2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
34 #include <linux/time.h>
35 #include <linux/ext4_jbd2.h>
36 #include <linux/jbd.h>
37 #include <linux/smp_lock.h>
38 #include <linux/highuid.h>
39 #include <linux/pagemap.h>
40 #include <linux/quotaops.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/ext4_fs_extents.h>
44 #include <asm/uaccess.h>
49 * combine low and high parts of physical block number into ext4_fsblk_t
51 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
55 block = le32_to_cpu(ex->ee_start);
56 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
62 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64 static ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
68 block = le32_to_cpu(ix->ei_leaf);
69 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
74 * ext4_ext_store_pblock:
75 * stores a large physical block number into an extent struct,
76 * breaking it into parts
78 static void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 ex->ee_start = cpu_to_le32((unsigned long) (pb & 0xffffffff));
81 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
85 * ext4_idx_store_pblock:
86 * stores a large physical block number into an index struct,
87 * breaking it into parts
89 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 ix->ei_leaf = cpu_to_le32((unsigned long) (pb & 0xffffffff));
92 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
95 static int ext4_ext_check_header(const char *function, struct inode *inode,
96 struct ext4_extent_header *eh)
98 const char *error_msg = NULL;
100 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
101 error_msg = "invalid magic";
104 if (unlikely(eh->eh_max == 0)) {
105 error_msg = "invalid eh_max";
108 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
109 error_msg = "invalid eh_entries";
115 ext4_error(inode->i_sb, function,
116 "bad header in inode #%lu: %s - magic %x, "
117 "entries %u, max %u, depth %u",
118 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
119 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
120 le16_to_cpu(eh->eh_depth));
125 static handle_t *ext4_ext_journal_restart(handle_t *handle, int needed)
129 if (handle->h_buffer_credits > needed)
131 if (!ext4_journal_extend(handle, needed))
133 err = ext4_journal_restart(handle, needed);
143 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
144 struct ext4_ext_path *path)
147 /* path points to block */
148 return ext4_journal_get_write_access(handle, path->p_bh);
150 /* path points to leaf/index in inode body */
151 /* we use in-core data, no need to protect them */
161 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
162 struct ext4_ext_path *path)
166 /* path points to block */
167 err = ext4_journal_dirty_metadata(handle, path->p_bh);
169 /* path points to leaf/index in inode body */
170 err = ext4_mark_inode_dirty(handle, inode);
175 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
176 struct ext4_ext_path *path,
179 struct ext4_inode_info *ei = EXT4_I(inode);
180 ext4_fsblk_t bg_start;
181 ext4_grpblk_t colour;
185 struct ext4_extent *ex;
186 depth = path->p_depth;
188 /* try to predict block placement */
189 ex = path[depth].p_ext;
191 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
193 /* it looks like index is empty;
194 * try to find starting block from index itself */
195 if (path[depth].p_bh)
196 return path[depth].p_bh->b_blocknr;
199 /* OK. use inode's group */
200 bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
201 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
202 colour = (current->pid % 16) *
203 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
204 return bg_start + colour + block;
208 ext4_ext_new_block(handle_t *handle, struct inode *inode,
209 struct ext4_ext_path *path,
210 struct ext4_extent *ex, int *err)
212 ext4_fsblk_t goal, newblock;
214 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
215 newblock = ext4_new_block(handle, inode, goal, err);
219 static int ext4_ext_space_block(struct inode *inode)
223 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
224 / sizeof(struct ext4_extent);
225 #ifdef AGGRESSIVE_TEST
232 static int ext4_ext_space_block_idx(struct inode *inode)
