Merge branches 'topic/asoc', 'topic/misc-fixes' and 'topic/hda' into for-linus
[linux-2.6] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67
68 #ifdef CONFIG_PPC_OF
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #endif
72
73 #define PFX "ipmi_si: "
74
75 /* Measure times between events in the driver. */
76 #undef DEBUG_TIMING
77
78 /* Call every 10 ms. */
79 #define SI_TIMEOUT_TIME_USEC    10000
80 #define SI_USEC_PER_JIFFY       (1000000/HZ)
81 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
83                                       short timeout */
84
85 /* Bit for BMC global enables. */
86 #define IPMI_BMC_RCV_MSG_INTR     0x01
87 #define IPMI_BMC_EVT_MSG_INTR     0x02
88 #define IPMI_BMC_EVT_MSG_BUFF     0x04
89 #define IPMI_BMC_SYS_LOG          0x08
90
91 enum si_intf_state {
92         SI_NORMAL,
93         SI_GETTING_FLAGS,
94         SI_GETTING_EVENTS,
95         SI_CLEARING_FLAGS,
96         SI_CLEARING_FLAGS_THEN_SET_IRQ,
97         SI_GETTING_MESSAGES,
98         SI_ENABLE_INTERRUPTS1,
99         SI_ENABLE_INTERRUPTS2,
100         SI_DISABLE_INTERRUPTS1,
101         SI_DISABLE_INTERRUPTS2
102         /* FIXME - add watchdog stuff. */
103 };
104
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG             2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
109
110 enum si_type {
111     SI_KCS, SI_SMIC, SI_BT
112 };
113 static char *si_to_str[] = { "kcs", "smic", "bt" };
114
115 #define DEVICE_NAME "ipmi_si"
116
117 static struct device_driver ipmi_driver = {
118         .name = DEVICE_NAME,
119         .bus = &platform_bus_type
120 };
121
122
123 /*
124  * Indexes into stats[] in smi_info below.
125  */
126 enum si_stat_indexes {
127         /*
128          * Number of times the driver requested a timer while an operation
129          * was in progress.
130          */
131         SI_STAT_short_timeouts = 0,
132
133         /*
134          * Number of times the driver requested a timer while nothing was in
135          * progress.
136          */
137         SI_STAT_long_timeouts,
138
139         /* Number of times the interface was idle while being polled. */
140         SI_STAT_idles,
141
142         /* Number of interrupts the driver handled. */
143         SI_STAT_interrupts,
144
145         /* Number of time the driver got an ATTN from the hardware. */
146         SI_STAT_attentions,
147
148         /* Number of times the driver requested flags from the hardware. */
149         SI_STAT_flag_fetches,
150
151         /* Number of times the hardware didn't follow the state machine. */
152         SI_STAT_hosed_count,
153
154         /* Number of completed messages. */
155         SI_STAT_complete_transactions,
156
157         /* Number of IPMI events received from the hardware. */
158         SI_STAT_events,
159
160         /* Number of watchdog pretimeouts. */
161         SI_STAT_watchdog_pretimeouts,
162
163         /* Number of asyncronous messages received. */
164         SI_STAT_incoming_messages,
165
166
167         /* This *must* remain last, add new values above this. */
168         SI_NUM_STATS
169 };
170
171 struct smi_info {
172         int                    intf_num;
173         ipmi_smi_t             intf;
174         struct si_sm_data      *si_sm;
175         struct si_sm_handlers  *handlers;
176         enum si_type           si_type;
177         spinlock_t             si_lock;
178         spinlock_t             msg_lock;
179         struct list_head       xmit_msgs;
180         struct list_head       hp_xmit_msgs;
181         struct ipmi_smi_msg    *curr_msg;
182         enum si_intf_state     si_state;
183
184         /*
185          * Used to handle the various types of I/O that can occur with
186          * IPMI
187          */
188         struct si_sm_io io;
189         int (*io_setup)(struct smi_info *info);
190         void (*io_cleanup)(struct smi_info *info);
191         int (*irq_setup)(struct smi_info *info);
192         void (*irq_cleanup)(struct smi_info *info);
193         unsigned int io_size;
194         char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
195         void (*addr_source_cleanup)(struct smi_info *info);
196         void *addr_source_data;
197
198         /*
199          * Per-OEM handler, called from handle_flags().  Returns 1
200          * when handle_flags() needs to be re-run or 0 indicating it
201          * set si_state itself.
202          */
203         int (*oem_data_avail_handler)(struct smi_info *smi_info);
204
205         /*
206          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
207          * is set to hold the flags until we are done handling everything
208          * from the flags.
209          */
210 #define RECEIVE_MSG_AVAIL       0x01
211 #define EVENT_MSG_BUFFER_FULL   0x02
212 #define WDT_PRE_TIMEOUT_INT     0x08
213 #define OEM0_DATA_AVAIL     0x20
214 #define OEM1_DATA_AVAIL     0x40
215 #define OEM2_DATA_AVAIL     0x80
216 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
217                              OEM1_DATA_AVAIL | \
218                              OEM2_DATA_AVAIL)
219         unsigned char       msg_flags;
220
221         /*
222          * If set to true, this will request events the next time the
223          * state machine is idle.
224          */
225         atomic_t            req_events;
226
227         /*
228          * If true, run the state machine to completion on every send
229          * call.  Generally used after a panic to make sure stuff goes
230          * out.
231          */
232         int                 run_to_completion;
233
234         /* The I/O port of an SI interface. */
235         int                 port;
236
237         /*
238          * The space between start addresses of the two ports.  For
239          * instance, if the first port is 0xca2 and the spacing is 4, then
240          * the second port is 0xca6.
241          */
242         unsigned int        spacing;
243
244         /* zero if no irq; */
245         int                 irq;
246
247         /* The timer for this si. */
248         struct timer_list   si_timer;
249
250         /* The time (in jiffies) the last timeout occurred at. */
251         unsigned long       last_timeout_jiffies;
252
253         /* Used to gracefully stop the timer without race conditions. */
254         atomic_t            stop_operation;
255
256         /*
257          * The driver will disable interrupts when it gets into a
258          * situation where it cannot handle messages due to lack of
259          * memory.  Once that situation clears up, it will re-enable
260          * interrupts.
261          */
262         int interrupt_disabled;
263
264         /* From the get device id response... */
265         struct ipmi_device_id device_id;
266
267         /* Driver model stuff. */
268         struct device *dev;
269         struct platform_device *pdev;
270
271         /*
272          * True if we allocated the device, false if it came from
273          * someplace else (like PCI).
274          */
275         int dev_registered;
276
277         /* Slave address, could be reported from DMI. */
278         unsigned char slave_addr;
279
280         /* Counters and things for the proc filesystem. */
281         atomic_t stats[SI_NUM_STATS];
282
283         struct task_struct *thread;
284
285         struct list_head link;
286 };
287
288 #define smi_inc_stat(smi, stat) \
289         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292
293 #define SI_MAX_PARMS 4
294
295 static int force_kipmid[SI_MAX_PARMS];
296 static int num_force_kipmid;
297
298 static int unload_when_empty = 1;
299
300 static int try_smi_init(struct smi_info *smi);
301 static void cleanup_one_si(struct smi_info *to_clean);
302
303 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
304 static int register_xaction_notifier(struct notifier_block *nb)
305 {
306         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
307 }
308
309 static void deliver_recv_msg(struct smi_info *smi_info,
310                              struct ipmi_smi_msg *msg)
311 {
312         /* Deliver the message to the upper layer with the lock
313            released. */
314         spin_unlock(&(smi_info->si_lock));
315         ipmi_smi_msg_received(smi_info->intf, msg);
316         spin_lock(&(smi_info->si_lock));
317 }
318
319 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
320 {
321         struct ipmi_smi_msg *msg = smi_info->curr_msg;
322
323         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
324                 cCode = IPMI_ERR_UNSPECIFIED;
325         /* else use it as is */
326
327         /* Make it a reponse */
328         msg->rsp[0] = msg->data[0] | 4;
329         msg->rsp[1] = msg->data[1];
330         msg->rsp[2] = cCode;
331         msg->rsp_size = 3;
332
333         smi_info->curr_msg = NULL;
334         deliver_recv_msg(smi_info, msg);
335 }
336
337 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
338 {
339         int              rv;
340         struct list_head *entry = NULL;
341 #ifdef DEBUG_TIMING
342         struct timeval t;
343 #endif
344
345         /*
346          * No need to save flags, we aleady have interrupts off and we
347          * already hold the SMI lock.
348          */
349         if (!smi_info->run_to_completion)
350                 spin_lock(&(smi_info->msg_lock));
351
352         /* Pick the high priority queue first. */
353         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
354                 entry = smi_info->hp_xmit_msgs.next;
355         } else if (!list_empty(&(smi_info->xmit_msgs))) {
356                 entry = smi_info->xmit_msgs.next;
357         }
358
359         if (!entry) {
360                 smi_info->curr_msg = NULL;
361                 rv = SI_SM_IDLE;
362         } else {
363                 int err;
364
365                 list_del(entry);
366                 smi_info->curr_msg = list_entry(entry,
367                                                 struct ipmi_smi_msg,
368                                                 link);
369 #ifdef DEBUG_TIMING
370                 do_gettimeofday(&t);
371                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
372 #endif
373                 err = atomic_notifier_call_chain(&xaction_notifier_list,
374                                 0, smi_info);
375                 if (err & NOTIFY_STOP_MASK) {
376                         rv = SI_SM_CALL_WITHOUT_DELAY;
377                         goto out;
378                 }
379                 err = smi_info->handlers->start_transaction(
380                         smi_info->si_sm,
381                         smi_info->curr_msg->data,
382                         smi_info->curr_msg->data_size);
383                 if (err)
384                         return_hosed_msg(smi_info, err);
385
386                 rv = SI_SM_CALL_WITHOUT_DELAY;
387         }
388  out:
389         if (!smi_info->run_to_completion)
390                 spin_unlock(&(smi_info->msg_lock));
391
392         return rv;
393 }
394
395 static void start_enable_irq(struct smi_info *smi_info)
396 {
397         unsigned char msg[2];
398
399         /*
400          * If we are enabling interrupts, we have to tell the
401          * BMC to use them.
402          */
403         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
404         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
405
406         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
407         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
408 }
409
410 static void start_disable_irq(struct smi_info *smi_info)
411 {
412         unsigned char msg[2];
413
414         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
415         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
416
417         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
418         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
419 }
420
421 static void start_clear_flags(struct smi_info *smi_info)
422 {
423         unsigned char msg[3];
424
425         /* Make sure the watchdog pre-timeout flag is not set at startup. */
426         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
428         msg[2] = WDT_PRE_TIMEOUT_INT;
429
430         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
431         smi_info->si_state = SI_CLEARING_FLAGS;
432 }
433
434 /*
435  * When we have a situtaion where we run out of memory and cannot
436  * allocate messages, we just leave them in the BMC and run the system
437  * polled until we can allocate some memory.  Once we have some
438  * memory, we will re-enable the interrupt.
