4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103 #define NICE_0_LOAD SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107 * These are the 'tuning knobs' of the scheduler:
109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110 * Timeslices get refilled after they expire.
112 #define DEF_TIMESLICE (100 * HZ / 1000)
115 * single value that denotes runtime == period, ie unlimited time.
117 #define RUNTIME_INF ((u64)~0ULL)
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
124 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
133 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
140 static inline int rt_policy(int policy)
142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
147 static inline int task_has_rt_policy(struct task_struct *p)
149 return rt_policy(p->policy);
153 * This is the priority-queue data structure of the RT scheduling class:
155 struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
165 struct hrtimer rt_period_timer;
168 static struct rt_bandwidth def_rt_bandwidth;
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
187 idle = do_sched_rt_period_timer(rt_b, overrun);
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
199 spin_lock_init(&rt_b->rt_runtime_lock);
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
211 if (rt_b->rt_runtime == RUNTIME_INF)
214 if (hrtimer_active(&rt_b->rt_period_timer))
217 spin_lock(&rt_b->rt_runtime_lock);
219 if (hrtimer_active(&rt_b->rt_period_timer))
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
228 spin_unlock(&rt_b->rt_runtime_lock);
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234 hrtimer_cancel(&rt_b->rt_period_timer);
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
242 static DEFINE_MUTEX(sched_domains_mutex);
244 #ifdef CONFIG_GROUP_SCHED
246 #include <linux/cgroup.h>
250 static LIST_HEAD(task_groups);
252 /* task group related information */
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css;
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
270 struct rt_bandwidth rt_bandwidth;
274 struct list_head list;
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
281 #ifdef CONFIG_USER_SCHED
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
288 struct task_group root_task_group;
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
308 static DEFINE_SPINLOCK(task_group_lock);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
326 #define MAX_SHARES (1UL << 18)
328 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
331 /* Default task group.
332 * Every task in system belong to this group at bootup.
334 struct task_group init_task_group;
336 /* return group to which a task belongs */
337 static inline struct task_group *task_group(struct task_struct *p)
339 struct task_group *tg;
341 #ifdef CONFIG_USER_SCHED
343 #elif defined(CONFIG_CGROUP_SCHED)
344 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345 struct task_group, css);
347 tg = &init_task_group;
352 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
353 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357 p->se.parent = task_group(p)->se[cpu];
360 #ifdef CONFIG_RT_GROUP_SCHED
361 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
362 p->rt.parent = task_group(p)->rt_se[cpu];
368 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 static inline struct task_group *task_group(struct task_struct *p)
374 #endif /* CONFIG_GROUP_SCHED */
376 /* CFS-related fields in a runqueue */
378 struct load_weight load;
379 unsigned long nr_running;
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
388 struct list_head tasks;
389 struct list_head *balance_iterator;
392 * 'curr' points to currently running entity on this cfs_rq.
393 * It is set to NULL otherwise (i.e when none are currently running).
395 struct sched_entity *curr, *next;
397 unsigned long nr_spread_over;
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
415 * the part of load.weight contributed by tasks
417 unsigned long task_weight;
420 * h_load = weight * f(tg)
422 * Where f(tg) is the recursive weight fraction assigned to
425 unsigned long h_load;
428 * this cpu's part of tg->shares
430 unsigned long shares;
433 * load.weight at the time we set shares
435 unsigned long rq_weight;
440 /* Real-Time classes' related field in a runqueue: */
442 struct rt_prio_array active;
443 unsigned long rt_nr_running;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 int highest_prio; /* highest queued rt task prio */
448 unsigned long rt_nr_migratory;
454 /* Nests inside the rq lock: */
455 spinlock_t rt_runtime_lock;
457 #ifdef CONFIG_RT_GROUP_SCHED
458 unsigned long rt_nr_boosted;
461 struct list_head leaf_rt_rq_list;
462 struct task_group *tg;
463 struct sched_rt_entity *rt_se;
470 * We add the notion of a root-domain which will be used to define per-domain
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
473 * exclusive cpuset is created, we also create and attach a new root-domain
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
489 struct cpupri cpupri;
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
497 static struct root_domain def_root_domain;
502 * This is the main, per-CPU runqueue data structure.
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
516 unsigned long nr_running;
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519 unsigned char idle_at_tick;
521 unsigned long last_tick_seen;
522 unsigned char in_nohz_recently;
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load;
526 unsigned long nr_load_updates;
532 #ifdef CONFIG_FAIR_GROUP_SCHED
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list;
536 #ifdef CONFIG_RT_GROUP_SCHED
537 struct list_head leaf_rt_rq_list;
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
546 unsigned long nr_uninterruptible;
548 struct task_struct *curr, *idle;
549 unsigned long next_balance;
550 struct mm_struct *prev_mm;
557 struct root_domain *rd;
558 struct sched_domain *sd;
560 /* For active balancing */
563 /* cpu of this runqueue: */
567 unsigned long avg_load_per_task;
569 struct task_struct *migration_thread;
570 struct list_head migration_queue;
573 #ifdef CONFIG_SCHED_HRTICK
575 int hrtick_csd_pending;
576 struct call_single_data hrtick_csd;
578 struct hrtimer hrtick_timer;
581 #ifdef CONFIG_SCHEDSTATS
583 struct sched_info rq_sched_info;
585 /* sys_sched_yield() stats */
586 unsigned int yld_exp_empty;
587 unsigned int yld_act_empty;
588 unsigned int yld_both_empty;
589 unsigned int yld_count;
591 /* schedule() stats */
592 unsigned int sched_switch;
593 unsigned int sched_count;
594 unsigned int sched_goidle;
596 /* try_to_wake_up() stats */
597 unsigned int ttwu_count;
598 unsigned int ttwu_local;
601 unsigned int bkl_count;
603 struct lock_class_key rq_lock_key;
606 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
608 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
610 rq->curr->sched_class->check_preempt_curr(rq, p);
613 static inline int cpu_of(struct rq *rq)
623 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
624 * See detach_destroy_domains: synchronize_sched for details.
626 * The domain tree of any CPU may only be accessed from within
627 * preempt-disabled sections.
629 #define for_each_domain(cpu, __sd) \
630 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
632 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
633 #define this_rq() (&__get_cpu_var(runqueues))
634 #define task_rq(p) cpu_rq(task_cpu(p))
635 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
637 static inline void update_rq_clock(struct rq *rq)
639 rq->clock = sched_clock_cpu(cpu_of(rq));
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
648 # define const_debug static const
654 * Returns true if the current cpu runqueue is locked.
655 * This interface allows printk to be called with the runqueue lock
656 * held and know whether or not it is OK to wake up the klogd.
658 int runqueue_is_locked(void)
661 struct rq *rq = cpu_rq(cpu);
664 ret = spin_is_locked(&rq->lock);
670 * Debugging: various feature bits
673 #define SCHED_FEAT(name, enabled) \
674 __SCHED_FEAT_##name ,
677 #include "sched_features.h"
682 #define SCHED_FEAT(name, enabled) \
683 (1UL << __SCHED_FEAT_##name) * enabled |
685 const_debug unsigned int sysctl_sched_features =
686 #include "sched_features.h"
691 #ifdef CONFIG_SCHED_DEBUG
692 #define SCHED_FEAT(name, enabled) \
695 static __read_mostly char *sched_feat_names[] = {
696 #include "sched_features.h"
702 static int sched_feat_open(struct inode *inode, struct file *filp)
704 filp->private_data = inode->i_private;
709 sched_feat_read(struct file *filp, char __user *ubuf,
710 size_t cnt, loff_t *ppos)
717 for (i = 0; sched_feat_names[i]; i++) {
718 len += strlen(sched_feat_names[i]);
722 buf = kmalloc(len + 2, GFP_KERNEL);
726 for (i = 0; sched_feat_names[i]; i++) {
727 if (sysctl_sched_features & (1UL << i))
728 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
730 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
733 r += sprintf(buf + r, "\n");
734 WARN_ON(r >= len + 2);
736 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
744 sched_feat_write(struct file *filp, const char __user *ubuf,
745 size_t cnt, loff_t *ppos)
755 if (copy_from_user(&buf, ubuf, cnt))
760 if (strncmp(buf, "NO_", 3) == 0) {
765 for (i = 0; sched_feat_names[i]; i++) {
766 int len = strlen(sched_feat_names[i]);
768 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
770 sysctl_sched_features &= ~(1UL << i);
772 sysctl_sched_features |= (1UL << i);
777 if (!sched_feat_names[i])
785 static struct file_operations sched_feat_fops = {
786 .open = sched_feat_open,
787 .read = sched_feat_read,
788 .write = sched_feat_write,
791 static __init int sched_init_debug(void)
793 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 late_initcall(sched_init_debug);
802 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
808 const_debug unsigned int sysctl_sched_nr_migrate = 32;
811 * ratelimit for updating the group shares.
814 const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
817 * period over which we measure -rt task cpu usage in us.
820 unsigned int sysctl_sched_rt_period = 1000000;
822 static __read_mostly int scheduler_running;
825 * part of the period that we allow rt tasks to run in us.
828 int sysctl_sched_rt_runtime = 950000;
830 static inline u64 global_rt_period(void)
832 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
835 static inline u64 global_rt_runtime(void)
837 if (sysctl_sched_rt_period < 0)
840 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
850 static inline int task_current(struct rq *rq, struct task_struct *p)
852 return rq->curr == p;
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq *rq, struct task_struct *p)
858 return task_current(rq, p);
861 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
865 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878 spin_unlock_irq(&rq->lock);
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq *rq, struct task_struct *p)
887 return task_current(rq, p);
891 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 spin_unlock_irq(&rq->lock);
904 spin_unlock(&rq->lock);
908 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
929 static inline struct rq *__task_rq_lock(struct task_struct *p)
933 struct rq *rq = task_rq(p);
934 spin_lock(&rq->lock);
935 if (likely(rq == task_rq(p)))
937 spin_unlock(&rq->lock);
942 * task_rq_lock - lock the runqueue a given task resides on and disable
943 * interrupts. Note the ordering: we can safely lookup the task_rq without
944 * explicitly disabling preemption.
946 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
952 local_irq_save(*flags);
954 spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
957 spin_unlock_irqrestore(&rq->lock, *flags);
961 static void __task_rq_unlock(struct rq *rq)
964 spin_unlock(&rq->lock);
967 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
970 spin_unlock_irqrestore(&rq->lock, *flags);
974 * this_rq_lock - lock this runqueue and disable interrupts.
976 static struct rq *this_rq_lock(void)
983 spin_lock(&rq->lock);
988 #ifdef CONFIG_SCHED_HRTICK
990 * Use HR-timers to deliver accurate preemption points.
992 * Its all a bit involved since we cannot program an hrt while holding the
993 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
996 * When we get rescheduled we reprogram the hrtick_timer outside of the
1002 * - enabled by features
1003 * - hrtimer is actually high res
1005 static inline int hrtick_enabled(struct rq *rq)
1007 if (!sched_feat(HRTICK))
1009 if (!cpu_active(cpu_of(rq)))
1011 return hrtimer_is_hres_active(&rq->hrtick_timer);
1014 static void hrtick_clear(struct rq *rq)
1016 if (hrtimer_active(&rq->hrtick_timer))
1017 hrtimer_cancel(&rq->hrtick_timer);
1021 * High-resolution timer tick.
1022 * Runs from hardirq context with interrupts disabled.
1024 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1026 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1028 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1030 spin_lock(&rq->lock);
1031 update_rq_clock(rq);
1032 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1033 spin_unlock(&rq->lock);
1035 return HRTIMER_NORESTART;
1040 * called from hardirq (IPI) context
1042 static void __hrtick_start(void *arg)
1044 struct rq *rq = arg;
1046 spin_lock(&rq->lock);
1047 hrtimer_restart(&rq->hrtick_timer);
1048 rq->hrtick_csd_pending = 0;
1049 spin_unlock(&rq->lock);
1053 * Called to set the hrtick timer state.
1055 * called with rq->lock held and irqs disabled
1057 static void hrtick_start(struct rq *rq, u64 delay)
1059 struct hrtimer *timer = &rq->hrtick_timer;
1060 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1062 timer->expires = time;
1064 if (rq == this_rq()) {
1065 hrtimer_restart(timer);
1066 } else if (!rq->hrtick_csd_pending) {
1067 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1068 rq->hrtick_csd_pending = 1;
1073 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1075 int cpu = (int)(long)hcpu;
1078 case CPU_UP_CANCELED:
1079 case CPU_UP_CANCELED_FROZEN:
1080 case CPU_DOWN_PREPARE:
1081 case CPU_DOWN_PREPARE_FROZEN:
1083 case CPU_DEAD_FROZEN:
1084 hrtick_clear(cpu_rq(cpu));
1091 static void init_hrtick(void)
1093 hotcpu_notifier(hotplug_hrtick, 0);
1097 * Called to set the hrtick timer state.
1099 * called with rq->lock held and irqs disabled
1101 static void hrtick_start(struct rq *rq, u64 delay)
1103 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1106 static void init_hrtick(void)
1109 #endif /* CONFIG_SMP */
1111 static void init_rq_hrtick(struct rq *rq)
1114 rq->hrtick_csd_pending = 0;
1116 rq->hrtick_csd.flags = 0;
1117 rq->hrtick_csd.func = __hrtick_start;
1118 rq->hrtick_csd.info = rq;
1121 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1122 rq->hrtick_timer.function = hrtick;
1123 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1126 static inline void hrtick_clear(struct rq *rq)
1130 static inline void init_rq_hrtick(struct rq *rq)
1134 static inline void init_hrtick(void)
1140 * resched_task - mark a task 'to be rescheduled now'.
1142 * On UP this means the setting of the need_resched flag, on SMP it
1143 * might also involve a cross-CPU call to trigger the scheduler on
1148 #ifndef tsk_is_polling
1149 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152 static void resched_task(struct task_struct *p)
1156 assert_spin_locked(&task_rq(p)->lock);
1158 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1161 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1164 if (cpu == smp_processor_id())
1167 /* NEED_RESCHED must be visible before we test polling */
1169 if (!tsk_is_polling(p))
1170 smp_send_reschedule(cpu);
1173 static void resched_cpu(int cpu)
1175 struct rq *rq = cpu_rq(cpu);
1176 unsigned long flags;
1178 if (!spin_trylock_irqsave(&rq->lock, flags))
1180 resched_task(cpu_curr(cpu));
1181 spin_unlock_irqrestore(&rq->lock, flags);
1186 * When add_timer_on() enqueues a timer into the timer wheel of an
1187 * idle CPU then this timer might expire before the next timer event
1188 * which is scheduled to wake up that CPU. In case of a completely
1189 * idle system the next event might even be infinite time into the
1190 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1191 * leaves the inner idle loop so the newly added timer is taken into
1192 * account when the CPU goes back to idle and evaluates the timer
1193 * wheel for the next timer event.
1195 void wake_up_idle_cpu(int cpu)
1197 struct rq *rq = cpu_rq(cpu);
1199 if (cpu == smp_processor_id())
1203 * This is safe, as this function is called with the timer
1204 * wheel base lock of (cpu) held. When the CPU is on the way
1205 * to idle and has not yet set rq->curr to idle then it will
1206 * be serialized on the timer wheel base lock and take the new
1207 * timer into account automatically.
1209 if (rq->curr != rq->idle)
1213 * We can set TIF_RESCHED on the idle task of the other CPU
1214 * lockless. The worst case is that the other CPU runs the
1215 * idle task through an additional NOOP schedule()
1217 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1219 /* NEED_RESCHED must be visible before we test polling */
1221 if (!tsk_is_polling(rq->idle))
1222 smp_send_reschedule(cpu);
1224 #endif /* CONFIG_NO_HZ */
1226 #else /* !CONFIG_SMP */
1227 static void resched_task(struct task_struct *p)
1229 assert_spin_locked(&task_rq(p)->lock);
1230 set_tsk_need_resched(p);
1232 #endif /* CONFIG_SMP */
1234 #if BITS_PER_LONG == 32
1235 # define WMULT_CONST (~0UL)
1237 # define WMULT_CONST (1UL << 32)
1240 #define WMULT_SHIFT 32
1243 * Shift right and round:
1245 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1248 * delta *= weight / lw
1250 static unsigned long
1251 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1252 struct load_weight *lw)
1256 if (!lw->inv_weight) {
1257 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1260 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1264 tmp = (u64)delta_exec * weight;
1266 * Check whether we'd overflow the 64-bit multiplication:
1268 if (unlikely(tmp > WMULT_CONST))
1269 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1272 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1274 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1277 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1283 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1290 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1291 * of tasks with abnormal "nice" values across CPUs the contribution that
1292 * each task makes to its run queue's load is weighted according to its
1293 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1294 * scaled version of the new time slice allocation that they receive on time
1298 #define WEIGHT_IDLEPRIO 2
1299 #define WMULT_IDLEPRIO (1 << 31)
1302 * Nice levels are multiplicative, with a gentle 10% change for every
1303 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1304 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1305 * that remained on nice 0.
1307 * The "10% effect" is relative and cumulative: from _any_ nice level,
1308 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1309 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1310 * If a task goes up by ~10% and another task goes down by ~10% then
1311 * the relative distance between them is ~25%.)
1313 static const int prio_to_weight[40] = {
1314 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1315 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1316 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1317 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1318 /* 0 */ 1024, 820, 655, 526, 423,
1319 /* 5 */ 335, 272, 215, 172, 137,
1320 /* 10 */ 110, 87, 70, 56, 45,
1321 /* 15 */ 36, 29, 23, 18, 15,
1325 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1327 * In cases where the weight does not change often, we can use the
1328 * precalculated inverse to speed up arithmetics by turning divisions
1329 * into multiplications:
1331 static const u32 prio_to_wmult[40] = {
1332 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1333 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1334 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1335 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1336 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1337 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1338 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1339 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1342 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1345 * runqueue iterator, to support SMP load-balancing between different
1346 * scheduling classes, without having to expose their internal data
1347 * structures to the load-balancing proper:
1349 struct rq_iterator {
1351 struct task_struct *(*start)(void *);
1352 struct task_struct *(*next)(void *);
1356 static unsigned long
1357 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1358 unsigned long max_load_move, struct sched_domain *sd,
1359 enum cpu_idle_type idle, int *all_pinned,
1360 int *this_best_prio, struct rq_iterator *iterator);
1363 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1364 struct sched_domain *sd, enum cpu_idle_type idle,
1365 struct rq_iterator *iterator);
1368 #ifdef CONFIG_CGROUP_CPUACCT
1369 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1371 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1374 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1376 update_load_add(&rq->load, load);
1379 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1381 update_load_sub(&rq->load, load);
1385 static unsigned long source_load(int cpu, int type);
1386 static unsigned long target_load(int cpu, int type);
1387 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1389 static unsigned long cpu_avg_load_per_task(int cpu)
1391 struct rq *rq = cpu_rq(cpu);
1394 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1396 return rq->avg_load_per_task;
1399 #ifdef CONFIG_FAIR_GROUP_SCHED
1401 typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1404 * Iterate the full tree, calling @down when first entering a node and @up when
1405 * leaving it for the final time.
1408 walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1410 struct task_group *parent, *child;
1413 parent = &root_task_group;
1415 (*down)(parent, cpu, sd);
1416 list_for_each_entry_rcu(child, &parent->children, siblings) {
1423 (*up)(parent, cpu, sd);
1426 parent = parent->parent;
1432 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1435 * Calculate and set the cpu's group shares.
1438 __update_group_shares_cpu(struct task_group *tg, int cpu,
1439 unsigned long sd_shares, unsigned long sd_rq_weight)
1442 unsigned long shares;
1443 unsigned long rq_weight;
1448 rq_weight = tg->cfs_rq[cpu]->load.weight;
1451 * If there are currently no tasks on the cpu pretend there is one of
1452 * average load so that when a new task gets to run here it will not
1453 * get delayed by group starvation.
1457 rq_weight = NICE_0_LOAD;
1460 if (unlikely(rq_weight > sd_rq_weight))
1461 rq_weight = sd_rq_weight;
1464 * \Sum shares * rq_weight
1465 * shares = -----------------------
1469 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1472 * record the actual number of shares, not the boosted amount.
1474 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1475 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1477 if (shares < MIN_SHARES)
1478 shares = MIN_SHARES;
1479 else if (shares > MAX_SHARES)
1480 shares = MAX_SHARES;
1482 __set_se_shares(tg->se[cpu], shares);
1486 * Re-compute the task group their per cpu shares over the given domain.
1487 * This needs to be done in a bottom-up fashion because the rq weight of a
1488 * parent group depends on the shares of its child groups.
1491 tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1493 unsigned long rq_weight = 0;
1494 unsigned long shares = 0;
1497 for_each_cpu_mask(i, sd->span) {
1498 rq_weight += tg->cfs_rq[i]->load.weight;
1499 shares += tg->cfs_rq[i]->shares;
1502 if ((!shares && rq_weight) || shares > tg->shares)
1503 shares = tg->shares;
1505 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1506 shares = tg->shares;
1509 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1511 for_each_cpu_mask(i, sd->span) {
1512 struct rq *rq = cpu_rq(i);
1513 unsigned long flags;
1515 spin_lock_irqsave(&rq->lock, flags);
1516 __update_group_shares_cpu(tg, i, shares, rq_weight);
1517 spin_unlock_irqrestore(&rq->lock, flags);
1522 * Compute the cpu's hierarchical load factor for each task group.
1523 * This needs to be done in a top-down fashion because the load of a child
1524 * group is a fraction of its parents load.
1527 tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1532 load = cpu_rq(cpu)->load.weight;
1534 load = tg->parent->cfs_rq[cpu]->h_load;
1535 load *= tg->cfs_rq[cpu]->shares;
1536 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1539 tg->cfs_rq[cpu]->h_load = load;
1543 tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1547 static void update_shares(struct sched_domain *sd)
1549 u64 now = cpu_clock(raw_smp_processor_id());
1550 s64 elapsed = now - sd->last_update;
1552 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1553 sd->last_update = now;
1554 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1558 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1560 spin_unlock(&rq->lock);
1562 spin_lock(&rq->lock);
1565 static void update_h_load(int cpu)
1567 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1572 static inline void update_shares(struct sched_domain *sd)
1576 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1584 #ifdef CONFIG_FAIR_GROUP_SCHED
1585 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1588 cfs_rq->shares = shares;
1593 #include "sched_stats.h"
1594 #include "sched_idletask.c"
1595 #include "sched_fair.c"
1596 #include "sched_rt.c"
1597 #ifdef CONFIG_SCHED_DEBUG
1598 # include "sched_debug.c"
1601 #define sched_class_highest (&rt_sched_class)
1602 #define for_each_class(class) \
1603 for (class = sched_class_highest; class; class = class->next)
1605 static void inc_nr_running(struct rq *rq)
1610 static void dec_nr_running(struct rq *rq)
1615 static void set_load_weight(struct task_struct *p)
1617 if (task_has_rt_policy(p)) {
1618 p->se.load.weight = prio_to_weight[0] * 2;
1619 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1624 * SCHED_IDLE tasks get minimal weight:
1626 if (p->policy == SCHED_IDLE) {
1627 p->se.load.weight = WEIGHT_IDLEPRIO;
1628 p->se.load.inv_weight = WMULT_IDLEPRIO;
1632 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1633 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1636 static void update_avg(u64 *avg, u64 sample)
1638 s64 diff = sample - *avg;
1642 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1644 sched_info_queued(p);
1645 p->sched_class->enqueue_task(rq, p, wakeup);
1649 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1651 if (sleep && p->se.last_wakeup) {
1652 update_avg(&p->se.avg_overlap,
1653 p->se.sum_exec_runtime - p->se.last_wakeup);
1654 p->se.last_wakeup = 0;
1657 sched_info_dequeued(p);
1658 p->sched_class->dequeue_task(rq, p, sleep);
1663 * __normal_prio - return the priority that is based on the static prio
1665 static inline int __normal_prio(struct task_struct *p)
1667 return p->static_prio;
1671 * Calculate the expected normal priority: i.e. priority
1672 * without taking RT-inheritance into account. Might be
1673 * boosted by interactivity modifiers. Changes upon fork,
1674 * setprio syscalls, and whenever the interactivity
1675 * estimator recalculates.
