x86: move reservetop and vmalloc parsing to pgtable_32.c
[linux-2.6] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * PFN of last memory page.
53  */
54 unsigned long end_pfn;
55
56 /*
57  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
58  * The direct mapping extends to max_pfn_mapped, so that we can directly access
59  * apertures, ACPI and other tables without having to play with fixmaps.
60  */
61 unsigned long max_pfn_mapped;
62
63 static unsigned long dma_reserve __initdata;
64
65 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
66
67 int direct_gbpages __meminitdata
68 #ifdef CONFIG_DIRECT_GBPAGES
69                                 = 1
70 #endif
71 ;
72
73 static int __init parse_direct_gbpages_off(char *arg)
74 {
75         direct_gbpages = 0;
76         return 0;
77 }
78 early_param("nogbpages", parse_direct_gbpages_off);
79
80 static int __init parse_direct_gbpages_on(char *arg)
81 {
82         direct_gbpages = 1;
83         return 0;
84 }
85 early_param("gbpages", parse_direct_gbpages_on);
86
87 /*
88  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
89  * physical space so we can cache the place of the first one and move
90  * around without checking the pgd every time.
91  */
92
93 void show_mem(void)
94 {
95         long i, total = 0, reserved = 0;
96         long shared = 0, cached = 0;
97         struct page *page;
98         pg_data_t *pgdat;
99
100         printk(KERN_INFO "Mem-info:\n");
101         show_free_areas();
102         for_each_online_pgdat(pgdat) {
103                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
104                         /*
105                          * This loop can take a while with 256 GB and
106                          * 4k pages so defer the NMI watchdog:
107                          */
108                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
109                                 touch_nmi_watchdog();
110
111                         if (!pfn_valid(pgdat->node_start_pfn + i))
112                                 continue;
113
114                         page = pfn_to_page(pgdat->node_start_pfn + i);
115                         total++;
116                         if (PageReserved(page))
117                                 reserved++;
118                         else if (PageSwapCache(page))
119                                 cached++;
120                         else if (page_count(page))
121                                 shared += page_count(page) - 1;
122                 }
123         }
124         printk(KERN_INFO "%lu pages of RAM\n",          total);
125         printk(KERN_INFO "%lu reserved pages\n",        reserved);
126         printk(KERN_INFO "%lu pages shared\n",          shared);
127         printk(KERN_INFO "%lu pages swap cached\n",     cached);
128 }
129
130 int after_bootmem;
131
132 static __init void *spp_getpage(void)
133 {
134         void *ptr;
135
136         if (after_bootmem)
137                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
138         else
139                 ptr = alloc_bootmem_pages(PAGE_SIZE);
140
141         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
142                 panic("set_pte_phys: cannot allocate page data %s\n",
143                         after_bootmem ? "after bootmem" : "");
144         }
145
146         pr_debug("spp_getpage %p\n", ptr);
147
148         return ptr;
149 }
150
151 void
152 set_pte_vaddr(unsigned long vaddr, pte_t new_pte)
153 {
154         pgd_t *pgd;
155         pud_t *pud;
156         pmd_t *pmd;
157         pte_t *pte;
158
159         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(new_pte));
160
161         pgd = pgd_offset_k(vaddr);
162         if (pgd_none(*pgd)) {
163                 printk(KERN_ERR
164                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
165                 return;
166         }
167         pud = pud_offset(pgd, vaddr);
168         if (pud_none(*pud)) {
169                 pmd = (pmd_t *) spp_getpage();
170                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
171                 if (pmd != pmd_offset(pud, 0)) {
172                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
173                                 pmd, pmd_offset(pud, 0));
174                         return;
175                 }
176         }
177         pmd = pmd_offset(pud, vaddr);
178         if (pmd_none(*pmd)) {
179                 pte = (pte_t *) spp_getpage();
180                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
181                 if (pte != pte_offset_kernel(pmd, 0)) {
182                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
183                         return;
184                 }
185         }
186
187         pte = pte_offset_kernel(pmd, vaddr);
188         if (!pte_none(*pte) && pte_val(new_pte) &&
189             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
190                 pte_ERROR(*pte);
191         set_pte(pte, new_pte);
192
193         /*
194          * It's enough to flush this one mapping.
195          * (PGE mappings get flushed as well)
196          */
197         __flush_tlb_one(vaddr);
198 }
199
200 /*
201  * The head.S code sets up the kernel high mapping:
202  *
203  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
204  *
205  * phys_addr holds the negative offset to the kernel, which is added
206  * to the compile time generated pmds. This results in invalid pmds up
207  * to the point where we hit the physaddr 0 mapping.