439  */
440 static inline void disable_si_irq(struct smi_info *smi_info)
441 {
442         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
443                 start_disable_irq(smi_info);
444                 smi_info->interrupt_disabled = 1;
445         }
446 }
447
448 static inline void enable_si_irq(struct smi_info *smi_info)
449 {
450         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
451                 start_enable_irq(smi_info);
452                 smi_info->interrupt_disabled = 0;
453         }
454 }
455
456 static void handle_flags(struct smi_info *smi_info)
457 {
458  retry:
459         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
460                 /* Watchdog pre-timeout */
461                 smi_inc_stat(smi_info, watchdog_pretimeouts);
462
463                 start_clear_flags(smi_info);
464                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
465                 spin_unlock(&(smi_info->si_lock));
466                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
467                 spin_lock(&(smi_info->si_lock));
468         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
469                 /* Messages available. */
470                 smi_info->curr_msg = ipmi_alloc_smi_msg();
471                 if (!smi_info->curr_msg) {
472                         disable_si_irq(smi_info);
473                         smi_info->si_state = SI_NORMAL;
474                         return;
475                 }
476                 enable_si_irq(smi_info);
477
478                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
479                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
480                 smi_info->curr_msg->data_size = 2;
481
482                 smi_info->handlers->start_transaction(
483                         smi_info->si_sm,
484                         smi_info->curr_msg->data,
485                         smi_info->curr_msg->data_size);
486                 smi_info->si_state = SI_GETTING_MESSAGES;
487         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
488                 /* Events available. */
489                 smi_info->curr_msg = ipmi_alloc_smi_msg();
490                 if (!smi_info->curr_msg) {
491                         disable_si_irq(smi_info);
492                         smi_info->si_state = SI_NORMAL;
493                         return;
494                 }
495                 enable_si_irq(smi_info);
496
497                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
498                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
499                 smi_info->curr_msg->data_size = 2;
500
501                 smi_info->handlers->start_transaction(
502                         smi_info->si_sm,
503                         smi_info->curr_msg->data,
504                         smi_info->curr_msg->data_size);
505                 smi_info->si_state = SI_GETTING_EVENTS;
506         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
507                    smi_info->oem_data_avail_handler) {
508                 if (smi_info->oem_data_avail_handler(smi_info))
509                         goto retry;
510         } else
511                 smi_info->si_state = SI_NORMAL;
512 }
513
514 static void handle_transaction_done(struct smi_info *smi_info)
515 {
516         struct ipmi_smi_msg *msg;
517 #ifdef DEBUG_TIMING
518         struct timeval t;
519
520         do_gettimeofday(&t);
521         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
522 #endif
523         switch (smi_info->si_state) {
524         case SI_NORMAL:
525                 if (!smi_info->curr_msg)
526                         break;
527
528                 smi_info->curr_msg->rsp_size
529                         = smi_info->handlers->get_result(
530                                 smi_info->si_sm,
531                                 smi_info->curr_msg->rsp,
532                                 IPMI_MAX_MSG_LENGTH);
533
534                 /*
535                  * Do this here becase deliver_recv_msg() releases the
536                  * lock, and a new message can be put in during the
537                  * time the lock is released.
538                  */
539                 msg = smi_info->curr_msg;
540                 smi_info->curr_msg = NULL;
541                 deliver_recv_msg(smi_info, msg);
542                 break;
543
544         case SI_GETTING_FLAGS:
545         {
546                 unsigned char msg[4];
547                 unsigned int  len;
548
549                 /* We got the flags from the SMI, now handle them. */
550                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
551                 if (msg[2] != 0) {
552                         /* Error fetching flags, just give up for now. */
553                         smi_info->si_state = SI_NORMAL;
554                 } else if (len < 4) {
555                         /*
556                          * Hmm, no flags.  That's technically illegal, but
557                          * don't use uninitialized data.
558                          */
559                         smi_info->si_state = SI_NORMAL;
560                 } else {
561                         smi_info->msg_flags = msg[3];
562                         handle_flags(smi_info);
563                 }
564                 break;
565         }
566
567         case SI_CLEARING_FLAGS:
568         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
569         {
570                 unsigned char msg[3];
571
572                 /* We cleared the flags. */
573                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
574                 if (msg[2] != 0) {
575                         /* Error clearing flags */
576                         printk(KERN_WARNING
577                                "ipmi_si: Error clearing flags: %2.2x\n",
578                                msg[2]);
579                 }
580                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
581                         start_enable_irq(smi_info);
582                 else
583                         smi_info->si_state = SI_NORMAL;
584                 break;
585         }
586
587         case SI_GETTING_EVENTS:
588         {
589                 smi_info->curr_msg->rsp_size
590                         = smi_info->handlers->get_result(
591                                 smi_info->si_sm,
592                                 smi_info->curr_msg->rsp,
593                                 IPMI_MAX_MSG_LENGTH);
594
595                 /*
596                  * Do this here becase deliver_recv_msg() releases the
597                  * lock, and a new message can be put in during the
598                  * time the lock is released.
599                  */
600                 msg = smi_info->curr_msg;
601                 smi_info->curr_msg = NULL;
602                 if (msg->rsp[2] != 0) {
603                         /* Error getting event, probably done. */
604                         msg->done(msg);
605
606                         /* Take off the event flag. */
607                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
608                         handle_flags(smi_info);
609                 } else {
610                         smi_inc_stat(smi_info, events);
611
612                         /*
613                          * Do this before we deliver the message
614                          * because delivering the message releases the
615                          * lock and something else can mess with the
616                          * state.
617                          */
618                         handle_flags(smi_info);
619
620                         deliver_recv_msg(smi_info, msg);
621                 }
622                 break;
623         }
624
625         case SI_GETTING_MESSAGES:
626         {
627                 smi_info->curr_msg->rsp_size
628                         = smi_info->handlers->get_result(
629                                 smi_info->si_sm,
630                                 smi_info->curr_msg->rsp,
631                                 IPMI_MAX_MSG_LENGTH);
632
633                 /*
634                  * Do this here becase deliver_recv_msg() releases the
635                  * lock, and a new message can be put in during the
636                  * time the lock is released.
637                  */
638                 msg = smi_info->curr_msg;
639                 smi_info->curr_msg = NULL;
640                 if (msg->rsp[2] != 0) {
641                         /* Error getting event, probably done. */
642                         msg->done(msg);
643
644                         /* Take off the msg flag. */
645                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
646                         handle_flags(smi_info);
647                 } else {
648                         smi_inc_stat(smi_info, incoming_messages);
649
650                         /*
651                          * Do this before we deliver the message
652                          * because delivering the message releases the
653                          * lock and something else can mess with the
654                          * state.
655                          */
656                         handle_flags(smi_info);
657
658                         deliver_recv_msg(smi_info, msg);
659                 }
660                 break;
661         }
662
663         case SI_ENABLE_INTERRUPTS1:
664         {
665                 unsigned char msg[4];
666
667                 /* We got the flags from the SMI, now handle them. */
668                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
669                 if (msg[2] != 0) {
670                         printk(KERN_WARNING
671                                "ipmi_si: Could not enable interrupts"
672                                ", failed get, using polled mode.\n");
673                         smi_info->si_state = SI_NORMAL;
674                 } else {
675                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
676                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
677                         msg[2] = (msg[3] |
678                                   IPMI_BMC_RCV_MSG_INTR |
679                                   IPMI_BMC_EVT_MSG_INTR);
680                         smi_info->handlers->start_transaction(
681                                 smi_info->si_sm, msg, 3);
682                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
683                 }
684                 break;
685         }
686
687         case SI_ENABLE_INTERRUPTS2:
688         {
689                 unsigned char msg[4];
690
691                 /* We got the flags from the SMI, now handle them. */
692                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
693                 if (msg[2] != 0) {
694                         printk(KERN_WARNING
695                                "ipmi_si: Could not enable interrupts"
696                                ", failed set, using polled mode.\n");
697                 }
698                 smi_info->si_state = SI_NORMAL;
699                 break;
700         }
701
702         case SI_DISABLE_INTERRUPTS1:
703         {
704                 unsigned char msg[4];
705
706                 /* We got the flags from the SMI, now handle them. */
707                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
708                 if (msg[2] != 0) {
709                         printk(KERN_WARNING
710                                "ipmi_si: Could not disable interrupts"
711                                ", failed get.\n");
712                         smi_info->si_state = SI_NORMAL;
713                 } else {
714                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
715                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
716                         msg[2] = (msg[3] &
717                                   ~(IPMI_BMC_RCV_MSG_INTR |
718                                     IPMI_BMC_EVT_MSG_INTR));
719                         smi_info->handlers->start_transaction(
720                                 smi_info->si_sm, msg, 3);
721                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
722                 }
723                 break;
724         }
725
726         case SI_DISABLE_INTERRUPTS2:
727         {
728                 unsigned char msg[4];
729
730                 /* We got the flags from the SMI, now handle them. */
731                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
732                 if (msg[2] != 0) {
733                         printk(KERN_WARNING
734                                "ipmi_si: Could not disable interrupts"
735                                ", failed set.\n");
736                 }
737                 smi_info->si_state = SI_NORMAL;
738                 break;
739         }
740         }
741 }
742
743 /*
744  * Called on timeouts and events.  Timeouts should pass the elapsed
745  * time, interrupts should pass in zero.  Must be called with
746  * si_lock held and interrupts disabled.
747  */
748 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
749                                            int time)
750 {
751         enum si_sm_result si_sm_result;
752
753  restart:
754         /*
755          * There used to be a loop here that waited a little while
756          * (around 25us) before giving up.  That turned out to be
757          * pointless, the minimum delays I was seeing were in the 300us
758          * range, which is far too long to wait in an interrupt.  So
759          * we just run until the state machine tells us something
760          * happened or it needs a delay.
761          */
762         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
763         time = 0;
764         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
765                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
766
767         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
768                 smi_inc_stat(smi_info, complete_transactions);
769
770                 handle_transaction_done(smi_info);
771                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
772         } else if (si_sm_result == SI_SM_HOSED) {
773                 smi_inc_stat(smi_info, hosed_count);
774
775                 /*
776                  * Do the before return_hosed_msg, because that
777                  * releases the lock.
778                  */
779                 smi_info->si_state = SI_NORMAL;
780                 if (smi_info->curr_msg != NULL) {
781                         /*
782                          * If we were handling a user message, format
783                          * a response to send to the upper layer to
784                          * tell it about the error.
785                          */
786                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
787                 }
788                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
789         }
790
791         /*
792          * We prefer handling attn over new messages.  But don't do
793          * this if there is not yet an upper layer to handle anything.
794          */
795         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
796                 unsigned char msg[2];
797
798                 smi_inc_stat(smi_info, attentions);
799
800                 /*
801                  * Got a attn, send down a get message flags to see
802                  * what's causing it.  It would be better to handle
803                  * this in the upper layer, but due to the way
804                  * interrupts work with the SMI, that's not really
805                  * possible.
806                  */
807                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
808                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
809
810                 smi_info->handlers->start_transaction(
811                         smi_info->si_sm, msg, 2);
812                 smi_info->si_state = SI_GETTING_FLAGS;
813                 goto restart;
814         }
815
816         /* If we are currently idle, try to start the next message. */
817         if (si_sm_result == SI_SM_IDLE) {
818                 smi_inc_stat(smi_info, idles);
819
820                 si_sm_result = start_next_msg(smi_info);
821                 if (si_sm_result != SI_SM_IDLE)
822                         goto restart;
823         }
824
825         if ((si_sm_result == SI_SM_IDLE)
826             && (atomic_read(&smi_info->req_events))) {
827                 /*
828                  * We are idle and the upper layer requested that I fetch
829                  * events, so do so.