1677 static inline int normal_prio(struct task_struct *p)
1681 if (task_has_rt_policy(p))
1682 prio = MAX_RT_PRIO-1 - p->rt_priority;
1684 prio = __normal_prio(p);
1689 * Calculate the current priority, i.e. the priority
1690 * taken into account by the scheduler. This value might
1691 * be boosted by RT tasks, or might be boosted by
1692 * interactivity modifiers. Will be RT if the task got
1693 * RT-boosted. If not then it returns p->normal_prio.
1695 static int effective_prio(struct task_struct *p)
1697 p->normal_prio = normal_prio(p);
1699 * If we are RT tasks or we were boosted to RT priority,
1700 * keep the priority unchanged. Otherwise, update priority
1701 * to the normal priority:
1703 if (!rt_prio(p->prio))
1704 return p->normal_prio;
1709 * activate_task - move a task to the runqueue.
1711 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1713 if (task_contributes_to_load(p))
1714 rq->nr_uninterruptible--;
1716 enqueue_task(rq, p, wakeup);
1721 * deactivate_task - remove a task from the runqueue.
1723 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1725 if (task_contributes_to_load(p))
1726 rq->nr_uninterruptible++;
1728 dequeue_task(rq, p, sleep);
1733 * task_curr - is this task currently executing on a CPU?
1734 * @p: the task in question.
1736 inline int task_curr(const struct task_struct *p)
1738 return cpu_curr(task_cpu(p)) == p;
1741 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1743 set_task_rq(p, cpu);
1746 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1747 * successfuly executed on another CPU. We must ensure that updates of
1748 * per-task data have been completed by this moment.
1751 task_thread_info(p)->cpu = cpu;
1755 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1756 const struct sched_class *prev_class,
1757 int oldprio, int running)
1759 if (prev_class != p->sched_class) {
1760 if (prev_class->switched_from)
1761 prev_class->switched_from(rq, p, running);
1762 p->sched_class->switched_to(rq, p, running);
1764 p->sched_class->prio_changed(rq, p, oldprio, running);
1769 /* Used instead of source_load when we know the type == 0 */
1770 static unsigned long weighted_cpuload(const int cpu)
1772 return cpu_rq(cpu)->load.weight;
1776 * Is this task likely cache-hot:
1779 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1784 * Buddy candidates are cache hot:
1786 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1789 if (p->sched_class != &fair_sched_class)
1792 if (sysctl_sched_migration_cost == -1)
1794 if (sysctl_sched_migration_cost == 0)
1797 delta = now - p->se.exec_start;
1799 return delta < (s64)sysctl_sched_migration_cost;
1803 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1805 int old_cpu = task_cpu(p);
1806 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1807 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1808 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1811 clock_offset = old_rq->clock - new_rq->clock;
1813 #ifdef CONFIG_SCHEDSTATS
1814 if (p->se.wait_start)
1815 p->se.wait_start -= clock_offset;
1816 if (p->se.sleep_start)
1817 p->se.sleep_start -= clock_offset;
1818 if (p->se.block_start)
1819 p->se.block_start -= clock_offset;
1820 if (old_cpu != new_cpu) {
1821 schedstat_inc(p, se.nr_migrations);
1822 if (task_hot(p, old_rq->clock, NULL))
1823 schedstat_inc(p, se.nr_forced2_migrations);
1826 p->se.vruntime -= old_cfsrq->min_vruntime -
1827 new_cfsrq->min_vruntime;
1829 __set_task_cpu(p, new_cpu);
1832 struct migration_req {
1833 struct list_head list;
1835 struct task_struct *task;
1838 struct completion done;
1842 * The task's runqueue lock must be held.
1843 * Returns true if you have to wait for migration thread.
1846 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1848 struct rq *rq = task_rq(p);
1851 * If the task is not on a runqueue (and not running), then
1852 * it is sufficient to simply update the task's cpu field.
1854 if (!p->se.on_rq && !task_running(rq, p)) {
1855 set_task_cpu(p, dest_cpu);
1859 init_completion(&req->done);
1861 req->dest_cpu = dest_cpu;
1862 list_add(&req->list, &rq->migration_queue);
1868 * wait_task_inactive - wait for a thread to unschedule.
1870 * The caller must ensure that the task *will* unschedule sometime soon,
1871 * else this function might spin for a *long* time. This function can't
1872 * be called with interrupts off, or it may introduce deadlock with
1873 * smp_call_function() if an IPI is sent by the same process we are
1874 * waiting to become inactive.
1876 void wait_task_inactive(struct task_struct *p)
1878 unsigned long flags;
1884 * We do the initial early heuristics without holding
1885 * any task-queue locks at all. We'll only try to get
1886 * the runqueue lock when things look like they will
1892 * If the task is actively running on another CPU
1893 * still, just relax and busy-wait without holding
1896 * NOTE! Since we don't hold any locks, it's not
1897 * even sure that "rq" stays as the right runqueue!
1898 * But we don't care, since "task_running()" will
1899 * return false if the runqueue has changed and p
1900 * is actually now running somewhere else!
1902 while (task_running(rq, p))
1906 * Ok, time to look more closely! We need the rq
1907 * lock now, to be *sure*. If we're wrong, we'll
1908 * just go back and repeat.
1910 rq = task_rq_lock(p, &flags);
1911 running = task_running(rq, p);
1912 on_rq = p->se.on_rq;
1913 task_rq_unlock(rq, &flags);
1916 * Was it really running after all now that we
1917 * checked with the proper locks actually held?
1919 * Oops. Go back and try again..
1921 if (unlikely(running)) {
1927 * It's not enough that it's not actively running,
1928 * it must be off the runqueue _entirely_, and not
1931 * So if it wa still runnable (but just not actively
1932 * running right now), it's preempted, and we should
1933 * yield - it could be a while.
1935 if (unlikely(on_rq)) {
1936 schedule_timeout_uninterruptible(1);
1941 * Ahh, all good. It wasn't running, and it wasn't
1942 * runnable, which means that it will never become
1943 * running in the future either. We're all done!
1950 * kick_process - kick a running thread to enter/exit the kernel
1951 * @p: the to-be-kicked thread
1953 * Cause a process which is running on another CPU to enter
1954 * kernel-mode, without any delay. (to get signals handled.)
1956 * NOTE: this function doesnt have to take the runqueue lock,
1957 * because all it wants to ensure is that the remote task enters
1958 * the kernel. If the IPI races and the task has been migrated
1959 * to another CPU then no harm is done and the purpose has been
1962 void kick_process(struct task_struct *p)
1968 if ((cpu != smp_processor_id()) && task_curr(p))
1969 smp_send_reschedule(cpu);
1974 * Return a low guess at the load of a migration-source cpu weighted
1975 * according to the scheduling class and "nice" value.
1977 * We want to under-estimate the load of migration sources, to
1978 * balance conservatively.
1980 static unsigned long source_load(int cpu, int type)
1982 struct rq *rq = cpu_rq(cpu);
1983 unsigned long total = weighted_cpuload(cpu);
1985 if (type == 0 || !sched_feat(LB_BIAS))
1988 return min(rq->cpu_load[type-1], total);
1992 * Return a high guess at the load of a migration-target cpu weighted
1993 * according to the scheduling class and "nice" value.
1995 static unsigned long target_load(int cpu, int type)
1997 struct rq *rq = cpu_rq(cpu);
1998 unsigned long total = weighted_cpuload(cpu);
2000 if (type == 0 || !sched_feat(LB_BIAS))
2003 return max(rq->cpu_load[type-1], total);
2007 * find_idlest_group finds and returns the least busy CPU group within the
2010 static struct sched_group *
2011 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2013 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2014 unsigned long min_load = ULONG_MAX, this_load = 0;
2015 int load_idx = sd->forkexec_idx;
2016 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2019 unsigned long load, avg_load;
2023 /* Skip over this group if it has no CPUs allowed */
2024 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2027 local_group = cpu_isset(this_cpu, group->cpumask);
2029 /* Tally up the load of all CPUs in the group */
2032 for_each_cpu_mask_nr(i, group->cpumask) {
2033 /* Bias balancing toward cpus of our domain */
2035 load = source_load(i, load_idx);
2037 load = target_load(i, load_idx);
2042 /* Adjust by relative CPU power of the group */
2043 avg_load = sg_div_cpu_power(group,
2044 avg_load * SCHED_LOAD_SCALE);
2047 this_load = avg_load;
2049 } else if (avg_load < min_load) {
2050 min_load = avg_load;
2053 } while (group = group->next, group != sd->groups);
2055 if (!idlest || 100*this_load < imbalance*min_load)
2061 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2064 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2067 unsigned long load, min_load = ULONG_MAX;
2071 /* Traverse only the allowed CPUs */
2072 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2074 for_each_cpu_mask_nr(i, *tmp) {
2075 load = weighted_cpuload(i);
2077 if (load < min_load || (load == min_load && i == this_cpu)) {
2087 * sched_balance_self: balance the current task (running on cpu) in domains
2088 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2091 * Balance, ie. select the least loaded group.
2093 * Returns the target CPU number, or the same CPU if no balancing is needed.
2095 * preempt must be disabled.
2097 static int sched_balance_self(int cpu, int flag)
2099 struct task_struct *t = current;
2100 struct sched_domain *tmp, *sd = NULL;
2102 for_each_domain(cpu, tmp) {
2104 * If power savings logic is enabled for a domain, stop there.
2106 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2108 if (tmp->flags & flag)
2116 cpumask_t span, tmpmask;
2117 struct sched_group *group;
2118 int new_cpu, weight;
2120 if (!(sd->flags & flag)) {
2126 group = find_idlest_group(sd, t, cpu);
2132 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2133 if (new_cpu == -1 || new_cpu == cpu) {
2134 /* Now try balancing at a lower domain level of cpu */
2139 /* Now try balancing at a lower domain level of new_cpu */
2142 weight = cpus_weight(span);
2143 for_each_domain(cpu, tmp) {
2144 if (weight <= cpus_weight(tmp->span))
2146 if (tmp->flags & flag)
2149 /* while loop will break here if sd == NULL */
2155 #endif /* CONFIG_SMP */
2158 * try_to_wake_up - wake up a thread
2159 * @p: the to-be-woken-up thread
2160 * @state: the mask of task states that can be woken
2161 * @sync: do a synchronous wakeup?
2163 * Put it on the run-queue if it's not already there. The "current"
2164 * thread is always on the run-queue (except when the actual
2165 * re-schedule is in progress), and as such you're allowed to do
2166 * the simpler "current->state = TASK_RUNNING" to mark yourself
2167 * runnable without the overhead of this.
2169 * returns failure only if the task is already active.
2171 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2173 int cpu, orig_cpu, this_cpu, success = 0;
2174 unsigned long flags;
2178 if (!sched_feat(SYNC_WAKEUPS))
2182 if (sched_feat(LB_WAKEUP_UPDATE)) {
2183 struct sched_domain *sd;
2185 this_cpu = raw_smp_processor_id();
2188 for_each_domain(this_cpu, sd) {
2189 if (cpu_isset(cpu, sd->span)) {
2198 rq = task_rq_lock(p, &flags);
2199 old_state = p->state;
2200 if (!(old_state & state))
2208 this_cpu = smp_processor_id();
2211 if (unlikely(task_running(rq, p)))
2214 cpu = p->sched_class->select_task_rq(p, sync);
2215 if (cpu != orig_cpu) {
2216 set_task_cpu(p, cpu);
2217 task_rq_unlock(rq, &flags);
2218 /* might preempt at this point */
2219 rq = task_rq_lock(p, &flags);
2220 old_state = p->state;
2221 if (!(old_state & state))
2226 this_cpu = smp_processor_id();
2230 #ifdef CONFIG_SCHEDSTATS
2231 schedstat_inc(rq, ttwu_count);
2232 if (cpu == this_cpu)
2233 schedstat_inc(rq, ttwu_local);
2235 struct sched_domain *sd;
2236 for_each_domain(this_cpu, sd) {
2237 if (cpu_isset(cpu, sd->span)) {
2238 schedstat_inc(sd, ttwu_wake_remote);
2243 #endif /* CONFIG_SCHEDSTATS */
2246 #endif /* CONFIG_SMP */
2247 schedstat_inc(p, se.nr_wakeups);
2249 schedstat_inc(p, se.nr_wakeups_sync);
2250 if (orig_cpu != cpu)
2251 schedstat_inc(p, se.nr_wakeups_migrate);
2252 if (cpu == this_cpu)
2253 schedstat_inc(p, se.nr_wakeups_local);
2255 schedstat_inc(p, se.nr_wakeups_remote);
2256 update_rq_clock(rq);
2257 activate_task(rq, p, 1);
2261 trace_mark(kernel_sched_wakeup,
2262 "pid %d state %ld ## rq %p task %p rq->curr %p",
2263 p->pid, p->state, rq, p, rq->curr);
2264 check_preempt_curr(rq, p);
2266 p->state = TASK_RUNNING;
2268 if (p->sched_class->task_wake_up)
2269 p->sched_class->task_wake_up(rq, p);
2272 current->se.last_wakeup = current->se.sum_exec_runtime;
2274 task_rq_unlock(rq, &flags);
2279 int wake_up_process(struct task_struct *p)
2281 return try_to_wake_up(p, TASK_ALL, 0);
2283 EXPORT_SYMBOL(wake_up_process);
2285 int wake_up_state(struct task_struct *p, unsigned int state)
2287 return try_to_wake_up(p, state, 0);
2291 * Perform scheduler related setup for a newly forked process p.
2292 * p is forked by current.
2294 * __sched_fork() is basic setup used by init_idle() too:
2296 static void __sched_fork(struct task_struct *p)
2298 p->se.exec_start = 0;
2299 p->se.sum_exec_runtime = 0;
2300 p->se.prev_sum_exec_runtime = 0;
2301 p->se.last_wakeup = 0;
2302 p->se.avg_overlap = 0;
2304 #ifdef CONFIG_SCHEDSTATS
2305 p->se.wait_start = 0;
2306 p->se.sum_sleep_runtime = 0;
2307 p->se.sleep_start = 0;
2308 p->se.block_start = 0;
2309 p->se.sleep_max = 0;
2310 p->se.block_max = 0;
2312 p->se.slice_max = 0;
2316 INIT_LIST_HEAD(&p->rt.run_list);
2318 INIT_LIST_HEAD(&p->se.group_node);
2320 #ifdef CONFIG_PREEMPT_NOTIFIERS
2321 INIT_HLIST_HEAD(&p->preempt_notifiers);
2325 * We mark the process as running here, but have not actually
2326 * inserted it onto the runqueue yet. This guarantees that
2327 * nobody will actually run it, and a signal or other external
2328 * event cannot wake it up and insert it on the runqueue either.
2330 p->state = TASK_RUNNING;
2334 * fork()/clone()-time setup:
2336 void sched_fork(struct task_struct *p, int clone_flags)
2338 int cpu = get_cpu();
2343 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2345 set_task_cpu(p, cpu);
2348 * Make sure we do not leak PI boosting priority to the child:
2350 p->prio = current->normal_prio;
2351 if (!rt_prio(p->prio))
2352 p->sched_class = &fair_sched_class;
2354 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2355 if (likely(sched_info_on()))
2356 memset(&p->sched_info, 0, sizeof(p->sched_info));
2358 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2361 #ifdef CONFIG_PREEMPT
2362 /* Want to start with kernel preemption disabled. */
2363 task_thread_info(p)->preempt_count = 1;
2369 * wake_up_new_task - wake up a newly created task for the first time.
2371 * This function will do some initial scheduler statistics housekeeping
2372 * that must be done for every newly created context, then puts the task
2373 * on the runqueue and wakes it.
2375 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2377 unsigned long flags;
2380 rq = task_rq_lock(p, &flags);
2381 BUG_ON(p->state != TASK_RUNNING);
2382 update_rq_clock(rq);
2384 p->prio = effective_prio(p);
2386 if (!p->sched_class->task_new || !current->se.on_rq) {
2387 activate_task(rq, p, 0);
2390 * Let the scheduling class do new task startup
2391 * management (if any):
2393 p->sched_class->task_new(rq, p);
2396 trace_mark(kernel_sched_wakeup_new,
2397 "pid %d state %ld ## rq %p task %p rq->curr %p",
2398 p->pid, p->state, rq, p, rq->curr);
2399 check_preempt_curr(rq, p);
2401 if (p->sched_class->task_wake_up)
2402 p->sched_class->task_wake_up(rq, p);
2404 task_rq_unlock(rq, &flags);
2407 #ifdef CONFIG_PREEMPT_NOTIFIERS
2410 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2411 * @notifier: notifier struct to register
2413 void preempt_notifier_register(struct preempt_notifier *notifier)
2415 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2417 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2420 * preempt_notifier_unregister - no longer interested in preemption notifications
2421 * @notifier: notifier struct to unregister
2423 * This is safe to call from within a preemption notifier.
2425 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2427 hlist_del(¬ifier->link);
2429 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2431 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2433 struct preempt_notifier *notifier;
2434 struct hlist_node *node;
2436 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2437 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2441 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2442 struct task_struct *next)
2444 struct preempt_notifier *notifier;
2445 struct hlist_node *node;
2447 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2448 notifier->ops->sched_out(notifier, next);
2451 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2453 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2458 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2459 struct task_struct *next)
2463 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2466 * prepare_task_switch - prepare to switch tasks
2467 * @rq: the runqueue preparing to switch
2468 * @prev: the current task that is being switched out
2469 * @next: the task we are going to switch to.
2471 * This is called with the rq lock held and interrupts off. It must
2472 * be paired with a subsequent finish_task_switch after the context
2475 * prepare_task_switch sets up locking and calls architecture specific
2479 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2480 struct task_struct *next)
2482 fire_sched_out_preempt_notifiers(prev, next);
2483 prepare_lock_switch(rq, next);
2484 prepare_arch_switch(next);
2488 * finish_task_switch - clean up after a task-switch
2489 * @rq: runqueue associated with task-switch
2490 * @prev: the thread we just switched away from.
2492 * finish_task_switch must be called after the context switch, paired
2493 * with a prepare_task_switch call before the context switch.
2494 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2495 * and do any other architecture-specific cleanup actions.
2497 * Note that we may have delayed dropping an mm in context_switch(). If
2498 * so, we finish that here outside of the runqueue lock. (Doing it
2499 * with the lock held can cause deadlocks; see schedule() for
2502 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2503 __releases(rq->lock)
2505 struct mm_struct *mm = rq->prev_mm;
2511 * A task struct has one reference for the use as "current".
2512 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2513 * schedule one last time. The schedule call will never return, and
2514 * the scheduled task must drop that reference.
2515 * The test for TASK_DEAD must occur while the runqueue locks are
2516 * still held, otherwise prev could be scheduled on another cpu, die
2517 * there before we look at prev->state, and then the reference would
2519 * Manfred Spraul <manfred@colorfullife.com>
2521 prev_state = prev->state;
2522 finish_arch_switch(prev);
2523 finish_lock_switch(rq, prev);
2525 if (current->sched_class->post_schedule)
2526 current->sched_class->post_schedule(rq);
2529 fire_sched_in_preempt_notifiers(current);
2532 if (unlikely(prev_state == TASK_DEAD)) {
2534 * Remove function-return probe instances associated with this
2535 * task and put them back on the free list.
2537 kprobe_flush_task(prev);
2538 put_task_struct(prev);
2543 * schedule_tail - first thing a freshly forked thread must call.
2544 * @prev: the thread we just switched away from.
2546 asmlinkage void schedule_tail(struct task_struct *prev)
2547 __releases(rq->lock)
2549 struct rq *rq = this_rq();
2551 finish_task_switch(rq, prev);
2552 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2553 /* In this case, finish_task_switch does not reenable preemption */
2556 if (current->set_child_tid)
2557 put_user(task_pid_vnr(current), current->set_child_tid);
2561 * context_switch - switch to the new MM and the new
2562 * thread's register state.
2565 context_switch(struct rq *rq, struct task_struct *prev,
2566 struct task_struct *next)
2568 struct mm_struct *mm, *oldmm;
2570 prepare_task_switch(rq, prev, next);
2571 trace_mark(kernel_sched_schedule,
2572 "prev_pid %d next_pid %d prev_state %ld "
2573 "## rq %p prev %p next %p",
2574 prev->pid, next->pid, prev->state,
2577 oldmm = prev->active_mm;
2579 * For paravirt, this is coupled with an exit in switch_to to
2580 * combine the page table reload and the switch backend into
2583 arch_enter_lazy_cpu_mode();
2585 if (unlikely(!mm)) {
2586 next->active_mm = oldmm;
2587 atomic_inc(&oldmm->mm_count);
2588 enter_lazy_tlb(oldmm, next);
2590 switch_mm(oldmm, mm, next);
2592 if (unlikely(!prev->mm)) {
2593 prev->active_mm = NULL;
2594 rq->prev_mm = oldmm;
2597 * Since the runqueue lock will be released by the next
2598 * task (which is an invalid locking op but in the case
2599 * of the scheduler it's an obvious special-case), so we
2600 * do an early lockdep release here:
2602 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2603 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2606 /* Here we just switch the register state and the stack. */
2607 switch_to(prev, next, prev);
2611 * this_rq must be evaluated again because prev may have moved
2612 * CPUs since it called schedule(), thus the 'rq' on its stack
2613 * frame will be invalid.
2615 finish_task_switch(this_rq(), prev);
2619 * nr_running, nr_uninterruptible and nr_context_switches:
2621 * externally visible scheduler statistics: current number of runnable
2622 * threads, current number of uninterruptible-sleeping threads, total
2623 * number of context switches performed since bootup.
2625 unsigned long nr_running(void)
2627 unsigned long i, sum = 0;
2629 for_each_online_cpu(i)
2630 sum += cpu_rq(i)->nr_running;
2635 unsigned long nr_uninterruptible(void)
2637 unsigned long i, sum = 0;
2639 for_each_possible_cpu(i)
2640 sum += cpu_rq(i)->nr_uninterruptible;
2643 * Since we read the counters lockless, it might be slightly
2644 * inaccurate. Do not allow it to go below zero though:
2646 if (unlikely((long)sum < 0))
2652 unsigned long long nr_context_switches(void)
2655 unsigned long long sum = 0;
2657 for_each_possible_cpu(i)
2658 sum += cpu_rq(i)->nr_switches;
2663 unsigned long nr_iowait(void)
2665 unsigned long i, sum = 0;
2667 for_each_possible_cpu(i)
2668 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2673 unsigned long nr_active(void)
2675 unsigned long i, running = 0, uninterruptible = 0;
2677 for_each_online_cpu(i) {
2678 running += cpu_rq(i)->nr_running;
2679 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2682 if (unlikely((long)uninterruptible < 0))
2683 uninterruptible = 0;
2685 return running + uninterruptible;
2689 * Update rq->cpu_load[] statistics. This function is usually called every
2690 * scheduler tick (TICK_NSEC).
2692 static void update_cpu_load(struct rq *this_rq)
2694 unsigned long this_load = this_rq->load.weight;
2697 this_rq->nr_load_updates++;
2699 /* Update our load: */
2700 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2701 unsigned long old_load, new_load;
2703 /* scale is effectively 1 << i now, and >> i divides by scale */
2705 old_load = this_rq->cpu_load[i];
2706 new_load = this_load;
2708 * Round up the averaging division if load is increasing. This
2709 * prevents us from getting stuck on 9 if the load is 10, for
2712 if (new_load > old_load)
2713 new_load += scale-1;
2714 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2721 * double_rq_lock - safely lock two runqueues
2723 * Note this does not disable interrupts like task_rq_lock,
2724 * you need to do so manually before calling.
