #ifdef CONFIG_VIRT_TIMER
582         /* Enable cpu timer interrupts on the secondary cpu. */
583         init_cpu_vtimer();
584 #endif
585         /* Enable pfault pseudo page faults on this cpu. */
586         pfault_init();
587
588         /* Mark this cpu as online */
589         spin_lock(&call_lock);
590         cpu_set(smp_processor_id(), cpu_online_map);
591         spin_unlock(&call_lock);
592         /* Switch on interrupts */
593         local_irq_enable();
594         /* Print info about this processor */
595         print_cpu_info(&S390_lowcore.cpu_data);
596         /* cpu_idle will call schedule for us */
597         cpu_idle();
598         return 0;
599 }
600
601 static void __init smp_create_idle(unsigned int cpu)
602 {
603         struct task_struct *p;
604
605         /*
606          *  don't care about the psw and regs settings since we'll never
607          *  reschedule the forked task.
608          */
609         p = fork_idle(cpu);
610         if (IS_ERR(p))
611                 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
612         current_set[cpu] = p;
613         spin_lock_init(&(&per_cpu(s390_idle, cpu))->lock);
614 }
615
616 static int __cpuinit smp_alloc_lowcore(int cpu)
617 {
618         unsigned long async_stack, panic_stack;
619         struct _lowcore *lowcore;
620         int lc_order;
621
622         lc_order = sizeof(long) == 8 ? 1 : 0;
623         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
624         if (!lowcore)
625                 return -ENOMEM;
626         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
627         panic_stack = __get_free_page(GFP_KERNEL);
628         if (!panic_stack || !async_stack)
629                 goto out;
630         memcpy(lowcore, &S390_lowcore, 512);
631         memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
632         lowcore->async_stack = async_stack + ASYNC_SIZE;
633         lowcore->panic_stack = panic_stack + PAGE_SIZE;
634
635 #ifndef CONFIG_64BIT
636         if (MACHINE_HAS_IEEE) {
637                 unsigned long save_area;
638
639                 save_area = get_zeroed_page(GFP_KERNEL);
640                 if (!save_area)
641                         goto out_save_area;
642                 lowcore->extended_save_area_addr = (u32) save_area;
643         }
644 #endif
645         lowcore_ptr[cpu] = lowcore;
646         return 0;
647
648 #ifndef CONFIG_64BIT
649 out_save_area:
650         free_page(panic_stack);
651 #endif
652 out:
653         free_pages(async_stack, ASYNC_ORDER);
654         free_pages((unsigned long) lowcore, lc_order);
655         return -ENOMEM;
656 }
657
658 #ifdef CONFIG_HOTPLUG_CPU
659 static void smp_free_lowcore(int cpu)
660 {
661         struct _lowcore *lowcore;
662         int lc_order;
663
664         lc_order = sizeof(long) == 8 ? 1 : 0;
665         lowcore = lowcore_ptr[cpu];
666 #ifndef CONFIG_64BIT
667         if (MACHINE_HAS_IEEE)
668                 free_page((unsigned long) lowcore->extended_save_area_addr);
669 #endif
670         free_page(lowcore->panic_stack - PAGE_SIZE);
671         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
672         free_pages((unsigned long) lowcore, lc_order);
673         lowcore_ptr[cpu] = NULL;
674 }
675 #endif /* CONFIG_HOTPLUG_CPU */
676
677 /* Upping and downing of CPUs */
678 int __cpuinit __cpu_up(unsigned int cpu)
679 {
680         struct task_struct *idle;
681         struct _lowcore *cpu_lowcore;
682         struct stack_frame *sf;
683         sigp_ccode ccode;
684
685         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
686                 return -EIO;
687         if (smp_alloc_lowcore(cpu))
688                 return -ENOMEM;
689
690         ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
691                                    cpu, sigp_set_prefix);
692         if (ccode) {
693                 printk("sigp_set_prefix failed for cpu %d "
694                        "with condition code %d\n",
695                        (int) cpu, (int) ccode);
696                 return -EIO;
697         }
698
699         idle = current_set[cpu];
700         cpu_lowcore = lowcore_ptr[cpu];