236 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
237 / sizeof(struct ext4_extent_idx);
238 #ifdef AGGRESSIVE_TEST
245 static int ext4_ext_space_root(struct inode *inode)
249 size = sizeof(EXT4_I(inode)->i_data);
250 size -= sizeof(struct ext4_extent_header);
251 size /= sizeof(struct ext4_extent);
252 #ifdef AGGRESSIVE_TEST
259 static int ext4_ext_space_root_idx(struct inode *inode)
263 size = sizeof(EXT4_I(inode)->i_data);
264 size -= sizeof(struct ext4_extent_header);
265 size /= sizeof(struct ext4_extent_idx);
266 #ifdef AGGRESSIVE_TEST
274 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
276 int k, l = path->p_depth;
279 for (k = 0; k <= l; k++, path++) {
281 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
282 idx_pblock(path->p_idx));
283 } else if (path->p_ext) {
284 ext_debug(" %d:%d:%llu ",
285 le32_to_cpu(path->p_ext->ee_block),
286 le16_to_cpu(path->p_ext->ee_len),
287 ext_pblock(path->p_ext));
294 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
296 int depth = ext_depth(inode);
297 struct ext4_extent_header *eh;
298 struct ext4_extent *ex;
304 eh = path[depth].p_hdr;
305 ex = EXT_FIRST_EXTENT(eh);
307 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
308 ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
309 le16_to_cpu(ex->ee_len), ext_pblock(ex));
314 #define ext4_ext_show_path(inode,path)
315 #define ext4_ext_show_leaf(inode,path)
318 static void ext4_ext_drop_refs(struct ext4_ext_path *path)
320 int depth = path->p_depth;
323 for (i = 0; i <= depth; i++, path++)
331 * ext4_ext_binsearch_idx:
332 * binary search for the closest index of the given block
335 ext4_ext_binsearch_idx(struct inode *inode, struct ext4_ext_path *path, int block)
337 struct ext4_extent_header *eh = path->p_hdr;
338 struct ext4_extent_idx *r, *l, *m;
340 BUG_ON(eh->eh_magic != EXT4_EXT_MAGIC);
341 BUG_ON(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max));
342 BUG_ON(le16_to_cpu(eh->eh_entries) <= 0);
344 ext_debug("binsearch for %d(idx): ", block);
346 l = EXT_FIRST_INDEX(eh) + 1;
347 r = EXT_FIRST_INDEX(eh) + le16_to_cpu(eh->eh_entries) - 1;
350 if (block < le32_to_cpu(m->ei_block))
354 ext_debug("%p(%u):%p(%u):%p(%u) ", l, l->ei_block,
355 m, m->ei_block, r, r->ei_block);
359 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
360 idx_block(path->p_idx));
362 #ifdef CHECK_BINSEARCH
364 struct ext4_extent_idx *chix, *ix;
367 chix = ix = EXT_FIRST_INDEX(eh);
368 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
370 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
371 printk("k=%d, ix=0x%p, first=0x%p\n", k,
372 ix, EXT_FIRST_INDEX(eh));
374 le32_to_cpu(ix->ei_block),
375 le32_to_cpu(ix[-1].ei_block));
377 BUG_ON(k && le32_to_cpu(ix->ei_block)
378 <= le32_to_cpu(ix[-1].ei_block));
379 if (block < le32_to_cpu(ix->ei_block))
383 BUG_ON(chix != path->p_idx);
390 * ext4_ext_binsearch:
391 * binary search for closest extent of the given block
394 ext4_ext_binsearch(struct inode *inode, struct ext4_ext_path *path, int block)
396 struct ext4_extent_header *eh = path->p_hdr;
397 struct ext4_extent *r, *l, *m;
399 BUG_ON(eh->eh_magic != EXT4_EXT_MAGIC);
400 BUG_ON(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max));
402 if (eh->eh_entries == 0) {
404 * this leaf is empty:
405 * we get such a leaf in split/add case
410 ext_debug("binsearch for %d: ", block);
412 l = EXT_FIRST_EXTENT(eh) + 1;
413 r = EXT_FIRST_EXTENT(eh) + le16_to_cpu(eh->eh_entries) - 1;
417 if (block < le32_to_cpu(m->ee_block))
421 ext_debug("%p(%u):%p(%u):%p(%u) ", l, l->ee_block,
422 m, m->ee_block, r, r->ee_block);
426 ext_debug(" -> %d:%llu:%d ",
427 le32_to_cpu(path->p_ext->ee_block),
428 ext_pblock(path->p_ext),
429 le16_to_cpu(path->p_ext->ee_len));
431 #ifdef CHECK_BINSEARCH
433 struct ext4_extent *chex, *ex;
436 chex = ex = EXT_FIRST_EXTENT(eh);
437 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
438 BUG_ON(k && le32_to_cpu(ex->ee_block)
439 <= le32_to_cpu(ex[-1].ee_block));
440 if (block < le32_to_cpu(ex->ee_block))
444 BUG_ON(chex != path->p_ext);
450 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
452 struct ext4_extent_header *eh;
454 eh = ext_inode_hdr(inode);