2726 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2727 __acquires(rq1->lock)
2728 __acquires(rq2->lock)
2730 BUG_ON(!irqs_disabled());
2732 spin_lock(&rq1->lock);
2733 __acquire(rq2->lock); /* Fake it out ;) */
2736 spin_lock(&rq1->lock);
2737 spin_lock(&rq2->lock);
2739 spin_lock(&rq2->lock);
2740 spin_lock(&rq1->lock);
2743 update_rq_clock(rq1);
2744 update_rq_clock(rq2);
2748 * double_rq_unlock - safely unlock two runqueues
2750 * Note this does not restore interrupts like task_rq_unlock,
2751 * you need to do so manually after calling.
2753 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2754 __releases(rq1->lock)
2755 __releases(rq2->lock)
2757 spin_unlock(&rq1->lock);
2759 spin_unlock(&rq2->lock);
2761 __release(rq2->lock);
2765 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2767 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2768 __releases(this_rq->lock)
2769 __acquires(busiest->lock)
2770 __acquires(this_rq->lock)
2774 if (unlikely(!irqs_disabled())) {
2775 /* printk() doesn't work good under rq->lock */
2776 spin_unlock(&this_rq->lock);
2779 if (unlikely(!spin_trylock(&busiest->lock))) {
2780 if (busiest < this_rq) {
2781 spin_unlock(&this_rq->lock);
2782 spin_lock(&busiest->lock);
2783 spin_lock(&this_rq->lock);
2786 spin_lock(&busiest->lock);
2792 * If dest_cpu is allowed for this process, migrate the task to it.
2793 * This is accomplished by forcing the cpu_allowed mask to only
2794 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2795 * the cpu_allowed mask is restored.
2797 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2799 struct migration_req req;
2800 unsigned long flags;
2803 rq = task_rq_lock(p, &flags);
2804 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2805 || unlikely(!cpu_active(dest_cpu)))
2808 /* force the process onto the specified CPU */
2809 if (migrate_task(p, dest_cpu, &req)) {
2810 /* Need to wait for migration thread (might exit: take ref). */
2811 struct task_struct *mt = rq->migration_thread;
2813 get_task_struct(mt);
2814 task_rq_unlock(rq, &flags);
2815 wake_up_process(mt);
2816 put_task_struct(mt);
2817 wait_for_completion(&req.done);
2822 task_rq_unlock(rq, &flags);
2826 * sched_exec - execve() is a valuable balancing opportunity, because at
2827 * this point the task has the smallest effective memory and cache footprint.
2829 void sched_exec(void)
2831 int new_cpu, this_cpu = get_cpu();
2832 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2834 if (new_cpu != this_cpu)
2835 sched_migrate_task(current, new_cpu);
2839 * pull_task - move a task from a remote runqueue to the local runqueue.
2840 * Both runqueues must be locked.
2842 static void pull_task(struct rq *src_rq, struct task_struct *p,
2843 struct rq *this_rq, int this_cpu)
2845 deactivate_task(src_rq, p, 0);
2846 set_task_cpu(p, this_cpu);
2847 activate_task(this_rq, p, 0);
2849 * Note that idle threads have a prio of MAX_PRIO, for this test
2850 * to be always true for them.
2852 check_preempt_curr(this_rq, p);
2856 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2859 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2860 struct sched_domain *sd, enum cpu_idle_type idle,
2864 * We do not migrate tasks that are:
2865 * 1) running (obviously), or
2866 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2867 * 3) are cache-hot on their current CPU.
2869 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2870 schedstat_inc(p, se.nr_failed_migrations_affine);
2875 if (task_running(rq, p)) {
2876 schedstat_inc(p, se.nr_failed_migrations_running);
2881 * Aggressive migration if:
2882 * 1) task is cache cold, or
2883 * 2) too many balance attempts have failed.
2886 if (!task_hot(p, rq->clock, sd) ||
2887 sd->nr_balance_failed > sd->cache_nice_tries) {
2888 #ifdef CONFIG_SCHEDSTATS
2889 if (task_hot(p, rq->clock, sd)) {
2890 schedstat_inc(sd, lb_hot_gained[idle]);
2891 schedstat_inc(p, se.nr_forced_migrations);
2897 if (task_hot(p, rq->clock, sd)) {
2898 schedstat_inc(p, se.nr_failed_migrations_hot);
2904 static unsigned long
2905 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2906 unsigned long max_load_move, struct sched_domain *sd,
2907 enum cpu_idle_type idle, int *all_pinned,
2908 int *this_best_prio, struct rq_iterator *iterator)
2910 int loops = 0, pulled = 0, pinned = 0;
2911 struct task_struct *p;
2912 long rem_load_move = max_load_move;
2914 if (max_load_move == 0)
2920 * Start the load-balancing iterator:
2922 p = iterator->start(iterator->arg);
2924 if (!p || loops++ > sysctl_sched_nr_migrate)
2927 if ((p->se.load.weight >> 1) > rem_load_move ||
2928 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2929 p = iterator->next(iterator->arg);
2933 pull_task(busiest, p, this_rq, this_cpu);
2935 rem_load_move -= p->se.load.weight;
2938 * We only want to steal up to the prescribed amount of weighted load.
2940 if (rem_load_move > 0) {
2941 if (p->prio < *this_best_prio)
2942 *this_best_prio = p->prio;
2943 p = iterator->next(iterator->arg);
2948 * Right now, this is one of only two places pull_task() is called,
2949 * so we can safely collect pull_task() stats here rather than
2950 * inside pull_task().
2952 schedstat_add(sd, lb_gained[idle], pulled);
2955 *all_pinned = pinned;
2957 return max_load_move - rem_load_move;
2961 * move_tasks tries to move up to max_load_move weighted load from busiest to
2962 * this_rq, as part of a balancing operation within domain "sd".
2963 * Returns 1 if successful and 0 otherwise.
2965 * Called with both runqueues locked.
2967 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2968 unsigned long max_load_move,
2969 struct sched_domain *sd, enum cpu_idle_type idle,
2972 const struct sched_class *class = sched_class_highest;
2973 unsigned long total_load_moved = 0;
2974 int this_best_prio = this_rq->curr->prio;
2978 class->load_balance(this_rq, this_cpu, busiest,
2979 max_load_move - total_load_moved,
2980 sd, idle, all_pinned, &this_best_prio);
2981 class = class->next;
2983 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2986 } while (class && max_load_move > total_load_moved);
2988 return total_load_moved > 0;
2992 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2993 struct sched_domain *sd, enum cpu_idle_type idle,
2994 struct rq_iterator *iterator)
2996 struct task_struct *p = iterator->start(iterator->arg);
3000 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3001 pull_task(busiest, p, this_rq, this_cpu);
3003 * Right now, this is only the second place pull_task()
3004 * is called, so we can safely collect pull_task()
3005 * stats here rather than inside pull_task().
3007 schedstat_inc(sd, lb_gained[idle]);
3011 p = iterator->next(iterator->arg);
3018 * move_one_task tries to move exactly one task from busiest to this_rq, as
3019 * part of active balancing operations within "domain".
3020 * Returns 1 if successful and 0 otherwise.
3022 * Called with both runqueues locked.
3024 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3025 struct sched_domain *sd, enum cpu_idle_type idle)
3027 const struct sched_class *class;
3029 for (class = sched_class_highest; class; class = class->next)
3030 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3037 * find_busiest_group finds and returns the busiest CPU group within the
3038 * domain. It calculates and returns the amount of weighted load which
3039 * should be moved to restore balance via the imbalance parameter.
3041 static struct sched_group *
3042 find_busiest_group(struct sched_domain *sd, int this_cpu,
3043 unsigned long *imbalance, enum cpu_idle_type idle,
3044 int *sd_idle, const cpumask_t *cpus, int *balance)
3046 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3047 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3048 unsigned long max_pull;
3049 unsigned long busiest_load_per_task, busiest_nr_running;
3050 unsigned long this_load_per_task, this_nr_running;
3051 int load_idx, group_imb = 0;
3052 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3053 int power_savings_balance = 1;
3054 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3055 unsigned long min_nr_running = ULONG_MAX;
3056 struct sched_group *group_min = NULL, *group_leader = NULL;
3059 max_load = this_load = total_load = total_pwr = 0;
3060 busiest_load_per_task = busiest_nr_running = 0;
3061 this_load_per_task = this_nr_running = 0;
3063 if (idle == CPU_NOT_IDLE)
3064 load_idx = sd->busy_idx;
3065 else if (idle == CPU_NEWLY_IDLE)
3066 load_idx = sd->newidle_idx;
3068 load_idx = sd->idle_idx;
3071 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3074 int __group_imb = 0;
3075 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3076 unsigned long sum_nr_running, sum_weighted_load;
3077 unsigned long sum_avg_load_per_task;
3078 unsigned long avg_load_per_task;
3080 local_group = cpu_isset(this_cpu, group->cpumask);
3083 balance_cpu = first_cpu(group->cpumask);
3085 /* Tally up the load of all CPUs in the group */
3086 sum_weighted_load = sum_nr_running = avg_load = 0;
3087 sum_avg_load_per_task = avg_load_per_task = 0;
3090 min_cpu_load = ~0UL;
3092 for_each_cpu_mask_nr(i, group->cpumask) {
3095 if (!cpu_isset(i, *cpus))
3100 if (*sd_idle && rq->nr_running)
3103 /* Bias balancing toward cpus of our domain */
3105 if (idle_cpu(i) && !first_idle_cpu) {
3110 load = target_load(i, load_idx);
3112 load = source_load(i, load_idx);
3113 if (load > max_cpu_load)
3114 max_cpu_load = load;
3115 if (min_cpu_load > load)
3116 min_cpu_load = load;
3120 sum_nr_running += rq->nr_running;
3121 sum_weighted_load += weighted_cpuload(i);
3123 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3127 * First idle cpu or the first cpu(busiest) in this sched group
3128 * is eligible for doing load balancing at this and above
3129 * domains. In the newly idle case, we will allow all the cpu's
3130 * to do the newly idle load balance.
3132 if (idle != CPU_NEWLY_IDLE && local_group &&
3133 balance_cpu != this_cpu && balance) {
3138 total_load += avg_load;
3139 total_pwr += group->__cpu_power;
3141 /* Adjust by relative CPU power of the group */
3142 avg_load = sg_div_cpu_power(group,
3143 avg_load * SCHED_LOAD_SCALE);
3147 * Consider the group unbalanced when the imbalance is larger
3148 * than the average weight of two tasks.
3150 * APZ: with cgroup the avg task weight can vary wildly and
3151 * might not be a suitable number - should we keep a
3152 * normalized nr_running number somewhere that negates
3155 avg_load_per_task = sg_div_cpu_power(group,
3156 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3158 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3161 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3164 this_load = avg_load;
3166 this_nr_running = sum_nr_running;
3167 this_load_per_task = sum_weighted_load;
3168 } else if (avg_load > max_load &&
3169 (sum_nr_running > group_capacity || __group_imb)) {
3170 max_load = avg_load;
3172 busiest_nr_running = sum_nr_running;
3173 busiest_load_per_task = sum_weighted_load;
3174 group_imb = __group_imb;
3177 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3179 * Busy processors will not participate in power savings
3182 if (idle == CPU_NOT_IDLE ||
3183 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3187 * If the local group is idle or completely loaded
3188 * no need to do power savings balance at this domain
3190 if (local_group && (this_nr_running >= group_capacity ||
3192 power_savings_balance = 0;
3195 * If a group is already running at full capacity or idle,
3196 * don't include that group in power savings calculations
3198 if (!power_savings_balance || sum_nr_running >= group_capacity
3203 * Calculate the group which has the least non-idle load.
3204 * This is the group from where we need to pick up the load
3207 if ((sum_nr_running < min_nr_running) ||
3208 (sum_nr_running == min_nr_running &&
3209 first_cpu(group->cpumask) <
3210 first_cpu(group_min->cpumask))) {
3212 min_nr_running = sum_nr_running;
3213 min_load_per_task = sum_weighted_load /
3218 * Calculate the group which is almost near its
3219 * capacity but still has some space to pick up some load
3220 * from other group and save more power
3222 if (sum_nr_running <= group_capacity - 1) {
3223 if (sum_nr_running > leader_nr_running ||
3224 (sum_nr_running == leader_nr_running &&
3225 first_cpu(group->cpumask) >
3226 first_cpu(group_leader->cpumask))) {
3227 group_leader = group;
3228 leader_nr_running = sum_nr_running;
3233 group = group->next;
3234 } while (group != sd->groups);
3236 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3239 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3241 if (this_load >= avg_load ||
3242 100*max_load <= sd->imbalance_pct*this_load)
3245 busiest_load_per_task /= busiest_nr_running;
3247 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3250 * We're trying to get all the cpus to the average_load, so we don't
3251 * want to push ourselves above the average load, nor do we wish to
3252 * reduce the max loaded cpu below the average load, as either of these
3253 * actions would just result in more rebalancing later, and ping-pong
3254 * tasks around. Thus we look for the minimum possible imbalance.
3255 * Negative imbalances (*we* are more loaded than anyone else) will
3256 * be counted as no imbalance for these purposes -- we can't fix that
3257 * by pulling tasks to us. Be careful of negative numbers as they'll
3258 * appear as very large values with unsigned longs.
3260 if (max_load <= busiest_load_per_task)
3264 * In the presence of smp nice balancing, certain scenarios can have
3265 * max load less than avg load(as we skip the groups at or below
3266 * its cpu_power, while calculating max_load..)
3268 if (max_load < avg_load) {
3270 goto small_imbalance;
3273 /* Don't want to pull so many tasks that a group would go idle */
3274 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3276 /* How much load to actually move to equalise the imbalance */
3277 *imbalance = min(max_pull * busiest->__cpu_power,
3278 (avg_load - this_load) * this->__cpu_power)
3282 * if *imbalance is less than the average load per runnable task
3283 * there is no gaurantee that any tasks will be moved so we'll have
3284 * a think about bumping its value to force at least one task to be
3287 if (*imbalance < busiest_load_per_task) {
3288 unsigned long tmp, pwr_now, pwr_move;
3292 pwr_move = pwr_now = 0;
3294 if (this_nr_running) {
3295 this_load_per_task /= this_nr_running;
3296 if (busiest_load_per_task > this_load_per_task)
3299 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3301 if (max_load - this_load + 2*busiest_load_per_task >=
3302 busiest_load_per_task * imbn) {
3303 *imbalance = busiest_load_per_task;
3308 * OK, we don't have enough imbalance to justify moving tasks,
3309 * however we may be able to increase total CPU power used by
3313 pwr_now += busiest->__cpu_power *
3314 min(busiest_load_per_task, max_load);
3315 pwr_now += this->__cpu_power *
3316 min(this_load_per_task, this_load);
3317 pwr_now /= SCHED_LOAD_SCALE;
3319 /* Amount of load we'd subtract */
3320 tmp = sg_div_cpu_power(busiest,
3321 busiest_load_per_task * SCHED_LOAD_SCALE);
3323 pwr_move += busiest->__cpu_power *
3324 min(busiest_load_per_task, max_load - tmp);
3326 /* Amount of load we'd add */
3327 if (max_load * busiest->__cpu_power <
3328 busiest_load_per_task * SCHED_LOAD_SCALE)
3329 tmp = sg_div_cpu_power(this,
3330 max_load * busiest->__cpu_power);
3332 tmp = sg_div_cpu_power(this,
3333 busiest_load_per_task * SCHED_LOAD_SCALE);
3334 pwr_move += this->__cpu_power *
3335 min(this_load_per_task, this_load + tmp);
3336 pwr_move /= SCHED_LOAD_SCALE;
3338 /* Move if we gain throughput */
3339 if (pwr_move > pwr_now)
3340 *imbalance = busiest_load_per_task;
3346 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3347 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3350 if (this == group_leader && group_leader != group_min) {
3351 *imbalance = min_load_per_task;
3361 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3364 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3365 unsigned long imbalance, const cpumask_t *cpus)
3367 struct rq *busiest = NULL, *rq;
3368 unsigned long max_load = 0;
3371 for_each_cpu_mask_nr(i, group->cpumask) {
3374 if (!cpu_isset(i, *cpus))
3378 wl = weighted_cpuload(i);
3380 if (rq->nr_running == 1 && wl > imbalance)
3383 if (wl > max_load) {
3393 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3394 * so long as it is large enough.
3396 #define MAX_PINNED_INTERVAL 512
3399 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3400 * tasks if there is an imbalance.
3402 static int load_balance(int this_cpu, struct rq *this_rq,
3403 struct sched_domain *sd, enum cpu_idle_type idle,
3404 int *balance, cpumask_t *cpus)
3406 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3407 struct sched_group *group;
3408 unsigned long imbalance;
3410 unsigned long flags;
3415 * When power savings policy is enabled for the parent domain, idle
3416 * sibling can pick up load irrespective of busy siblings. In this case,
3417 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3418 * portraying it as CPU_NOT_IDLE.
3420 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3421 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3424 schedstat_inc(sd, lb_count[idle]);
3428 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3435 schedstat_inc(sd, lb_nobusyg[idle]);
3439 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3441 schedstat_inc(sd, lb_nobusyq[idle]);
3445 BUG_ON(busiest == this_rq);
3447 schedstat_add(sd, lb_imbalance[idle], imbalance);
3450 if (busiest->nr_running > 1) {
3452 * Attempt to move tasks. If find_busiest_group has found
3453 * an imbalance but busiest->nr_running <= 1, the group is
3454 * still unbalanced. ld_moved simply stays zero, so it is
3455 * correctly treated as an imbalance.
3457 local_irq_save(flags);
3458 double_rq_lock(this_rq, busiest);
3459 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3460 imbalance, sd, idle, &all_pinned);
3461 double_rq_unlock(this_rq, busiest);
3462 local_irq_restore(flags);
3465 * some other cpu did the load balance for us.
3467 if (ld_moved && this_cpu != smp_processor_id())
3468 resched_cpu(this_cpu);
3470 /* All tasks on this runqueue were pinned by CPU affinity */
3471 if (unlikely(all_pinned)) {
3472 cpu_clear(cpu_of(busiest), *cpus);
3473 if (!cpus_empty(*cpus))
3480 schedstat_inc(sd, lb_failed[idle]);
3481 sd->nr_balance_failed++;
3483 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3485 spin_lock_irqsave(&busiest->lock, flags);
3487 /* don't kick the migration_thread, if the curr
3488 * task on busiest cpu can't be moved to this_cpu
3490 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3491 spin_unlock_irqrestore(&busiest->lock, flags);
3493 goto out_one_pinned;
3496 if (!busiest->active_balance) {
3497 busiest->active_balance = 1;
3498 busiest->push_cpu = this_cpu;
3501 spin_unlock_irqrestore(&busiest->lock, flags);
3503 wake_up_process(busiest->migration_thread);
3506 * We've kicked active balancing, reset the failure
3509 sd->nr_balance_failed = sd->cache_nice_tries+1;
3512 sd->nr_balance_failed = 0;
3514 if (likely(!active_balance)) {
3515 /* We were unbalanced, so reset the balancing interval */
3516 sd->balance_interval = sd->min_interval;
3519 * If we've begun active balancing, start to back off. This
3520 * case may not be covered by the all_pinned logic if there
3521 * is only 1 task on the busy runqueue (because we don't call
3524 if (sd->balance_interval < sd->max_interval)
3525 sd->balance_interval *= 2;
3528 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3529 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3535 schedstat_inc(sd, lb_balanced[idle]);
3537 sd->nr_balance_failed = 0;
3540 /* tune up the balancing interval */
3541 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3542 (sd->balance_interval < sd->max_interval))
3543 sd->balance_interval *= 2;
3545 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3546 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3557 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3558 * tasks if there is an imbalance.
3560 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3561 * this_rq is locked.
3564 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3567 struct sched_group *group;
3568 struct rq *busiest = NULL;
3569 unsigned long imbalance;
3577 * When power savings policy is enabled for the parent domain, idle
3578 * sibling can pick up load irrespective of busy siblings. In this case,
3579 * let the state of idle sibling percolate up as IDLE, instead of
3580 * portraying it as CPU_NOT_IDLE.
3582 if (sd->flags & SD_SHARE_CPUPOWER &&
3583 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3586 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3588 update_shares_locked(this_rq, sd);
3589 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3590 &sd_idle, cpus, NULL);
3592 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3596 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3598 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3602 BUG_ON(busiest == this_rq);
3604 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3607 if (busiest->nr_running > 1) {
3608 /* Attempt to move tasks */
3609 double_lock_balance(this_rq, busiest);
3610 /* this_rq->clock is already updated */
3611 update_rq_clock(busiest);
3612 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3613 imbalance, sd, CPU_NEWLY_IDLE,
3615 spin_unlock(&busiest->lock);
3617 if (unlikely(all_pinned)) {
3618 cpu_clear(cpu_of(busiest), *cpus);
3619 if (!cpus_empty(*cpus))
3625 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3626 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3627 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3630 sd->nr_balance_failed = 0;
3632 update_shares_locked(this_rq, sd);
3636 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3637 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3638 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3640 sd->nr_balance_failed = 0;
3646 * idle_balance is called by schedule() if this_cpu is about to become
3647 * idle. Attempts to pull tasks from other CPUs.
3649 static void idle_balance(int this_cpu, struct rq *this_rq)
3651 struct sched_domain *sd;
3652 int pulled_task = -1;
3653 unsigned long next_balance = jiffies + HZ;
3656 for_each_domain(this_cpu, sd) {
3657 unsigned long interval;
3659 if (!(sd->flags & SD_LOAD_BALANCE))
3662 if (sd->flags & SD_BALANCE_NEWIDLE)
3663 /* If we've pulled tasks over stop searching: */
3664 pulled_task = load_balance_newidle(this_cpu, this_rq,
3667 interval = msecs_to_jiffies(sd->balance_interval);
3668 if (time_after(next_balance, sd->last_balance + interval))
3669 next_balance = sd->last_balance + interval;
3673 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3675 * We are going idle. next_balance may be set based on
3676 * a busy processor. So reset next_balance.
3678 this_rq->next_balance = next_balance;
3683 * active_load_balance is run by migration threads. It pushes running tasks
3684 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3685 * running on each physical CPU where possible, and avoids physical /
3686 * logical imbalances.
3688 * Called with busiest_rq locked.
3690 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3692 int target_cpu = busiest_rq->push_cpu;
3693 struct sched_domain *sd;
3694 struct rq *target_rq;
3696 /* Is there any task to move? */
3697 if (busiest_rq->nr_running <= 1)
3700 target_rq = cpu_rq(target_cpu);
3703 * This condition is "impossible", if it occurs
3704 * we need to fix it. Originally reported by
3705 * Bjorn Helgaas on a 128-cpu setup.
3707 BUG_ON(busiest_rq == target_rq);
3709 /* move a task from busiest_rq to target_rq */
3710 double_lock_balance(busiest_rq, target_rq);
3711 update_rq_clock(busiest_rq);
3712 update_rq_clock(target_rq);
3714 /* Search for an sd spanning us and the target CPU. */
3715 for_each_domain(target_cpu, sd) {
3716 if ((sd->flags & SD_LOAD_BALANCE) &&
3717 cpu_isset(busiest_cpu, sd->span))
3722 schedstat_inc(sd, alb_count);
3724 if (move_one_task(target_rq, target_cpu, busiest_rq,
3726 schedstat_inc(sd, alb_pushed);
3728 schedstat_inc(sd, alb_failed);
3730 spin_unlock(&target_rq->lock);
3735 atomic_t load_balancer;
3737 } nohz ____cacheline_aligned = {
3738 .load_balancer = ATOMIC_INIT(-1),
3739 .cpu_mask = CPU_MASK_NONE,
3743 * This routine will try to nominate the ilb (idle load balancing)
3744 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3745 * load balancing on behalf of all those cpus. If all the cpus in the system
3746 * go into this tickless mode, then there will be no ilb owner (as there is
3747 * no need for one) and all the cpus will sleep till the next wakeup event
3750 * For the ilb owner, tick is not stopped. And this tick will be used
3751 * for idle load balancing. ilb owner will still be part of
3754 * While stopping the tick, this cpu will become the ilb owner if there
3755 * is no other owner. And will be the owner till that cpu becomes busy
3756 * or if all cpus in the system stop their ticks at which point
3757 * there is no need for ilb owner.