701         cpu_lowcore->kernel_stack = (unsigned long)
702                 task_stack_page(idle) + THREAD_SIZE;
703         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
704         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
705                                      - sizeof(struct pt_regs)
706                                      - sizeof(struct stack_frame));
707         memset(sf, 0, sizeof(struct stack_frame));
708         sf->gprs[9] = (unsigned long) sf;
709         cpu_lowcore->save_area[15] = (unsigned long) sf;
710         __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
711         asm volatile(
712                 "       stam    0,15,0(%0)"
713                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
714         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
715         cpu_lowcore->current_task = (unsigned long) idle;
716         cpu_lowcore->cpu_data.cpu_nr = cpu;
717         cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
718         cpu_lowcore->ipl_device = S390_lowcore.ipl_device;
719         eieio();
720
721         while (signal_processor(cpu, sigp_restart) == sigp_busy)
722                 udelay(10);
723
724         while (!cpu_online(cpu))
725                 cpu_relax();
726         return 0;
727 }
728
729 static int __init setup_possible_cpus(char *s)
730 {
731         int pcpus, cpu;
732
733         pcpus = simple_strtoul(s, NULL, 0);
734         cpu_possible_map = cpumask_of_cpu(0);
735         for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++)
736                 cpu_set(cpu, cpu_possible_map);
737         return 0;
738 }
739 early_param("possible_cpus", setup_possible_cpus);
740
741 #ifdef CONFIG_HOTPLUG_CPU
742
743 int __cpu_disable(void)
744 {
745         struct ec_creg_mask_parms cr_parms;
746         int cpu = smp_processor_id();
747
748         cpu_clear(cpu, cpu_online_map);
749
750         /* Disable pfault pseudo page faults on this cpu. */
751         pfault_fini();
752
753         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
754         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
755
756         /* disable all external interrupts */
757         cr_parms.orvals[0] = 0;
758         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
759                                 1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
760         /* disable all I/O interrupts */
761         cr_parms.orvals[6] = 0;
762         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
763                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
764         /* disable most machine checks */
765         cr_parms.orvals[14] = 0;
766         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
767                                  1 << 25 | 1 << 24);
768
769         smp_ctl_bit_callback(&cr_parms);
770
771         return 0;
772 }
773
774 void __cpu_die(unsigned int cpu)
775 {
776         /* Wait until target cpu is down */
777         while (!smp_cpu_not_running(cpu))
778                 cpu_relax();
779         smp_free_lowcore(cpu);
780         printk(KERN_INFO "Processor %d spun down\n", cpu);
781 }
782
783 void cpu_die(void)
784 {
785         idle_task_exit();
786         signal_processor(smp_processor_id(), sigp_stop);
787         BUG();
788         for (;;);
789 }
790
791 #endif /* CONFIG_HOTPLUG_CPU */
792
793 void __init smp_prepare_cpus(unsigned int max_cpus)
794 {
795 #ifndef CONFIG_64BIT
796         unsigned long save_area = 0;
797 #endif
798         unsigned long async_stack, panic_stack;
799         struct _lowcore *lowcore;
800         unsigned int cpu;
801         int lc_order;
802
803         smp_detect_cpus();
804
805         /* request the 0x1201 emergency signal external interrupt */
806         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
807                 panic("Couldn't request external interrupt 0x1201");
808         print_cpu_info(&S390_lowcore.cpu_data);
809
810         /* Reallocate current lowcore, but keep its contents. */
811         lc_order = sizeof(long) == 8 ? 1 : 0;
812         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