208  *
209  * We limit the mappings to the region from _text to _end.  _end is
210  * rounded up to the 2MB boundary. This catches the invalid pmds as
211  * well, as they are located before _text:
212  */
213 void __init cleanup_highmap(void)
214 {
215         unsigned long vaddr = __START_KERNEL_map;
216         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
217         pmd_t *pmd = level2_kernel_pgt;
218         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
219
220         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
221                 if (pmd_none(*pmd))
222                         continue;
223                 if (vaddr < (unsigned long) _text || vaddr > end)
224                         set_pmd(pmd, __pmd(0));
225         }
226 }
227
228 static unsigned long __initdata table_start;
229 static unsigned long __meminitdata table_end;
230
231 static __meminit void *alloc_low_page(unsigned long *phys)
232 {
233         unsigned long pfn = table_end++;
234         void *adr;
235
236         if (after_bootmem) {
237                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
238                 *phys = __pa(adr);
239
240                 return adr;
241         }
242
243         if (pfn >= end_pfn)
244                 panic("alloc_low_page: ran out of memory");
245
246         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
247         memset(adr, 0, PAGE_SIZE);
248         *phys  = pfn * PAGE_SIZE;
249         return adr;
250 }
251
252 static __meminit void unmap_low_page(void *adr)
253 {
254         if (after_bootmem)
255                 return;
256
257         early_iounmap(adr, PAGE_SIZE);
258 }
259
260 /* Must run before zap_low_mappings */
261 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
262 {
263         pmd_t *pmd, *last_pmd;
264         unsigned long vaddr;
265         int i, pmds;
266
267         pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
268         vaddr = __START_KERNEL_map;
269         pmd = level2_kernel_pgt;
270         last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
271
272         for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
273                 for (i = 0; i < pmds; i++) {
274                         if (pmd_present(pmd[i]))
275                                 goto continue_outer_loop;
276                 }
277                 vaddr += addr & ~PMD_MASK;
278                 addr &= PMD_MASK;
279
280                 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
281                         set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
282                 __flush_tlb_all();
283
284                 return (void *)vaddr;
285 continue_outer_loop:
286                 ;
287         }
288         printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
289
290         return NULL;
291 }
292
293 /*
294  * To avoid virtual aliases later:
295  */
296 __meminit void early_iounmap(void *addr, unsigned long size)
297 {
298         unsigned long vaddr;
299         pmd_t *pmd;
300         int i, pmds;
301
302         vaddr = (unsigned long)addr;
303         pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
304         pmd = level2_kernel_pgt + pmd_index(vaddr);
305
306         for (i = 0; i < pmds; i++)
307                 pmd_clear(pmd + i);
308
309         __flush_tlb_all();
310 }
311
312 static unsigned long __meminit
313 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
314 {
315         unsigned long pages = 0;
316
317         int i = pmd_index(address);
318
319         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
320                 pmd_t *pmd = pmd_page + pmd_index(address);
321
322                 if (address >= end) {
323                         if (!after_bootmem) {
324                                 for (; i < PTRS_PER_PMD; i++, pmd++)
325                                         set_pmd(pmd, __pmd(0));
326                         }
327                         break;
328                 }
329
330                 if (pmd_val(*pmd))
331                         continue;
332
333                 pages++;
334                 set_pte((pte_t *)pmd,
335                         pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
336         }
337         update_page_count(PG_LEVEL_2M, pages);
338         return address;
339 }
340
341 static unsigned long __meminit
342 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
343 {
344         pmd_t *pmd = pmd_offset(pud, 0);
345         unsigned long last_map_addr;
346
347         spin_lock(&init_mm.page_table_lock);
348         last_map_addr = phys_pmd_init(pmd, address, end);
349         spin_unlock(&init_mm.page_table_lock);
350         __flush_tlb_all();
351         return last_map_addr;
352 }
353
354 static unsigned long __meminit
355 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
356 {
357         unsigned long pages = 0;
358         unsigned long last_map_addr = end;
359         int i = pud_index(addr);
360
361         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
362                 unsigned long pmd_phys;
363                 pud_t *pud = pud_page + pud_index(addr);
364                 pmd_t *pmd;
365
366                 if (addr >= end)
367                         break;
368
369                 if (!after_bootmem &&
370                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
371                         set_pud(pud, __pud(0));
372                         continue;
373                 }
374
375                 if (pud_val(*pud)) {
376                         if (!pud_large(*pud))
377                                 last_map_addr = phys_pmd_update(pud, addr, end);
378                         continue;
379                 }
380
381                 if (direct_gbpages) {
382                         pages++;
383                         set_pte((pte_t *)pud,
384                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
385                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
386                         continue;
387                 }
388
389                 pmd = alloc_low_page(&pmd_phys);
390
391                 spin_lock(&init_mm.page_table_lock);
392                 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
393                 last_map_addr = phys_pmd_init(pmd, addr, end);
394                 spin_unlock(&init_mm.page_table_lock);
395
396                 unmap_low_page(pmd);
397         }
398         __flush_tlb_all();
399         update_page_count(PG_LEVEL_1G, pages);
400
401         return last_map_addr >> PAGE_SHIFT;
402 }
403
404 static void __init find_early_table_space(unsigned long end)
405 {
406         unsigned long puds, pmds, tables, start;
407
408         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
409         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
410         if (!direct_gbpages) {
411                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
412                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
413         }
414
415         /*
416          * RED-PEN putting page tables only on node 0 could
417          * cause a hotspot and fill up ZONE_DMA. The page tables
418          * need roughly 0.5KB per GB.