3759 * When the ilb owner becomes busy, it nominates another owner, during the
3760 * next busy scheduler_tick()
3762 int select_nohz_load_balancer(int stop_tick)
3764 int cpu = smp_processor_id();
3767 cpu_set(cpu, nohz.cpu_mask);
3768 cpu_rq(cpu)->in_nohz_recently = 1;
3771 * If we are going offline and still the leader, give up!
3773 if (!cpu_active(cpu) &&
3774 atomic_read(&nohz.load_balancer) == cpu) {
3775 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3780 /* time for ilb owner also to sleep */
3781 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3782 if (atomic_read(&nohz.load_balancer) == cpu)
3783 atomic_set(&nohz.load_balancer, -1);
3787 if (atomic_read(&nohz.load_balancer) == -1) {
3788 /* make me the ilb owner */
3789 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3791 } else if (atomic_read(&nohz.load_balancer) == cpu)
3794 if (!cpu_isset(cpu, nohz.cpu_mask))
3797 cpu_clear(cpu, nohz.cpu_mask);
3799 if (atomic_read(&nohz.load_balancer) == cpu)
3800 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3807 static DEFINE_SPINLOCK(balancing);
3810 * It checks each scheduling domain to see if it is due to be balanced,
3811 * and initiates a balancing operation if so.
3813 * Balancing parameters are set up in arch_init_sched_domains.
3815 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3818 struct rq *rq = cpu_rq(cpu);
3819 unsigned long interval;
3820 struct sched_domain *sd;
3821 /* Earliest time when we have to do rebalance again */
3822 unsigned long next_balance = jiffies + 60*HZ;
3823 int update_next_balance = 0;
3827 for_each_domain(cpu, sd) {
3828 if (!(sd->flags & SD_LOAD_BALANCE))
3831 interval = sd->balance_interval;
3832 if (idle != CPU_IDLE)
3833 interval *= sd->busy_factor;
3835 /* scale ms to jiffies */
3836 interval = msecs_to_jiffies(interval);
3837 if (unlikely(!interval))
3839 if (interval > HZ*NR_CPUS/10)
3840 interval = HZ*NR_CPUS/10;
3842 need_serialize = sd->flags & SD_SERIALIZE;
3844 if (need_serialize) {
3845 if (!spin_trylock(&balancing))
3849 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3850 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3852 * We've pulled tasks over so either we're no
3853 * longer idle, or one of our SMT siblings is
3856 idle = CPU_NOT_IDLE;
3858 sd->last_balance = jiffies;
3861 spin_unlock(&balancing);
3863 if (time_after(next_balance, sd->last_balance + interval)) {
3864 next_balance = sd->last_balance + interval;
3865 update_next_balance = 1;
3869 * Stop the load balance at this level. There is another
3870 * CPU in our sched group which is doing load balancing more
3878 * next_balance will be updated only when there is a need.
3879 * When the cpu is attached to null domain for ex, it will not be
3882 if (likely(update_next_balance))
3883 rq->next_balance = next_balance;
3887 * run_rebalance_domains is triggered when needed from the scheduler tick.
3888 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3889 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3891 static void run_rebalance_domains(struct softirq_action *h)
3893 int this_cpu = smp_processor_id();
3894 struct rq *this_rq = cpu_rq(this_cpu);
3895 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3896 CPU_IDLE : CPU_NOT_IDLE;
3898 rebalance_domains(this_cpu, idle);
3902 * If this cpu is the owner for idle load balancing, then do the
3903 * balancing on behalf of the other idle cpus whose ticks are
3906 if (this_rq->idle_at_tick &&
3907 atomic_read(&nohz.load_balancer) == this_cpu) {
3908 cpumask_t cpus = nohz.cpu_mask;
3912 cpu_clear(this_cpu, cpus);
3913 for_each_cpu_mask_nr(balance_cpu, cpus) {
3915 * If this cpu gets work to do, stop the load balancing
3916 * work being done for other cpus. Next load
3917 * balancing owner will pick it up.
3922 rebalance_domains(balance_cpu, CPU_IDLE);
3924 rq = cpu_rq(balance_cpu);
3925 if (time_after(this_rq->next_balance, rq->next_balance))
3926 this_rq->next_balance = rq->next_balance;
3933 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3935 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3936 * idle load balancing owner or decide to stop the periodic load balancing,
3937 * if the whole system is idle.
3939 static inline void trigger_load_balance(struct rq *rq, int cpu)
3943 * If we were in the nohz mode recently and busy at the current
3944 * scheduler tick, then check if we need to nominate new idle
3947 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3948 rq->in_nohz_recently = 0;
3950 if (atomic_read(&nohz.load_balancer) == cpu) {
3951 cpu_clear(cpu, nohz.cpu_mask);
3952 atomic_set(&nohz.load_balancer, -1);
3955 if (atomic_read(&nohz.load_balancer) == -1) {
3957 * simple selection for now: Nominate the
3958 * first cpu in the nohz list to be the next
3961 * TBD: Traverse the sched domains and nominate
3962 * the nearest cpu in the nohz.cpu_mask.
3964 int ilb = first_cpu(nohz.cpu_mask);
3966 if (ilb < nr_cpu_ids)
3972 * If this cpu is idle and doing idle load balancing for all the
3973 * cpus with ticks stopped, is it time for that to stop?
3975 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3976 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3982 * If this cpu is idle and the idle load balancing is done by
3983 * someone else, then no need raise the SCHED_SOFTIRQ
3985 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3986 cpu_isset(cpu, nohz.cpu_mask))
3989 if (time_after_eq(jiffies, rq->next_balance))
3990 raise_softirq(SCHED_SOFTIRQ);
3993 #else /* CONFIG_SMP */
3996 * on UP we do not need to balance between CPUs:
3998 static inline void idle_balance(int cpu, struct rq *rq)
4004 DEFINE_PER_CPU(struct kernel_stat, kstat);
4006 EXPORT_PER_CPU_SYMBOL(kstat);
4009 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4010 * that have not yet been banked in case the task is currently running.
4012 unsigned long long task_sched_runtime(struct task_struct *p)
4014 unsigned long flags;
4018 rq = task_rq_lock(p, &flags);
4019 ns = p->se.sum_exec_runtime;
4020 if (task_current(rq, p)) {
4021 update_rq_clock(rq);
4022 delta_exec = rq->clock - p->se.exec_start;
4023 if ((s64)delta_exec > 0)
4026 task_rq_unlock(rq, &flags);
4032 * Account user cpu time to a process.
4033 * @p: the process that the cpu time gets accounted to
4034 * @cputime: the cpu time spent in user space since the last update
4036 void account_user_time(struct task_struct *p, cputime_t cputime)
4038 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4041 p->utime = cputime_add(p->utime, cputime);
4043 /* Add user time to cpustat. */
4044 tmp = cputime_to_cputime64(cputime);
4045 if (TASK_NICE(p) > 0)
4046 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4048 cpustat->user = cputime64_add(cpustat->user, tmp);
4052 * Account guest cpu time to a process.
4053 * @p: the process that the cpu time gets accounted to
4054 * @cputime: the cpu time spent in virtual machine since the last update
4056 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4059 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4061 tmp = cputime_to_cputime64(cputime);
4063 p->utime = cputime_add(p->utime, cputime);
4064 p->gtime = cputime_add(p->gtime, cputime);
4066 cpustat->user = cputime64_add(cpustat->user, tmp);
4067 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4071 * Account scaled user cpu time to a process.
4072 * @p: the process that the cpu time gets accounted to
4073 * @cputime: the cpu time spent in user space since the last update
4075 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4077 p->utimescaled = cputime_add(p->utimescaled, cputime);
4081 * Account system cpu time to a process.
4082 * @p: the process that the cpu time gets accounted to
4083 * @hardirq_offset: the offset to subtract from hardirq_count()
4084 * @cputime: the cpu time spent in kernel space since the last update
4086 void account_system_time(struct task_struct *p, int hardirq_offset,
4089 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4090 struct rq *rq = this_rq();
4093 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4094 account_guest_time(p, cputime);
4098 p->stime = cputime_add(p->stime, cputime);
4100 /* Add system time to cpustat. */
4101 tmp = cputime_to_cputime64(cputime);
4102 if (hardirq_count() - hardirq_offset)
4103 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4104 else if (softirq_count())
4105 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4106 else if (p != rq->idle)
4107 cpustat->system = cputime64_add(cpustat->system, tmp);
4108 else if (atomic_read(&rq->nr_iowait) > 0)
4109 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4111 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4112 /* Account for system time used */
4113 acct_update_integrals(p);
4117 * Account scaled system cpu time to a process.
4118 * @p: the process that the cpu time gets accounted to
4119 * @hardirq_offset: the offset to subtract from hardirq_count()
4120 * @cputime: the cpu time spent in kernel space since the last update
4122 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4124 p->stimescaled = cputime_add(p->stimescaled, cputime);
4128 * Account for involuntary wait time.
4129 * @p: the process from which the cpu time has been stolen
4130 * @steal: the cpu time spent in involuntary wait
4132 void account_steal_time(struct task_struct *p, cputime_t steal)
4134 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4135 cputime64_t tmp = cputime_to_cputime64(steal);
4136 struct rq *rq = this_rq();
4138 if (p == rq->idle) {
4139 p->stime = cputime_add(p->stime, steal);
4140 if (atomic_read(&rq->nr_iowait) > 0)
4141 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4143 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4145 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4149 * This function gets called by the timer code, with HZ frequency.
4150 * We call it with interrupts disabled.
4152 * It also gets called by the fork code, when changing the parent's
4155 void scheduler_tick(void)
4157 int cpu = smp_processor_id();
4158 struct rq *rq = cpu_rq(cpu);
4159 struct task_struct *curr = rq->curr;
4163 spin_lock(&rq->lock);
4164 update_rq_clock(rq);
4165 update_cpu_load(rq);
4166 curr->sched_class->task_tick(rq, curr, 0);
4167 spin_unlock(&rq->lock);
4170 rq->idle_at_tick = idle_cpu(cpu);
4171 trigger_load_balance(rq, cpu);
4175 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4176 defined(CONFIG_PREEMPT_TRACER))
4178 static inline unsigned long get_parent_ip(unsigned long addr)
4180 if (in_lock_functions(addr)) {
4181 addr = CALLER_ADDR2;
4182 if (in_lock_functions(addr))
4183 addr = CALLER_ADDR3;
4188 void __kprobes add_preempt_count(int val)
4190 #ifdef CONFIG_DEBUG_PREEMPT
4194 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4197 preempt_count() += val;
4198 #ifdef CONFIG_DEBUG_PREEMPT
4200 * Spinlock count overflowing soon?
4202 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4205 if (preempt_count() == val)
4206 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4208 EXPORT_SYMBOL(add_preempt_count);
4210 void __kprobes sub_preempt_count(int val)
4212 #ifdef CONFIG_DEBUG_PREEMPT
4216 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4219 * Is the spinlock portion underflowing?
4221 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4222 !(preempt_count() & PREEMPT_MASK)))
4226 if (preempt_count() == val)
4227 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4228 preempt_count() -= val;
4230 EXPORT_SYMBOL(sub_preempt_count);
4235 * Print scheduling while atomic bug:
4237 static noinline void __schedule_bug(struct task_struct *prev)
4239 struct pt_regs *regs = get_irq_regs();
4241 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4242 prev->comm, prev->pid, preempt_count());
4244 debug_show_held_locks(prev);
4246 if (irqs_disabled())
4247 print_irqtrace_events(prev);
4256 * Various schedule()-time debugging checks and statistics:
4258 static inline void schedule_debug(struct task_struct *prev)
4261 * Test if we are atomic. Since do_exit() needs to call into
4262 * schedule() atomically, we ignore that path for now.
4263 * Otherwise, whine if we are scheduling when we should not be.
4265 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4266 __schedule_bug(prev);
4268 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4270 schedstat_inc(this_rq(), sched_count);
4271 #ifdef CONFIG_SCHEDSTATS
4272 if (unlikely(prev->lock_depth >= 0)) {
4273 schedstat_inc(this_rq(), bkl_count);
4274 schedstat_inc(prev, sched_info.bkl_count);
4280 * Pick up the highest-prio task:
4282 static inline struct task_struct *
4283 pick_next_task(struct rq *rq, struct task_struct *prev)
4285 const struct sched_class *class;
4286 struct task_struct *p;
4289 * Optimization: we know that if all tasks are in
4290 * the fair class we can call that function directly:
4292 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4293 p = fair_sched_class.pick_next_task(rq);
4298 class = sched_class_highest;
4300 p = class->pick_next_task(rq);
4304 * Will never be NULL as the idle class always
4305 * returns a non-NULL p:
4307 class = class->next;
4312 * schedule() is the main scheduler function.
4314 asmlinkage void __sched schedule(void)
4316 struct task_struct *prev, *next;
4317 unsigned long *switch_count;
4323 cpu = smp_processor_id();
4327 switch_count = &prev->nivcsw;
4329 release_kernel_lock(prev);
4330 need_resched_nonpreemptible:
4332 schedule_debug(prev);
4334 if (sched_feat(HRTICK))
4338 * Do the rq-clock update outside the rq lock:
4340 local_irq_disable();
4341 update_rq_clock(rq);
4342 spin_lock(&rq->lock);
4343 clear_tsk_need_resched(prev);
4345 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4346 if (unlikely(signal_pending_state(prev->state, prev)))
4347 prev->state = TASK_RUNNING;
4349 deactivate_task(rq, prev, 1);
4350 switch_count = &prev->nvcsw;
4354 if (prev->sched_class->pre_schedule)
4355 prev->sched_class->pre_schedule(rq, prev);
4358 if (unlikely(!rq->nr_running))
4359 idle_balance(cpu, rq);
4361 prev->sched_class->put_prev_task(rq, prev);
4362 next = pick_next_task(rq, prev);
4364 if (likely(prev != next)) {
4365 sched_info_switch(prev, next);
4371 context_switch(rq, prev, next); /* unlocks the rq */
4373 * the context switch might have flipped the stack from under
4374 * us, hence refresh the local variables.
4376 cpu = smp_processor_id();
4379 spin_unlock_irq(&rq->lock);
4381 if (unlikely(reacquire_kernel_lock(current) < 0))
4382 goto need_resched_nonpreemptible;
4384 preempt_enable_no_resched();
4385 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4388 EXPORT_SYMBOL(schedule);
4390 #ifdef CONFIG_PREEMPT
4392 * this is the entry point to schedule() from in-kernel preemption
4393 * off of preempt_enable. Kernel preemptions off return from interrupt
4394 * occur there and call schedule directly.
4396 asmlinkage void __sched preempt_schedule(void)
4398 struct thread_info *ti = current_thread_info();
4401 * If there is a non-zero preempt_count or interrupts are disabled,
4402 * we do not want to preempt the current task. Just return..
4404 if (likely(ti->preempt_count || irqs_disabled()))
4408 add_preempt_count(PREEMPT_ACTIVE);
4410 sub_preempt_count(PREEMPT_ACTIVE);
4413 * Check again in case we missed a preemption opportunity
4414 * between schedule and now.
4417 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4419 EXPORT_SYMBOL(preempt_schedule);
4422 * this is the entry point to schedule() from kernel preemption
4423 * off of irq context.
4424 * Note, that this is called and return with irqs disabled. This will
4425 * protect us against recursive calling from irq.
4427 asmlinkage void __sched preempt_schedule_irq(void)
4429 struct thread_info *ti = current_thread_info();
4431 /* Catch callers which need to be fixed */
4432 BUG_ON(ti->preempt_count || !irqs_disabled());
4435 add_preempt_count(PREEMPT_ACTIVE);
4438 local_irq_disable();
4439 sub_preempt_count(PREEMPT_ACTIVE);
4442 * Check again in case we missed a preemption opportunity
4443 * between schedule and now.
4446 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4449 #endif /* CONFIG_PREEMPT */
4451 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4454 return try_to_wake_up(curr->private, mode, sync);
4456 EXPORT_SYMBOL(default_wake_function);
4459 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4460 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4461 * number) then we wake all the non-exclusive tasks and one exclusive task.
4463 * There are circumstances in which we can try to wake a task which has already
4464 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4465 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4467 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4468 int nr_exclusive, int sync, void *key)
4470 wait_queue_t *curr, *next;
4472 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4473 unsigned flags = curr->flags;
4475 if (curr->func(curr, mode, sync, key) &&
4476 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4482 * __wake_up - wake up threads blocked on a waitqueue.
4484 * @mode: which threads
4485 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4486 * @key: is directly passed to the wakeup function
4488 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4489 int nr_exclusive, void *key)
4491 unsigned long flags;
4493 spin_lock_irqsave(&q->lock, flags);
4494 __wake_up_common(q, mode, nr_exclusive, 0, key);
4495 spin_unlock_irqrestore(&q->lock, flags);
4497 EXPORT_SYMBOL(__wake_up);
4500 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4502 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4504 __wake_up_common(q, mode, 1, 0, NULL);
4508 * __wake_up_sync - wake up threads blocked on a waitqueue.
4510 * @mode: which threads
4511 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4513 * The sync wakeup differs that the waker knows that it will schedule
4514 * away soon, so while the target thread will be woken up, it will not
4515 * be migrated to another CPU - ie. the two threads are 'synchronized'
4516 * with each other. This can prevent needless bouncing between CPUs.
4518 * On UP it can prevent extra preemption.
4521 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4523 unsigned long flags;
4529 if (unlikely(!nr_exclusive))
4532 spin_lock_irqsave(&q->lock, flags);
4533 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4534 spin_unlock_irqrestore(&q->lock, flags);
4536 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4538 void complete(struct completion *x)
4540 unsigned long flags;
4542 spin_lock_irqsave(&x->wait.lock, flags);
4544 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4545 spin_unlock_irqrestore(&x->wait.lock, flags);
4547 EXPORT_SYMBOL(complete);
4549 void complete_all(struct completion *x)
4551 unsigned long flags;
4553 spin_lock_irqsave(&x->wait.lock, flags);
4554 x->done += UINT_MAX/2;
4555 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4556 spin_unlock_irqrestore(&x->wait.lock, flags);
4558 EXPORT_SYMBOL(complete_all);
4560 static inline long __sched
4561 do_wait_for_common(struct completion *x, long timeout, int state)
4564 DECLARE_WAITQUEUE(wait, current);
4566 wait.flags |= WQ_FLAG_EXCLUSIVE;
4567 __add_wait_queue_tail(&x->wait, &wait);
4569 if ((state == TASK_INTERRUPTIBLE &&
4570 signal_pending(current)) ||
4571 (state == TASK_KILLABLE &&
4572 fatal_signal_pending(current))) {
4573 timeout = -ERESTARTSYS;
4576 __set_current_state(state);
4577 spin_unlock_irq(&x->wait.lock);
4578 timeout = schedule_timeout(timeout);
4579 spin_lock_irq(&x->wait.lock);
4580 } while (!x->done && timeout);
4581 __remove_wait_queue(&x->wait, &wait);
4586 return timeout ?: 1;
4590 wait_for_common(struct completion *x, long timeout, int state)
4594 spin_lock_irq(&x->wait.lock);
4595 timeout = do_wait_for_common(x, timeout, state);
4596 spin_unlock_irq(&x->wait.lock);
4600 void __sched wait_for_completion(struct completion *x)
4602 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4604 EXPORT_SYMBOL(wait_for_completion);
4606 unsigned long __sched
4607 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4609 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4611 EXPORT_SYMBOL(wait_for_completion_timeout);
4613 int __sched wait_for_completion_interruptible(struct completion *x)
4615 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4616 if (t == -ERESTARTSYS)
4620 EXPORT_SYMBOL(wait_for_completion_interruptible);
4622 unsigned long __sched
4623 wait_for_completion_interruptible_timeout(struct completion *x,
4624 unsigned long timeout)
4626 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4628 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4630 int __sched wait_for_completion_killable(struct completion *x)
4632 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4633 if (t == -ERESTARTSYS)
4637 EXPORT_SYMBOL(wait_for_completion_killable);
4640 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4642 unsigned long flags;
4645 init_waitqueue_entry(&wait, current);
4647 __set_current_state(state);
4649 spin_lock_irqsave(&q->lock, flags);
4650 __add_wait_queue(q, &wait);
4651 spin_unlock(&q->lock);
4652 timeout = schedule_timeout(timeout);
4653 spin_lock_irq(&q->lock);
4654 __remove_wait_queue(q, &wait);
4655 spin_unlock_irqrestore(&q->lock, flags);
4660 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4662 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4664 EXPORT_SYMBOL(interruptible_sleep_on);
4667 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4669 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4671 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4673 void __sched sleep_on(wait_queue_head_t *q)
4675 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4677 EXPORT_SYMBOL(sleep_on);
4679 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4681 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4683 EXPORT_SYMBOL(sleep_on_timeout);
4685 #ifdef CONFIG_RT_MUTEXES
4688 * rt_mutex_setprio - set the current priority of a task
4690 * @prio: prio value (kernel-internal form)
4692 * This function changes the 'effective' priority of a task. It does
4693 * not touch ->normal_prio like __setscheduler().
4695 * Used by the rt_mutex code to implement priority inheritance logic.
4697 void rt_mutex_setprio(struct task_struct *p, int prio)
4699 unsigned long flags;
4700 int oldprio, on_rq, running;
4702 const struct sched_class *prev_class = p->sched_class;
4704 BUG_ON(prio < 0 || prio > MAX_PRIO);
4706 rq = task_rq_lock(p, &flags);
4707 update_rq_clock(rq);
4710 on_rq = p->se.on_rq;
4711 running = task_current(rq, p);
4713 dequeue_task(rq, p, 0);
4715 p->sched_class->put_prev_task(rq, p);
4718 p->sched_class = &rt_sched_class;
4720 p->sched_class = &fair_sched_class;
4725 p->sched_class->set_curr_task(rq);
4727 enqueue_task(rq, p, 0);
4729 check_class_changed(rq, p, prev_class, oldprio, running);
4731 task_rq_unlock(rq, &flags);
4736 void set_user_nice(struct task_struct *p, long nice)
4738 int old_prio, delta, on_rq;
4739 unsigned long flags;
4742 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4745 * We have to be careful, if called from sys_setpriority(),
4746 * the task might be in the middle of scheduling on another CPU.
4748 rq = task_rq_lock(p, &flags);
4749 update_rq_clock(rq);
4751 * The RT priorities are set via sched_setscheduler(), but we still
4752 * allow the 'normal' nice value to be set - but as expected
4753 * it wont have any effect on scheduling until the task is
4754 * SCHED_FIFO/SCHED_RR:
4756 if (task_has_rt_policy(p)) {
4757 p->static_prio = NICE_TO_PRIO(nice);
4760 on_rq = p->se.on_rq;
4762 dequeue_task(rq, p, 0);
4764 p->static_prio = NICE_TO_PRIO(nice);
4767 p->prio = effective_prio(p);
4768 delta = p->prio - old_prio;
4771 enqueue_task(rq, p, 0);
4773 * If the task increased its priority or is running and
4774 * lowered its priority, then reschedule its CPU:
4776 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4777 resched_task(rq->curr);
4780 task_rq_unlock(rq, &flags);
4782 EXPORT_SYMBOL(set_user_nice);
4785 * can_nice - check if a task can reduce its nice value
4789 int can_nice(const struct task_struct *p, const int nice)
4791 /* convert nice value [19,-20] to rlimit style value [1,40] */
4792 int nice_rlim = 20 - nice;
4794 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4795 capable(CAP_SYS_NICE));
4798 #ifdef __ARCH_WANT_SYS_NICE
4801 * sys_nice - change the priority of the current process.