813         panic_stack = __get_free_page(GFP_KERNEL);
814         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
815 #ifndef CONFIG_64BIT
816         if (MACHINE_HAS_IEEE)
817                 save_area = get_zeroed_page(GFP_KERNEL);
818 #endif
819         local_irq_disable();
820         local_mcck_disable();
821         lowcore_ptr[smp_processor_id()] = lowcore;
822         *lowcore = S390_lowcore;
823         lowcore->panic_stack = panic_stack + PAGE_SIZE;
824         lowcore->async_stack = async_stack + ASYNC_SIZE;
825 #ifndef CONFIG_64BIT
826         if (MACHINE_HAS_IEEE)
827                 lowcore->extended_save_area_addr = (u32) save_area;
828 #endif
829         set_prefix((u32)(unsigned long) lowcore);
830         local_mcck_enable();
831         local_irq_enable();
832         for_each_possible_cpu(cpu)
833                 if (cpu != smp_processor_id())
834                         smp_create_idle(cpu);
835 }
836
837 void __init smp_prepare_boot_cpu(void)
838 {
839         BUG_ON(smp_processor_id() != 0);
840
841         current_thread_info()->cpu = 0;
842         cpu_set(0, cpu_present_map);
843         cpu_set(0, cpu_online_map);
844         S390_lowcore.percpu_offset = __per_cpu_offset[0];
845         current_set[0] = current;
846         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
847         smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
848         spin_lock_init(&(&__get_cpu_var(s390_idle))->lock);
849 }
850
851 void __init smp_cpus_done(unsigned int max_cpus)
852 {
853 }
854
855 /*
856  * the frequency of the profiling timer can be changed
857  * by writing a multiplier value into /proc/profile.
858  *
859  * usually you want to run this on all CPUs ;)
860  */
861 int setup_profiling_timer(unsigned int multiplier)
862 {
863         return 0;
864 }
865
866 #ifdef CONFIG_HOTPLUG_CPU
867 static ssize_t cpu_configure_show(struct sys_device *dev, char *buf)
868 {
869         ssize_t count;
870
871         mutex_lock(&smp_cpu_state_mutex);
872         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
873         mutex_unlock(&smp_cpu_state_mutex);
874         return count;
875 }
876
877 static ssize_t cpu_configure_store(struct sys_device *dev, const char *buf,
878                                    size_t count)
879 {
880         int cpu = dev->id;
881         int val, rc;
882         char delim;
883
884         if (sscanf(buf, "%d %c", &val, &delim) != 1)
885                 return -EINVAL;
886         if (val != 0 && val != 1)
887                 return -EINVAL;
888
889         get_online_cpus();
890         mutex_lock(&smp_cpu_state_mutex);
891         rc = -EBUSY;
892         if (cpu_online(cpu))
893                 goto out;
894         rc = 0;
895         switch (val) {
896         case 0:
897                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
898                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
899                         if (!rc) {
900                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
901                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
902                         }
903                 }
904                 break;
905         case 1:
906                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
907                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
908                         if (!rc) {
909                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
910                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
911                         }
912                 }
913                 break;
914         default:
915                 break;
916         }
917 out:
918         mutex_unlock(&smp_cpu_state_mutex);
919         put_online_cpus();
920         return rc ? rc : count;
921 }
922 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
923 #endif /* CONFIG_HOTPLUG_CPU */
924
925 static ssize_t cpu_polarization_show(struct sys_device *dev, char *buf)
926 {
927         int cpu = dev->id;
928         ssize_t count;
929
930         mutex_lock(&smp_cpu_state_mutex);
931         switch (smp_cpu_polarization[cpu]) {
932         case POLARIZATION_HRZ:
933                 count = sprintf(buf, "horizontal\n");
934                 break;
935         case POLARIZATION_VL:
936                 count = sprintf(buf, "vertical:low\n");
937                 break;
938         case POLARIZATION_VM:
939                 count = sprintf(buf, "vertical:medium\n");
940                 break;
941         case POLARIZATION_VH:
942                 count = sprintf(buf, "vertical:high\n");
943                 break;
944         default:
945                 count = sprintf(buf, "unknown\n");
946                 break;
947         }
948         mutex_unlock(&smp_cpu_state_mutex);
949         return count;
950 }
951 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
952
953 static ssize_t show_cpu_address(struct sys_device *dev, char *buf)
954 {
955         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
956 }
957 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
958
959
960 static struct attribute *cpu_common_attrs[] = {
961 #ifdef CONFIG_HOTPLUG_CPU
962         &attr_configure.attr,
963 #endif
964         &attr_address.attr,
965         &attr_polarization.attr,
966         NULL,
967 };
968
969 static struct attribute_group cpu_common_attr_group = {
970         .attrs = cpu_common_attrs,
971 };
972
973 static ssize_t show_capability(struct sys_device *dev, char *buf)
974 {
975         unsigned int capability;
976         int rc;
977
978         rc = get_cpu_capability(&capability);
979         if (rc)
980                 return rc;
981         return sprintf(buf, "%u\n", capability);
982 }
983 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
984
985 static ssize_t show_idle_count(struct sys_device *dev, char *buf)
986 {
987         struct s390_idle_data *idle;
988         unsigned long long idle_count;
989
990         idle = &per_cpu(s390_idle, dev->id);
991         spin_lock_irq(&idle->lock);
992         idle_count = idle->idle_count;
993         spin_unlock_irq(&idle->lock);
994         return sprintf(buf, "%llu\n", idle_count);
995 }
996 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
997
998 static ssize_t show_idle_time(struct sys_device *dev, char *buf)
999 {
1000         struct s390_idle_data *idle;
1001         unsigned long long new_time;
1002
1003         idle = &per_cpu(s390_idle, dev->id);
1004         spin_lock_irq(&idle->lock);
1005         if (idle->in_idle) {
1006                 new_time = get_clock();
1007                 idle->idle_time += new_time - idle->idle_enter;
1008                 idle->idle_enter = new_time;
1009         }
1010         new_time = idle->idle_time;
1011         spin_unlock_irq(&idle->lock);
1012         return sprintf(buf, "%llu\n", new_time >> 12);
1013 }
1014 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
1015
1016 static struct attribute *cpu_online_attrs[] = {
1017         &attr_capability.attr,
1018         &attr_idle_count.attr,
1019         &attr_idle_time_us.attr,
1020         NULL,
1021 };
1022
1023 static struct attribute_group cpu_online_attr_group = {
1024         .attrs = cpu_online_attrs,
1025 };
1026
1027 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
1028                                     unsigned long action, void *hcpu)
1029 {
1030         unsigned int cpu = (unsigned int)(long)hcpu;
1031         struct cpu *c = &per_cpu(cpu_devices, cpu);
1032         struct sys_device *s = &c->sysdev;
1033         struct s390_idle_data *idle;
1034
1035         switch (action) {
1036         case CPU_ONLINE:
1037         case CPU_ONLINE_FROZEN:
1038                 idle = &per_cpu(s390_idle, cpu);
1039                 spin_lock_irq(&idle->lock);
1040                 idle->idle_enter = 0;
1041                 idle->idle_time = 0;
1042                 idle->idle_count = 0;
1043                 spin_unlock_irq(&idle->lock);
1044                 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
1045                         return NOTIFY_BAD;
1046                 break;
1047         case CPU_DEAD:
1048         case CPU_DEAD_FROZEN:
1049                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1050                 break;
1051         }
1052         return NOTIFY_OK;