419          */
420         start = 0x8000;
421         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
422         if (table_start == -1UL)
423                 panic("Cannot find space for the kernel page tables");
424
425         table_start >>= PAGE_SHIFT;
426         table_end = table_start;
427
428         early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
429                 end, table_start << PAGE_SHIFT,
430                 (table_start << PAGE_SHIFT) + tables);
431 }
432
433 static void __init init_gbpages(void)
434 {
435         if (direct_gbpages && cpu_has_gbpages)
436                 printk(KERN_INFO "Using GB pages for direct mapping\n");
437         else
438                 direct_gbpages = 0;
439 }
440
441 #ifdef CONFIG_MEMTEST
442
443 static void __init memtest(unsigned long start_phys, unsigned long size,
444                                  unsigned pattern)
445 {
446         unsigned long i;
447         unsigned long *start;
448         unsigned long start_bad;
449         unsigned long last_bad;
450         unsigned long val;
451         unsigned long start_phys_aligned;
452         unsigned long count;
453         unsigned long incr;
454
455         switch (pattern) {
456         case 0:
457                 val = 0UL;
458                 break;
459         case 1:
460                 val = -1UL;
461                 break;
462         case 2:
463                 val = 0x5555555555555555UL;
464                 break;
465         case 3:
466                 val = 0xaaaaaaaaaaaaaaaaUL;
467                 break;
468         default:
469                 return;
470         }
471
472         incr = sizeof(unsigned long);
473         start_phys_aligned = ALIGN(start_phys, incr);
474         count = (size - (start_phys_aligned - start_phys))/incr;
475         start = __va(start_phys_aligned);
476         start_bad = 0;
477         last_bad = 0;
478
479         for (i = 0; i < count; i++)
480                 start[i] = val;
481         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
482                 if (*start != val) {
483                         if (start_phys_aligned == last_bad + incr) {
484                                 last_bad += incr;
485                         } else {
486                                 if (start_bad) {
487                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
488                                                 val, start_bad, last_bad + incr);
489                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
490                                 }
491                                 start_bad = last_bad = start_phys_aligned;
492                         }
493                 }
494         }
495         if (start_bad) {
496                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
497                         val, start_bad, last_bad + incr);
498                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
499         }
500
501 }
502
503 /* default is disabled */
504 static int memtest_pattern __initdata;
505
506 static int __init parse_memtest(char *arg)
507 {
508         if (arg)
509                 memtest_pattern = simple_strtoul(arg, NULL, 0);
510         return 0;
511 }
512
513 early_param("memtest", parse_memtest);
514
515 static void __init early_memtest(unsigned long start, unsigned long end)
516 {
517         u64 t_start, t_size;
518         unsigned pattern;
519
520         if (!memtest_pattern)
521                 return;
522
523         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
524         for (pattern = 0; pattern < memtest_pattern; pattern++) {
525                 t_start = start;
526                 t_size = 0;
527                 while (t_start < end) {
528                         t_start = find_e820_area_size(t_start, &t_size, 1);
529
530                         /* done ? */
531                         if (t_start >= end)
532                                 break;
533                         if (t_start + t_size > end)
534                                 t_size = end - t_start;
535
536                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
537                                 (unsigned long long)t_start,
538                                 (unsigned long long)t_start + t_size, pattern);
539
540                         memtest(t_start, t_size, pattern);
541
542                         t_start += t_size;
543                 }
544         }
545         printk(KERN_CONT "\n");
546 }
547 #else
548 static void __init early_memtest(unsigned long start, unsigned long end)
549 {
550 }
551 #endif
552
553 /*
554  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
555  * This runs before bootmem is initialized and gets pages directly from
556  * the physical memory. To access them they are temporarily mapped.