4802 * @increment: priority increment
4804 * sys_setpriority is a more generic, but much slower function that
4805 * does similar things.
4807 asmlinkage long sys_nice(int increment)
4812 * Setpriority might change our priority at the same moment.
4813 * We don't have to worry. Conceptually one call occurs first
4814 * and we have a single winner.
4816 if (increment < -40)
4821 nice = PRIO_TO_NICE(current->static_prio) + increment;
4827 if (increment < 0 && !can_nice(current, nice))
4830 retval = security_task_setnice(current, nice);
4834 set_user_nice(current, nice);
4841 * task_prio - return the priority value of a given task.
4842 * @p: the task in question.
4844 * This is the priority value as seen by users in /proc.
4845 * RT tasks are offset by -200. Normal tasks are centered
4846 * around 0, value goes from -16 to +15.
4848 int task_prio(const struct task_struct *p)
4850 return p->prio - MAX_RT_PRIO;
4854 * task_nice - return the nice value of a given task.
4855 * @p: the task in question.
4857 int task_nice(const struct task_struct *p)
4859 return TASK_NICE(p);
4861 EXPORT_SYMBOL(task_nice);
4864 * idle_cpu - is a given cpu idle currently?
4865 * @cpu: the processor in question.
4867 int idle_cpu(int cpu)
4869 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4873 * idle_task - return the idle task for a given cpu.
4874 * @cpu: the processor in question.
4876 struct task_struct *idle_task(int cpu)
4878 return cpu_rq(cpu)->idle;
4882 * find_process_by_pid - find a process with a matching PID value.
4883 * @pid: the pid in question.
4885 static struct task_struct *find_process_by_pid(pid_t pid)
4887 return pid ? find_task_by_vpid(pid) : current;
4890 /* Actually do priority change: must hold rq lock. */
4892 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4894 BUG_ON(p->se.on_rq);
4897 switch (p->policy) {
4901 p->sched_class = &fair_sched_class;
4905 p->sched_class = &rt_sched_class;
4909 p->rt_priority = prio;
4910 p->normal_prio = normal_prio(p);
4911 /* we are holding p->pi_lock already */
4912 p->prio = rt_mutex_getprio(p);
4916 static int __sched_setscheduler(struct task_struct *p, int policy,
4917 struct sched_param *param, bool user)
4919 int retval, oldprio, oldpolicy = -1, on_rq, running;
4920 unsigned long flags;
4921 const struct sched_class *prev_class = p->sched_class;
4924 /* may grab non-irq protected spin_locks */
4925 BUG_ON(in_interrupt());
4927 /* double check policy once rq lock held */
4929 policy = oldpolicy = p->policy;
4930 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4931 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4932 policy != SCHED_IDLE)
4935 * Valid priorities for SCHED_FIFO and SCHED_RR are
4936 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4937 * SCHED_BATCH and SCHED_IDLE is 0.
4939 if (param->sched_priority < 0 ||
4940 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4941 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4943 if (rt_policy(policy) != (param->sched_priority != 0))
4947 * Allow unprivileged RT tasks to decrease priority:
4949 if (user && !capable(CAP_SYS_NICE)) {
4950 if (rt_policy(policy)) {
4951 unsigned long rlim_rtprio;
4953 if (!lock_task_sighand(p, &flags))
4955 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4956 unlock_task_sighand(p, &flags);
4958 /* can't set/change the rt policy */
4959 if (policy != p->policy && !rlim_rtprio)
4962 /* can't increase priority */
4963 if (param->sched_priority > p->rt_priority &&
4964 param->sched_priority > rlim_rtprio)
4968 * Like positive nice levels, dont allow tasks to
4969 * move out of SCHED_IDLE either:
4971 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4974 /* can't change other user's priorities */
4975 if ((current->euid != p->euid) &&
4976 (current->euid != p->uid))
4980 #ifdef CONFIG_RT_GROUP_SCHED
4982 * Do not allow realtime tasks into groups that have no runtime
4986 && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4990 retval = security_task_setscheduler(p, policy, param);
4994 * make sure no PI-waiters arrive (or leave) while we are
4995 * changing the priority of the task:
4997 spin_lock_irqsave(&p->pi_lock, flags);
4999 * To be able to change p->policy safely, the apropriate
5000 * runqueue lock must be held.
5002 rq = __task_rq_lock(p);
5003 /* recheck policy now with rq lock held */
5004 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5005 policy = oldpolicy = -1;
5006 __task_rq_unlock(rq);
5007 spin_unlock_irqrestore(&p->pi_lock, flags);
5010 update_rq_clock(rq);
5011 on_rq = p->se.on_rq;
5012 running = task_current(rq, p);
5014 deactivate_task(rq, p, 0);
5016 p->sched_class->put_prev_task(rq, p);
5019 __setscheduler(rq, p, policy, param->sched_priority);
5022 p->sched_class->set_curr_task(rq);
5024 activate_task(rq, p, 0);
5026 check_class_changed(rq, p, prev_class, oldprio, running);
5028 __task_rq_unlock(rq);
5029 spin_unlock_irqrestore(&p->pi_lock, flags);
5031 rt_mutex_adjust_pi(p);
5037 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5038 * @p: the task in question.
5039 * @policy: new policy.
5040 * @param: structure containing the new RT priority.
5042 * NOTE that the task may be already dead.
5044 int sched_setscheduler(struct task_struct *p, int policy,
5045 struct sched_param *param)
5047 return __sched_setscheduler(p, policy, param, true);
5049 EXPORT_SYMBOL_GPL(sched_setscheduler);
5052 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5053 * @p: the task in question.
5054 * @policy: new policy.
5055 * @param: structure containing the new RT priority.
5057 * Just like sched_setscheduler, only don't bother checking if the
5058 * current context has permission. For example, this is needed in
5059 * stop_machine(): we create temporary high priority worker threads,
5060 * but our caller might not have that capability.
5062 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5063 struct sched_param *param)
5065 return __sched_setscheduler(p, policy, param, false);
5069 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5071 struct sched_param lparam;
5072 struct task_struct *p;
5075 if (!param || pid < 0)
5077 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5082 p = find_process_by_pid(pid);
5084 retval = sched_setscheduler(p, policy, &lparam);
5091 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5092 * @pid: the pid in question.
5093 * @policy: new policy.
5094 * @param: structure containing the new RT priority.
5097 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5099 /* negative values for policy are not valid */
5103 return do_sched_setscheduler(pid, policy, param);
5107 * sys_sched_setparam - set/change the RT priority of a thread
5108 * @pid: the pid in question.
5109 * @param: structure containing the new RT priority.
5111 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5113 return do_sched_setscheduler(pid, -1, param);
5117 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5118 * @pid: the pid in question.
5120 asmlinkage long sys_sched_getscheduler(pid_t pid)
5122 struct task_struct *p;
5129 read_lock(&tasklist_lock);
5130 p = find_process_by_pid(pid);
5132 retval = security_task_getscheduler(p);
5136 read_unlock(&tasklist_lock);
5141 * sys_sched_getscheduler - get the RT priority of a thread
5142 * @pid: the pid in question.
5143 * @param: structure containing the RT priority.
5145 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5147 struct sched_param lp;
5148 struct task_struct *p;
5151 if (!param || pid < 0)
5154 read_lock(&tasklist_lock);
5155 p = find_process_by_pid(pid);
5160 retval = security_task_getscheduler(p);
5164 lp.sched_priority = p->rt_priority;
5165 read_unlock(&tasklist_lock);
5168 * This one might sleep, we cannot do it with a spinlock held ...
5170 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5175 read_unlock(&tasklist_lock);
5179 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5181 cpumask_t cpus_allowed;
5182 cpumask_t new_mask = *in_mask;
5183 struct task_struct *p;
5187 read_lock(&tasklist_lock);
5189 p = find_process_by_pid(pid);
5191 read_unlock(&tasklist_lock);
5197 * It is not safe to call set_cpus_allowed with the
5198 * tasklist_lock held. We will bump the task_struct's
5199 * usage count and then drop tasklist_lock.
5202 read_unlock(&tasklist_lock);
5205 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5206 !capable(CAP_SYS_NICE))
5209 retval = security_task_setscheduler(p, 0, NULL);
5213 cpuset_cpus_allowed(p, &cpus_allowed);
5214 cpus_and(new_mask, new_mask, cpus_allowed);
5216 retval = set_cpus_allowed_ptr(p, &new_mask);
5219 cpuset_cpus_allowed(p, &cpus_allowed);
5220 if (!cpus_subset(new_mask, cpus_allowed)) {
5222 * We must have raced with a concurrent cpuset
5223 * update. Just reset the cpus_allowed to the
5224 * cpuset's cpus_allowed
5226 new_mask = cpus_allowed;
5236 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5237 cpumask_t *new_mask)
5239 if (len < sizeof(cpumask_t)) {
5240 memset(new_mask, 0, sizeof(cpumask_t));
5241 } else if (len > sizeof(cpumask_t)) {
5242 len = sizeof(cpumask_t);
5244 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5248 * sys_sched_setaffinity - set the cpu affinity of a process
5249 * @pid: pid of the process
5250 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5251 * @user_mask_ptr: user-space pointer to the new cpu mask
5253 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5254 unsigned long __user *user_mask_ptr)
5259 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5263 return sched_setaffinity(pid, &new_mask);
5266 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5268 struct task_struct *p;
5272 read_lock(&tasklist_lock);
5275 p = find_process_by_pid(pid);
5279 retval = security_task_getscheduler(p);
5283 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5286 read_unlock(&tasklist_lock);
5293 * sys_sched_getaffinity - get the cpu affinity of a process
5294 * @pid: pid of the process
5295 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5296 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5298 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5299 unsigned long __user *user_mask_ptr)
5304 if (len < sizeof(cpumask_t))
5307 ret = sched_getaffinity(pid, &mask);
5311 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5314 return sizeof(cpumask_t);
5318 * sys_sched_yield - yield the current processor to other threads.
5320 * This function yields the current CPU to other tasks. If there are no
5321 * other threads running on this CPU then this function will return.
5323 asmlinkage long sys_sched_yield(void)
5325 struct rq *rq = this_rq_lock();
5327 schedstat_inc(rq, yld_count);
5328 current->sched_class->yield_task(rq);
5331 * Since we are going to call schedule() anyway, there's
5332 * no need to preempt or enable interrupts:
5334 __release(rq->lock);
5335 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5336 _raw_spin_unlock(&rq->lock);
5337 preempt_enable_no_resched();
5344 static void __cond_resched(void)
5346 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5347 __might_sleep(__FILE__, __LINE__);
5350 * The BKS might be reacquired before we have dropped
5351 * PREEMPT_ACTIVE, which could trigger a second
5352 * cond_resched() call.
5355 add_preempt_count(PREEMPT_ACTIVE);
5357 sub_preempt_count(PREEMPT_ACTIVE);
5358 } while (need_resched());
5361 int __sched _cond_resched(void)
5363 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5364 system_state == SYSTEM_RUNNING) {
5370 EXPORT_SYMBOL(_cond_resched);
5373 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5374 * call schedule, and on return reacquire the lock.
5376 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5377 * operations here to prevent schedule() from being called twice (once via
5378 * spin_unlock(), once by hand).
5380 int cond_resched_lock(spinlock_t *lock)
5382 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5385 if (spin_needbreak(lock) || resched) {
5387 if (resched && need_resched())
5396 EXPORT_SYMBOL(cond_resched_lock);
5398 int __sched cond_resched_softirq(void)
5400 BUG_ON(!in_softirq());
5402 if (need_resched() && system_state == SYSTEM_RUNNING) {
5410 EXPORT_SYMBOL(cond_resched_softirq);
5413 * yield - yield the current processor to other threads.
5415 * This is a shortcut for kernel-space yielding - it marks the
5416 * thread runnable and calls sys_sched_yield().
5418 void __sched yield(void)
5420 set_current_state(TASK_RUNNING);
5423 EXPORT_SYMBOL(yield);
5426 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5427 * that process accounting knows that this is a task in IO wait state.
5429 * But don't do that if it is a deliberate, throttling IO wait (this task
5430 * has set its backing_dev_info: the queue against which it should throttle)
5432 void __sched io_schedule(void)
5434 struct rq *rq = &__raw_get_cpu_var(runqueues);
5436 delayacct_blkio_start();
5437 atomic_inc(&rq->nr_iowait);
5439 atomic_dec(&rq->nr_iowait);
5440 delayacct_blkio_end();
5442 EXPORT_SYMBOL(io_schedule);
5444 long __sched io_schedule_timeout(long timeout)
5446 struct rq *rq = &__raw_get_cpu_var(runqueues);
5449 delayacct_blkio_start();
5450 atomic_inc(&rq->nr_iowait);
5451 ret = schedule_timeout(timeout);
5452 atomic_dec(&rq->nr_iowait);
5453 delayacct_blkio_end();
5458 * sys_sched_get_priority_max - return maximum RT priority.
5459 * @policy: scheduling class.
5461 * this syscall returns the maximum rt_priority that can be used
5462 * by a given scheduling class.
5464 asmlinkage long sys_sched_get_priority_max(int policy)
5471 ret = MAX_USER_RT_PRIO-1;
5483 * sys_sched_get_priority_min - return minimum RT priority.
5484 * @policy: scheduling class.
5486 * this syscall returns the minimum rt_priority that can be used
5487 * by a given scheduling class.
5489 asmlinkage long sys_sched_get_priority_min(int policy)
5507 * sys_sched_rr_get_interval - return the default timeslice of a process.
5508 * @pid: pid of the process.
5509 * @interval: userspace pointer to the timeslice value.
5511 * this syscall writes the default timeslice value of a given process
5512 * into the user-space timespec buffer. A value of '0' means infinity.
5515 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5517 struct task_struct *p;
5518 unsigned int time_slice;
5526 read_lock(&tasklist_lock);
5527 p = find_process_by_pid(pid);
5531 retval = security_task_getscheduler(p);
5536 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5537 * tasks that are on an otherwise idle runqueue:
5540 if (p->policy == SCHED_RR) {
5541 time_slice = DEF_TIMESLICE;
5542 } else if (p->policy != SCHED_FIFO) {
5543 struct sched_entity *se = &p->se;
5544 unsigned long flags;
5547 rq = task_rq_lock(p, &flags);
5548 if (rq->cfs.load.weight)
5549 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5550 task_rq_unlock(rq, &flags);
5552 read_unlock(&tasklist_lock);
5553 jiffies_to_timespec(time_slice, &t);
5554 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5558 read_unlock(&tasklist_lock);
5562 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5564 void sched_show_task(struct task_struct *p)
5566 unsigned long free = 0;
5569 state = p->state ? __ffs(p->state) + 1 : 0;
5570 printk(KERN_INFO "%-13.13s %c", p->comm,
5571 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5572 #if BITS_PER_LONG == 32
5573 if (state == TASK_RUNNING)
5574 printk(KERN_CONT " running ");
5576 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5578 if (state == TASK_RUNNING)
5579 printk(KERN_CONT " running task ");
5581 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5583 #ifdef CONFIG_DEBUG_STACK_USAGE
5585 unsigned long *n = end_of_stack(p);
5588 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5591 printk(KERN_CONT "%5lu %5d %6d\n", free,
5592 task_pid_nr(p), task_pid_nr(p->real_parent));
5594 show_stack(p, NULL);
5597 void show_state_filter(unsigned long state_filter)
5599 struct task_struct *g, *p;
5601 #if BITS_PER_LONG == 32
5603 " task PC stack pid father\n");
5606 " task PC stack pid father\n");
5608 read_lock(&tasklist_lock);
5609 do_each_thread(g, p) {
5611 * reset the NMI-timeout, listing all files on a slow
5612 * console might take alot of time:
5614 touch_nmi_watchdog();
5615 if (!state_filter || (p->state & state_filter))
5617 } while_each_thread(g, p);
5619 touch_all_softlockup_watchdogs();
5621 #ifdef CONFIG_SCHED_DEBUG
5622 sysrq_sched_debug_show();
5624 read_unlock(&tasklist_lock);
5626 * Only show locks if all tasks are dumped:
5628 if (state_filter == -1)
5629 debug_show_all_locks();
5632 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5634 idle->sched_class = &idle_sched_class;
5638 * init_idle - set up an idle thread for a given CPU
5639 * @idle: task in question
5640 * @cpu: cpu the idle task belongs to
5642 * NOTE: this function does not set the idle thread's NEED_RESCHED
5643 * flag, to make booting more robust.
5645 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5647 struct rq *rq = cpu_rq(cpu);
5648 unsigned long flags;
5651 idle->se.exec_start = sched_clock();
5653 idle->prio = idle->normal_prio = MAX_PRIO;
5654 idle->cpus_allowed = cpumask_of_cpu(cpu);
5655 __set_task_cpu(idle, cpu);
5657 spin_lock_irqsave(&rq->lock, flags);
5658 rq->curr = rq->idle = idle;
5659 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5662 spin_unlock_irqrestore(&rq->lock, flags);
5664 /* Set the preempt count _outside_ the spinlocks! */
5665 #if defined(CONFIG_PREEMPT)
5666 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5668 task_thread_info(idle)->preempt_count = 0;
5671 * The idle tasks have their own, simple scheduling class:
5673 idle->sched_class = &idle_sched_class;
5677 * In a system that switches off the HZ timer nohz_cpu_mask
5678 * indicates which cpus entered this state. This is used
5679 * in the rcu update to wait only for active cpus. For system
5680 * which do not switch off the HZ timer nohz_cpu_mask should
5681 * always be CPU_MASK_NONE.
5683 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5686 * Increase the granularity value when there are more CPUs,
5687 * because with more CPUs the 'effective latency' as visible
5688 * to users decreases. But the relationship is not linear,
5689 * so pick a second-best guess by going with the log2 of the
5692 * This idea comes from the SD scheduler of Con Kolivas:
5694 static inline void sched_init_granularity(void)
5696 unsigned int factor = 1 + ilog2(num_online_cpus());
5697 const unsigned long limit = 200000000;
5699 sysctl_sched_min_granularity *= factor;
5700 if (sysctl_sched_min_granularity > limit)
5701 sysctl_sched_min_granularity = limit;
5703 sysctl_sched_latency *= factor;
5704 if (sysctl_sched_latency > limit)
5705 sysctl_sched_latency = limit;
5707 sysctl_sched_wakeup_granularity *= factor;
5712 * This is how migration works:
5714 * 1) we queue a struct migration_req structure in the source CPU's
5715 * runqueue and wake up that CPU's migration thread.
5716 * 2) we down() the locked semaphore => thread blocks.
5717 * 3) migration thread wakes up (implicitly it forces the migrated
5718 * thread off the CPU)
5719 * 4) it gets the migration request and checks whether the migrated
5720 * task is still in the wrong runqueue.
5721 * 5) if it's in the wrong runqueue then the migration thread removes
5722 * it and puts it into the right queue.
5723 * 6) migration thread up()s the semaphore.
5724 * 7) we wake up and the migration is done.
5728 * Change a given task's CPU affinity. Migrate the thread to a
5729 * proper CPU and schedule it away if the CPU it's executing on
5730 * is removed from the allowed bitmask.
5732 * NOTE: the caller must have a valid reference to the task, the
5733 * task must not exit() & deallocate itself prematurely. The
5734 * call is not atomic; no spinlocks may be held.
5736 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5738 struct migration_req req;
5739 unsigned long flags;
5743 rq = task_rq_lock(p, &flags);
5744 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5749 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5750 !cpus_equal(p->cpus_allowed, *new_mask))) {
5755 if (p->sched_class->set_cpus_allowed)
5756 p->sched_class->set_cpus_allowed(p, new_mask);
5758 p->cpus_allowed = *new_mask;
5759 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5762 /* Can the task run on the task's current CPU? If so, we're done */
5763 if (cpu_isset(task_cpu(p), *new_mask))
5766 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5767 /* Need help from migration thread: drop lock and wait. */
5768 task_rq_unlock(rq, &flags);
5769 wake_up_process(rq->migration_thread);
5770 wait_for_completion(&req.done);
5771 tlb_migrate_finish(p->mm);
5775 task_rq_unlock(rq, &flags);
5779 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5782 * Move (not current) task off this cpu, onto dest cpu. We're doing
5783 * this because either it can't run here any more (set_cpus_allowed()
5784 * away from this CPU, or CPU going down), or because we're
5785 * attempting to rebalance this task on exec (sched_exec).
5787 * So we race with normal scheduler movements, but that's OK, as long
5788 * as the task is no longer on this CPU.
5790 * Returns non-zero if task was successfully migrated.
5792 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5794 struct rq *rq_dest, *rq_src;
5797 if (unlikely(!cpu_active(dest_cpu)))
5800 rq_src = cpu_rq(src_cpu);
5801 rq_dest = cpu_rq(dest_cpu);
5803 double_rq_lock(rq_src, rq_dest);
5804 /* Already moved. */
5805 if (task_cpu(p) != src_cpu)
5807 /* Affinity changed (again). */
5808 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5811 on_rq = p->se.on_rq;
5813 deactivate_task(rq_src, p, 0);
5815 set_task_cpu(p, dest_cpu);
5817 activate_task(rq_dest, p, 0);
5818 check_preempt_curr(rq_dest, p);
5823 double_rq_unlock(rq_src, rq_dest);
5828 * migration_thread - this is a highprio system thread that performs
5829 * thread migration by bumping thread off CPU then 'pushing' onto
5832 static int migration_thread(void *data)
5834 int cpu = (long)data;
5838 BUG_ON(rq->migration_thread != current);
5840 set_current_state(TASK_INTERRUPTIBLE);
5841 while (!kthread_should_stop()) {
5842 struct migration_req *req;
5843 struct list_head *head;
5845 spin_lock_irq(&rq->lock);
5847 if (cpu_is_offline(cpu)) {
5848 spin_unlock_irq(&rq->lock);
5852 if (rq->active_balance) {
5853 active_load_balance(rq, cpu);
5854 rq->active_balance = 0;
5857 head = &rq->migration_queue;
5859 if (list_empty(head)) {
5860 spin_unlock_irq(&rq->lock);
5862 set_current_state(TASK_INTERRUPTIBLE);
5865 req = list_entry(head->next, struct migration_req, list);
5866 list_del_init(head->next);
5868 spin_unlock(&rq->lock);
5869 __migrate_task(req->task, cpu, req->dest_cpu);
5872 complete(&req->done);
5874 __set_current_state(TASK_RUNNING);
5878 /* Wait for kthread_stop */
5879 set_current_state(TASK_INTERRUPTIBLE);
5880 while (!kthread_should_stop()) {
5882 set_current_state(TASK_INTERRUPTIBLE);
5884 __set_current_state(TASK_RUNNING);
5888 #ifdef CONFIG_HOTPLUG_CPU
5890 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5894 local_irq_disable();
5895 ret = __migrate_task(p, src_cpu, dest_cpu);
5901 * Figure out where task on dead CPU should go, use force if necessary.
5902 * NOTE: interrupts should be disabled by the caller
5904 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5906 unsigned long flags;
5913 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5914 cpus_and(mask, mask, p->cpus_allowed);
5915 dest_cpu = any_online_cpu(mask);
5917 /* On any allowed CPU? */
5918 if (dest_cpu >= nr_cpu_ids)
5919 dest_cpu = any_online_cpu(p->cpus_allowed);
5921 /* No more Mr. Nice Guy. */
5922 if (dest_cpu >= nr_cpu_ids) {
5923 cpumask_t cpus_allowed;
5925 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5927 * Try to stay on the same cpuset, where the
5928 * current cpuset may be a subset of all cpus.
