2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2x00 queue specific routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/dma-mapping.h>
31 #include "rt2x00lib.h"
33 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34 struct queue_entry *entry)
37 struct skb_frame_desc *skbdesc;
38 unsigned int frame_size;
39 unsigned int head_size = 0;
40 unsigned int tail_size = 0;
43 * The frame size includes descriptor size, because the
44 * hardware directly receive the frame into the skbuffer.
46 frame_size = entry->queue->data_size + entry->queue->desc_size;
49 * The payload should be aligned to a 4-byte boundary,
50 * this means we need at least 3 bytes for moving the frame
51 * into the correct offset.
56 * For IV/EIV/ICV assembly we must make sure there is
57 * at least 8 bytes bytes available in headroom for IV/EIV
58 * and 4 bytes for ICV data as tailroon.
60 #ifdef CONFIG_RT2X00_LIB_CRYPTO
61 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
65 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
70 skb = dev_alloc_skb(frame_size + head_size + tail_size);
75 * Make sure we not have a frame with the requested bytes
76 * available in the head and tail.
78 skb_reserve(skb, head_size);
79 skb_put(skb, frame_size);
84 skbdesc = get_skb_frame_desc(skb);
85 memset(skbdesc, 0, sizeof(*skbdesc));
86 skbdesc->entry = entry;
88 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
89 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
93 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
99 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
101 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
104 * If device has requested headroom, we should make sure that
105 * is also mapped to the DMA so it can be used for transfering
106 * additional descriptor information to the hardware.
108 skb_push(skb, rt2x00dev->hw->extra_tx_headroom);
111 dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
114 * Restore data pointer to original location again.
116 skb_pull(skb, rt2x00dev->hw->extra_tx_headroom);
118 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
120 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
122 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
124 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
126 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
127 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
129 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
132 if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
134 * Add headroom to the skb length, it has been removed
135 * by the driver, but it was actually mapped to DMA.
137 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
138 skb->len + rt2x00dev->hw->extra_tx_headroom,
140 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
144 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
149 rt2x00queue_unmap_skb(rt2x00dev, skb);
150 dev_kfree_skb_any(skb);
153 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
154 struct txentry_desc *txdesc)
156 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
157 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
158 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
159 struct ieee80211_rate *rate =
160 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
161 const struct rt2x00_rate *hwrate;
162 unsigned int data_length;
163 unsigned int duration;
164 unsigned int residual;
165 unsigned long irqflags;
167 memset(txdesc, 0, sizeof(*txdesc));
170 * Initialize information from queue
172 txdesc->queue = entry->queue->qid;
173 txdesc->cw_min = entry->queue->cw_min;
174 txdesc->cw_max = entry->queue->cw_max;
175 txdesc->aifs = entry->queue->aifs;
177 /* Data length + CRC + IV/EIV/ICV/MMIC (when using encryption) */
178 data_length = entry->skb->len + 4;
181 * Check whether this frame is to be acked.
183 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
184 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
186 #ifdef CONFIG_RT2X00_LIB_CRYPTO
187 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags) &&
188 !entry->skb->do_not_encrypt) {
189 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
191 __set_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags);
193 txdesc->cipher = rt2x00crypto_key_to_cipher(hw_key);
195 if (hw_key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
196 __set_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags);
198 txdesc->key_idx = hw_key->hw_key_idx;
199 txdesc->iv_offset = ieee80211_get_hdrlen_from_skb(entry->skb);
202 * Extend frame length to include all encryption overhead
203 * that will be added by the hardware.
205 data_length += rt2x00crypto_tx_overhead(tx_info);
207 if (!(hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV))
208 __set_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags);
210 if (!(hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
211 __set_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags);
213 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
216 * Check if this is a RTS/CTS frame
218 if (ieee80211_is_rts(hdr->frame_control) ||
219 ieee80211_is_cts(hdr->frame_control)) {
220 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
221 if (ieee80211_is_rts(hdr->frame_control))
222 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
224 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
225 if (tx_info->control.rts_cts_rate_idx >= 0)
227 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
231 * Determine retry information.