457 eh->eh_magic = EXT4_EXT_MAGIC;
458 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
459 ext4_mark_inode_dirty(handle, inode);
460 ext4_ext_invalidate_cache(inode);
464 struct ext4_ext_path *
465 ext4_ext_find_extent(struct inode *inode, int block, struct ext4_ext_path *path)
467 struct ext4_extent_header *eh;
468 struct buffer_head *bh;
469 short int depth, i, ppos = 0, alloc = 0;
471 eh = ext_inode_hdr(inode);
473 if (ext4_ext_check_header(__FUNCTION__, inode, eh))
474 return ERR_PTR(-EIO);
476 i = depth = ext_depth(inode);
478 /* account possible depth increase */
480 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
483 return ERR_PTR(-ENOMEM);
488 /* walk through the tree */
490 ext_debug("depth %d: num %d, max %d\n",
491 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
492 ext4_ext_binsearch_idx(inode, path + ppos, block);
493 path[ppos].p_block = idx_pblock(path[ppos].p_idx);
494 path[ppos].p_depth = i;
495 path[ppos].p_ext = NULL;
497 bh = sb_bread(inode->i_sb, path[ppos].p_block);
501 eh = ext_block_hdr(bh);
503 BUG_ON(ppos > depth);
504 path[ppos].p_bh = bh;
505 path[ppos].p_hdr = eh;
508 if (ext4_ext_check_header(__FUNCTION__, inode, eh))
512 path[ppos].p_depth = i;
513 path[ppos].p_hdr = eh;
514 path[ppos].p_ext = NULL;
515 path[ppos].p_idx = NULL;
517 if (ext4_ext_check_header(__FUNCTION__, inode, eh))
521 ext4_ext_binsearch(inode, path + ppos, block);
523 ext4_ext_show_path(inode, path);
528 ext4_ext_drop_refs(path);
531 return ERR_PTR(-EIO);
535 * ext4_ext_insert_index:
536 * insert new index [@logical;@ptr] into the block at @curp;
537 * check where to insert: before @curp or after @curp
539 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
540 struct ext4_ext_path *curp,
541 int logical, ext4_fsblk_t ptr)
543 struct ext4_extent_idx *ix;
546 err = ext4_ext_get_access(handle, inode, curp);
550 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
551 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
552 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
554 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
555 len = (len - 1) * sizeof(struct ext4_extent_idx);
556 len = len < 0 ? 0 : len;
557 ext_debug("insert new index %d after: %d. "
558 "move %d from 0x%p to 0x%p\n",
560 (curp->p_idx + 1), (curp->p_idx + 2));
561 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
563 ix = curp->p_idx + 1;
566 len = len * sizeof(struct ext4_extent_idx);
567 len = len < 0 ? 0 : len;
568 ext_debug("insert new index %d before: %d. "
569 "move %d from 0x%p to 0x%p\n",
571 curp->p_idx, (curp->p_idx + 1));
572 memmove(curp->p_idx + 1, curp->p_idx, len);
576 ix->ei_block = cpu_to_le32(logical);
577 ext4_idx_store_pblock(ix, ptr);
578 curp->p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(curp->p_hdr->eh_entries)+1);
580 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
581 > le16_to_cpu(curp->p_hdr->eh_max));
582 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
584 err = ext4_ext_dirty(handle, inode, curp);
585 ext4_std_error(inode->i_sb, err);
592 * inserts new subtree into the path, using free index entry
594 * - allocates all needed blocks (new leaf and all intermediate index blocks)
595 * - makes decision where to split
596 * - moves remaining extents and index entries (right to the split point)
597 * into the newly allocated blocks
598 * - initializes subtree
600 static int ext4_ext_split(handle_t *handle, struct inode *inode,
601 struct ext4_ext_path *path,
602 struct ext4_extent *newext, int at)
604 struct buffer_head *bh = NULL;
605 int depth = ext_depth(inode);
606 struct ext4_extent_header *neh;
607 struct ext4_extent_idx *fidx;
608 struct ext4_extent *ex;
610 ext4_fsblk_t newblock, oldblock;
612 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
615 /* make decision: where to split? */
616 /* FIXME: now decision is simplest: at current extent */
618 /* if current leaf will be split, then we should use
619 * border from split point */
620 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
621 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
622 border = path[depth].p_ext[1].ee_block;
623 ext_debug("leaf will be split."