5929 * The cpuset_cpus_allowed_locked() variant of
5930 * cpuset_cpus_allowed() will not block. It must be
5931 * called within calls to cpuset_lock/cpuset_unlock.
5933 rq = task_rq_lock(p, &flags);
5934 p->cpus_allowed = cpus_allowed;
5935 dest_cpu = any_online_cpu(p->cpus_allowed);
5936 task_rq_unlock(rq, &flags);
5939 * Don't tell them about moving exiting tasks or
5940 * kernel threads (both mm NULL), since they never
5943 if (p->mm && printk_ratelimit()) {
5944 printk(KERN_INFO "process %d (%s) no "
5945 "longer affine to cpu%d\n",
5946 task_pid_nr(p), p->comm, dead_cpu);
5949 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5953 * While a dead CPU has no uninterruptible tasks queued at this point,
5954 * it might still have a nonzero ->nr_uninterruptible counter, because
5955 * for performance reasons the counter is not stricly tracking tasks to
5956 * their home CPUs. So we just add the counter to another CPU's counter,
5957 * to keep the global sum constant after CPU-down:
5959 static void migrate_nr_uninterruptible(struct rq *rq_src)
5961 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5962 unsigned long flags;
5964 local_irq_save(flags);
5965 double_rq_lock(rq_src, rq_dest);
5966 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5967 rq_src->nr_uninterruptible = 0;
5968 double_rq_unlock(rq_src, rq_dest);
5969 local_irq_restore(flags);
5972 /* Run through task list and migrate tasks from the dead cpu. */
5973 static void migrate_live_tasks(int src_cpu)
5975 struct task_struct *p, *t;
5977 read_lock(&tasklist_lock);
5979 do_each_thread(t, p) {
5983 if (task_cpu(p) == src_cpu)
5984 move_task_off_dead_cpu(src_cpu, p);
5985 } while_each_thread(t, p);
5987 read_unlock(&tasklist_lock);
5991 * Schedules idle task to be the next runnable task on current CPU.
5992 * It does so by boosting its priority to highest possible.
5993 * Used by CPU offline code.
5995 void sched_idle_next(void)
5997 int this_cpu = smp_processor_id();
5998 struct rq *rq = cpu_rq(this_cpu);
5999 struct task_struct *p = rq->idle;
6000 unsigned long flags;
6002 /* cpu has to be offline */
6003 BUG_ON(cpu_online(this_cpu));
6006 * Strictly not necessary since rest of the CPUs are stopped by now
6007 * and interrupts disabled on the current cpu.
6009 spin_lock_irqsave(&rq->lock, flags);
6011 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6013 update_rq_clock(rq);
6014 activate_task(rq, p, 0);
6016 spin_unlock_irqrestore(&rq->lock, flags);
6020 * Ensures that the idle task is using init_mm right before its cpu goes
6023 void idle_task_exit(void)
6025 struct mm_struct *mm = current->active_mm;
6027 BUG_ON(cpu_online(smp_processor_id()));
6030 switch_mm(mm, &init_mm, current);
6034 /* called under rq->lock with disabled interrupts */
6035 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6037 struct rq *rq = cpu_rq(dead_cpu);
6039 /* Must be exiting, otherwise would be on tasklist. */
6040 BUG_ON(!p->exit_state);
6042 /* Cannot have done final schedule yet: would have vanished. */
6043 BUG_ON(p->state == TASK_DEAD);
6048 * Drop lock around migration; if someone else moves it,
6049 * that's OK. No task can be added to this CPU, so iteration is
6052 spin_unlock_irq(&rq->lock);
6053 move_task_off_dead_cpu(dead_cpu, p);
6054 spin_lock_irq(&rq->lock);
6059 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6060 static void migrate_dead_tasks(unsigned int dead_cpu)
6062 struct rq *rq = cpu_rq(dead_cpu);
6063 struct task_struct *next;
6066 if (!rq->nr_running)
6068 update_rq_clock(rq);
6069 next = pick_next_task(rq, rq->curr);
6072 next->sched_class->put_prev_task(rq, next);
6073 migrate_dead(dead_cpu, next);
6077 #endif /* CONFIG_HOTPLUG_CPU */
6079 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6081 static struct ctl_table sd_ctl_dir[] = {
6083 .procname = "sched_domain",
6089 static struct ctl_table sd_ctl_root[] = {
6091 .ctl_name = CTL_KERN,
6092 .procname = "kernel",
6094 .child = sd_ctl_dir,
6099 static struct ctl_table *sd_alloc_ctl_entry(int n)
6101 struct ctl_table *entry =
6102 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6107 static void sd_free_ctl_entry(struct ctl_table **tablep)
6109 struct ctl_table *entry;
6112 * In the intermediate directories, both the child directory and
6113 * procname are dynamically allocated and could fail but the mode
6114 * will always be set. In the lowest directory the names are
6115 * static strings and all have proc handlers.
6117 for (entry = *tablep; entry->mode; entry++) {
6119 sd_free_ctl_entry(&entry->child);
6120 if (entry->proc_handler == NULL)
6121 kfree(entry->procname);
6129 set_table_entry(struct ctl_table *entry,
6130 const char *procname, void *data, int maxlen,
6131 mode_t mode, proc_handler *proc_handler)
6133 entry->procname = procname;
6135 entry->maxlen = maxlen;
6137 entry->proc_handler = proc_handler;
6140 static struct ctl_table *
6141 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6143 struct ctl_table *table = sd_alloc_ctl_entry(12);
6148 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6149 sizeof(long), 0644, proc_doulongvec_minmax);
6150 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6151 sizeof(long), 0644, proc_doulongvec_minmax);
6152 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6153 sizeof(int), 0644, proc_dointvec_minmax);
6154 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6155 sizeof(int), 0644, proc_dointvec_minmax);
6156 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6157 sizeof(int), 0644, proc_dointvec_minmax);
6158 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6159 sizeof(int), 0644, proc_dointvec_minmax);
6160 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6161 sizeof(int), 0644, proc_dointvec_minmax);
6162 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6163 sizeof(int), 0644, proc_dointvec_minmax);
6164 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6165 sizeof(int), 0644, proc_dointvec_minmax);
6166 set_table_entry(&table[9], "cache_nice_tries",
6167 &sd->cache_nice_tries,
6168 sizeof(int), 0644, proc_dointvec_minmax);
6169 set_table_entry(&table[10], "flags", &sd->flags,
6170 sizeof(int), 0644, proc_dointvec_minmax);
6171 /* &table[11] is terminator */
6176 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6178 struct ctl_table *entry, *table;
6179 struct sched_domain *sd;
6180 int domain_num = 0, i;
6183 for_each_domain(cpu, sd)
6185 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6190 for_each_domain(cpu, sd) {
6191 snprintf(buf, 32, "domain%d", i);
6192 entry->procname = kstrdup(buf, GFP_KERNEL);
6194 entry->child = sd_alloc_ctl_domain_table(sd);
6201 static struct ctl_table_header *sd_sysctl_header;
6202 static void register_sched_domain_sysctl(void)
6204 int i, cpu_num = num_online_cpus();
6205 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6208 WARN_ON(sd_ctl_dir[0].child);
6209 sd_ctl_dir[0].child = entry;
6214 for_each_online_cpu(i) {
6215 snprintf(buf, 32, "cpu%d", i);
6216 entry->procname = kstrdup(buf, GFP_KERNEL);
6218 entry->child = sd_alloc_ctl_cpu_table(i);
6222 WARN_ON(sd_sysctl_header);
6223 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6226 /* may be called multiple times per register */
6227 static void unregister_sched_domain_sysctl(void)
6229 if (sd_sysctl_header)
6230 unregister_sysctl_table(sd_sysctl_header);
6231 sd_sysctl_header = NULL;
6232 if (sd_ctl_dir[0].child)
6233 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6236 static void register_sched_domain_sysctl(void)
6239 static void unregister_sched_domain_sysctl(void)
6244 static void set_rq_online(struct rq *rq)
6247 const struct sched_class *class;
6249 cpu_set(rq->cpu, rq->rd->online);
6252 for_each_class(class) {
6253 if (class->rq_online)
6254 class->rq_online(rq);
6259 static void set_rq_offline(struct rq *rq)
6262 const struct sched_class *class;
6264 for_each_class(class) {
6265 if (class->rq_offline)
6266 class->rq_offline(rq);
6269 cpu_clear(rq->cpu, rq->rd->online);
6275 * migration_call - callback that gets triggered when a CPU is added.
6276 * Here we can start up the necessary migration thread for the new CPU.
6278 static int __cpuinit
6279 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6281 struct task_struct *p;
6282 int cpu = (long)hcpu;
6283 unsigned long flags;
6288 case CPU_UP_PREPARE:
6289 case CPU_UP_PREPARE_FROZEN:
6290 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6293 kthread_bind(p, cpu);
6294 /* Must be high prio: stop_machine expects to yield to it. */
6295 rq = task_rq_lock(p, &flags);
6296 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6297 task_rq_unlock(rq, &flags);
6298 cpu_rq(cpu)->migration_thread = p;
6302 case CPU_ONLINE_FROZEN:
6303 /* Strictly unnecessary, as first user will wake it. */
6304 wake_up_process(cpu_rq(cpu)->migration_thread);
6306 /* Update our root-domain */
6308 spin_lock_irqsave(&rq->lock, flags);
6310 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6314 spin_unlock_irqrestore(&rq->lock, flags);
6317 #ifdef CONFIG_HOTPLUG_CPU
6318 case CPU_UP_CANCELED:
6319 case CPU_UP_CANCELED_FROZEN:
6320 if (!cpu_rq(cpu)->migration_thread)
6322 /* Unbind it from offline cpu so it can run. Fall thru. */
6323 kthread_bind(cpu_rq(cpu)->migration_thread,
6324 any_online_cpu(cpu_online_map));
6325 kthread_stop(cpu_rq(cpu)->migration_thread);
6326 cpu_rq(cpu)->migration_thread = NULL;
6330 case CPU_DEAD_FROZEN:
6331 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6332 migrate_live_tasks(cpu);
6334 kthread_stop(rq->migration_thread);
6335 rq->migration_thread = NULL;
6336 /* Idle task back to normal (off runqueue, low prio) */
6337 spin_lock_irq(&rq->lock);
6338 update_rq_clock(rq);
6339 deactivate_task(rq, rq->idle, 0);
6340 rq->idle->static_prio = MAX_PRIO;
6341 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6342 rq->idle->sched_class = &idle_sched_class;
6343 migrate_dead_tasks(cpu);
6344 spin_unlock_irq(&rq->lock);
6346 migrate_nr_uninterruptible(rq);
6347 BUG_ON(rq->nr_running != 0);
6350 * No need to migrate the tasks: it was best-effort if
6351 * they didn't take sched_hotcpu_mutex. Just wake up
6354 spin_lock_irq(&rq->lock);
6355 while (!list_empty(&rq->migration_queue)) {
6356 struct migration_req *req;
6358 req = list_entry(rq->migration_queue.next,
6359 struct migration_req, list);
6360 list_del_init(&req->list);
6361 complete(&req->done);
6363 spin_unlock_irq(&rq->lock);
6367 case CPU_DYING_FROZEN:
6368 /* Update our root-domain */
6370 spin_lock_irqsave(&rq->lock, flags);
6372 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6375 spin_unlock_irqrestore(&rq->lock, flags);
6382 /* Register at highest priority so that task migration (migrate_all_tasks)
6383 * happens before everything else.
6385 static struct notifier_block __cpuinitdata migration_notifier = {
6386 .notifier_call = migration_call,
6390 void __init migration_init(void)
6392 void *cpu = (void *)(long)smp_processor_id();
6395 /* Start one for the boot CPU: */
6396 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6397 BUG_ON(err == NOTIFY_BAD);
6398 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6399 register_cpu_notifier(&migration_notifier);
6405 #ifdef CONFIG_SCHED_DEBUG
6407 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6420 case SD_LV_ALLNODES:
6429 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6430 cpumask_t *groupmask)
6432 struct sched_group *group = sd->groups;
6435 cpulist_scnprintf(str, sizeof(str), sd->span);
6436 cpus_clear(*groupmask);
6438 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6440 if (!(sd->flags & SD_LOAD_BALANCE)) {
6441 printk("does not load-balance\n");
6443 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6448 printk(KERN_CONT "span %s level %s\n",
6449 str, sd_level_to_string(sd->level));
6451 if (!cpu_isset(cpu, sd->span)) {
6452 printk(KERN_ERR "ERROR: domain->span does not contain "
6455 if (!cpu_isset(cpu, group->cpumask)) {
6456 printk(KERN_ERR "ERROR: domain->groups does not contain"
6460 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6464 printk(KERN_ERR "ERROR: group is NULL\n");
6468 if (!group->__cpu_power) {
6469 printk(KERN_CONT "\n");
6470 printk(KERN_ERR "ERROR: domain->cpu_power not "
6475 if (!cpus_weight(group->cpumask)) {
6476 printk(KERN_CONT "\n");
6477 printk(KERN_ERR "ERROR: empty group\n");
6481 if (cpus_intersects(*groupmask, group->cpumask)) {
6482 printk(KERN_CONT "\n");
6483 printk(KERN_ERR "ERROR: repeated CPUs\n");
6487 cpus_or(*groupmask, *groupmask, group->cpumask);
6489 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6490 printk(KERN_CONT " %s", str);
6492 group = group->next;
6493 } while (group != sd->groups);
6494 printk(KERN_CONT "\n");
6496 if (!cpus_equal(sd->span, *groupmask))
6497 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6499 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6500 printk(KERN_ERR "ERROR: parent span is not a superset "
6501 "of domain->span\n");
6505 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6507 cpumask_t *groupmask;
6511 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6515 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6517 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6519 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6524 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6533 #else /* !CONFIG_SCHED_DEBUG */
6534 # define sched_domain_debug(sd, cpu) do { } while (0)
6535 #endif /* CONFIG_SCHED_DEBUG */
6537 static int sd_degenerate(struct sched_domain *sd)
6539 if (cpus_weight(sd->span) == 1)
6542 /* Following flags need at least 2 groups */
6543 if (sd->flags & (SD_LOAD_BALANCE |
6544 SD_BALANCE_NEWIDLE |
6548 SD_SHARE_PKG_RESOURCES)) {
6549 if (sd->groups != sd->groups->next)
6553 /* Following flags don't use groups */
6554 if (sd->flags & (SD_WAKE_IDLE |
6563 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6565 unsigned long cflags = sd->flags, pflags = parent->flags;
6567 if (sd_degenerate(parent))
6570 if (!cpus_equal(sd->span, parent->span))
6573 /* Does parent contain flags not in child? */
6574 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6575 if (cflags & SD_WAKE_AFFINE)
6576 pflags &= ~SD_WAKE_BALANCE;
6577 /* Flags needing groups don't count if only 1 group in parent */
6578 if (parent->groups == parent->groups->next) {
6579 pflags &= ~(SD_LOAD_BALANCE |
6580 SD_BALANCE_NEWIDLE |
6584 SD_SHARE_PKG_RESOURCES);
6586 if (~cflags & pflags)
6592 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6594 unsigned long flags;
6596 spin_lock_irqsave(&rq->lock, flags);
6599 struct root_domain *old_rd = rq->rd;
6601 if (cpu_isset(rq->cpu, old_rd->online))
6604 cpu_clear(rq->cpu, old_rd->span);
6606 if (atomic_dec_and_test(&old_rd->refcount))
6610 atomic_inc(&rd->refcount);
6613 cpu_set(rq->cpu, rd->span);
6614 if (cpu_isset(rq->cpu, cpu_online_map))
6617 spin_unlock_irqrestore(&rq->lock, flags);
6620 static void init_rootdomain(struct root_domain *rd)
6622 memset(rd, 0, sizeof(*rd));
6624 cpus_clear(rd->span);
6625 cpus_clear(rd->online);
6627 cpupri_init(&rd->cpupri);
6630 static void init_defrootdomain(void)
6632 init_rootdomain(&def_root_domain);
6633 atomic_set(&def_root_domain.refcount, 1);
6636 static struct root_domain *alloc_rootdomain(void)
6638 struct root_domain *rd;
6640 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6644 init_rootdomain(rd);
6650 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6651 * hold the hotplug lock.
6654 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6656 struct rq *rq = cpu_rq(cpu);
6657 struct sched_domain *tmp;
6659 /* Remove the sched domains which do not contribute to scheduling. */
6660 for (tmp = sd; tmp; tmp = tmp->parent) {
6661 struct sched_domain *parent = tmp->parent;
6664 if (sd_parent_degenerate(tmp, parent)) {
6665 tmp->parent = parent->parent;
6667 parent->parent->child = tmp;
6671 if (sd && sd_degenerate(sd)) {
6677 sched_domain_debug(sd, cpu);
6679 rq_attach_root(rq, rd);
6680 rcu_assign_pointer(rq->sd, sd);
6683 /* cpus with isolated domains */
6684 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6686 /* Setup the mask of cpus configured for isolated domains */
6687 static int __init isolated_cpu_setup(char *str)
6689 static int __initdata ints[NR_CPUS];
6692 str = get_options(str, ARRAY_SIZE(ints), ints);
6693 cpus_clear(cpu_isolated_map);
6694 for (i = 1; i <= ints[0]; i++)
6695 if (ints[i] < NR_CPUS)
6696 cpu_set(ints[i], cpu_isolated_map);
6700 __setup("isolcpus=", isolated_cpu_setup);
6703 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6704 * to a function which identifies what group(along with sched group) a CPU
6705 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6706 * (due to the fact that we keep track of groups covered with a cpumask_t).
6708 * init_sched_build_groups will build a circular linked list of the groups
6709 * covered by the given span, and will set each group's ->cpumask correctly,
6710 * and ->cpu_power to 0.
6713 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6714 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6715 struct sched_group **sg,
6716 cpumask_t *tmpmask),
6717 cpumask_t *covered, cpumask_t *tmpmask)
6719 struct sched_group *first = NULL, *last = NULL;
6722 cpus_clear(*covered);
6724 for_each_cpu_mask_nr(i, *span) {
6725 struct sched_group *sg;
6726 int group = group_fn(i, cpu_map, &sg, tmpmask);
6729 if (cpu_isset(i, *covered))
6732 cpus_clear(sg->cpumask);
6733 sg->__cpu_power = 0;
6735 for_each_cpu_mask_nr(j, *span) {
6736 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6739 cpu_set(j, *covered);
6740 cpu_set(j, sg->cpumask);
6751 #define SD_NODES_PER_DOMAIN 16
6756 * find_next_best_node - find the next node to include in a sched_domain
6757 * @node: node whose sched_domain we're building
6758 * @used_nodes: nodes already in the sched_domain
6760 * Find the next node to include in a given scheduling domain. Simply
6761 * finds the closest node not already in the @used_nodes map.
6763 * Should use nodemask_t.
6765 static int find_next_best_node(int node, nodemask_t *used_nodes)
6767 int i, n, val, min_val, best_node = 0;
6771 for (i = 0; i < nr_node_ids; i++) {
6772 /* Start at @node */
6773 n = (node + i) % nr_node_ids;
6775 if (!nr_cpus_node(n))
6778 /* Skip already used nodes */
6779 if (node_isset(n, *used_nodes))
6782 /* Simple min distance search */
6783 val = node_distance(node, n);
6785 if (val < min_val) {
6791 node_set(best_node, *used_nodes);
6796 * sched_domain_node_span - get a cpumask for a node's sched_domain
6797 * @node: node whose cpumask we're constructing
6798 * @span: resulting cpumask
6800 * Given a node, construct a good cpumask for its sched_domain to span. It
6801 * should be one that prevents unnecessary balancing, but also spreads tasks
6804 static void sched_domain_node_span(int node, cpumask_t *span)
6806 nodemask_t used_nodes;
6807 node_to_cpumask_ptr(nodemask, node);
6811 nodes_clear(used_nodes);
6813 cpus_or(*span, *span, *nodemask);
6814 node_set(node, used_nodes);
6816 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6817 int next_node = find_next_best_node(node, &used_nodes);
6819 node_to_cpumask_ptr_next(nodemask, next_node);
6820 cpus_or(*span, *span, *nodemask);
6823 #endif /* CONFIG_NUMA */
6825 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6828 * SMT sched-domains:
6830 #ifdef CONFIG_SCHED_SMT
6831 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6832 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6835 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6839 *sg = &per_cpu(sched_group_cpus, cpu);
6842 #endif /* CONFIG_SCHED_SMT */
6845 * multi-core sched-domains:
6847 #ifdef CONFIG_SCHED_MC
6848 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6849 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6850 #endif /* CONFIG_SCHED_MC */
6852 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6854 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6859 *mask = per_cpu(cpu_sibling_map, cpu);
6860 cpus_and(*mask, *mask, *cpu_map);
6861 group = first_cpu(*mask);
6863 *sg = &per_cpu(sched_group_core, group);
6866 #elif defined(CONFIG_SCHED_MC)
6868 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6872 *sg = &per_cpu(sched_group_core, cpu);
6877 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6878 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6881 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6885 #ifdef CONFIG_SCHED_MC
6886 *mask = cpu_coregroup_map(cpu);
6887 cpus_and(*mask, *mask, *cpu_map);
6888 group = first_cpu(*mask);
6889 #elif defined(CONFIG_SCHED_SMT)
6890 *mask = per_cpu(cpu_sibling_map, cpu);
6891 cpus_and(*mask, *mask, *cpu_map);
6892 group = first_cpu(*mask);
6897 *sg = &per_cpu(sched_group_phys, group);
6903 * The init_sched_build_groups can't handle what we want to do with node
6904 * groups, so roll our own. Now each node has its own list of groups which
6905 * gets dynamically allocated.
6907 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6908 static struct sched_group ***sched_group_nodes_bycpu;
6910 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6911 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6913 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6914 struct sched_group **sg, cpumask_t *nodemask)
6918 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6919 cpus_and(*nodemask, *nodemask, *cpu_map);
6920 group = first_cpu(*nodemask);
6923 *sg = &per_cpu(sched_group_allnodes, group);
6927 static void init_numa_sched_groups_power(struct sched_group *group_head)
6929 struct sched_group *sg = group_head;
6935 for_each_cpu_mask_nr(j, sg->cpumask) {
6936 struct sched_domain *sd;
6938 sd = &per_cpu(phys_domains, j);
6939 if (j != first_cpu(sd->groups->cpumask)) {
6941 * Only add "power" once for each
6947 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6950 } while (sg != group_head);
6952 #endif /* CONFIG_NUMA */
6955 /* Free memory allocated for various sched_group structures */
6956 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6960 for_each_cpu_mask_nr(cpu, *cpu_map) {
6961 struct sched_group **sched_group_nodes
6962 = sched_group_nodes_bycpu[cpu];
6964 if (!sched_group_nodes)
6967 for (i = 0; i < nr_node_ids; i++) {
6968 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6970 *nodemask = node_to_cpumask(i);
6971 cpus_and(*nodemask, *nodemask, *cpu_map);
6972 if (cpus_empty(*nodemask))
6982 if (oldsg != sched_group_nodes[i])
6985 kfree(sched_group_nodes);
6986 sched_group_nodes_bycpu[cpu] = NULL;
6989 #else /* !CONFIG_NUMA */
6990 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6993 #endif /* CONFIG_NUMA */
6996 * Initialize sched groups cpu_power.
6998 * cpu_power indicates the capacity of sched group, which is used while
6999 * distributing the load between different sched groups in a sched domain.
7000 * Typically cpu_power for all the groups in a sched domain will be same unless
7001 * there are asymmetries in the topology. If there are asymmetries, group
7002 * having more cpu_power will pickup more load compared to the group having
7005 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7006 * the maximum number of tasks a group can handle in the presence of other idle
7007 * or lightly loaded groups in the same sched domain.