233 txdesc->retry_limit = tx_info->control.retry_limit;
234 if (tx_info->flags & IEEE80211_TX_CTL_LONG_RETRY_LIMIT)
235 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
238 * Check if more fragments are pending
240 if (ieee80211_has_morefrags(hdr->frame_control)) {
241 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
242 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
246 * Beacons and probe responses require the tsf timestamp
247 * to be inserted into the frame.
249 if (ieee80211_is_beacon(hdr->frame_control) ||
250 ieee80211_is_probe_resp(hdr->frame_control))
251 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
254 * Determine with what IFS priority this frame should be send.
255 * Set ifs to IFS_SIFS when the this is not the first fragment,
256 * or this fragment came after RTS/CTS.
258 if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
259 txdesc->ifs = IFS_SIFS;
260 } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
261 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
262 txdesc->ifs = IFS_BACKOFF;
264 txdesc->ifs = IFS_SIFS;
268 * Hardware should insert sequence counter.
269 * FIXME: We insert a software sequence counter first for
270 * hardware that doesn't support hardware sequence counting.
272 * This is wrong because beacons are not getting sequence
273 * numbers assigned properly.
275 * A secondary problem exists for drivers that cannot toggle
276 * sequence counting per-frame, since those will override the
277 * sequence counter given by mac80211.
279 if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
280 if (likely(tx_info->control.vif)) {
281 struct rt2x00_intf *intf;
283 intf = vif_to_intf(tx_info->control.vif);
285 spin_lock_irqsave(&intf->seqlock, irqflags);
287 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
289 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
290 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
292 spin_unlock_irqrestore(&intf->seqlock, irqflags);
294 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
300 * Length calculation depends on OFDM/CCK rate.
302 hwrate = rt2x00_get_rate(rate->hw_value);
303 txdesc->signal = hwrate->plcp;
304 txdesc->service = 0x04;
306 if (hwrate->flags & DEV_RATE_OFDM) {
307 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags);
309 txdesc->length_high = (data_length >> 6) & 0x3f;
310 txdesc->length_low = data_length & 0x3f;
313 * Convert length to microseconds.
315 residual = get_duration_res(data_length, hwrate->bitrate);
316 duration = get_duration(data_length, hwrate->bitrate);
322 * Check if we need to set the Length Extension
324 if (hwrate->bitrate == 110 && residual <= 30)
325 txdesc->service |= 0x80;
328 txdesc->length_high = (duration >> 8) & 0xff;
329 txdesc->length_low = duration & 0xff;
332 * When preamble is enabled we should set the
333 * preamble bit for the signal.
335 if (rt2x00_get_rate_preamble(rate->hw_value))
336 txdesc->signal |= 0x08;
340 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
341 struct txentry_desc *txdesc)
343 struct data_queue *queue = entry->queue;
344 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
346 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
349 * All processing on the frame has been completed, this means
350 * it is now ready to be dumped to userspace through debugfs.
352 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
355 * Check if we need to kick the queue, there are however a few rules
356 * 1) Don't kick beacon queue
357 * 2) Don't kick unless this is the last in frame in a burst.
358 * When the burst flag is set, this frame is always followed
359 * by another frame which in some way are related to eachother.
360 * This is true for fragments, RTS or CTS-to-self frames.
361 * 3) Rule 2 can be broken when the available entries
362 * in the queue are less then a certain threshold.
364 if (entry->queue->qid == QID_BEACON)
367 if (rt2x00queue_threshold(queue) ||
368 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
369 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
372 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
374 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
375 struct txentry_desc txdesc;
376 struct skb_frame_desc *skbdesc;
379 if (unlikely(rt2x00queue_full(queue)))
382 if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
383 ERROR(queue->rt2x00dev,
384 "Arrived at non-free entry in the non-full queue %d.\n"
385 "Please file bug report to %s.\n",
386 queue->qid, DRV_PROJECT);
391 * Copy all TX descriptor information into txdesc,
392 * after that we are free to use the skb->cb array
393 * for our information.