830                  */
831                 atomic_set(&smi_info->req_events, 0);
832
833                 smi_info->curr_msg = ipmi_alloc_smi_msg();
834                 if (!smi_info->curr_msg)
835                         goto out;
836
837                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
838                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
839                 smi_info->curr_msg->data_size = 2;
840
841                 smi_info->handlers->start_transaction(
842                         smi_info->si_sm,
843                         smi_info->curr_msg->data,
844                         smi_info->curr_msg->data_size);
845                 smi_info->si_state = SI_GETTING_EVENTS;
846                 goto restart;
847         }
848  out:
849         return si_sm_result;
850 }
851
852 static void sender(void                *send_info,
853                    struct ipmi_smi_msg *msg,
854                    int                 priority)
855 {
856         struct smi_info   *smi_info = send_info;
857         enum si_sm_result result;
858         unsigned long     flags;
859 #ifdef DEBUG_TIMING
860         struct timeval    t;
861 #endif
862
863         if (atomic_read(&smi_info->stop_operation)) {
864                 msg->rsp[0] = msg->data[0] | 4;
865                 msg->rsp[1] = msg->data[1];
866                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
867                 msg->rsp_size = 3;
868                 deliver_recv_msg(smi_info, msg);
869                 return;
870         }
871
872 #ifdef DEBUG_TIMING
873         do_gettimeofday(&t);
874         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
875 #endif
876
877         if (smi_info->run_to_completion) {
878                 /*
879                  * If we are running to completion, then throw it in
880                  * the list and run transactions until everything is
881                  * clear.  Priority doesn't matter here.
882                  */
883
884                 /*
885                  * Run to completion means we are single-threaded, no
886                  * need for locks.
887                  */
888                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
889
890                 result = smi_event_handler(smi_info, 0);
891                 while (result != SI_SM_IDLE) {
892                         udelay(SI_SHORT_TIMEOUT_USEC);
893                         result = smi_event_handler(smi_info,
894                                                    SI_SHORT_TIMEOUT_USEC);
895                 }
896                 return;
897         }
898
899         spin_lock_irqsave(&smi_info->msg_lock, flags);
900         if (priority > 0)
901                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
902         else
903                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
904         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
905
906         spin_lock_irqsave(&smi_info->si_lock, flags);
907         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
908                 start_next_msg(smi_info);
909         spin_unlock_irqrestore(&smi_info->si_lock, flags);
910 }
911
912 static void set_run_to_completion(void *send_info, int i_run_to_completion)
913 {
914         struct smi_info   *smi_info = send_info;
915         enum si_sm_result result;
916
917         smi_info->run_to_completion = i_run_to_completion;
918         if (i_run_to_completion) {
919                 result = smi_event_handler(smi_info, 0);
920                 while (result != SI_SM_IDLE) {
921                         udelay(SI_SHORT_TIMEOUT_USEC);
922                         result = smi_event_handler(smi_info,
923                                                    SI_SHORT_TIMEOUT_USEC);
924                 }
925         }
926 }
927
928 static int ipmi_thread(void *data)
929 {
930         struct smi_info *smi_info = data;
931         unsigned long flags;
932         enum si_sm_result smi_result;
933
934         set_user_nice(current, 19);
935         while (!kthread_should_stop()) {
936                 spin_lock_irqsave(&(smi_info->si_lock), flags);
937                 smi_result = smi_event_handler(smi_info, 0);
938                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
939                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
940                         ; /* do nothing */
941                 else if (smi_result == SI_SM_CALL_WITH_DELAY)
942                         schedule();
943                 else
944                         schedule_timeout_interruptible(1);
945         }
946         return 0;
947 }
948
949
950 static void poll(void *send_info)
951 {
952         struct smi_info *smi_info = send_info;
953         unsigned long flags;
954
955         /*
956          * Make sure there is some delay in the poll loop so we can
957          * drive time forward and timeout things.
958          */
959         udelay(10);
960         spin_lock_irqsave(&smi_info->si_lock, flags);
961         smi_event_handler(smi_info, 10);
962         spin_unlock_irqrestore(&smi_info->si_lock, flags);
963 }
964
965 static void request_events(void *send_info)
966 {
967         struct smi_info *smi_info = send_info;
968
969         if (atomic_read(&smi_info->stop_operation))
970                 return;
971
972         atomic_set(&smi_info->req_events, 1);
973 }
974
975 static int initialized;
976
977 static void smi_timeout(unsigned long data)
978 {
979         struct smi_info   *smi_info = (struct smi_info *) data;
980         enum si_sm_result smi_result;
981         unsigned long     flags;
982         unsigned long     jiffies_now;
983         long              time_diff;
984 #ifdef DEBUG_TIMING
985         struct timeval    t;
986 #endif
987
988         spin_lock_irqsave(&(smi_info->si_lock), flags);
989 #ifdef DEBUG_TIMING
990         do_gettimeofday(&t);
991         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
992 #endif
993         jiffies_now = jiffies;
994         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
995                      * SI_USEC_PER_JIFFY);
996         smi_result = smi_event_handler(smi_info, time_diff);
997
998         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
999
1000         smi_info->last_timeout_jiffies = jiffies_now;
1001
1002         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1003                 /* Running with interrupts, only do long timeouts. */
1004                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1005                 smi_inc_stat(smi_info, long_timeouts);
1006                 goto do_add_timer;
1007         }
1008
1009         /*
1010          * If the state machine asks for a short delay, then shorten
1011          * the timer timeout.
1012          */
1013         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1014                 smi_inc_stat(smi_info, short_timeouts);
1015                 smi_info->si_timer.expires = jiffies + 1;
1016         } else {
1017                 smi_inc_stat(smi_info, long_timeouts);
1018                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1019         }
1020
1021  do_add_timer:
1022         add_timer(&(smi_info->si_timer));
1023 }
1024
1025 static irqreturn_t si_irq_handler(int irq, void *data)
1026 {
1027         struct smi_info *smi_info = data;
1028         unsigned long   flags;
1029 #ifdef DEBUG_TIMING
1030         struct timeval  t;
1031 #endif
1032
1033         spin_lock_irqsave(&(smi_info->si_lock), flags);
1034
1035         smi_inc_stat(smi_info, interrupts);
1036
1037 #ifdef DEBUG_TIMING
1038         do_gettimeofday(&t);
1039         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1040 #endif
1041         smi_event_handler(smi_info, 0);
1042         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1043         return IRQ_HANDLED;
1044 }
1045
1046 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1047 {
1048         struct smi_info *smi_info = data;
1049         /* We need to clear the IRQ flag for the BT interface. */
1050         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1051                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1052                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1053         return si_irq_handler(irq, data);
1054 }
1055
1056 static int smi_start_processing(void       *send_info,
1057                                 ipmi_smi_t intf)
1058 {
1059         struct smi_info *new_smi = send_info;
1060         int             enable = 0;
1061
1062         new_smi->intf = intf;
1063
1064         /* Try to claim any interrupts. */
1065         if (new_smi->irq_setup)
1066                 new_smi->irq_setup(new_smi);
1067
1068         /* Set up the timer that drives the interface. */
1069         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1070         new_smi->last_timeout_jiffies = jiffies;
1071         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1072
1073         /*
1074          * Check if the user forcefully enabled the daemon.
1075          */
1076         if (new_smi->intf_num < num_force_kipmid)
1077                 enable = force_kipmid[new_smi->intf_num];
1078         /*
1079          * The BT interface is efficient enough to not need a thread,
1080          * and there is no need for a thread if we have interrupts.
1081          */
1082         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1083                 enable = 1;
1084
1085         if (enable) {
1086                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1087                                               "kipmi%d", new_smi->intf_num);
1088                 if (IS_ERR(new_smi->thread)) {
1089                         printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1090                                " kernel thread due to error %ld, only using"
1091                                " timers to drive the interface\n",
1092                                PTR_ERR(new_smi->thread));
1093                         new_smi->thread = NULL;
1094                 }
1095         }
1096
1097         return 0;
1098 }
1099
1100 static void set_maintenance_mode(void *send_info, int enable)
1101 {
1102         struct smi_info   *smi_info = send_info;
1103
1104         if (!enable)
1105                 atomic_set(&smi_info->req_events, 0);
1106 }
1107
1108 static struct ipmi_smi_handlers handlers = {
1109         .owner                  = THIS_MODULE,
1110         .start_processing       = smi_start_processing,
1111         .sender                 = sender,
1112         .request_events         = request_events,
1113         .set_maintenance_mode   = set_maintenance_mode,
1114         .set_run_to_completion  = set_run_to_completion,
1115         .poll                   = poll,
1116 };
1117
1118 /*
1119  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1120  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1121  */
1122
1123 static LIST_HEAD(smi_infos);
1124 static DEFINE_MUTEX(smi_infos_lock);
1125 static int smi_num; /* Used to sequence the SMIs */
1126
1127 #define DEFAULT_REGSPACING      1
1128 #define DEFAULT_REGSIZE         1
1129
1130 static int           si_trydefaults = 1;
1131 static char          *si_type[SI_MAX_PARMS];
1132 #define MAX_SI_TYPE_STR 30
1133 static char          si_type_str[MAX_SI_TYPE_STR];
1134 static unsigned long addrs[SI_MAX_PARMS];
1135 static unsigned int num_addrs;
1136 static unsigned int  ports[SI_MAX_PARMS];
1137 static unsigned int num_ports;
1138 static int           irqs[SI_MAX_PARMS];
1139 static unsigned int num_irqs;
1140 static int           regspacings[SI_MAX_PARMS];
1141 static unsigned int num_regspacings;
1142 static int           regsizes[SI_MAX_PARMS];
1143 static unsigned int num_regsizes;
1144 static int           regshifts[SI_MAX_PARMS];
1145 static unsigned int num_regshifts;
1146 static int slave_addrs[SI_MAX_PARMS];
1147 static unsigned int num_slave_addrs;
1148
1149 #define IPMI_IO_ADDR_SPACE  0
1150 #define IPMI_MEM_ADDR_SPACE 1
1151 static char *addr_space_to_str[] = { "i/o", "mem" };
1152
1153 static int hotmod_handler(const char *val, struct kernel_param *kp);
1154
1155 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1156 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1157                  " Documentation/IPMI.txt in the kernel sources for the"
1158                  " gory details.");
1159
1160 module_param_named(trydefaults, si_trydefaults, bool, 0);
1161 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1162                  " default scan of the KCS and SMIC interface at the standard"
1163                  " address");
1164 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1165 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1166                  " interface separated by commas.  The types are 'kcs',"
1167                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1168                  " the first interface to kcs and the second to bt");
1169 module_param_array(addrs, ulong, &num_addrs, 0);
1170 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1171                  " addresses separated by commas.  Only use if an interface"
1172                  " is in memory.  Otherwise, set it to zero or leave"
1173                  " it blank.");
1174 module_param_array(ports, uint, &num_ports, 0);
1175 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1176                  " addresses separated by commas.  Only use if an interface"
1177                  " is a port.  Otherwise, set it to zero or leave"
1178                  " it blank.");
1179 module_param_array(irqs, int, &num_irqs, 0);
1180 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1181                  " addresses separated by commas.  Only use if an interface"
1182                  " has an interrupt.  Otherwise, set it to zero or leave"
1183                  " it blank.");
1184 module_param_array(regspacings, int, &num_regspacings, 0);
1185 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1186                  " and each successive register used by the interface.  For"
1187                  " instance, if the start address is 0xca2 and the spacing"
1188                  " is 2, then the second address is at 0xca4.  Defaults"
1189                  " to 1.");
1190 module_param_array(regsizes, int, &num_regsizes, 0);
1191 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1192                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1193                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1194                  " the 8-bit IPMI register has to be read from a larger"
1195                  " register.");
1196 module_param_array(regshifts, int, &num_regshifts, 0);
1197 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1198                  " IPMI register, in bits.  For instance, if the data"
1199                  " is read from a 32-bit word and the IPMI data is in"
1200                  " bit 8-15, then the shift would be 8");
1201 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1202 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1203                  " the controller.  Normally this is 0x20, but can be"
1204                  " overridden by this parm.  This is an array indexed"
1205                  " by interface number.");
1206 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1207 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1208                  " disabled(0).  Normally the IPMI driver auto-detects"
1209                  " this, but the value may be overridden by this parm.");
1210 module_param(unload_when_empty, int, 0);
1211 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1212                  " specified or found, default is 1.  Setting to 0"
1213                  " is useful for hot add of devices using hotmod.");
1214
1215
1216 static void std_irq_cleanup(struct smi_info *info)
1217 {
1218         if (info->si_type == SI_BT)
1219                 /* Disable the interrupt in the BT interface. */
1220                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1221         free_irq(info->irq, info);
1222 }
1223
1224 static int std_irq_setup(struct smi_info *info)
1225 {
1226         int rv;
1227
1228         if (!info->irq)
1229                 return 0;
1230
1231         if (info->si_type == SI_BT) {
1232                 rv = request_irq(info->irq,
1233                                  si_bt_irq_handler,
1234                                  IRQF_SHARED | IRQF_DISABLED,
1235                                  DEVICE_NAME,
1236                                  info);
1237                 if (!rv)
1238                         /* Enable the interrupt in the BT interface. */
1239                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1240                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1241         } else
1242                 rv = request_irq(info->irq,
1243                                  si_irq_handler,
1244                                  IRQF_SHARED | IRQF_DISABLED,
1245                                  DEVICE_NAME,
1246                                  info);
1247         if (rv) {
1248                 printk(KERN_WARNING
1249                        "ipmi_si: %s unable to claim interrupt %d,"
1250                        " running polled\n",
1251                        DEVICE_NAME, info->irq);
1252                 info->irq = 0;
1253         } else {
1254                 info->irq_cleanup = std_irq_cleanup;
1255                 printk("  Using irq %d\n", info->irq);
1256         }
1257
1258         return rv;
1259 }
1260
1261 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1262 {
1263         unsigned int addr = io->addr_data;
1264
1265         return inb(addr + (offset * io->regspacing));
1266 }
1267
1268 static void port_outb(struct si_sm_io *io, unsigned int offset,
1269                       unsigned char b)
1270 {
1271         unsigned int addr = io->addr_data;
1272
1273         outb(b, addr + (offset * io->regspacing));
1274 }
1275
1276 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1277 {
1278         unsigned int addr = io->addr_data;
1279
1280         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1281 }
1282
1283 static void port_outw(struct si_sm_io *io, unsigned int offset,
1284                       unsigned char b)
1285 {
1286         unsigned int addr = io->addr_data;
1287
1288         outw(b << io->regshift, addr + (offset * io->regspacing));
1289 }
1290
1291 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1292 {
1293         unsigned int addr = io->addr_data;
1294
1295         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1296 }
1297
1298 static void port_outl(struct si_sm_io *io, unsigned int offset,
1299                       unsigned char b)
1300 {
1301         unsigned int addr = io->addr_data;
1302
1303         outl(b << io->regshift, addr+(offset * io->regspacing));
1304 }
1305
1306 static void port_cleanup(struct smi_info *info)
1307 {
1308         unsigned int addr = info->io.addr_data;
1309         int          idx;
1310
1311         if (addr) {
1312                 for (idx = 0; idx < info->io_size; idx++)
1313                         release_region(addr + idx * info->io.regspacing,
1314                                        info->io.regsize);
1315         }
1316 }
1317
1318 static int port_setup(struct smi_info *info)
1319 {
1320         unsigned int addr = info->io.addr_data;
1321         int          idx;
1322
1323         if (!addr)
1324                 return -ENODEV;
1325
1326         info->io_cleanup = port_cleanup;
1327
1328         /*
1329          * Figure out the actual inb/inw/inl/etc routine to use based
1330          * upon the register size.