7009 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7011 struct sched_domain *child;
7012 struct sched_group *group;
7014 WARN_ON(!sd || !sd->groups);
7016 if (cpu != first_cpu(sd->groups->cpumask))
7021 sd->groups->__cpu_power = 0;
7024 * For perf policy, if the groups in child domain share resources
7025 * (for example cores sharing some portions of the cache hierarchy
7026 * or SMT), then set this domain groups cpu_power such that each group
7027 * can handle only one task, when there are other idle groups in the
7028 * same sched domain.
7030 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7032 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7033 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7038 * add cpu_power of each child group to this groups cpu_power
7040 group = child->groups;
7042 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7043 group = group->next;
7044 } while (group != child->groups);
7048 * Initializers for schedule domains
7049 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7052 #define SD_INIT(sd, type) sd_init_##type(sd)
7053 #define SD_INIT_FUNC(type) \
7054 static noinline void sd_init_##type(struct sched_domain *sd) \
7056 memset(sd, 0, sizeof(*sd)); \
7057 *sd = SD_##type##_INIT; \
7058 sd->level = SD_LV_##type; \
7063 SD_INIT_FUNC(ALLNODES)
7066 #ifdef CONFIG_SCHED_SMT
7067 SD_INIT_FUNC(SIBLING)
7069 #ifdef CONFIG_SCHED_MC
7074 * To minimize stack usage kmalloc room for cpumasks and share the
7075 * space as the usage in build_sched_domains() dictates. Used only
7076 * if the amount of space is significant.
7079 cpumask_t tmpmask; /* make this one first */
7082 cpumask_t this_sibling_map;
7083 cpumask_t this_core_map;
7085 cpumask_t send_covered;
7088 cpumask_t domainspan;
7090 cpumask_t notcovered;
7095 #define SCHED_CPUMASK_ALLOC 1
7096 #define SCHED_CPUMASK_FREE(v) kfree(v)
7097 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7099 #define SCHED_CPUMASK_ALLOC 0
7100 #define SCHED_CPUMASK_FREE(v)
7101 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7104 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7105 ((unsigned long)(a) + offsetof(struct allmasks, v))
7107 static int default_relax_domain_level = -1;
7109 static int __init setup_relax_domain_level(char *str)
7113 val = simple_strtoul(str, NULL, 0);
7114 if (val < SD_LV_MAX)
7115 default_relax_domain_level = val;
7119 __setup("relax_domain_level=", setup_relax_domain_level);
7121 static void set_domain_attribute(struct sched_domain *sd,
7122 struct sched_domain_attr *attr)
7126 if (!attr || attr->relax_domain_level < 0) {
7127 if (default_relax_domain_level < 0)
7130 request = default_relax_domain_level;
7132 request = attr->relax_domain_level;
7133 if (request < sd->level) {
7134 /* turn off idle balance on this domain */
7135 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7137 /* turn on idle balance on this domain */
7138 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7143 * Build sched domains for a given set of cpus and attach the sched domains
7144 * to the individual cpus
7146 static int __build_sched_domains(const cpumask_t *cpu_map,
7147 struct sched_domain_attr *attr)
7150 struct root_domain *rd;
7151 SCHED_CPUMASK_DECLARE(allmasks);
7154 struct sched_group **sched_group_nodes = NULL;
7155 int sd_allnodes = 0;
7158 * Allocate the per-node list of sched groups
7160 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7162 if (!sched_group_nodes) {
7163 printk(KERN_WARNING "Can not alloc sched group node list\n");
7168 rd = alloc_rootdomain();
7170 printk(KERN_WARNING "Cannot alloc root domain\n");
7172 kfree(sched_group_nodes);
7177 #if SCHED_CPUMASK_ALLOC
7178 /* get space for all scratch cpumask variables */
7179 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7181 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7184 kfree(sched_group_nodes);
7189 tmpmask = (cpumask_t *)allmasks;
7193 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7197 * Set up domains for cpus specified by the cpu_map.
7199 for_each_cpu_mask_nr(i, *cpu_map) {
7200 struct sched_domain *sd = NULL, *p;
7201 SCHED_CPUMASK_VAR(nodemask, allmasks);
7203 *nodemask = node_to_cpumask(cpu_to_node(i));
7204 cpus_and(*nodemask, *nodemask, *cpu_map);
7207 if (cpus_weight(*cpu_map) >
7208 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7209 sd = &per_cpu(allnodes_domains, i);
7210 SD_INIT(sd, ALLNODES);
7211 set_domain_attribute(sd, attr);
7212 sd->span = *cpu_map;
7213 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7219 sd = &per_cpu(node_domains, i);
7221 set_domain_attribute(sd, attr);
7222 sched_domain_node_span(cpu_to_node(i), &sd->span);
7226 cpus_and(sd->span, sd->span, *cpu_map);
7230 sd = &per_cpu(phys_domains, i);
7232 set_domain_attribute(sd, attr);
7233 sd->span = *nodemask;
7237 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7239 #ifdef CONFIG_SCHED_MC
7241 sd = &per_cpu(core_domains, i);
7243 set_domain_attribute(sd, attr);
7244 sd->span = cpu_coregroup_map(i);
7245 cpus_and(sd->span, sd->span, *cpu_map);
7248 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7251 #ifdef CONFIG_SCHED_SMT
7253 sd = &per_cpu(cpu_domains, i);
7254 SD_INIT(sd, SIBLING);
7255 set_domain_attribute(sd, attr);
7256 sd->span = per_cpu(cpu_sibling_map, i);
7257 cpus_and(sd->span, sd->span, *cpu_map);
7260 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7264 #ifdef CONFIG_SCHED_SMT
7265 /* Set up CPU (sibling) groups */
7266 for_each_cpu_mask_nr(i, *cpu_map) {
7267 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7268 SCHED_CPUMASK_VAR(send_covered, allmasks);
7270 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7271 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7272 if (i != first_cpu(*this_sibling_map))
7275 init_sched_build_groups(this_sibling_map, cpu_map,
7277 send_covered, tmpmask);
7281 #ifdef CONFIG_SCHED_MC
7282 /* Set up multi-core groups */
7283 for_each_cpu_mask_nr(i, *cpu_map) {
7284 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7285 SCHED_CPUMASK_VAR(send_covered, allmasks);
7287 *this_core_map = cpu_coregroup_map(i);
7288 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7289 if (i != first_cpu(*this_core_map))
7292 init_sched_build_groups(this_core_map, cpu_map,
7294 send_covered, tmpmask);
7298 /* Set up physical groups */
7299 for (i = 0; i < nr_node_ids; i++) {
7300 SCHED_CPUMASK_VAR(nodemask, allmasks);
7301 SCHED_CPUMASK_VAR(send_covered, allmasks);
7303 *nodemask = node_to_cpumask(i);
7304 cpus_and(*nodemask, *nodemask, *cpu_map);
7305 if (cpus_empty(*nodemask))
7308 init_sched_build_groups(nodemask, cpu_map,
7310 send_covered, tmpmask);
7314 /* Set up node groups */
7316 SCHED_CPUMASK_VAR(send_covered, allmasks);
7318 init_sched_build_groups(cpu_map, cpu_map,
7319 &cpu_to_allnodes_group,
7320 send_covered, tmpmask);
7323 for (i = 0; i < nr_node_ids; i++) {
7324 /* Set up node groups */
7325 struct sched_group *sg, *prev;
7326 SCHED_CPUMASK_VAR(nodemask, allmasks);
7327 SCHED_CPUMASK_VAR(domainspan, allmasks);
7328 SCHED_CPUMASK_VAR(covered, allmasks);
7331 *nodemask = node_to_cpumask(i);
7332 cpus_clear(*covered);
7334 cpus_and(*nodemask, *nodemask, *cpu_map);
7335 if (cpus_empty(*nodemask)) {
7336 sched_group_nodes[i] = NULL;
7340 sched_domain_node_span(i, domainspan);
7341 cpus_and(*domainspan, *domainspan, *cpu_map);
7343 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7345 printk(KERN_WARNING "Can not alloc domain group for "
7349 sched_group_nodes[i] = sg;
7350 for_each_cpu_mask_nr(j, *nodemask) {
7351 struct sched_domain *sd;
7353 sd = &per_cpu(node_domains, j);
7356 sg->__cpu_power = 0;
7357 sg->cpumask = *nodemask;
7359 cpus_or(*covered, *covered, *nodemask);
7362 for (j = 0; j < nr_node_ids; j++) {
7363 SCHED_CPUMASK_VAR(notcovered, allmasks);
7364 int n = (i + j) % nr_node_ids;
7365 node_to_cpumask_ptr(pnodemask, n);
7367 cpus_complement(*notcovered, *covered);
7368 cpus_and(*tmpmask, *notcovered, *cpu_map);
7369 cpus_and(*tmpmask, *tmpmask, *domainspan);
7370 if (cpus_empty(*tmpmask))
7373 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7374 if (cpus_empty(*tmpmask))
7377 sg = kmalloc_node(sizeof(struct sched_group),
7381 "Can not alloc domain group for node %d\n", j);
7384 sg->__cpu_power = 0;
7385 sg->cpumask = *tmpmask;
7386 sg->next = prev->next;
7387 cpus_or(*covered, *covered, *tmpmask);
7394 /* Calculate CPU power for physical packages and nodes */
7395 #ifdef CONFIG_SCHED_SMT
7396 for_each_cpu_mask_nr(i, *cpu_map) {
7397 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7399 init_sched_groups_power(i, sd);
7402 #ifdef CONFIG_SCHED_MC
7403 for_each_cpu_mask_nr(i, *cpu_map) {
7404 struct sched_domain *sd = &per_cpu(core_domains, i);
7406 init_sched_groups_power(i, sd);
7410 for_each_cpu_mask_nr(i, *cpu_map) {
7411 struct sched_domain *sd = &per_cpu(phys_domains, i);
7413 init_sched_groups_power(i, sd);
7417 for (i = 0; i < nr_node_ids; i++)
7418 init_numa_sched_groups_power(sched_group_nodes[i]);
7421 struct sched_group *sg;
7423 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7425 init_numa_sched_groups_power(sg);
7429 /* Attach the domains */
7430 for_each_cpu_mask_nr(i, *cpu_map) {
7431 struct sched_domain *sd;
7432 #ifdef CONFIG_SCHED_SMT
7433 sd = &per_cpu(cpu_domains, i);
7434 #elif defined(CONFIG_SCHED_MC)
7435 sd = &per_cpu(core_domains, i);
7437 sd = &per_cpu(phys_domains, i);
7439 cpu_attach_domain(sd, rd, i);
7442 SCHED_CPUMASK_FREE((void *)allmasks);
7447 free_sched_groups(cpu_map, tmpmask);
7448 SCHED_CPUMASK_FREE((void *)allmasks);
7453 static int build_sched_domains(const cpumask_t *cpu_map)
7455 return __build_sched_domains(cpu_map, NULL);
7458 static cpumask_t *doms_cur; /* current sched domains */
7459 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7460 static struct sched_domain_attr *dattr_cur;
7461 /* attribues of custom domains in 'doms_cur' */
7464 * Special case: If a kmalloc of a doms_cur partition (array of
7465 * cpumask_t) fails, then fallback to a single sched domain,
7466 * as determined by the single cpumask_t fallback_doms.
7468 static cpumask_t fallback_doms;
7470 void __attribute__((weak)) arch_update_cpu_topology(void)
7475 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7476 * For now this just excludes isolated cpus, but could be used to
7477 * exclude other special cases in the future.
7479 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7483 arch_update_cpu_topology();
7485 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7487 doms_cur = &fallback_doms;
7488 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7490 err = build_sched_domains(doms_cur);
7491 register_sched_domain_sysctl();
7496 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7499 free_sched_groups(cpu_map, tmpmask);
7503 * Detach sched domains from a group of cpus specified in cpu_map
7504 * These cpus will now be attached to the NULL domain
7506 static void detach_destroy_domains(const cpumask_t *cpu_map)
7511 unregister_sched_domain_sysctl();
7513 for_each_cpu_mask_nr(i, *cpu_map)
7514 cpu_attach_domain(NULL, &def_root_domain, i);
7515 synchronize_sched();
7516 arch_destroy_sched_domains(cpu_map, &tmpmask);
7519 /* handle null as "default" */
7520 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7521 struct sched_domain_attr *new, int idx_new)
7523 struct sched_domain_attr tmp;
7530 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7531 new ? (new + idx_new) : &tmp,
7532 sizeof(struct sched_domain_attr));
7536 * Partition sched domains as specified by the 'ndoms_new'
7537 * cpumasks in the array doms_new[] of cpumasks. This compares
7538 * doms_new[] to the current sched domain partitioning, doms_cur[].
7539 * It destroys each deleted domain and builds each new domain.
7541 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7542 * The masks don't intersect (don't overlap.) We should setup one
7543 * sched domain for each mask. CPUs not in any of the cpumasks will
7544 * not be load balanced. If the same cpumask appears both in the
7545 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7548 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7549 * ownership of it and will kfree it when done with it. If the caller
7550 * failed the kmalloc call, then it can pass in doms_new == NULL,
7551 * and partition_sched_domains() will fallback to the single partition
7552 * 'fallback_doms', it also forces the domains to be rebuilt.
7554 * Call with hotplug lock held
7556 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7557 struct sched_domain_attr *dattr_new)
7561 mutex_lock(&sched_domains_mutex);
7563 /* always unregister in case we don't destroy any domains */
7564 unregister_sched_domain_sysctl();
7566 if (doms_new == NULL)
7569 /* Destroy deleted domains */
7570 for (i = 0; i < ndoms_cur; i++) {
7571 for (j = 0; j < ndoms_new; j++) {
7572 if (cpus_equal(doms_cur[i], doms_new[j])
7573 && dattrs_equal(dattr_cur, i, dattr_new, j))
7576 /* no match - a current sched domain not in new doms_new[] */
7577 detach_destroy_domains(doms_cur + i);
7582 if (doms_new == NULL) {
7585 doms_new = &fallback_doms;
7586 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7590 /* Build new domains */
7591 for (i = 0; i < ndoms_new; i++) {
7592 for (j = 0; j < ndoms_cur; j++) {
7593 if (cpus_equal(doms_new[i], doms_cur[j])
7594 && dattrs_equal(dattr_new, i, dattr_cur, j))
7597 /* no match - add a new doms_new */
7598 __build_sched_domains(doms_new + i,
7599 dattr_new ? dattr_new + i : NULL);
7604 /* Remember the new sched domains */
7605 if (doms_cur != &fallback_doms)
7607 kfree(dattr_cur); /* kfree(NULL) is safe */
7608 doms_cur = doms_new;
7609 dattr_cur = dattr_new;
7610 ndoms_cur = ndoms_new;
7612 register_sched_domain_sysctl();
7614 mutex_unlock(&sched_domains_mutex);
7617 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7618 int arch_reinit_sched_domains(void)
7621 rebuild_sched_domains();
7626 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7630 if (buf[0] != '0' && buf[0] != '1')
7634 sched_smt_power_savings = (buf[0] == '1');
7636 sched_mc_power_savings = (buf[0] == '1');
7638 ret = arch_reinit_sched_domains();
7640 return ret ? ret : count;
7643 #ifdef CONFIG_SCHED_MC
7644 static ssize_t sched_mc_power_savings_show(struct sys_device *dev,
7645 struct sysdev_attribute *attr, char *page)
7647 return sprintf(page, "%u\n", sched_mc_power_savings);
7649 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7650 struct sysdev_attribute *attr,
7651 const char *buf, size_t count)
7653 return sched_power_savings_store(buf, count, 0);
7655 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7656 sched_mc_power_savings_store);
7659 #ifdef CONFIG_SCHED_SMT
7660 static ssize_t sched_smt_power_savings_show(struct sys_device *dev,
7661 struct sysdev_attribute *attr, char *page)
7663 return sprintf(page, "%u\n", sched_smt_power_savings);
7665 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7666 struct sysdev_attribute *attr,
7667 const char *buf, size_t count)
7669 return sched_power_savings_store(buf, count, 1);
7671 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7672 sched_smt_power_savings_store);
7675 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7679 #ifdef CONFIG_SCHED_SMT
7681 err = sysfs_create_file(&cls->kset.kobj,
7682 &attr_sched_smt_power_savings.attr);
7684 #ifdef CONFIG_SCHED_MC
7685 if (!err && mc_capable())
7686 err = sysfs_create_file(&cls->kset.kobj,
7687 &attr_sched_mc_power_savings.attr);
7691 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7693 #ifndef CONFIG_CPUSETS
7695 * Add online and remove offline CPUs from the scheduler domains.
7696 * When cpusets are enabled they take over this function.
7698 static int update_sched_domains(struct notifier_block *nfb,
7699 unsigned long action, void *hcpu)
7703 case CPU_ONLINE_FROZEN:
7705 case CPU_DEAD_FROZEN:
7706 partition_sched_domains(0, NULL, NULL);
7715 static int update_runtime(struct notifier_block *nfb,
7716 unsigned long action, void *hcpu)
7718 int cpu = (int)(long)hcpu;
7721 case CPU_DOWN_PREPARE:
7722 case CPU_DOWN_PREPARE_FROZEN:
7723 disable_runtime(cpu_rq(cpu));
7726 case CPU_DOWN_FAILED:
7727 case CPU_DOWN_FAILED_FROZEN:
7729 case CPU_ONLINE_FROZEN:
7730 enable_runtime(cpu_rq(cpu));
7738 void __init sched_init_smp(void)
7740 cpumask_t non_isolated_cpus;
7742 #if defined(CONFIG_NUMA)
7743 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7745 BUG_ON(sched_group_nodes_bycpu == NULL);
7748 mutex_lock(&sched_domains_mutex);
7749 arch_init_sched_domains(&cpu_online_map);
7750 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7751 if (cpus_empty(non_isolated_cpus))
7752 cpu_set(smp_processor_id(), non_isolated_cpus);
7753 mutex_unlock(&sched_domains_mutex);
7756 #ifndef CONFIG_CPUSETS
7757 /* XXX: Theoretical race here - CPU may be hotplugged now */
7758 hotcpu_notifier(update_sched_domains, 0);
7761 /* RT runtime code needs to handle some hotplug events */
7762 hotcpu_notifier(update_runtime, 0);
7766 /* Move init over to a non-isolated CPU */
7767 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7769 sched_init_granularity();
7772 void __init sched_init_smp(void)
7774 sched_init_granularity();
7776 #endif /* CONFIG_SMP */
7778 int in_sched_functions(unsigned long addr)
7780 return in_lock_functions(addr) ||
7781 (addr >= (unsigned long)__sched_text_start
7782 && addr < (unsigned long)__sched_text_end);
7785 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7787 cfs_rq->tasks_timeline = RB_ROOT;
7788 INIT_LIST_HEAD(&cfs_rq->tasks);
7789 #ifdef CONFIG_FAIR_GROUP_SCHED
7792 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7795 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7797 struct rt_prio_array *array;
7800 array = &rt_rq->active;
7801 for (i = 0; i < MAX_RT_PRIO; i++) {
7802 INIT_LIST_HEAD(array->queue + i);
7803 __clear_bit(i, array->bitmap);
7805 /* delimiter for bitsearch: */
7806 __set_bit(MAX_RT_PRIO, array->bitmap);
7808 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7809 rt_rq->highest_prio = MAX_RT_PRIO;
7812 rt_rq->rt_nr_migratory = 0;
7813 rt_rq->overloaded = 0;
7817 rt_rq->rt_throttled = 0;
7818 rt_rq->rt_runtime = 0;
7819 spin_lock_init(&rt_rq->rt_runtime_lock);
7821 #ifdef CONFIG_RT_GROUP_SCHED
7822 rt_rq->rt_nr_boosted = 0;
7827 #ifdef CONFIG_FAIR_GROUP_SCHED
7828 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7829 struct sched_entity *se, int cpu, int add,
7830 struct sched_entity *parent)
7832 struct rq *rq = cpu_rq(cpu);
7833 tg->cfs_rq[cpu] = cfs_rq;
7834 init_cfs_rq(cfs_rq, rq);
7837 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7840 /* se could be NULL for init_task_group */
7845 se->cfs_rq = &rq->cfs;
7847 se->cfs_rq = parent->my_q;
7850 se->load.weight = tg->shares;
7851 se->load.inv_weight = 0;
7852 se->parent = parent;
7856 #ifdef CONFIG_RT_GROUP_SCHED
7857 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7858 struct sched_rt_entity *rt_se, int cpu, int add,
7859 struct sched_rt_entity *parent)
7861 struct rq *rq = cpu_rq(cpu);
7863 tg->rt_rq[cpu] = rt_rq;
7864 init_rt_rq(rt_rq, rq);
7866 rt_rq->rt_se = rt_se;
7867 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7869 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7871 tg->rt_se[cpu] = rt_se;
7876 rt_se->rt_rq = &rq->rt;
7878 rt_se->rt_rq = parent->my_q;
7880 rt_se->my_q = rt_rq;
7881 rt_se->parent = parent;
7882 INIT_LIST_HEAD(&rt_se->run_list);
7886 void __init sched_init(void)
7889 unsigned long alloc_size = 0, ptr;
7891 #ifdef CONFIG_FAIR_GROUP_SCHED
7892 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7894 #ifdef CONFIG_RT_GROUP_SCHED
7895 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7897 #ifdef CONFIG_USER_SCHED
7901 * As sched_init() is called before page_alloc is setup,
7902 * we use alloc_bootmem().
7905 ptr = (unsigned long)alloc_bootmem(alloc_size);
7907 #ifdef CONFIG_FAIR_GROUP_SCHED
7908 init_task_group.se = (struct sched_entity **)ptr;
7909 ptr += nr_cpu_ids * sizeof(void **);
7911 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7912 ptr += nr_cpu_ids * sizeof(void **);
7914 #ifdef CONFIG_USER_SCHED
7915 root_task_group.se = (struct sched_entity **)ptr;
7916 ptr += nr_cpu_ids * sizeof(void **);
7918 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7919 ptr += nr_cpu_ids * sizeof(void **);
7920 #endif /* CONFIG_USER_SCHED */
7921 #endif /* CONFIG_FAIR_GROUP_SCHED */
7922 #ifdef CONFIG_RT_GROUP_SCHED
7923 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7924 ptr += nr_cpu_ids * sizeof(void **);
7926 init_task_group.rt_rq = (struct rt_rq **)ptr;
7927 ptr += nr_cpu_ids * sizeof(void **);
7929 #ifdef CONFIG_USER_SCHED
7930 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7931 ptr += nr_cpu_ids * sizeof(void **);
7933 root_task_group.rt_rq = (struct rt_rq **)ptr;
7934 ptr += nr_cpu_ids * sizeof(void **);
7935 #endif /* CONFIG_USER_SCHED */
7936 #endif /* CONFIG_RT_GROUP_SCHED */
7940 init_defrootdomain();
7943 init_rt_bandwidth(&def_rt_bandwidth,
7944 global_rt_period(), global_rt_runtime());
7946 #ifdef CONFIG_RT_GROUP_SCHED
7947 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7948 global_rt_period(), global_rt_runtime());
7949 #ifdef CONFIG_USER_SCHED
7950 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7951 global_rt_period(), RUNTIME_INF);
7952 #endif /* CONFIG_USER_SCHED */
7953 #endif /* CONFIG_RT_GROUP_SCHED */
7955 #ifdef CONFIG_GROUP_SCHED
7956 list_add(&init_task_group.list, &task_groups);
7957 INIT_LIST_HEAD(&init_task_group.children);
7959 #ifdef CONFIG_USER_SCHED
7960 INIT_LIST_HEAD(&root_task_group.children);
7961 init_task_group.parent = &root_task_group;
7962 list_add(&init_task_group.siblings, &root_task_group.children);
7963 #endif /* CONFIG_USER_SCHED */
7964 #endif /* CONFIG_GROUP_SCHED */
7966 for_each_possible_cpu(i) {
7970 spin_lock_init(&rq->lock);
7971 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7973 init_cfs_rq(&rq->cfs, rq);
7974 init_rt_rq(&rq->rt, rq);
7975 #ifdef CONFIG_FAIR_GROUP_SCHED
7976 init_task_group.shares = init_task_group_load;
7977 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7978 #ifdef CONFIG_CGROUP_SCHED
7980 * How much cpu bandwidth does init_task_group get?