396 rt2x00queue_create_tx_descriptor(entry, &txdesc);
399 * All information is retreived from the skb->cb array,
400 * now we should claim ownership of the driver part of that
403 skbdesc = get_skb_frame_desc(entry->skb);
404 memset(skbdesc, 0, sizeof(*skbdesc));
405 skbdesc->entry = entry;
408 * When hardware encryption is supported, and this frame
409 * is to be encrypted, we should strip the IV/EIV data from
410 * the frame so we can provide it to the driver seperately.
412 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
413 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags) &&
414 (IEEE80211_SKB_CB(skb)->control.hw_key != NULL)) {
415 iv_len = IEEE80211_SKB_CB(skb)->control.hw_key->iv_len;
416 rt2x00crypto_tx_remove_iv(skb, iv_len);
420 * It could be possible that the queue was corrupted and this
421 * call failed. Just drop the frame, we cannot rollback and pass
422 * the frame to mac80211 because the skb->cb has now been tainted.
424 if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
425 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
426 dev_kfree_skb_any(entry->skb);
431 if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
432 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
434 set_bit(ENTRY_DATA_PENDING, &entry->flags);
436 rt2x00queue_index_inc(queue, Q_INDEX);
437 rt2x00queue_write_tx_descriptor(entry, &txdesc);
442 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
443 struct ieee80211_vif *vif)
445 struct rt2x00_intf *intf = vif_to_intf(vif);
446 struct skb_frame_desc *skbdesc;
447 struct txentry_desc txdesc;
450 if (unlikely(!intf->beacon))
453 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
454 if (!intf->beacon->skb)
458 * Copy all TX descriptor information into txdesc,
459 * after that we are free to use the skb->cb array
460 * for our information.
462 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
465 * For the descriptor we use a local array from where the
466 * driver can move it to the correct location required for
469 memset(desc, 0, sizeof(desc));
472 * Fill in skb descriptor
474 skbdesc = get_skb_frame_desc(intf->beacon->skb);
475 memset(skbdesc, 0, sizeof(*skbdesc));
476 skbdesc->desc = desc;
477 skbdesc->desc_len = intf->beacon->queue->desc_size;
478 skbdesc->entry = intf->beacon;
481 * Write TX descriptor into reserved room in front of the beacon.
483 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
486 * Send beacon to hardware.
487 * Also enable beacon generation, which might have been disabled
488 * by the driver during the config_beacon() callback function.
490 rt2x00dev->ops->lib->write_beacon(intf->beacon);
491 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
496 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
497 const enum data_queue_qid queue)
499 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
501 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
502 return &rt2x00dev->tx[queue];
507 if (queue == QID_BEACON)
508 return &rt2x00dev->bcn[0];
509 else if (queue == QID_ATIM && atim)
510 return &rt2x00dev->bcn[1];
514 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
516 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
517 enum queue_index index)
519 struct queue_entry *entry;
520 unsigned long irqflags;
522 if (unlikely(index >= Q_INDEX_MAX)) {
523 ERROR(queue->rt2x00dev,
524 "Entry requested from invalid index type (%d)\n", index);
528 spin_lock_irqsave(&queue->lock, irqflags);
530 entry = &queue->entries[queue->index[index]];
532 spin_unlock_irqrestore(&queue->lock, irqflags);
536 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
538 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
540 unsigned long irqflags;
542 if (unlikely(index >= Q_INDEX_MAX)) {
543 ERROR(queue->rt2x00dev,
544 "Index change on invalid index type (%d)\n", index);
548 spin_lock_irqsave(&queue->lock, irqflags);
550 queue->index[index]++;
551 if (queue->index[index] >= queue->limit)
552 queue->index[index] = 0;
554 if (index == Q_INDEX) {
556 } else if (index == Q_INDEX_DONE) {
561 spin_unlock_irqrestore(&queue->lock, irqflags);
564 static void rt2x00queue_reset(struct data_queue *queue)
566 unsigned long irqflags;
568 spin_lock_irqsave(&queue->lock, irqflags);
572 memset(queue->index, 0, sizeof(queue->index));
574 spin_unlock_irqrestore(&queue->lock, irqflags);