1331          */
1332         switch (info->io.regsize) {
1333         case 1:
1334                 info->io.inputb = port_inb;
1335                 info->io.outputb = port_outb;
1336                 break;
1337         case 2:
1338                 info->io.inputb = port_inw;
1339                 info->io.outputb = port_outw;
1340                 break;
1341         case 4:
1342                 info->io.inputb = port_inl;
1343                 info->io.outputb = port_outl;
1344                 break;
1345         default:
1346                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1347                        info->io.regsize);
1348                 return -EINVAL;
1349         }
1350
1351         /*
1352          * Some BIOSes reserve disjoint I/O regions in their ACPI
1353          * tables.  This causes problems when trying to register the
1354          * entire I/O region.  Therefore we must register each I/O
1355          * port separately.
1356          */
1357         for (idx = 0; idx < info->io_size; idx++) {
1358                 if (request_region(addr + idx * info->io.regspacing,
1359                                    info->io.regsize, DEVICE_NAME) == NULL) {
1360                         /* Undo allocations */
1361                         while (idx--) {
1362                                 release_region(addr + idx * info->io.regspacing,
1363                                                info->io.regsize);
1364                         }
1365                         return -EIO;
1366                 }
1367         }
1368         return 0;
1369 }
1370
1371 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1372 {
1373         return readb((io->addr)+(offset * io->regspacing));
1374 }
1375
1376 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1377                      unsigned char b)
1378 {
1379         writeb(b, (io->addr)+(offset * io->regspacing));
1380 }
1381
1382 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1383 {
1384         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1385                 & 0xff;
1386 }
1387
1388 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1389                      unsigned char b)
1390 {
1391         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1392 }
1393
1394 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1395 {
1396         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1397                 & 0xff;
1398 }
1399
1400 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1401                      unsigned char b)
1402 {
1403         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1404 }
1405
1406 #ifdef readq
1407 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1408 {
1409         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1410                 & 0xff;
1411 }
1412
1413 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1414                      unsigned char b)
1415 {
1416         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1417 }
1418 #endif
1419
1420 static void mem_cleanup(struct smi_info *info)
1421 {
1422         unsigned long addr = info->io.addr_data;
1423         int           mapsize;
1424
1425         if (info->io.addr) {
1426                 iounmap(info->io.addr);
1427
1428                 mapsize = ((info->io_size * info->io.regspacing)
1429                            - (info->io.regspacing - info->io.regsize));
1430
1431                 release_mem_region(addr, mapsize);
1432         }
1433 }
1434
1435 static int mem_setup(struct smi_info *info)
1436 {
1437         unsigned long addr = info->io.addr_data;
1438         int           mapsize;
1439
1440         if (!addr)
1441                 return -ENODEV;
1442
1443         info->io_cleanup = mem_cleanup;
1444
1445         /*
1446          * Figure out the actual readb/readw/readl/etc routine to use based
1447          * upon the register size.
1448          */
1449         switch (info->io.regsize) {
1450         case 1:
1451                 info->io.inputb = intf_mem_inb;
1452                 info->io.outputb = intf_mem_outb;
1453                 break;
1454         case 2:
1455                 info->io.inputb = intf_mem_inw;
1456                 info->io.outputb = intf_mem_outw;
1457                 break;
1458         case 4:
1459                 info->io.inputb = intf_mem_inl;
1460                 info->io.outputb = intf_mem_outl;
1461                 break;
1462 #ifdef readq
1463         case 8:
1464                 info->io.inputb = mem_inq;
1465                 info->io.outputb = mem_outq;
1466                 break;
1467 #endif
1468         default:
1469                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1470                        info->io.regsize);
1471                 return -EINVAL;
1472         }
1473
1474         /*
1475          * Calculate the total amount of memory to claim.  This is an
1476          * unusual looking calculation, but it avoids claiming any
1477          * more memory than it has to.  It will claim everything
1478          * between the first address to the end of the last full
1479          * register.
1480          */
1481         mapsize = ((info->io_size * info->io.regspacing)
1482                    - (info->io.regspacing - info->io.regsize));
1483
1484         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1485                 return -EIO;
1486
1487         info->io.addr = ioremap(addr, mapsize);
1488         if (info->io.addr == NULL) {
1489                 release_mem_region(addr, mapsize);
1490                 return -EIO;
1491         }
1492         return 0;
1493 }
1494
1495 /*
1496  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1497  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1498  * Options are:
1499  *   rsp=<regspacing>
1500  *   rsi=<regsize>
1501  *   rsh=<regshift>
1502  *   irq=<irq>
1503  *   ipmb=<ipmb addr>
1504  */
1505 enum hotmod_op { HM_ADD, HM_REMOVE };
1506 struct hotmod_vals {
1507         char *name;
1508         int  val;
1509 };
1510 static struct hotmod_vals hotmod_ops[] = {
1511         { "add",        HM_ADD },
1512         { "remove",     HM_REMOVE },
1513         { NULL }
1514 };
1515 static struct hotmod_vals hotmod_si[] = {
1516         { "kcs",        SI_KCS },
1517         { "smic",       SI_SMIC },
1518         { "bt",         SI_BT },
1519         { NULL }
1520 };
1521 static struct hotmod_vals hotmod_as[] = {
1522         { "mem",        IPMI_MEM_ADDR_SPACE },
1523         { "i/o",        IPMI_IO_ADDR_SPACE },
1524         { NULL }
1525 };
1526
1527 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1528 {
1529         char *s;
1530         int  i;
1531
1532         s = strchr(*curr, ',');
1533         if (!s) {
1534                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1535                 return -EINVAL;
1536         }
1537         *s = '\0';
1538         s++;
1539         for (i = 0; hotmod_ops[i].name; i++) {
1540                 if (strcmp(*curr, v[i].name) == 0) {
1541                         *val = v[i].val;
1542                         *curr = s;
1543                         return 0;
1544                 }
1545         }
1546
1547         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1548         return -EINVAL;
1549 }
1550
1551 static int check_hotmod_int_op(const char *curr, const char *option,
1552                                const char *name, int *val)
1553 {
1554         char *n;
1555
1556         if (strcmp(curr, name) == 0) {
1557                 if (!option) {
1558                         printk(KERN_WARNING PFX
1559                                "No option given for '%s'\n",
1560                                curr);
1561                         return -EINVAL;
1562                 }
1563                 *val = simple_strtoul(option, &n, 0);
1564                 if ((*n != '\0') || (*option == '\0')) {
1565                         printk(KERN_WARNING PFX
1566                                "Bad option given for '%s'\n",
1567                                curr);
1568                         return -EINVAL;
1569                 }
1570                 return 1;
1571         }
1572         return 0;
1573 }
1574
1575 static int hotmod_handler(const char *val, struct kernel_param *kp)
1576 {
1577         char *str = kstrdup(val, GFP_KERNEL);
1578         int  rv;
1579         char *next, *curr, *s, *n, *o;
1580         enum hotmod_op op;
1581         enum si_type si_type;
1582         int  addr_space;
1583         unsigned long addr;
1584         int regspacing;
1585         int regsize;
1586         int regshift;
1587         int irq;
1588         int ipmb;
1589         int ival;
1590         int len;
1591         struct smi_info *info;
1592
1593         if (!str)
1594                 return -ENOMEM;
1595
1596         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1597         len = strlen(str);
1598         ival = len - 1;
1599         while ((ival >= 0) && isspace(str[ival])) {
1600                 str[ival] = '\0';
1601                 ival--;
1602         }
1603
1604         for (curr = str; curr; curr = next) {
1605                 regspacing = 1;
1606                 regsize = 1;
1607                 regshift = 0;
1608                 irq = 0;
1609                 ipmb = 0x20;
1610
1611                 next = strchr(curr, ':');
1612                 if (next) {
1613                         *next = '\0';
1614                         next++;
1615                 }
1616
1617                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1618                 if (rv)
1619                         break;
1620                 op = ival;
1621
1622                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1623                 if (rv)
1624                         break;
1625                 si_type = ival;
1626
1627                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1628                 if (rv)
1629                         break;
1630
1631                 s = strchr(curr, ',');
1632                 if (s) {
1633                         *s = '\0';
1634                         s++;
1635                 }
1636                 addr = simple_strtoul(curr, &n, 0);
1637                 if ((*n != '\0') || (*curr == '\0')) {
1638                         printk(KERN_WARNING PFX "Invalid hotmod address"
1639                                " '%s'\n", curr);
1640                         break;
1641                 }
1642
1643                 while (s) {
1644                         curr = s;
1645                         s = strchr(curr, ',');
1646                         if (s) {
1647                                 *s = '\0';
1648                                 s++;
1649                         }
1650                         o = strchr(curr, '=');
1651                         if (o) {
1652                                 *o = '\0';
1653                                 o++;
1654                         }
1655                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1656                         if (rv < 0)
1657                                 goto out;
1658                         else if (rv)
1659                                 continue;
1660                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1661                         if (rv < 0)
1662                                 goto out;
1663                         else if (rv)
1664                                 continue;
1665                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1666                         if (rv < 0)
1667                                 goto out;
1668                         else if (rv)
1669                                 continue;
1670                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1671                         if (rv < 0)
1672                                 goto out;
1673                         else if (rv)
1674                                 continue;
1675                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1676                         if (rv < 0)
1677                                 goto out;
1678                         else if (rv)
1679                                 continue;
1680
1681                         rv = -EINVAL;
1682                         printk(KERN_WARNING PFX
1683                                "Invalid hotmod option '%s'\n",
1684                                curr);
1685                         goto out;
1686                 }
1687
1688                 if (op == HM_ADD) {
1689                         info = kzalloc(sizeof(*info), GFP_KERNEL);
1690                         if (!info) {
1691                                 rv = -ENOMEM;
1692                                 goto out;
1693                         }
1694
1695                         info->addr_source = "hotmod";
1696                         info->si_type = si_type;
1697                         info->io.addr_data = addr;
1698                         info->io.addr_type = addr_space;
1699                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1700                                 info->io_setup = mem_setup;
1701                         else
1702                                 info->io_setup = port_setup;
1703
1704                         info->io.addr = NULL;
1705                         info->io.regspacing = regspacing;
1706                         if (!info->io.regspacing)
1707                                 info->io.regspacing = DEFAULT_REGSPACING;
1708                         info->io.regsize = regsize;
1709                         if (!info->io.regsize)
1710                                 info->io.regsize = DEFAULT_REGSPACING;
1711                         info->io.regshift = regshift;
1712                         info->irq = irq;
1713                         if (info->irq)
1714                                 info->irq_setup = std_irq_setup;