1053 }
1054
1055 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1056         .notifier_call = smp_cpu_notify,
1057 };
1058
1059 static int __devinit smp_add_present_cpu(int cpu)
1060 {
1061         struct cpu *c = &per_cpu(cpu_devices, cpu);
1062         struct sys_device *s = &c->sysdev;
1063         int rc;
1064
1065         c->hotpluggable = 1;
1066         rc = register_cpu(c, cpu);
1067         if (rc)
1068                 goto out;
1069         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1070         if (rc)
1071                 goto out_cpu;
1072         if (!cpu_online(cpu))
1073                 goto out;
1074         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1075         if (!rc)
1076                 return 0;
1077         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1078 out_cpu:
1079 #ifdef CONFIG_HOTPLUG_CPU
1080         unregister_cpu(c);
1081 #endif
1082 out:
1083         return rc;
1084 }
1085
1086 #ifdef CONFIG_HOTPLUG_CPU
1087
1088 int __ref smp_rescan_cpus(void)
1089 {
1090         cpumask_t newcpus;
1091         int cpu;
1092         int rc;
1093
1094         get_online_cpus();
1095         mutex_lock(&smp_cpu_state_mutex);
1096         newcpus = cpu_present_map;
1097         rc = __smp_rescan_cpus();
1098         if (rc)
1099                 goto out;
1100         cpus_andnot(newcpus, cpu_present_map, newcpus);
1101         for_each_cpu_mask(cpu, newcpus) {
1102                 rc = smp_add_present_cpu(cpu);
1103                 if (rc)
1104                         cpu_clear(cpu, cpu_present_map);
1105         }
1106         rc = 0;
1107 out:
1108         mutex_unlock(&smp_cpu_state_mutex);
1109         put_online_cpus();
1110         if (!cpus_empty(newcpus))
1111                 topology_schedule_update();
1112         return rc;
1113 }
1114
1115 static ssize_t __ref rescan_store(struct sys_device *dev, const char *buf,
1116                                   size_t count)
1117 {
1118         int rc;
1119
1120         rc = smp_rescan_cpus();
1121         return rc ? rc : count;
1122 }
1123 static SYSDEV_ATTR(rescan, 0200, NULL, rescan_store);
1124 #endif /* CONFIG_HOTPLUG_CPU */
1125
1126 static ssize_t dispatching_show(struct sys_device *dev, char *buf)
1127 {
1128         ssize_t count;
1129
1130         mutex_lock(&smp_cpu_state_mutex);
1131         count = sprintf(buf, "%d\n", cpu_management);
1132         mutex_unlock(&smp_cpu_state_mutex);
1133         return count;
1134 }
1135
1136 static ssize_t dispatching_store(struct sys_device *dev, const char *buf,
1137                                  size_t count)
1138 {
1139         int val, rc;
1140         char delim;
1141
1142         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1143                 return -EINVAL;
1144         if (val != 0 && val != 1)
1145                 return -EINVAL;
1146         rc = 0;
1147         get_online_cpus();
1148         mutex_lock(&smp_cpu_state_mutex);
1149         if (cpu_management == val)
1150                 goto out;
1151         rc = topology_set_cpu_management(val);
1152         if (!rc)
1153                 cpu_management = val;
1154 out:
1155         mutex_unlock(&smp_cpu_state_mutex);
1156         put_online_cpus();
1157         return rc ? rc : count;
1158 }
1159 static SYSDEV_ATTR(dispatching, 0644, dispatching_show, dispatching_store);
1160
1161 static int __init topology_init(void)
1162 {
1163         int cpu;
1164         int rc;
1165
1166         register_cpu_notifier(&smp_cpu_nb);
1167
1168 #ifdef CONFIG_HOTPLUG_CPU
1169         rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1170                                &attr_rescan.attr);
1171         if (rc)
1172                 return rc;
1173 #endif
1174         rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1175                                &attr_dispatching.attr);
1176         if (rc)
1177                 return rc;
1178         for_each_present_cpu(cpu) {
1179                 rc = smp_add_present_cpu(cpu);
1180                 if (rc)
1181                         return rc;
1182         }
1183         return 0;
1184 }
1185 subsys_initcall(topology_init);