577 void rt2x00queue_init_rx(struct rt2x00_dev *rt2x00dev)
579 struct data_queue *queue = rt2x00dev->rx;
582 rt2x00queue_reset(queue);
584 if (!rt2x00dev->ops->lib->init_rxentry)
587 for (i = 0; i < queue->limit; i++) {
588 queue->entries[i].flags = 0;
590 rt2x00dev->ops->lib->init_rxentry(rt2x00dev,
595 void rt2x00queue_init_tx(struct rt2x00_dev *rt2x00dev)
597 struct data_queue *queue;
600 txall_queue_for_each(rt2x00dev, queue) {
601 rt2x00queue_reset(queue);
603 if (!rt2x00dev->ops->lib->init_txentry)
606 for (i = 0; i < queue->limit; i++) {
607 queue->entries[i].flags = 0;
609 rt2x00dev->ops->lib->init_txentry(rt2x00dev,
615 static int rt2x00queue_alloc_entries(struct data_queue *queue,
616 const struct data_queue_desc *qdesc)
618 struct queue_entry *entries;
619 unsigned int entry_size;
622 rt2x00queue_reset(queue);
624 queue->limit = qdesc->entry_num;
625 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
626 queue->data_size = qdesc->data_size;
627 queue->desc_size = qdesc->desc_size;
630 * Allocate all queue entries.
632 entry_size = sizeof(*entries) + qdesc->priv_size;
633 entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
637 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
638 ( ((char *)(__base)) + ((__limit) * (__esize)) + \
639 ((__index) * (__psize)) )
641 for (i = 0; i < queue->limit; i++) {
642 entries[i].flags = 0;
643 entries[i].queue = queue;
644 entries[i].skb = NULL;
645 entries[i].entry_idx = i;
646 entries[i].priv_data =
647 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
648 sizeof(*entries), qdesc->priv_size);
651 #undef QUEUE_ENTRY_PRIV_OFFSET
653 queue->entries = entries;
658 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
659 struct data_queue *queue)
666 for (i = 0; i < queue->limit; i++) {
667 if (queue->entries[i].skb)
668 rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
672 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
673 struct data_queue *queue)
678 for (i = 0; i < queue->limit; i++) {
679 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
682 queue->entries[i].skb = skb;
688 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
690 struct data_queue *queue;
693 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
697 tx_queue_for_each(rt2x00dev, queue) {
698 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
703 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
707 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
708 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
709 rt2x00dev->ops->atim);
714 status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
721 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
723 rt2x00queue_uninitialize(rt2x00dev);
728 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
730 struct data_queue *queue;
732 rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
734 queue_for_each(rt2x00dev, queue) {
735 kfree(queue->entries);
736 queue->entries = NULL;
740 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
741 struct data_queue *queue, enum data_queue_qid qid)
743 spin_lock_init(&queue->lock);
745 queue->rt2x00dev = rt2x00dev;
753 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
755 struct data_queue *queue;
756 enum data_queue_qid qid;
757 unsigned int req_atim =
758 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
761 * We need the following queues:
765 * Atim: 1 (if required)
767 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
769 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
771 ERROR(rt2x00dev, "Queue allocation failed.\n");
776 * Initialize pointers
778 rt2x00dev->rx = queue;
779 rt2x00dev->tx = &queue[1];
780 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
783 * Initialize queue parameters.
785 * TX: qid = QID_AC_BE + index
786 * TX: cw_min: 2^5 = 32.
787 * TX: cw_max: 2^10 = 1024.
788 * BCN: qid = QID_BEACON
789 * ATIM: qid = QID_ATIM
791 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
794 tx_queue_for_each(rt2x00dev, queue)
795 rt2x00queue_init(rt2x00dev, queue, qid++);
797 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
799 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
804 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
806 kfree(rt2x00dev->rx);
807 rt2x00dev->rx = NULL;
808 rt2x00dev->tx = NULL;
809 rt2x00dev->bcn = NULL;