1715                         info->slave_addr = ipmb;
1716
1717                         try_smi_init(info);
1718                 } else {
1719                         /* remove */
1720                         struct smi_info *e, *tmp_e;
1721
1722                         mutex_lock(&smi_infos_lock);
1723                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1724                                 if (e->io.addr_type != addr_space)
1725                                         continue;
1726                                 if (e->si_type != si_type)
1727                                         continue;
1728                                 if (e->io.addr_data == addr)
1729                                         cleanup_one_si(e);
1730                         }
1731                         mutex_unlock(&smi_infos_lock);
1732                 }
1733         }
1734         rv = len;
1735  out:
1736         kfree(str);
1737         return rv;
1738 }
1739
1740 static __devinit void hardcode_find_bmc(void)
1741 {
1742         int             i;
1743         struct smi_info *info;
1744
1745         for (i = 0; i < SI_MAX_PARMS; i++) {
1746                 if (!ports[i] && !addrs[i])
1747                         continue;
1748
1749                 info = kzalloc(sizeof(*info), GFP_KERNEL);
1750                 if (!info)
1751                         return;
1752
1753                 info->addr_source = "hardcoded";
1754
1755                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1756                         info->si_type = SI_KCS;
1757                 } else if (strcmp(si_type[i], "smic") == 0) {
1758                         info->si_type = SI_SMIC;
1759                 } else if (strcmp(si_type[i], "bt") == 0) {
1760                         info->si_type = SI_BT;
1761                 } else {
1762                         printk(KERN_WARNING
1763                                "ipmi_si: Interface type specified "
1764                                "for interface %d, was invalid: %s\n",
1765                                i, si_type[i]);
1766                         kfree(info);
1767                         continue;
1768                 }
1769
1770                 if (ports[i]) {
1771                         /* An I/O port */
1772                         info->io_setup = port_setup;
1773                         info->io.addr_data = ports[i];
1774                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1775                 } else if (addrs[i]) {
1776                         /* A memory port */
1777                         info->io_setup = mem_setup;
1778                         info->io.addr_data = addrs[i];
1779                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1780                 } else {
1781                         printk(KERN_WARNING
1782                                "ipmi_si: Interface type specified "
1783                                "for interface %d, "
1784                                "but port and address were not set or "
1785                                "set to zero.\n", i);
1786                         kfree(info);
1787                         continue;
1788                 }
1789
1790                 info->io.addr = NULL;
1791                 info->io.regspacing = regspacings[i];
1792                 if (!info->io.regspacing)
1793                         info->io.regspacing = DEFAULT_REGSPACING;
1794                 info->io.regsize = regsizes[i];
1795                 if (!info->io.regsize)
1796                         info->io.regsize = DEFAULT_REGSPACING;
1797                 info->io.regshift = regshifts[i];
1798                 info->irq = irqs[i];
1799                 if (info->irq)
1800                         info->irq_setup = std_irq_setup;
1801
1802                 try_smi_init(info);
1803         }
1804 }
1805
1806 #ifdef CONFIG_ACPI
1807
1808 #include <linux/acpi.h>
1809
1810 /*
1811  * Once we get an ACPI failure, we don't try any more, because we go
1812  * through the tables sequentially.  Once we don't find a table, there
1813  * are no more.
1814  */
1815 static int acpi_failure;
1816
1817 /* For GPE-type interrupts. */
1818 static u32 ipmi_acpi_gpe(void *context)
1819 {
1820         struct smi_info *smi_info = context;
1821         unsigned long   flags;
1822 #ifdef DEBUG_TIMING
1823         struct timeval t;
1824 #endif
1825
1826         spin_lock_irqsave(&(smi_info->si_lock), flags);
1827
1828         smi_inc_stat(smi_info, interrupts);
1829
1830 #ifdef DEBUG_TIMING
1831         do_gettimeofday(&t);
1832         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1833 #endif
1834         smi_event_handler(smi_info, 0);
1835         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1836
1837         return ACPI_INTERRUPT_HANDLED;
1838 }
1839
1840 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1841 {
1842         if (!info->irq)
1843                 return;
1844
1845         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1846 }
1847
1848 static int acpi_gpe_irq_setup(struct smi_info *info)
1849 {
1850         acpi_status status;
1851
1852         if (!info->irq)
1853                 return 0;
1854
1855         /* FIXME - is level triggered right? */
1856         status = acpi_install_gpe_handler(NULL,
1857                                           info->irq,
1858                                           ACPI_GPE_LEVEL_TRIGGERED,
1859                                           &ipmi_acpi_gpe,
1860                                           info);
1861         if (status != AE_OK) {
1862                 printk(KERN_WARNING
1863                        "ipmi_si: %s unable to claim ACPI GPE %d,"
1864                        " running polled\n",
1865                        DEVICE_NAME, info->irq);
1866                 info->irq = 0;
1867                 return -EINVAL;
1868         } else {
1869                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1870                 printk("  Using ACPI GPE %d\n", info->irq);
1871                 return 0;
1872         }
1873 }
1874
1875 /*
1876  * Defined at
1877  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1878  * Docs/TechPapers/IA64/hpspmi.pdf
1879  */
1880 struct SPMITable {
1881         s8      Signature[4];
1882         u32     Length;
1883         u8      Revision;
1884         u8      Checksum;
1885         s8      OEMID[6];
1886         s8      OEMTableID[8];
1887         s8      OEMRevision[4];
1888         s8      CreatorID[4];
1889         s8      CreatorRevision[4];
1890         u8      InterfaceType;
1891         u8      IPMIlegacy;
1892         s16     SpecificationRevision;
1893
1894         /*
1895          * Bit 0 - SCI interrupt supported
1896          * Bit 1 - I/O APIC/SAPIC
1897          */
1898         u8      InterruptType;
1899
1900         /*
1901          * If bit 0 of InterruptType is set, then this is the SCI
1902          * interrupt in the GPEx_STS register.
1903          */
1904         u8      GPE;
1905
1906         s16     Reserved;
1907
1908         /*
1909          * If bit 1 of InterruptType is set, then this is the I/O
1910          * APIC/SAPIC interrupt.
1911          */
1912         u32     GlobalSystemInterrupt;
1913
1914         /* The actual register address. */
1915         struct acpi_generic_address addr;
1916
1917         u8      UID[4];
1918
1919         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1920 };
1921
1922 static __devinit int try_init_acpi(struct SPMITable *spmi)
1923 {
1924         struct smi_info  *info;
1925         u8               addr_space;
1926
1927         if (spmi->IPMIlegacy != 1) {
1928             printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1929             return -ENODEV;
1930         }
1931
1932         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1933                 addr_space = IPMI_MEM_ADDR_SPACE;
1934         else
1935                 addr_space = IPMI_IO_ADDR_SPACE;
1936
1937         info = kzalloc(sizeof(*info), GFP_KERNEL);
1938         if (!info) {
1939                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1940                 return -ENOMEM;
1941         }
1942
1943         info->addr_source = "ACPI";
1944
1945         /* Figure out the interface type. */
1946         switch (spmi->InterfaceType) {
1947         case 1: /* KCS */
1948                 info->si_type = SI_KCS;
1949                 break;
1950         case 2: /* SMIC */
1951                 info->si_type = SI_SMIC;
1952                 break;
1953         case 3: /* BT */
1954                 info->si_type = SI_BT;
1955                 break;
1956         default:
1957                 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1958                         spmi->InterfaceType);
1959                 kfree(info);
1960                 return -EIO;
1961         }
1962
1963         if (spmi->InterruptType & 1) {
1964                 /* We've got a GPE interrupt. */
1965                 info->irq = spmi->GPE;
1966                 info->irq_setup = acpi_gpe_irq_setup;
1967         } else if (spmi->InterruptType & 2) {
1968                 /* We've got an APIC/SAPIC interrupt. */
1969                 info->irq = spmi->GlobalSystemInterrupt;
1970                 info->irq_setup = std_irq_setup;
1971         } else {
1972                 /* Use the default interrupt setting. */
1973                 info->irq = 0;
1974                 info->irq_setup = NULL;
1975         }
1976
1977         if (spmi->addr.bit_width) {
1978                 /* A (hopefully) properly formed register bit width. */
1979                 info->io.regspacing = spmi->addr.bit_width / 8;
1980         } else {
1981                 info->io.regspacing = DEFAULT_REGSPACING;
1982         }
1983         info->io.regsize = info->io.regspacing;
1984         info->io.regshift = spmi->addr.bit_offset;
1985
1986         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1987                 info->io_setup = mem_setup;
1988                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1989         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1990                 info->io_setup = port_setup;
1991                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1992         } else {
1993                 kfree(info);
1994                 printk(KERN_WARNING
1995                        "ipmi_si: Unknown ACPI I/O Address type\n");
1996                 return -EIO;
1997         }
1998         info->io.addr_data = spmi->addr.address;
1999
2000         try_smi_init(info);
2001
2002         return 0;
2003 }
2004
2005 static __devinit void acpi_find_bmc(void)
2006 {
2007         acpi_status      status;
2008         struct SPMITable *spmi;
2009         int              i;
2010
2011         if (acpi_disabled)
2012                 return;
2013
2014         if (acpi_failure)
2015                 return;
2016
2017         for (i = 0; ; i++) {
2018                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2019                                         (struct acpi_table_header **)&spmi);
2020                 if (status != AE_OK)
2021                         return;
2022
2023                 try_init_acpi(spmi);
2024         }
2025 }
2026 #endif
2027
2028 #ifdef CONFIG_DMI
2029 struct dmi_ipmi_data {
2030         u8              type;
2031         u8              addr_space;
2032         unsigned long   base_addr;
2033         u8              irq;
2034         u8              offset;
2035         u8              slave_addr;
2036 };
2037
2038 static int __devinit decode_dmi(const struct dmi_header *dm,
2039                                 struct dmi_ipmi_data *dmi)
2040 {
2041         const u8        *data = (const u8 *)dm;
2042         unsigned long   base_addr;
2043         u8              reg_spacing;
2044         u8              len = dm->length;
2045
2046         dmi->type = data[4];
2047
2048         memcpy(&base_addr, data+8, sizeof(unsigned long));
2049         if (len >= 0x11) {
2050                 if (base_addr & 1) {
2051                         /* I/O */
2052                         base_addr &= 0xFFFE;
2053                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2054                 } else
2055                         /* Memory */
2056                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2057
2058                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2059                    is odd. */
2060                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2061
2062                 dmi->irq = data[0x11];
2063
2064                 /* The top two bits of byte 0x10 hold the register spacing. */
2065                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2066                 switch (reg_spacing) {
2067                 case 0x00: /* Byte boundaries */
2068                     dmi->offset = 1;
2069                     break;
2070                 case 0x01: /* 32-bit boundaries */
2071                     dmi->offset = 4;
2072                     break;
2073                 case 0x02: /* 16-byte boundaries */
2074                     dmi->offset = 16;
2075                     break;
2076                 default:
2077                     /* Some other interface, just ignore it. */
2078                     return -EIO;
2079                 }
2080         } else {
2081                 /* Old DMI spec. */
2082                 /*
2083                  * Note that technically, the lower bit of the base
2084                  * address should be 1 if the address is I/O and 0 if
2085                  * the address is in memory.  So many systems get that
2086                  * wrong (and all that I have seen are I/O) so we just
2087                  * ignore that bit and assume I/O.  Systems that use
2088                  * memory should use the newer spec, anyway.