557  */
558 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
559 {
560         unsigned long next, last_map_addr = end;
561         unsigned long start_phys = start, end_phys = end;
562
563         printk(KERN_INFO "init_memory_mapping\n");
564
565         /*
566          * Find space for the kernel direct mapping tables.
567          *
568          * Later we should allocate these tables in the local node of the
569          * memory mapped. Unfortunately this is done currently before the
570          * nodes are discovered.
571          */
572         if (!after_bootmem) {
573                 init_gbpages();
574                 find_early_table_space(end);
575         }
576
577         start = (unsigned long)__va(start);
578         end = (unsigned long)__va(end);
579
580         for (; start < end; start = next) {
581                 pgd_t *pgd = pgd_offset_k(start);
582                 unsigned long pud_phys;
583                 pud_t *pud;
584
585                 if (after_bootmem)
586                         pud = pud_offset(pgd, start & PGDIR_MASK);
587                 else
588                         pud = alloc_low_page(&pud_phys);
589
590                 next = start + PGDIR_SIZE;
591                 if (next > end)
592                         next = end;
593                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
594                 if (!after_bootmem)
595                         set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
596                 unmap_low_page(pud);
597         }
598
599         if (!after_bootmem)
600                 mmu_cr4_features = read_cr4();
601         __flush_tlb_all();
602
603         if (!after_bootmem)
604                 reserve_early(table_start << PAGE_SHIFT,
605                                  table_end << PAGE_SHIFT, "PGTABLE");
606
607         if (!after_bootmem)
608                 early_memtest(start_phys, end_phys);
609
610         return last_map_addr;
611 }
612
613 #ifndef CONFIG_NUMA
614 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
615 {
616         unsigned long bootmap_size, bootmap;
617
618         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
619         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
620                                  PAGE_SIZE);
621         if (bootmap == -1L)
622                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
623         bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
624         e820_register_active_regions(0, start_pfn, end_pfn);
625         free_bootmem_with_active_regions(0, end_pfn);
626         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
627         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
628 }
629
630 void __init paging_init(void)
631 {
632         unsigned long max_zone_pfns[MAX_NR_ZONES];
633
634         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
635         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
636         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
637         max_zone_pfns[ZONE_NORMAL] = end_pfn;
638
639         memory_present(0, 0, end_pfn);
640         sparse_init();
641         free_area_init_nodes(max_zone_pfns);
642 }
643 #endif
644
645 /*
646  * Memory hotplug specific functions
647  */
648 #ifdef CONFIG_MEMORY_HOTPLUG
649 /*
650  * Memory is added always to NORMAL zone. This means you will never get
651  * additional DMA/DMA32 memory.
652  */
653 int arch_add_memory(int nid, u64 start, u64 size)
654 {
655         struct pglist_data *pgdat = NODE_DATA(nid);
656         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
657         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
658         unsigned long nr_pages = size >> PAGE_SHIFT;
659         int ret;
660
661         last_mapped_pfn = init_memory_mapping(start, start + size-1);
662         if (last_mapped_pfn > max_pfn_mapped)
663                 max_pfn_mapped = last_mapped_pfn;
664
665         ret = __add_pages(zone, start_pfn, nr_pages);
666         WARN_ON(1);
667
668         return ret;
669 }
670 EXPORT_SYMBOL_GPL(arch_add_memory);
671
672 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
673 int memory_add_physaddr_to_nid(u64 start)
674 {
675         return 0;
676 }
677 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
678 #endif
679
680 #endif /* CONFIG_MEMORY_HOTPLUG */
681
682 /*
683  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
684  * is valid. The argument is a physical page number.
685  *
686  *
687  * On x86, access has to be given to the first megabyte of ram because that area
688  * contains bios code and data regions used by X and dosemu and similar apps.
689  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
690  * mmio resources as well as potential bios/acpi data regions.