7982 * In case of task-groups formed thr' the cgroup filesystem, it
7983 * gets 100% of the cpu resources in the system. This overall
7984 * system cpu resource is divided among the tasks of
7985 * init_task_group and its child task-groups in a fair manner,
7986 * based on each entity's (task or task-group's) weight
7987 * (se->load.weight).
7989 * In other words, if init_task_group has 10 tasks of weight
7990 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7991 * then A0's share of the cpu resource is:
7993 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7995 * We achieve this by letting init_task_group's tasks sit
7996 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7998 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7999 #elif defined CONFIG_USER_SCHED
8000 root_task_group.shares = NICE_0_LOAD;
8001 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8003 * In case of task-groups formed thr' the user id of tasks,
8004 * init_task_group represents tasks belonging to root user.
8005 * Hence it forms a sibling of all subsequent groups formed.
8006 * In this case, init_task_group gets only a fraction of overall
8007 * system cpu resource, based on the weight assigned to root
8008 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8009 * by letting tasks of init_task_group sit in a separate cfs_rq
8010 * (init_cfs_rq) and having one entity represent this group of
8011 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8013 init_tg_cfs_entry(&init_task_group,
8014 &per_cpu(init_cfs_rq, i),
8015 &per_cpu(init_sched_entity, i), i, 1,
8016 root_task_group.se[i]);
8019 #endif /* CONFIG_FAIR_GROUP_SCHED */
8021 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8022 #ifdef CONFIG_RT_GROUP_SCHED
8023 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8024 #ifdef CONFIG_CGROUP_SCHED
8025 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8026 #elif defined CONFIG_USER_SCHED
8027 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8028 init_tg_rt_entry(&init_task_group,
8029 &per_cpu(init_rt_rq, i),
8030 &per_cpu(init_sched_rt_entity, i), i, 1,
8031 root_task_group.rt_se[i]);
8035 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8036 rq->cpu_load[j] = 0;
8040 rq->active_balance = 0;
8041 rq->next_balance = jiffies;
8045 rq->migration_thread = NULL;
8046 INIT_LIST_HEAD(&rq->migration_queue);
8047 rq_attach_root(rq, &def_root_domain);
8050 atomic_set(&rq->nr_iowait, 0);
8053 set_load_weight(&init_task);
8055 #ifdef CONFIG_PREEMPT_NOTIFIERS
8056 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8060 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8063 #ifdef CONFIG_RT_MUTEXES
8064 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8068 * The boot idle thread does lazy MMU switching as well:
8070 atomic_inc(&init_mm.mm_count);
8071 enter_lazy_tlb(&init_mm, current);
8074 * Make us the idle thread. Technically, schedule() should not be
8075 * called from this thread, however somewhere below it might be,
8076 * but because we are the idle thread, we just pick up running again
8077 * when this runqueue becomes "idle".
8079 init_idle(current, smp_processor_id());
8081 * During early bootup we pretend to be a normal task:
8083 current->sched_class = &fair_sched_class;
8085 scheduler_running = 1;
8088 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8089 void __might_sleep(char *file, int line)
8092 static unsigned long prev_jiffy; /* ratelimiting */
8094 if ((in_atomic() || irqs_disabled()) &&
8095 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8096 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8098 prev_jiffy = jiffies;
8099 printk(KERN_ERR "BUG: sleeping function called from invalid"
8100 " context at %s:%d\n", file, line);
8101 printk("in_atomic():%d, irqs_disabled():%d\n",
8102 in_atomic(), irqs_disabled());
8103 debug_show_held_locks(current);
8104 if (irqs_disabled())
8105 print_irqtrace_events(current);
8110 EXPORT_SYMBOL(__might_sleep);
8113 #ifdef CONFIG_MAGIC_SYSRQ
8114 static void normalize_task(struct rq *rq, struct task_struct *p)
8118 update_rq_clock(rq);
8119 on_rq = p->se.on_rq;
8121 deactivate_task(rq, p, 0);
8122 __setscheduler(rq, p, SCHED_NORMAL, 0);
8124 activate_task(rq, p, 0);
8125 resched_task(rq->curr);
8129 void normalize_rt_tasks(void)
8131 struct task_struct *g, *p;
8132 unsigned long flags;
8135 read_lock_irqsave(&tasklist_lock, flags);
8136 do_each_thread(g, p) {
8138 * Only normalize user tasks:
8143 p->se.exec_start = 0;
8144 #ifdef CONFIG_SCHEDSTATS
8145 p->se.wait_start = 0;
8146 p->se.sleep_start = 0;
8147 p->se.block_start = 0;
8152 * Renice negative nice level userspace
8155 if (TASK_NICE(p) < 0 && p->mm)
8156 set_user_nice(p, 0);
8160 spin_lock(&p->pi_lock);
8161 rq = __task_rq_lock(p);
8163 normalize_task(rq, p);
8165 __task_rq_unlock(rq);
8166 spin_unlock(&p->pi_lock);
8167 } while_each_thread(g, p);
8169 read_unlock_irqrestore(&tasklist_lock, flags);
8172 #endif /* CONFIG_MAGIC_SYSRQ */
8176 * These functions are only useful for the IA64 MCA handling.
8178 * They can only be called when the whole system has been
8179 * stopped - every CPU needs to be quiescent, and no scheduling
8180 * activity can take place. Using them for anything else would
8181 * be a serious bug, and as a result, they aren't even visible
8182 * under any other configuration.
8186 * curr_task - return the current task for a given cpu.
8187 * @cpu: the processor in question.
8189 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8191 struct task_struct *curr_task(int cpu)
8193 return cpu_curr(cpu);
8197 * set_curr_task - set the current task for a given cpu.
8198 * @cpu: the processor in question.
8199 * @p: the task pointer to set.
8201 * Description: This function must only be used when non-maskable interrupts
8202 * are serviced on a separate stack. It allows the architecture to switch the
8203 * notion of the current task on a cpu in a non-blocking manner. This function
8204 * must be called with all CPU's synchronized, and interrupts disabled, the
8205 * and caller must save the original value of the current task (see
8206 * curr_task() above) and restore that value before reenabling interrupts and
8207 * re-starting the system.
8209 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8211 void set_curr_task(int cpu, struct task_struct *p)
8218 #ifdef CONFIG_FAIR_GROUP_SCHED
8219 static void free_fair_sched_group(struct task_group *tg)
8223 for_each_possible_cpu(i) {
8225 kfree(tg->cfs_rq[i]);
8235 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8237 struct cfs_rq *cfs_rq;
8238 struct sched_entity *se, *parent_se;
8242 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8245 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8249 tg->shares = NICE_0_LOAD;
8251 for_each_possible_cpu(i) {
8254 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8255 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8259 se = kmalloc_node(sizeof(struct sched_entity),
8260 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8264 parent_se = parent ? parent->se[i] : NULL;
8265 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8274 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8276 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8277 &cpu_rq(cpu)->leaf_cfs_rq_list);
8280 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8282 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8284 #else /* !CONFG_FAIR_GROUP_SCHED */
8285 static inline void free_fair_sched_group(struct task_group *tg)
8290 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8295 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8299 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8302 #endif /* CONFIG_FAIR_GROUP_SCHED */
8304 #ifdef CONFIG_RT_GROUP_SCHED
8305 static void free_rt_sched_group(struct task_group *tg)
8309 destroy_rt_bandwidth(&tg->rt_bandwidth);
8311 for_each_possible_cpu(i) {
8313 kfree(tg->rt_rq[i]);
8315 kfree(tg->rt_se[i]);
8323 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8325 struct rt_rq *rt_rq;
8326 struct sched_rt_entity *rt_se, *parent_se;
8330 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8333 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8337 init_rt_bandwidth(&tg->rt_bandwidth,
8338 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8340 for_each_possible_cpu(i) {
8343 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8344 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8348 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8349 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8353 parent_se = parent ? parent->rt_se[i] : NULL;
8354 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8363 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8365 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8366 &cpu_rq(cpu)->leaf_rt_rq_list);
8369 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8371 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8373 #else /* !CONFIG_RT_GROUP_SCHED */
8374 static inline void free_rt_sched_group(struct task_group *tg)
8379 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8384 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8388 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8391 #endif /* CONFIG_RT_GROUP_SCHED */
8393 #ifdef CONFIG_GROUP_SCHED
8394 static void free_sched_group(struct task_group *tg)
8396 free_fair_sched_group(tg);
8397 free_rt_sched_group(tg);
8401 /* allocate runqueue etc for a new task group */
8402 struct task_group *sched_create_group(struct task_group *parent)
8404 struct task_group *tg;
8405 unsigned long flags;
8408 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8410 return ERR_PTR(-ENOMEM);
8412 if (!alloc_fair_sched_group(tg, parent))
8415 if (!alloc_rt_sched_group(tg, parent))
8418 spin_lock_irqsave(&task_group_lock, flags);
8419 for_each_possible_cpu(i) {
8420 register_fair_sched_group(tg, i);
8421 register_rt_sched_group(tg, i);
8423 list_add_rcu(&tg->list, &task_groups);
8425 WARN_ON(!parent); /* root should already exist */
8427 tg->parent = parent;
8428 list_add_rcu(&tg->siblings, &parent->children);
8429 INIT_LIST_HEAD(&tg->children);
8430 spin_unlock_irqrestore(&task_group_lock, flags);
8435 free_sched_group(tg);
8436 return ERR_PTR(-ENOMEM);
8439 /* rcu callback to free various structures associated with a task group */
8440 static void free_sched_group_rcu(struct rcu_head *rhp)
8442 /* now it should be safe to free those cfs_rqs */
8443 free_sched_group(container_of(rhp, struct task_group, rcu));
8446 /* Destroy runqueue etc associated with a task group */
8447 void sched_destroy_group(struct task_group *tg)
8449 unsigned long flags;
8452 spin_lock_irqsave(&task_group_lock, flags);
8453 for_each_possible_cpu(i) {
8454 unregister_fair_sched_group(tg, i);
8455 unregister_rt_sched_group(tg, i);
8457 list_del_rcu(&tg->list);
8458 list_del_rcu(&tg->siblings);
8459 spin_unlock_irqrestore(&task_group_lock, flags);
8461 /* wait for possible concurrent references to cfs_rqs complete */
8462 call_rcu(&tg->rcu, free_sched_group_rcu);
8465 /* change task's runqueue when it moves between groups.
8466 * The caller of this function should have put the task in its new group
8467 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8468 * reflect its new group.
8470 void sched_move_task(struct task_struct *tsk)
8473 unsigned long flags;
8476 rq = task_rq_lock(tsk, &flags);
8478 update_rq_clock(rq);
8480 running = task_current(rq, tsk);
8481 on_rq = tsk->se.on_rq;
8484 dequeue_task(rq, tsk, 0);
8485 if (unlikely(running))
8486 tsk->sched_class->put_prev_task(rq, tsk);
8488 set_task_rq(tsk, task_cpu(tsk));
8490 #ifdef CONFIG_FAIR_GROUP_SCHED
8491 if (tsk->sched_class->moved_group)
8492 tsk->sched_class->moved_group(tsk);
8495 if (unlikely(running))
8496 tsk->sched_class->set_curr_task(rq);
8498 enqueue_task(rq, tsk, 0);
8500 task_rq_unlock(rq, &flags);
8502 #endif /* CONFIG_GROUP_SCHED */
8504 #ifdef CONFIG_FAIR_GROUP_SCHED
8505 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8507 struct cfs_rq *cfs_rq = se->cfs_rq;
8512 dequeue_entity(cfs_rq, se, 0);
8514 se->load.weight = shares;
8515 se->load.inv_weight = 0;
8518 enqueue_entity(cfs_rq, se, 0);
8521 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8523 struct cfs_rq *cfs_rq = se->cfs_rq;
8524 struct rq *rq = cfs_rq->rq;
8525 unsigned long flags;
8527 spin_lock_irqsave(&rq->lock, flags);
8528 __set_se_shares(se, shares);
8529 spin_unlock_irqrestore(&rq->lock, flags);
8532 static DEFINE_MUTEX(shares_mutex);
8534 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8537 unsigned long flags;
8540 * We can't change the weight of the root cgroup.
8545 if (shares < MIN_SHARES)
8546 shares = MIN_SHARES;
8547 else if (shares > MAX_SHARES)
8548 shares = MAX_SHARES;
8550 mutex_lock(&shares_mutex);
8551 if (tg->shares == shares)
8554 spin_lock_irqsave(&task_group_lock, flags);
8555 for_each_possible_cpu(i)
8556 unregister_fair_sched_group(tg, i);
8557 list_del_rcu(&tg->siblings);
8558 spin_unlock_irqrestore(&task_group_lock, flags);
8560 /* wait for any ongoing reference to this group to finish */
8561 synchronize_sched();
8564 * Now we are free to modify the group's share on each cpu
8565 * w/o tripping rebalance_share or load_balance_fair.
8567 tg->shares = shares;
8568 for_each_possible_cpu(i) {
8572 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8573 set_se_shares(tg->se[i], shares);
8577 * Enable load balance activity on this group, by inserting it back on
8578 * each cpu's rq->leaf_cfs_rq_list.
8580 spin_lock_irqsave(&task_group_lock, flags);
8581 for_each_possible_cpu(i)
8582 register_fair_sched_group(tg, i);
8583 list_add_rcu(&tg->siblings, &tg->parent->children);
8584 spin_unlock_irqrestore(&task_group_lock, flags);
8586 mutex_unlock(&shares_mutex);
8590 unsigned long sched_group_shares(struct task_group *tg)
8596 #ifdef CONFIG_RT_GROUP_SCHED
8598 * Ensure that the real time constraints are schedulable.
8600 static DEFINE_MUTEX(rt_constraints_mutex);
8602 static unsigned long to_ratio(u64 period, u64 runtime)
8604 if (runtime == RUNTIME_INF)
8607 return div64_u64(runtime << 16, period);
8610 #ifdef CONFIG_CGROUP_SCHED
8611 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8613 struct task_group *tgi, *parent = tg->parent;
8614 unsigned long total = 0;
8617 if (global_rt_period() < period)
8620 return to_ratio(period, runtime) <
8621 to_ratio(global_rt_period(), global_rt_runtime());
8624 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8628 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8632 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8633 tgi->rt_bandwidth.rt_runtime);
8637 return total + to_ratio(period, runtime) <=
8638 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8639 parent->rt_bandwidth.rt_runtime);
8641 #elif defined CONFIG_USER_SCHED
8642 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8644 struct task_group *tgi;
8645 unsigned long total = 0;
8646 unsigned long global_ratio =
8647 to_ratio(global_rt_period(), global_rt_runtime());
8650 list_for_each_entry_rcu(tgi, &task_groups, list) {
8654 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8655 tgi->rt_bandwidth.rt_runtime);
8659 return total + to_ratio(period, runtime) < global_ratio;
8663 /* Must be called with tasklist_lock held */
8664 static inline int tg_has_rt_tasks(struct task_group *tg)
8666 struct task_struct *g, *p;
8667 do_each_thread(g, p) {
8668 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8670 } while_each_thread(g, p);
8674 static int tg_set_bandwidth(struct task_group *tg,
8675 u64 rt_period, u64 rt_runtime)
8679 mutex_lock(&rt_constraints_mutex);
8680 read_lock(&tasklist_lock);
8681 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8685 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8690 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8691 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8692 tg->rt_bandwidth.rt_runtime = rt_runtime;
8694 for_each_possible_cpu(i) {
8695 struct rt_rq *rt_rq = tg->rt_rq[i];
8697 spin_lock(&rt_rq->rt_runtime_lock);
8698 rt_rq->rt_runtime = rt_runtime;
8699 spin_unlock(&rt_rq->rt_runtime_lock);
8701 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8703 read_unlock(&tasklist_lock);
8704 mutex_unlock(&rt_constraints_mutex);
8709 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8711 u64 rt_runtime, rt_period;
8713 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8714 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8715 if (rt_runtime_us < 0)
8716 rt_runtime = RUNTIME_INF;
8718 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8721 long sched_group_rt_runtime(struct task_group *tg)
8725 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8728 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8729 do_div(rt_runtime_us, NSEC_PER_USEC);
8730 return rt_runtime_us;
8733 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8735 u64 rt_runtime, rt_period;
8737 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8738 rt_runtime = tg->rt_bandwidth.rt_runtime;
8743 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8746 long sched_group_rt_period(struct task_group *tg)
8750 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8751 do_div(rt_period_us, NSEC_PER_USEC);
8752 return rt_period_us;
8755 static int sched_rt_global_constraints(void)
8757 struct task_group *tg = &root_task_group;
8758 u64 rt_runtime, rt_period;
8761 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8762 rt_runtime = tg->rt_bandwidth.rt_runtime;
8764 mutex_lock(&rt_constraints_mutex);
8765 if (!__rt_schedulable(tg, rt_period, rt_runtime))
8767 mutex_unlock(&rt_constraints_mutex);
8771 #else /* !CONFIG_RT_GROUP_SCHED */
8772 static int sched_rt_global_constraints(void)
8774 unsigned long flags;
8777 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8778 for_each_possible_cpu(i) {
8779 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8781 spin_lock(&rt_rq->rt_runtime_lock);
8782 rt_rq->rt_runtime = global_rt_runtime();
8783 spin_unlock(&rt_rq->rt_runtime_lock);
8785 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8789 #endif /* CONFIG_RT_GROUP_SCHED */
8791 int sched_rt_handler(struct ctl_table *table, int write,
8792 struct file *filp, void __user *buffer, size_t *lenp,
8796 int old_period, old_runtime;
8797 static DEFINE_MUTEX(mutex);
8800 old_period = sysctl_sched_rt_period;
8801 old_runtime = sysctl_sched_rt_runtime;
8803 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8805 if (!ret && write) {
8806 ret = sched_rt_global_constraints();
8808 sysctl_sched_rt_period = old_period;
8809 sysctl_sched_rt_runtime = old_runtime;
8811 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8812 def_rt_bandwidth.rt_period =
8813 ns_to_ktime(global_rt_period());
8816 mutex_unlock(&mutex);
8821 #ifdef CONFIG_CGROUP_SCHED
8823 /* return corresponding task_group object of a cgroup */
8824 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8826 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8827 struct task_group, css);
8830 static struct cgroup_subsys_state *
8831 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8833 struct task_group *tg, *parent;
8835 if (!cgrp->parent) {
8836 /* This is early initialization for the top cgroup */
8837 init_task_group.css.cgroup = cgrp;
8838 return &init_task_group.css;
8841 parent = cgroup_tg(cgrp->parent);
8842 tg = sched_create_group(parent);
8844 return ERR_PTR(-ENOMEM);
8846 /* Bind the cgroup to task_group object we just created */
8847 tg->css.cgroup = cgrp;
8853 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8855 struct task_group *tg = cgroup_tg(cgrp);
8857 sched_destroy_group(tg);
8861 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8862 struct task_struct *tsk)
8864 #ifdef CONFIG_RT_GROUP_SCHED
8865 /* Don't accept realtime tasks when there is no way for them to run */
8866 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8869 /* We don't support RT-tasks being in separate groups */
8870 if (tsk->sched_class != &fair_sched_class)
8878 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8879 struct cgroup *old_cont, struct task_struct *tsk)
8881 sched_move_task(tsk);
8884 #ifdef CONFIG_FAIR_GROUP_SCHED
8885 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8888 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8891 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8893 struct task_group *tg = cgroup_tg(cgrp);
8895 return (u64) tg->shares;
8897 #endif /* CONFIG_FAIR_GROUP_SCHED */
8899 #ifdef CONFIG_RT_GROUP_SCHED
8900 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8903 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8906 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8908 return sched_group_rt_runtime(cgroup_tg(cgrp));
8911 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8914 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8917 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8919 return sched_group_rt_period(cgroup_tg(cgrp));
8921 #endif /* CONFIG_RT_GROUP_SCHED */
8923 static struct cftype cpu_files[] = {
8924 #ifdef CONFIG_FAIR_GROUP_SCHED
8927 .read_u64 = cpu_shares_read_u64,
8928 .write_u64 = cpu_shares_write_u64,
8931 #ifdef CONFIG_RT_GROUP_SCHED
8933 .name = "rt_runtime_us",
8934 .read_s64 = cpu_rt_runtime_read,
8935 .write_s64 = cpu_rt_runtime_write,
8938 .name = "rt_period_us",
8939 .read_u64 = cpu_rt_period_read_uint,
8940 .write_u64 = cpu_rt_period_write_uint,
8945 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8947 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8950 struct cgroup_subsys cpu_cgroup_subsys = {
8952 .create = cpu_cgroup_create,
8953 .destroy = cpu_cgroup_destroy,
8954 .can_attach = cpu_cgroup_can_attach,
8955 .attach = cpu_cgroup_attach,
8956 .populate = cpu_cgroup_populate,
8957 .subsys_id = cpu_cgroup_subsys_id,
8961 #endif /* CONFIG_CGROUP_SCHED */
8963 #ifdef CONFIG_CGROUP_CPUACCT
8966 * CPU accounting code for task groups.
8968 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8969 * (balbir@in.ibm.com).
8972 /* track cpu usage of a group of tasks */
8974 struct cgroup_subsys_state css;
8975 /* cpuusage holds pointer to a u64-type object on every cpu */
8979 struct cgroup_subsys cpuacct_subsys;
8981 /* return cpu accounting group corresponding to this container */
8982 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8984 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8985 struct cpuacct, css);
8988 /* return cpu accounting group to which this task belongs */
8989 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8991 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8992 struct cpuacct, css);
8995 /* create a new cpu accounting group */
8996 static struct cgroup_subsys_state *cpuacct_create(
8997 struct cgroup_subsys *ss, struct cgroup *cgrp)
8999 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9002 return ERR_PTR(-ENOMEM);
9004 ca->cpuusage = alloc_percpu(u64);
9005 if (!ca->cpuusage) {
9007 return ERR_PTR(-ENOMEM);
9013 /* destroy an existing cpu accounting group */
9015 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9017 struct cpuacct *ca = cgroup_ca(cgrp);
9019 free_percpu(ca->cpuusage);
9023 /* return total cpu usage (in nanoseconds) of a group */
9024 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9026 struct cpuacct *ca = cgroup_ca(cgrp);
9027 u64 totalcpuusage = 0;
9030 for_each_possible_cpu(i) {
9031 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9034 * Take rq->lock to make 64-bit addition safe on 32-bit
9037 spin_lock_irq(&cpu_rq(i)->lock);
9038 totalcpuusage += *cpuusage;
9039 spin_unlock_irq(&cpu_rq(i)->lock);
9042 return totalcpuusage;
9045 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9048 struct cpuacct *ca = cgroup_ca(cgrp);
9057 for_each_possible_cpu(i) {
9058 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9060 spin_lock_irq(&cpu_rq(i)->lock);
9062 spin_unlock_irq(&cpu_rq(i)->lock);
9068 static struct cftype files[] = {
9071 .read_u64 = cpuusage_read,
9072 .write_u64 = cpuusage_write,
9076 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9078 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9082 * charge this task's execution time to its accounting group.
9084 * called with rq->lock held.
9086 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9090 if (!cpuacct_subsys.active)
9095 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9097 *cpuusage += cputime;
9101 struct cgroup_subsys cpuacct_subsys = {
9103 .create = cpuacct_create,
9104 .destroy = cpuacct_destroy,
9105 .populate = cpuacct_populate,
9106 .subsys_id = cpuacct_subsys_id,
9108 #endif /* CONFIG_CGROUP_CPUACCT */