2089                  */
2090                 dmi->base_addr = base_addr & 0xfffe;
2091                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2092                 dmi->offset = 1;
2093         }
2094
2095         dmi->slave_addr = data[6];
2096
2097         return 0;
2098 }
2099
2100 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2101 {
2102         struct smi_info *info;
2103
2104         info = kzalloc(sizeof(*info), GFP_KERNEL);
2105         if (!info) {
2106                 printk(KERN_ERR
2107                        "ipmi_si: Could not allocate SI data\n");
2108                 return;
2109         }
2110
2111         info->addr_source = "SMBIOS";
2112
2113         switch (ipmi_data->type) {
2114         case 0x01: /* KCS */
2115                 info->si_type = SI_KCS;
2116                 break;
2117         case 0x02: /* SMIC */
2118                 info->si_type = SI_SMIC;
2119                 break;
2120         case 0x03: /* BT */
2121                 info->si_type = SI_BT;
2122                 break;
2123         default:
2124                 kfree(info);
2125                 return;
2126         }
2127
2128         switch (ipmi_data->addr_space) {
2129         case IPMI_MEM_ADDR_SPACE:
2130                 info->io_setup = mem_setup;
2131                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2132                 break;
2133
2134         case IPMI_IO_ADDR_SPACE:
2135                 info->io_setup = port_setup;
2136                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2137                 break;
2138
2139         default:
2140                 kfree(info);
2141                 printk(KERN_WARNING
2142                        "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2143                        ipmi_data->addr_space);
2144                 return;
2145         }
2146         info->io.addr_data = ipmi_data->base_addr;
2147
2148         info->io.regspacing = ipmi_data->offset;
2149         if (!info->io.regspacing)
2150                 info->io.regspacing = DEFAULT_REGSPACING;
2151         info->io.regsize = DEFAULT_REGSPACING;
2152         info->io.regshift = 0;
2153
2154         info->slave_addr = ipmi_data->slave_addr;
2155
2156         info->irq = ipmi_data->irq;
2157         if (info->irq)
2158                 info->irq_setup = std_irq_setup;
2159
2160         try_smi_init(info);
2161 }
2162
2163 static void __devinit dmi_find_bmc(void)
2164 {
2165         const struct dmi_device *dev = NULL;
2166         struct dmi_ipmi_data data;
2167         int                  rv;
2168
2169         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2170                 memset(&data, 0, sizeof(data));
2171                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2172                                 &data);
2173                 if (!rv)
2174                         try_init_dmi(&data);
2175         }
2176 }
2177 #endif /* CONFIG_DMI */
2178
2179 #ifdef CONFIG_PCI
2180
2181 #define PCI_ERMC_CLASSCODE              0x0C0700
2182 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2183 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2184 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2185 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2186 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2187
2188 #define PCI_HP_VENDOR_ID    0x103C
2189 #define PCI_MMC_DEVICE_ID   0x121A
2190 #define PCI_MMC_ADDR_CW     0x10
2191
2192 static void ipmi_pci_cleanup(struct smi_info *info)
2193 {
2194         struct pci_dev *pdev = info->addr_source_data;
2195
2196         pci_disable_device(pdev);
2197 }
2198
2199 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2200                                     const struct pci_device_id *ent)
2201 {
2202         int rv;
2203         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2204         struct smi_info *info;
2205         int first_reg_offset = 0;
2206
2207         info = kzalloc(sizeof(*info), GFP_KERNEL);
2208         if (!info)
2209                 return -ENOMEM;
2210
2211         info->addr_source = "PCI";
2212
2213         switch (class_type) {
2214         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2215                 info->si_type = SI_SMIC;
2216                 break;
2217
2218         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2219                 info->si_type = SI_KCS;
2220                 break;
2221
2222         case PCI_ERMC_CLASSCODE_TYPE_BT:
2223                 info->si_type = SI_BT;
2224                 break;
2225
2226         default:
2227                 kfree(info);
2228                 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2229                        pci_name(pdev), class_type);
2230                 return -ENOMEM;
2231         }
2232
2233         rv = pci_enable_device(pdev);
2234         if (rv) {
2235                 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2236                        pci_name(pdev));
2237                 kfree(info);
2238                 return rv;
2239         }
2240
2241         info->addr_source_cleanup = ipmi_pci_cleanup;
2242         info->addr_source_data = pdev;
2243
2244         if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2245                 first_reg_offset = 1;
2246
2247         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2248                 info->io_setup = port_setup;
2249                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2250         } else {
2251                 info->io_setup = mem_setup;
2252                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2253         }
2254         info->io.addr_data = pci_resource_start(pdev, 0);
2255
2256         info->io.regspacing = DEFAULT_REGSPACING;
2257         info->io.regsize = DEFAULT_REGSPACING;
2258         info->io.regshift = 0;
2259
2260         info->irq = pdev->irq;
2261         if (info->irq)
2262                 info->irq_setup = std_irq_setup;
2263
2264         info->dev = &pdev->dev;
2265         pci_set_drvdata(pdev, info);
2266
2267         return try_smi_init(info);
2268 }
2269
2270 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2271 {
2272         struct smi_info *info = pci_get_drvdata(pdev);
2273         cleanup_one_si(info);
2274 }
2275
2276 #ifdef CONFIG_PM
2277 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2278 {
2279         return 0;
2280 }
2281
2282 static int ipmi_pci_resume(struct pci_dev *pdev)
2283 {
2284         return 0;
2285 }
2286 #endif
2287
2288 static struct pci_device_id ipmi_pci_devices[] = {
2289         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2290         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2291         { 0, }
2292 };
2293 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2294
2295 static struct pci_driver ipmi_pci_driver = {
2296         .name =         DEVICE_NAME,
2297         .id_table =     ipmi_pci_devices,
2298         .probe =        ipmi_pci_probe,
2299         .remove =       __devexit_p(ipmi_pci_remove),
2300 #ifdef CONFIG_PM
2301         .suspend =      ipmi_pci_suspend,
2302         .resume =       ipmi_pci_resume,
2303 #endif
2304 };
2305 #endif /* CONFIG_PCI */
2306
2307
2308 #ifdef CONFIG_PPC_OF
2309 static int __devinit ipmi_of_probe(struct of_device *dev,
2310                          const struct of_device_id *match)
2311 {
2312         struct smi_info *info;
2313         struct resource resource;
2314         const int *regsize, *regspacing, *regshift;
2315         struct device_node *np = dev->node;
2316         int ret;
2317         int proplen;
2318
2319         dev_info(&dev->dev, PFX "probing via device tree\n");
2320
2321         ret = of_address_to_resource(np, 0, &resource);
2322         if (ret) {
2323                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2324                 return ret;
2325         }
2326
2327         regsize = of_get_property(np, "reg-size", &proplen);
2328         if (regsize && proplen != 4) {
2329                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2330                 return -EINVAL;
2331         }
2332
2333         regspacing = of_get_property(np, "reg-spacing", &proplen);
2334         if (regspacing && proplen != 4) {
2335                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2336                 return -EINVAL;
2337         }
2338
2339         regshift = of_get_property(np, "reg-shift", &proplen);
2340         if (regshift && proplen != 4) {
2341                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2342                 return -EINVAL;
2343         }
2344
2345         info = kzalloc(sizeof(*info), GFP_KERNEL);
2346
2347         if (!info) {
2348                 dev_err(&dev->dev,
2349                         PFX "could not allocate memory for OF probe\n");
2350                 return -ENOMEM;
2351         }
2352
2353         info->si_type           = (enum si_type) match->data;
2354         info->addr_source       = "device-tree";
2355         info->irq_setup         = std_irq_setup;
2356
2357         if (resource.flags & IORESOURCE_IO) {
2358                 info->io_setup          = port_setup;
2359                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2360         } else {
2361                 info->io_setup          = mem_setup;
2362                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2363         }
2364
2365         info->io.addr_data      = resource.start;
2366
2367         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2368         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2369         info->io.regshift       = regshift ? *regshift : 0;
2370
2371         info->irq               = irq_of_parse_and_map(dev->node, 0);
2372         info->dev               = &dev->dev;
2373
2374         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2375                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2376                 info->irq);
2377
2378         dev->dev.driver_data = (void *) info;
2379
2380         return try_smi_init(info);
2381 }
2382
2383 static int __devexit ipmi_of_remove(struct of_device *dev)
2384 {
2385         cleanup_one_si(dev->dev.driver_data);
2386         return 0;
2387 }
2388
2389 static struct of_device_id ipmi_match[] =
2390 {
2391         { .type = "ipmi", .compatible = "ipmi-kcs",
2392           .data = (void *)(unsigned long) SI_KCS },
2393         { .type = "ipmi", .compatible = "ipmi-smic",
2394           .data = (void *)(unsigned long) SI_SMIC },
2395         { .type = "ipmi", .compatible = "ipmi-bt",
2396           .data = (void *)(unsigned long) SI_BT },
2397         {},
2398 };
2399
2400 static struct of_platform_driver ipmi_of_platform_driver = {
2401         .name           = "ipmi",
2402         .match_table    = ipmi_match,
2403         .probe          = ipmi_of_probe,
2404         .remove         = __devexit_p(ipmi_of_remove),
2405 };
2406 #endif /* CONFIG_PPC_OF */
2407
2408
2409 static int try_get_dev_id(struct smi_info *smi_info)
2410 {
2411         unsigned char         msg[2];
2412         unsigned char         *resp;
2413         unsigned long         resp_len;
2414         enum si_sm_result     smi_result;
2415         int                   rv = 0;
2416
2417         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2418         if (!resp)
2419                 return -ENOMEM;
2420
2421         /*
2422          * Do a Get Device ID command, since it comes back with some
2423          * useful info.