691  */
692 int devmem_is_allowed(unsigned long pagenr)
693 {
694         if (pagenr <= 256)
695                 return 1;
696         if (!page_is_ram(pagenr))
697                 return 1;
698         return 0;
699 }
700
701
702 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
703                          kcore_modules, kcore_vsyscall;
704
705 void __init mem_init(void)
706 {
707         long codesize, reservedpages, datasize, initsize;
708
709         pci_iommu_alloc();
710
711         /* clear_bss() already clear the empty_zero_page */
712
713         reservedpages = 0;
714
715         /* this will put all low memory onto the freelists */
716 #ifdef CONFIG_NUMA
717         totalram_pages = numa_free_all_bootmem();
718 #else
719         totalram_pages = free_all_bootmem();
720 #endif
721         reservedpages = end_pfn - totalram_pages -
722                                         absent_pages_in_range(0, end_pfn);
723         after_bootmem = 1;
724
725         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
726         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
727         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
728
729         /* Register memory areas for /proc/kcore */
730         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
731         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
732                    VMALLOC_END-VMALLOC_START);
733         kclist_add(&kcore_kernel, &_stext, _end - _stext);
734         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
735         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
736                                  VSYSCALL_END - VSYSCALL_START);
737
738         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
739                                 "%ldk reserved, %ldk data, %ldk init)\n",
740                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
741                 end_pfn << (PAGE_SHIFT-10),
742                 codesize >> 10,
743                 reservedpages << (PAGE_SHIFT-10),
744                 datasize >> 10,
745                 initsize >> 10);
746
747         cpa_init();
748 }
749
750 void free_init_pages(char *what, unsigned long begin, unsigned long end)
751 {
752         unsigned long addr = begin;
753
754         if (addr >= end)
755                 return;
756
757         /*
758          * If debugging page accesses then do not free this memory but
759          * mark them not present - any buggy init-section access will
760          * create a kernel page fault:
761          */
762 #ifdef CONFIG_DEBUG_PAGEALLOC
763         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
764                 begin, PAGE_ALIGN(end));
765         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
766 #else
767         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
768
769         for (; addr < end; addr += PAGE_SIZE) {
770                 ClearPageReserved(virt_to_page(addr));
771                 init_page_count(virt_to_page(addr));
772                 memset((void *)(addr & ~(PAGE_SIZE-1)),
773                         POISON_FREE_INITMEM, PAGE_SIZE);
774                 free_page(addr);
775                 totalram_pages++;
776         }
777 #endif
778 }
779
780 void free_initmem(void)
781 {
782         free_init_pages("unused kernel memory",
783                         (unsigned long)(&__init_begin),
784                         (unsigned long)(&__init_end));
785 }
786
787 #ifdef CONFIG_DEBUG_RODATA
788 const int rodata_test_data = 0xC3;
789 EXPORT_SYMBOL_GPL(rodata_test_data);
790
791 void mark_rodata_ro(void)
792 {
793         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
794
795         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
796                (end - start) >> 10);
797         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
798
799         /*
800          * The rodata section (but not the kernel text!) should also be
801          * not-executable.
802          */
803         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
804         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
805
806         rodata_test();
807
808 #ifdef CONFIG_CPA_DEBUG
809         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
810         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
811
812         printk(KERN_INFO "Testing CPA: again\n");
813         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
814 #endif
815 }
816
817 #endif
818
819 #ifdef CONFIG_BLK_DEV_INITRD
820 void free_initrd_mem(unsigned long start, unsigned long end)
821 {
822         free_init_pages("initrd memory", start, end);
823 }
824 #endif
825
826 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
827                                    int flags)
828 {
829 #ifdef CONFIG_NUMA
830         int nid, next_nid;
831 #endif
832         unsigned long pfn = phys >> PAGE_SHIFT;
833         int ret;
834
835         if (pfn >= end_pfn) {
836                 /*
837                  * This can happen with kdump kernels when accessing
838                  * firmware tables:
839                  */
840                 if (pfn < max_pfn_mapped)
841                         return -EFAULT;
842
843                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
844                                 phys, len);
845                 return -EFAULT;
846         }
847
848         /* Should check here against the e820 map to avoid double free */
849 #ifdef CONFIG_NUMA
850         nid = phys_to_nid(phys);
851         next_nid = phys_to_nid(phys + len - 1);
852         if (nid == next_nid)
853                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
