2 * linux/arch/parisc/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 #include <linux/platform_device.h>
27 #include <linux/ftrace.h>
29 #include <asm/uaccess.h>
32 #include <asm/param.h>
36 #include <linux/timex.h>
38 static unsigned long clocktick __read_mostly; /* timer cycles per tick */
41 * We keep time on PA-RISC Linux by using the Interval Timer which is
42 * a pair of registers; one is read-only and one is write-only; both
43 * accessed through CR16. The read-only register is 32 or 64 bits wide,
44 * and increments by 1 every CPU clock tick. The architecture only
45 * guarantees us a rate between 0.5 and 2, but all implementations use a
46 * rate of 1. The write-only register is 32-bits wide. When the lowest
47 * 32 bits of the read-only register compare equal to the write-only
48 * register, it raises a maskable external interrupt. Each processor has
49 * an Interval Timer of its own and they are not synchronised.
51 * We want to generate an interrupt every 1/HZ seconds. So we program
52 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
53 * is programmed with the intended time of the next tick. We can be
54 * held off for an arbitrarily long period of time by interrupts being
55 * disabled, so we may miss one or more ticks.
57 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
60 unsigned long next_tick;
61 unsigned long cycles_elapsed, ticks_elapsed;
62 unsigned long cycles_remainder;
63 unsigned int cpu = smp_processor_id();
64 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
66 /* gcc can optimize for "read-only" case with a local clocktick */
67 unsigned long cpt = clocktick;
69 profile_tick(CPU_PROFILING);
71 /* Initialize next_tick to the expected tick time. */
72 next_tick = cpuinfo->it_value;
74 /* Get current interval timer.
75 * CR16 reads as 64 bits in CPU wide mode.
76 * CR16 reads as 32 bits in CPU narrow mode.
80 cycles_elapsed = now - next_tick;
82 if ((cycles_elapsed >> 5) < cpt) {
83 /* use "cheap" math (add/subtract) instead
84 * of the more expensive div/mul method
86 cycles_remainder = cycles_elapsed;
88 while (cycles_remainder > cpt) {
89 cycles_remainder -= cpt;
93 cycles_remainder = cycles_elapsed % cpt;
94 ticks_elapsed = 1 + cycles_elapsed / cpt;
97 /* Can we differentiate between "early CR16" (aka Scenario 1) and
98 * "long delay" (aka Scenario 3)? I don't think so.
100 * We expected timer_interrupt to be delivered at least a few hundred
101 * cycles after the IT fires. But it's arbitrary how much time passes
102 * before we call it "late". I've picked one second.
104 if (unlikely(ticks_elapsed > HZ)) {
105 /* Scenario 3: very long delay? bad in any case */
106 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
107 " cycles %lX rem %lX "
108 " next/now %lX/%lX\n",
110 cycles_elapsed, cycles_remainder,
114 /* convert from "division remainder" to "remainder of clock tick" */
115 cycles_remainder = cpt - cycles_remainder;
117 /* Determine when (in CR16 cycles) next IT interrupt will fire.
118 * We want IT to fire modulo clocktick even if we miss/skip some.
119 * But those interrupts don't in fact get delivered that regularly.
121 next_tick = now + cycles_remainder;
123 cpuinfo->it_value = next_tick;
125 /* Skip one clocktick on purpose if we are likely to miss next_tick.
126 * We want to avoid the new next_tick being less than CR16.
127 * If that happened, itimer wouldn't fire until CR16 wrapped.
128 * We'll catch the tick we missed on the tick after that.
130 if (!(cycles_remainder >> 13))
133 /* Program the IT when to deliver the next interrupt. */
134 /* Only bottom 32-bits of next_tick are written to cr16. */
135 mtctl(next_tick, 16);
138 /* Done mucking with unreliable delivery of interrupts.
139 * Go do system house keeping.
142 if (!--cpuinfo->prof_counter) {
143 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
144 update_process_times(user_mode(get_irq_regs()));
148 write_seqlock(&xtime_lock);
149 do_timer(ticks_elapsed);
150 write_sequnlock(&xtime_lock);
157 unsigned long profile_pc(struct pt_regs *regs)
159 unsigned long pc = instruction_pointer(regs);
161 if (regs->gr[0] & PSW_N)
165 if (in_lock_functions(pc))
171 EXPORT_SYMBOL(profile_pc);
174 /* clock source code */
176 static cycle_t read_cr16(void)
181 static struct clocksource clocksource_cr16 = {
185 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
186 .mult = 0, /* to be set */
188 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
192 int update_cr16_clocksource(void)
194 /* since the cr16 cycle counters are not synchronized across CPUs,
195 we'll check if we should switch to a safe clocksource: */
196 if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
197 clocksource_change_rating(&clocksource_cr16, 0);
204 int update_cr16_clocksource(void)
206 return 0; /* no change */
208 #endif /*CONFIG_SMP*/
210 void __init start_cpu_itimer(void)
212 unsigned int cpu = smp_processor_id();
213 unsigned long next_tick = mfctl(16) + clocktick;
215 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
217 per_cpu(cpu_data, cpu).it_value = next_tick;
220 struct platform_device rtc_parisc_dev = {
221 .name = "rtc-parisc",
225 static int __init rtc_init(void)
229 ret = platform_device_register(&rtc_parisc_dev);
231 printk(KERN_ERR "unable to register rtc device...\n");
233 /* not necessarily an error */
236 module_init(rtc_init);
238 void __init time_init(void)
240 static struct pdc_tod tod_data;
241 unsigned long current_cr16_khz;
243 clocktick = (100 * PAGE0->mem_10msec) / HZ;
245 start_cpu_itimer(); /* get CPU 0 started */
247 /* register at clocksource framework */
248 current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
249 clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
250 clocksource_cr16.shift);
251 clocksource_register(&clocksource_cr16);
253 if (pdc_tod_read(&tod_data) == 0) {
256 write_seqlock_irqsave(&xtime_lock, flags);
257 xtime.tv_sec = tod_data.tod_sec;
258 xtime.tv_nsec = tod_data.tod_usec * 1000;
259 set_normalized_timespec(&wall_to_monotonic,
260 -xtime.tv_sec, -xtime.tv_nsec);
261 write_sequnlock_irqrestore(&xtime_lock, flags);
263 printk(KERN_ERR "Error reading tod clock\n");