2424          */
2425         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2426         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2427         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2428
2429         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2430         for (;;) {
2431                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2432                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2433                         schedule_timeout_uninterruptible(1);
2434                         smi_result = smi_info->handlers->event(
2435                                 smi_info->si_sm, 100);
2436                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2437                         smi_result = smi_info->handlers->event(
2438                                 smi_info->si_sm, 0);
2439                 } else
2440                         break;
2441         }
2442         if (smi_result == SI_SM_HOSED) {
2443                 /*
2444                  * We couldn't get the state machine to run, so whatever's at
2445                  * the port is probably not an IPMI SMI interface.
2446                  */
2447                 rv = -ENODEV;
2448                 goto out;
2449         }
2450
2451         /* Otherwise, we got some data. */
2452         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2453                                                   resp, IPMI_MAX_MSG_LENGTH);
2454
2455         /* Check and record info from the get device id, in case we need it. */
2456         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2457
2458  out:
2459         kfree(resp);
2460         return rv;
2461 }
2462
2463 static int type_file_read_proc(char *page, char **start, off_t off,
2464                                int count, int *eof, void *data)
2465 {
2466         struct smi_info *smi = data;
2467
2468         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2469 }
2470
2471 static int stat_file_read_proc(char *page, char **start, off_t off,
2472                                int count, int *eof, void *data)
2473 {
2474         char            *out = (char *) page;
2475         struct smi_info *smi = data;
2476
2477         out += sprintf(out, "interrupts_enabled:    %d\n",
2478                        smi->irq && !smi->interrupt_disabled);
2479         out += sprintf(out, "short_timeouts:        %u\n",
2480                        smi_get_stat(smi, short_timeouts));
2481         out += sprintf(out, "long_timeouts:         %u\n",
2482                        smi_get_stat(smi, long_timeouts));
2483         out += sprintf(out, "idles:                 %u\n",
2484                        smi_get_stat(smi, idles));
2485         out += sprintf(out, "interrupts:            %u\n",
2486                        smi_get_stat(smi, interrupts));
2487         out += sprintf(out, "attentions:            %u\n",
2488                        smi_get_stat(smi, attentions));
2489         out += sprintf(out, "flag_fetches:          %u\n",
2490                        smi_get_stat(smi, flag_fetches));
2491         out += sprintf(out, "hosed_count:           %u\n",
2492                        smi_get_stat(smi, hosed_count));
2493         out += sprintf(out, "complete_transactions: %u\n",
2494                        smi_get_stat(smi, complete_transactions));
2495         out += sprintf(out, "events:                %u\n",
2496                        smi_get_stat(smi, events));
2497         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2498                        smi_get_stat(smi, watchdog_pretimeouts));
2499         out += sprintf(out, "incoming_messages:     %u\n",
2500                        smi_get_stat(smi, incoming_messages));
2501
2502         return out - page;
2503 }
2504
2505 static int param_read_proc(char *page, char **start, off_t off,
2506                            int count, int *eof, void *data)
2507 {
2508         struct smi_info *smi = data;
2509
2510         return sprintf(page,
2511                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2512                        si_to_str[smi->si_type],
2513                        addr_space_to_str[smi->io.addr_type],
2514                        smi->io.addr_data,
2515                        smi->io.regspacing,
2516                        smi->io.regsize,
2517                        smi->io.regshift,
2518                        smi->irq,
2519                        smi->slave_addr);
2520 }
2521
2522 /*
2523  * oem_data_avail_to_receive_msg_avail
2524  * @info - smi_info structure with msg_flags set
2525  *
2526  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2527  * Returns 1 indicating need to re-run handle_flags().
2528  */
2529 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2530 {
2531         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2532                                RECEIVE_MSG_AVAIL);
2533         return 1;
2534 }
2535
2536 /*
2537  * setup_dell_poweredge_oem_data_handler
2538  * @info - smi_info.device_id must be populated
2539  *
2540  * Systems that match, but have firmware version < 1.40 may assert
2541  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2542  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2543  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2544  * as RECEIVE_MSG_AVAIL instead.
2545  *
2546  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2547  * assert the OEM[012] bits, and if it did, the driver would have to
2548  * change to handle that properly, we don't actually check for the
2549  * firmware version.
2550  * Device ID = 0x20                BMC on PowerEdge 8G servers
2551  * Device Revision = 0x80
2552  * Firmware Revision1 = 0x01       BMC version 1.40
2553  * Firmware Revision2 = 0x40       BCD encoded
2554  * IPMI Version = 0x51             IPMI 1.5
2555  * Manufacturer ID = A2 02 00      Dell IANA
2556  *
2557  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2558  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2559  *
2560  */
2561 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2562 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2563 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2564 #define DELL_IANA_MFR_ID 0x0002a2
2565 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2566 {
2567         struct ipmi_device_id *id = &smi_info->device_id;
2568         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2569                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2570                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2571                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2572                         smi_info->oem_data_avail_handler =
2573                                 oem_data_avail_to_receive_msg_avail;
2574                 } else if (ipmi_version_major(id) < 1 ||
2575                            (ipmi_version_major(id) == 1 &&
2576                             ipmi_version_minor(id) < 5)) {
2577                         smi_info->oem_data_avail_handler =
2578                                 oem_data_avail_to_receive_msg_avail;
2579                 }
2580         }
2581 }
2582
2583 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2584 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2585 {
2586         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2587
2588         /* Make it a reponse */
2589         msg->rsp[0] = msg->data[0] | 4;
2590         msg->rsp[1] = msg->data[1];
2591         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2592         msg->rsp_size = 3;
2593         smi_info->curr_msg = NULL;
2594         deliver_recv_msg(smi_info, msg);
2595 }
2596
2597 /*
2598  * dell_poweredge_bt_xaction_handler
2599  * @info - smi_info.device_id must be populated
2600  *
2601  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2602  * not respond to a Get SDR command if the length of the data
2603  * requested is exactly 0x3A, which leads to command timeouts and no
2604  * data returned.  This intercepts such commands, and causes userspace
2605  * callers to try again with a different-sized buffer, which succeeds.
2606  */
2607
2608 #define STORAGE_NETFN 0x0A
2609 #define STORAGE_CMD_GET_SDR 0x23
2610 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2611                                              unsigned long unused,
2612                                              void *in)
2613 {
2614         struct smi_info *smi_info = in;
2615         unsigned char *data = smi_info->curr_msg->data;
2616         unsigned int size   = smi_info->curr_msg->data_size;
2617         if (size >= 8 &&
2618             (data[0]>>2) == STORAGE_NETFN &&
2619             data[1] == STORAGE_CMD_GET_SDR &&
2620             data[7] == 0x3A) {
2621                 return_hosed_msg_badsize(smi_info);
2622                 return NOTIFY_STOP;
2623         }
2624         return NOTIFY_DONE;
2625 }
2626
2627 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2628         .notifier_call  = dell_poweredge_bt_xaction_handler,
2629 };
2630
2631 /*
2632  * setup_dell_poweredge_bt_xaction_handler
2633  * @info - smi_info.device_id must be filled in already
2634  *
2635  * Fills in smi_info.device_id.start_transaction_pre_hook
2636  * when we know what function to use there.
2637  */
2638 static void
2639 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2640 {
2641         struct ipmi_device_id *id = &smi_info->device_id;
2642         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2643             smi_info->si_type == SI_BT)
2644                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2645 }
2646
2647 /*
2648  * setup_oem_data_handler
2649  * @info - smi_info.device_id must be filled in already
2650  *
2651  * Fills in smi_info.device_id.oem_data_available_handler
2652  * when we know what function to use there.
2653  */
2654
2655 static void setup_oem_data_handler(struct smi_info *smi_info)
2656 {
2657         setup_dell_poweredge_oem_data_handler(smi_info);
2658 }
2659
2660 static void setup_xaction_handlers(struct smi_info *smi_info)
2661 {
2662         setup_dell_poweredge_bt_xaction_handler(smi_info);
2663 }
2664
2665 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2666 {
2667         if (smi_info->intf) {
2668                 /*
2669                  * The timer and thread are only running if the
2670                  * interface has been started up and registered.
2671                  */
2672                 if (smi_info->thread != NULL)
2673                         kthread_stop(smi_info->thread);
2674                 del_timer_sync(&smi_info->si_timer);
2675         }
2676 }
2677
2678 static __devinitdata struct ipmi_default_vals
2679 {
2680         int type;
2681         int port;
2682 } ipmi_defaults[] =
2683 {
2684         { .type = SI_KCS, .port = 0xca2 },
2685         { .type = SI_SMIC, .port = 0xca9 },
2686         { .type = SI_BT, .port = 0xe4 },
2687         { .port = 0 }
2688 };
2689
2690 static __devinit void default_find_bmc(void)
2691 {
2692         struct smi_info *info;
2693         int             i;
2694
2695         for (i = 0; ; i++) {
2696                 if (!ipmi_defaults[i].port)
2697                         break;
2698 #ifdef CONFIG_PPC
2699                 if (check_legacy_ioport(ipmi_defaults[i].port))
2700                         continue;
2701 #endif
2702                 info = kzalloc(sizeof(*info), GFP_KERNEL);
2703                 if (!info)
2704                         return;
2705
2706                 info->addr_source = NULL;
2707
2708                 info->si_type = ipmi_defaults[i].type;
2709                 info->io_setup = port_setup;
2710                 info->io.addr_data = ipmi_defaults[i].port;
2711                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2712
2713                 info->io.addr = NULL;
2714                 info->io.regspacing = DEFAULT_REGSPACING;
2715                 info->io.regsize = DEFAULT_REGSPACING;
2716                 info->io.regshift = 0;
2717
2718                 if (try_smi_init(info) == 0) {
2719                         /* Found one... */
2720                         printk(KERN_INFO "ipmi_si: Found default %s state"
2721                                " machine at %s address 0x%lx\n",
2722                                si_to_str[info->si_type],
2723                                addr_space_to_str[info->io.addr_type],
2724                                info->io.addr_data);
2725                         return;
2726                 }
2727         }
2728 }
2729
2730 static int is_new_interface(struct smi_info *info)
2731 {
2732         struct smi_info *e;
2733
2734         list_for_each_entry(e, &smi_infos, link) {
2735                 if (e->io.addr_type != info->io.addr_type)
2736                         continue;
2737                 if (e->io.addr_data == info->io.addr_data)
2738                         return 0;
2739         }
2740
2741         return 1;
2742 }
2743
2744 static int try_smi_init(struct smi_info *new_smi)
2745 {
2746         int rv;
2747         int i;
2748
2749         if (new_smi->addr_source) {
2750                 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2751                        " machine at %s address 0x%lx, slave address 0x%x,"
2752                        " irq %d\n",
2753                        new_smi->addr_source,
2754                        si_to_str[new_smi->si_type],
2755                        addr_space_to_str[new_smi->io.addr_type],
2756                        new_smi->io.addr_data,
2757                        new_smi->slave_addr, new_smi->irq);
2758         }
2759
2760         mutex_lock(&smi_infos_lock);
2761         if (!is_new_interface(new_smi)) {
2762                 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2763                 rv = -EBUSY;
2764                 goto out_err;
2765         }
2766
2767         /* So we know not to free it unless we have allocated one. */
2768         new_smi->intf = NULL;
2769         new_smi->si_sm = NULL;
2770         new_smi->handlers = NULL;
2771
2772         switch (new_smi->si_type) {
2773         case SI_KCS:
2774                 new_smi->handlers = &kcs_smi_handlers;
2775                 break;
2776
2777         case SI_SMIC:
2778                 new_smi->handlers = &smic_smi_handlers;
2779                 break;
2780
2781         case SI_BT:
2782                 new_smi->handlers = &bt_smi_handlers;
2783                 break;
2784
2785         default:
2786                 /* No support for anything else yet. */
2787                 rv = -EIO;
2788                 goto out_err;
2789         }
2790
2791         /* Allocate the state machine's data and initialize it. */
2792         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2793         if (!new_smi->si_sm) {
2794                 printk(KERN_ERR "Could not allocate state machine memory\n");
2795                 rv = -ENOMEM;
2796                 goto out_err;
2797         }
2798         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2799                                                         &new_smi->io);
2800
2801         /* Now that we know the I/O size, we can set up the I/O. */
2802         rv = new_smi->io_setup(new_smi);
2803         if (rv) {
2804                 printk(KERN_ERR "Could not set up I/O space\n");
2805                 goto out_err;
2806         }
2807
2808         spin_lock_init(&(new_smi->si_lock));
2809         spin_lock_init(&(new_smi->msg_lock));
2810
2811         /* Do low-level detection first. */
2812         if (new_smi->handlers->detect(new_smi->si_sm)) {
2813                 if (new_smi->addr_source)
2814                         printk(KERN_INFO "ipmi_si: Interface detection"
2815                                " failed\n");
2816                 rv = -ENODEV;
2817                 goto out_err;
2818         }
2819
2820         /*
2821          * Attempt a get device id command.  If it fails, we probably
2822          * don't have a BMC here.