854         else
855                 ret = reserve_bootmem(phys, len, flags);
856
857         if (ret != 0)
858                 return ret;
859
860 #else
861         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
862 #endif
863
864         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
865                 dma_reserve += len / PAGE_SIZE;
866                 set_dma_reserve(dma_reserve);
867         }
868
869         return 0;
870 }
871
872 int kern_addr_valid(unsigned long addr)
873 {
874         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
875         pgd_t *pgd;
876         pud_t *pud;
877         pmd_t *pmd;
878         pte_t *pte;
879
880         if (above != 0 && above != -1UL)
881                 return 0;
882
883         pgd = pgd_offset_k(addr);
884         if (pgd_none(*pgd))
885                 return 0;
886
887         pud = pud_offset(pgd, addr);
888         if (pud_none(*pud))
889                 return 0;
890
891         pmd = pmd_offset(pud, addr);
892         if (pmd_none(*pmd))
893                 return 0;
894
895         if (pmd_large(*pmd))
896                 return pfn_valid(pmd_pfn(*pmd));
897
898         pte = pte_offset_kernel(pmd, addr);
899         if (pte_none(*pte))
900                 return 0;
901
902         return pfn_valid(pte_pfn(*pte));
903 }
904
905 /*
906  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
907  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
908  * not need special handling anymore:
909  */
910 static struct vm_area_struct gate_vma = {
911         .vm_start       = VSYSCALL_START,
912         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
913         .vm_page_prot   = PAGE_READONLY_EXEC,
914         .vm_flags       = VM_READ | VM_EXEC
915 };
916
917 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
918 {
919 #ifdef CONFIG_IA32_EMULATION
920         if (test_tsk_thread_flag(tsk, TIF_IA32))
921                 return NULL;
922 #endif
923         return &gate_vma;
924 }
925
926 int in_gate_area(struct task_struct *task, unsigned long addr)
927 {
928         struct vm_area_struct *vma = get_gate_vma(task);
929
930         if (!vma)
931                 return 0;
932
933         return (addr >= vma->vm_start) && (addr < vma->vm_end);
934 }
935
936 /*
937  * Use this when you have no reliable task/vma, typically from interrupt
938  * context. It is less reliable than using the task's vma and may give
939  * false positives:
940  */
941 int in_gate_area_no_task(unsigned long addr)
942 {
943         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
944 }
945
946 const char *arch_vma_name(struct vm_area_struct *vma)
947 {
948         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
949                 return "[vdso]";
950         if (vma == &gate_vma)
951                 return "[vsyscall]";
952         return NULL;
953 }
954
955 #ifdef CONFIG_SPARSEMEM_VMEMMAP
956 /*
957  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
958  */
959 static long __meminitdata addr_start, addr_end;
960 static void __meminitdata *p_start, *p_end;
961 static int __meminitdata node_start;
962
963 int __meminit
964 vmemmap_populate(struct page *start_page, unsigned long size, int node)
965 {
966         unsigned long addr = (unsigned long)start_page;
967         unsigned long end = (unsigned long)(start_page + size);
968         unsigned long next;
969         pgd_t *pgd;
970         pud_t *pud;
971         pmd_t *pmd;
972
973         for (; addr < end; addr = next) {
974                 next = pmd_addr_end(addr, end);
975
976                 pgd = vmemmap_pgd_populate(addr, node);
977                 if (!pgd)
978                         return -ENOMEM;
979
980                 pud = vmemmap_pud_populate(pgd, addr, node);
981                 if (!pud)
982                         return -ENOMEM;
983
984                 pmd = pmd_offset(pud, addr);
985                 if (pmd_none(*pmd)) {
986                         pte_t entry;
987                         void *p;
988
989                         p = vmemmap_alloc_block(PMD_SIZE, node);
990                         if (!p)
991                                 return -ENOMEM;
992
993                         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
994                                                         PAGE_KERNEL_LARGE);
995                         set_pmd(pmd, __pmd(pte_val(entry)));
996
997                         /* check to see if we have contiguous blocks */
998                         if (p_end != p || node_start != node) {
999                                 if (p_start)
1000                                         printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1001                                                 addr_start, addr_end-1, p_start, p_end-1, node_start);
1002                                 addr_start = addr;
1003                                 node_start = node;
1004                                 p_start = p;
1005                         }
1006                         addr_end = addr + PMD_SIZE;
1007                         p_end = p + PMD_SIZE;
1008                 } else {
1009                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1010                 }
1011         }
1012         return 0;
1013 }
1014
1015 void __meminit vmemmap_populate_print_last(void)
1016 {
1017         if (p_start) {
1018                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1019                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1020                 p_start = NULL;
1021                 p_end = NULL;
1022                 node_start = 0;
1023         }
1024 }
1025 #endif