2823          */
2824         rv = try_get_dev_id(new_smi);
2825         if (rv) {
2826                 if (new_smi->addr_source)
2827                         printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2828                                " at this location\n");
2829                 goto out_err;
2830         }
2831
2832         setup_oem_data_handler(new_smi);
2833         setup_xaction_handlers(new_smi);
2834
2835         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2836         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2837         new_smi->curr_msg = NULL;
2838         atomic_set(&new_smi->req_events, 0);
2839         new_smi->run_to_completion = 0;
2840         for (i = 0; i < SI_NUM_STATS; i++)
2841                 atomic_set(&new_smi->stats[i], 0);
2842
2843         new_smi->interrupt_disabled = 0;
2844         atomic_set(&new_smi->stop_operation, 0);
2845         new_smi->intf_num = smi_num;
2846         smi_num++;
2847
2848         /*
2849          * Start clearing the flags before we enable interrupts or the
2850          * timer to avoid racing with the timer.
2851          */
2852         start_clear_flags(new_smi);
2853         /* IRQ is defined to be set when non-zero. */
2854         if (new_smi->irq)
2855                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2856
2857         if (!new_smi->dev) {
2858                 /*
2859                  * If we don't already have a device from something
2860                  * else (like PCI), then register a new one.
2861                  */
2862                 new_smi->pdev = platform_device_alloc("ipmi_si",
2863                                                       new_smi->intf_num);
2864                 if (rv) {
2865                         printk(KERN_ERR
2866                                "ipmi_si_intf:"
2867                                " Unable to allocate platform device\n");
2868                         goto out_err;
2869                 }
2870                 new_smi->dev = &new_smi->pdev->dev;
2871                 new_smi->dev->driver = &ipmi_driver;
2872
2873                 rv = platform_device_add(new_smi->pdev);
2874                 if (rv) {
2875                         printk(KERN_ERR
2876                                "ipmi_si_intf:"
2877                                " Unable to register system interface device:"
2878                                " %d\n",
2879                                rv);
2880                         goto out_err;
2881                 }
2882                 new_smi->dev_registered = 1;
2883         }
2884
2885         rv = ipmi_register_smi(&handlers,
2886                                new_smi,
2887                                &new_smi->device_id,
2888                                new_smi->dev,
2889                                "bmc",
2890                                new_smi->slave_addr);
2891         if (rv) {
2892                 printk(KERN_ERR
2893                        "ipmi_si: Unable to register device: error %d\n",
2894                        rv);
2895                 goto out_err_stop_timer;
2896         }
2897
2898         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2899                                      type_file_read_proc,
2900                                      new_smi, THIS_MODULE);
2901         if (rv) {
2902                 printk(KERN_ERR
2903                        "ipmi_si: Unable to create proc entry: %d\n",
2904                        rv);
2905                 goto out_err_stop_timer;
2906         }
2907
2908         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2909                                      stat_file_read_proc,
2910                                      new_smi, THIS_MODULE);
2911         if (rv) {
2912                 printk(KERN_ERR
2913                        "ipmi_si: Unable to create proc entry: %d\n",
2914                        rv);
2915                 goto out_err_stop_timer;
2916         }
2917
2918         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2919                                      param_read_proc,
2920                                      new_smi, THIS_MODULE);
2921         if (rv) {
2922                 printk(KERN_ERR
2923                        "ipmi_si: Unable to create proc entry: %d\n",
2924                        rv);
2925                 goto out_err_stop_timer;
2926         }
2927
2928         list_add_tail(&new_smi->link, &smi_infos);
2929
2930         mutex_unlock(&smi_infos_lock);
2931
2932         printk(KERN_INFO "IPMI %s interface initialized\n",
2933                si_to_str[new_smi->si_type]);
2934
2935         return 0;
2936
2937  out_err_stop_timer:
2938         atomic_inc(&new_smi->stop_operation);
2939         wait_for_timer_and_thread(new_smi);
2940
2941  out_err:
2942         if (new_smi->intf)
2943                 ipmi_unregister_smi(new_smi->intf);
2944
2945         if (new_smi->irq_cleanup)
2946                 new_smi->irq_cleanup(new_smi);
2947
2948         /*
2949          * Wait until we know that we are out of any interrupt
2950          * handlers might have been running before we freed the
2951          * interrupt.
2952          */
2953         synchronize_sched();
2954
2955         if (new_smi->si_sm) {
2956                 if (new_smi->handlers)
2957                         new_smi->handlers->cleanup(new_smi->si_sm);
2958                 kfree(new_smi->si_sm);
2959         }
2960         if (new_smi->addr_source_cleanup)
2961                 new_smi->addr_source_cleanup(new_smi);
2962         if (new_smi->io_cleanup)
2963                 new_smi->io_cleanup(new_smi);
2964
2965         if (new_smi->dev_registered)
2966                 platform_device_unregister(new_smi->pdev);
2967
2968         kfree(new_smi);
2969
2970         mutex_unlock(&smi_infos_lock);
2971
2972         return rv;
2973 }
2974
2975 static __devinit int init_ipmi_si(void)
2976 {
2977         int  i;
2978         char *str;
2979         int  rv;
2980
2981         if (initialized)
2982                 return 0;
2983         initialized = 1;
2984
2985         /* Register the device drivers. */
2986         rv = driver_register(&ipmi_driver);
2987         if (rv) {
2988                 printk(KERN_ERR
2989                        "init_ipmi_si: Unable to register driver: %d\n",
2990                        rv);
2991                 return rv;
2992         }
2993
2994
2995         /* Parse out the si_type string into its components. */
2996         str = si_type_str;
2997         if (*str != '\0') {
2998                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
2999                         si_type[i] = str;
3000                         str = strchr(str, ',');
3001                         if (str) {
3002                                 *str = '\0';
3003                                 str++;
3004                         } else {
3005                                 break;
3006                         }
3007                 }
3008         }
3009
3010         printk(KERN_INFO "IPMI System Interface driver.\n");
3011
3012         hardcode_find_bmc();
3013
3014 #ifdef CONFIG_DMI
3015         dmi_find_bmc();
3016 #endif
3017
3018 #ifdef CONFIG_ACPI
3019         acpi_find_bmc();
3020 #endif
3021
3022 #ifdef CONFIG_PCI
3023         rv = pci_register_driver(&ipmi_pci_driver);
3024         if (rv)
3025                 printk(KERN_ERR
3026                        "init_ipmi_si: Unable to register PCI driver: %d\n",
3027                        rv);
3028 #endif
3029
3030 #ifdef CONFIG_PPC_OF
3031         of_register_platform_driver(&ipmi_of_platform_driver);
3032 #endif
3033
3034         if (si_trydefaults) {
3035                 mutex_lock(&smi_infos_lock);
3036                 if (list_empty(&smi_infos)) {
3037                         /* No BMC was found, try defaults. */
3038                         mutex_unlock(&smi_infos_lock);
3039                         default_find_bmc();
3040                 } else {
3041                         mutex_unlock(&smi_infos_lock);
3042                 }
3043         }
3044
3045         mutex_lock(&smi_infos_lock);
3046         if (unload_when_empty && list_empty(&smi_infos)) {
3047                 mutex_unlock(&smi_infos_lock);
3048 #ifdef CONFIG_PCI
3049                 pci_unregister_driver(&ipmi_pci_driver);
3050 #endif
3051
3052 #ifdef CONFIG_PPC_OF
3053                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3054 #endif
3055                 driver_unregister(&ipmi_driver);
3056                 printk(KERN_WARNING
3057                        "ipmi_si: Unable to find any System Interface(s)\n");
3058                 return -ENODEV;
3059         } else {
3060                 mutex_unlock(&smi_infos_lock);
3061                 return 0;
3062         }
3063 }
3064 module_init(init_ipmi_si);
3065
3066 static void cleanup_one_si(struct smi_info *to_clean)
3067 {
3068         int           rv;
3069         unsigned long flags;
3070
3071         if (!to_clean)
3072                 return;
3073
3074         list_del(&to_clean->link);
3075
3076         /* Tell the driver that we are shutting down. */
3077         atomic_inc(&to_clean->stop_operation);
3078
3079         /*
3080          * Make sure the timer and thread are stopped and will not run
3081          * again.
3082          */
3083         wait_for_timer_and_thread(to_clean);
3084
3085         /*
3086          * Timeouts are stopped, now make sure the interrupts are off
3087          * for the device.  A little tricky with locks to make sure
3088          * there are no races.
3089          */
3090         spin_lock_irqsave(&to_clean->si_lock, flags);
3091         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3092                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3093                 poll(to_clean);
3094                 schedule_timeout_uninterruptible(1);
3095                 spin_lock_irqsave(&to_clean->si_lock, flags);
3096         }
3097         disable_si_irq(to_clean);
3098         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3099         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3100                 poll(to_clean);
3101                 schedule_timeout_uninterruptible(1);
3102         }
3103
3104         /* Clean up interrupts and make sure that everything is done. */
3105         if (to_clean->irq_cleanup)
3106                 to_clean->irq_cleanup(to_clean);
3107         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3108                 poll(to_clean);
3109                 schedule_timeout_uninterruptible(1);
3110         }
3111
3112         rv = ipmi_unregister_smi(to_clean->intf);
3113         if (rv) {
3114                 printk(KERN_ERR
3115                        "ipmi_si: Unable to unregister device: errno=%d\n",
3116                        rv);
3117         }
3118
3119         to_clean->handlers->cleanup(to_clean->si_sm);
3120
3121         kfree(to_clean->si_sm);
3122
3123         if (to_clean->addr_source_cleanup)
3124                 to_clean->addr_source_cleanup(to_clean);
3125         if (to_clean->io_cleanup)
3126                 to_clean->io_cleanup(to_clean);
3127
3128         if (to_clean->dev_registered)
3129                 platform_device_unregister(to_clean->pdev);
3130
3131         kfree(to_clean);
3132 }
3133
3134 static __exit void cleanup_ipmi_si(void)
3135 {
3136         struct smi_info *e, *tmp_e;
3137
3138         if (!initialized)
3139                 return;
3140
3141 #ifdef CONFIG_PCI
3142         pci_unregister_driver(&ipmi_pci_driver);
3143 #endif
3144
3145 #ifdef CONFIG_PPC_OF
3146         of_unregister_platform_driver(&ipmi_of_platform_driver);
3147 #endif
3148
3149         mutex_lock(&smi_infos_lock);
3150         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3151                 cleanup_one_si(e);
3152         mutex_unlock(&smi_infos_lock);
3153
3154         driver_unregister(&ipmi_driver);
3155 }
3156 module_exit(cleanup_ipmi_si);
3157
3158 MODULE_LICENSE("GPL");
3159 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3160 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3161                    " system interfaces.");