624 " next leaf starts at %d\n",
625 le32_to_cpu(border));
627 border = newext->ee_block;
628 ext_debug("leaf will be added."
629 " next leaf starts at %d\n",
630 le32_to_cpu(border));
634 * If error occurs, then we break processing
635 * and mark filesystem read-only. index won't
636 * be inserted and tree will be in consistent
637 * state. Next mount will repair buffers too.
641 * Get array to track all allocated blocks.
642 * We need this to handle errors and free blocks
645 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
649 /* allocate all needed blocks */
650 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
651 for (a = 0; a < depth - at; a++) {
652 newblock = ext4_ext_new_block(handle, inode, path, newext, &err);
655 ablocks[a] = newblock;
658 /* initialize new leaf */
659 newblock = ablocks[--a];
660 BUG_ON(newblock == 0);
661 bh = sb_getblk(inode->i_sb, newblock);
668 err = ext4_journal_get_create_access(handle, bh);
672 neh = ext_block_hdr(bh);
674 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
675 neh->eh_magic = EXT4_EXT_MAGIC;
677 ex = EXT_FIRST_EXTENT(neh);
679 /* move remainder of path[depth] to the new leaf */
680 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
681 /* start copy from next extent */
682 /* TODO: we could do it by single memmove */
685 while (path[depth].p_ext <=
686 EXT_MAX_EXTENT(path[depth].p_hdr)) {
687 ext_debug("move %d:%llu:%d in new leaf %llu\n",
688 le32_to_cpu(path[depth].p_ext->ee_block),
689 ext_pblock(path[depth].p_ext),
690 le16_to_cpu(path[depth].p_ext->ee_len),
692 /*memmove(ex++, path[depth].p_ext++,
693 sizeof(struct ext4_extent));
699 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
700 neh->eh_entries = cpu_to_le16(le16_to_cpu(neh->eh_entries)+m);
703 set_buffer_uptodate(bh);
706 err = ext4_journal_dirty_metadata(handle, bh);
712 /* correct old leaf */
714 err = ext4_ext_get_access(handle, inode, path + depth);
717 path[depth].p_hdr->eh_entries =
718 cpu_to_le16(le16_to_cpu(path[depth].p_hdr->eh_entries)-m);
719 err = ext4_ext_dirty(handle, inode, path + depth);
725 /* create intermediate indexes */
729 ext_debug("create %d intermediate indices\n", k);
730 /* insert new index into current index block */
731 /* current depth stored in i var */
735 newblock = ablocks[--a];
736 bh = sb_getblk(inode->i_sb, (ext4_fsblk_t)newblock);
743 err = ext4_journal_get_create_access(handle, bh);
747 neh = ext_block_hdr(bh);
748 neh->eh_entries = cpu_to_le16(1);
749 neh->eh_magic = EXT4_EXT_MAGIC;
750 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
751 neh->eh_depth = cpu_to_le16(depth - i);
752 fidx = EXT_FIRST_INDEX(neh);
753 fidx->ei_block = border;
754 ext4_idx_store_pblock(fidx, oldblock);
756 ext_debug("int.index at %d (block %llu): %lu -> %llu\n", i,
757 newblock, (unsigned long) le32_to_cpu(border),
763 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
764 EXT_MAX_INDEX(path[i].p_hdr));
765 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
766 EXT_LAST_INDEX(path[i].p_hdr));
767 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
768 ext_debug("%d: move %d:%d in new index %llu\n", i,
769 le32_to_cpu(path[i].p_idx->ei_block),
770 idx_pblock(path[i].p_idx),
772 /*memmove(++fidx, path[i].p_idx++,
773 sizeof(struct ext4_extent_idx));
775 BUG_ON(neh->eh_entries > neh->eh_max);*/
780 memmove(++fidx, path[i].p_idx - m,
781 sizeof(struct ext4_extent_idx) * m);
783 cpu_to_le16(le16_to_cpu(neh->eh_entries) + m);
785 set_buffer_uptodate(bh);
788 err = ext4_journal_dirty_metadata(handle, bh);
794 /* correct old index */
796 err = ext4_ext_get_access(handle, inode, path + i);
799 path[i].p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(path[i].p_hdr->eh_entries)-m);
800 err = ext4_ext_dirty(handle, inode, path + i);
808 /* insert new index */
809 err = ext4_ext_insert_index(handle, inode, path + at,
810 le32_to_cpu(border), newblock);
814 if (buffer_locked(bh))
820 /* free all allocated blocks in error case */
821 for (i = 0; i < depth; i++) {
824 ext4_free_blocks(handle, inode, ablocks[i], 1);
833 * ext4_ext_grow_indepth:
834 * implements tree growing procedure:
835 * - allocates new block
836 * - moves top-level data (index block or leaf) into the new block
837 * - initializes new top-level, creating index that points to the
840 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
841 struct ext4_ext_path *path,
842 struct ext4_extent *newext)
844 struct ext4_ext_path *curp = path;
845 struct ext4_extent_header *neh;
846 struct ext4_extent_idx *fidx;
847 struct buffer_head *bh;
848 ext4_fsblk_t newblock;
851 newblock = ext4_ext_new_block(handle, inode, path, newext, &err);
855 bh = sb_getblk(inode->i_sb, newblock);
858 ext4_std_error(inode->i_sb, err);
863 err = ext4_journal_get_create_access(handle, bh);
869 /* move top-level index/leaf into new block */
870 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
872 /* set size of new block */
873 neh = ext_block_hdr(bh);
874 /* old root could have indexes or leaves
875 * so calculate e_max right way */
876 if (ext_depth(inode))
877 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
879 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
880 neh->eh_magic = EXT4_EXT_MAGIC;
881 set_buffer_uptodate(bh);
884 err = ext4_journal_dirty_metadata(handle, bh);
888 /* create index in new top-level index: num,max,pointer */
889 err = ext4_ext_get_access(handle, inode, curp);
893 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
894 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
895 curp->p_hdr->eh_entries = cpu_to_le16(1);
896 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
897 /* FIXME: it works, but actually path[0] can be index */
898 curp->p_idx->ei_block = EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
899 ext4_idx_store_pblock(curp->p_idx, newblock);
901 neh = ext_inode_hdr(inode);
902 fidx = EXT_FIRST_INDEX(neh);
903 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
904 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
905 le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
907 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
908 err = ext4_ext_dirty(handle, inode, curp);
916 * ext4_ext_create_new_leaf:
917 * finds empty index and adds new leaf.
918 * if no free index is found, then it requests in-depth growing.
920 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
921 struct ext4_ext_path *path,
922 struct ext4_extent *newext)
924 struct ext4_ext_path *curp;
925 int depth, i, err = 0;
928 i = depth = ext_depth(inode);
930 /* walk up to the tree and look for free index entry */
932 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
937 /* we use already allocated block for index block,
938 * so subsequent data blocks should be contiguous */
939 if (EXT_HAS_FREE_INDEX(curp)) {
940 /* if we found index with free entry, then use that
941 * entry: create all needed subtree and add new leaf */
942 err = ext4_ext_split(handle, inode, path, newext, i);
945 ext4_ext_drop_refs(path);
946 path = ext4_ext_find_extent(inode,
947 le32_to_cpu(newext->ee_block),
952 /* tree is full, time to grow in depth */
953 err = ext4_ext_grow_indepth(handle, inode, path, newext);
958 ext4_ext_drop_refs(path);
959 path = ext4_ext_find_extent(inode,
960 le32_to_cpu(newext->ee_block),
968 * only first (depth 0 -> 1) produces free space;
969 * in all other cases we have to split the grown tree
971 depth = ext_depth(inode);
972 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
973 /* now we need to split */
983 * ext4_ext_next_allocated_block:
984 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
985 * NOTE: it considers block number from index entry as
986 * allocated block. Thus, index entries have to be consistent
990 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
994 BUG_ON(path == NULL);
995 depth = path->p_depth;
997 if (depth == 0 && path->p_ext == NULL)
998 return EXT_MAX_BLOCK;
1000 while (depth >= 0) {
1001 if (depth == path->p_depth) {
1003 if (path[depth].p_ext !=
1004 EXT_LAST_EXTENT(path[depth].p_hdr))
1005 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1008 if (path[depth].p_idx !=
1009 EXT_LAST_INDEX(path[depth].p_hdr))
1010 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1015 return EXT_MAX_BLOCK;
1019 * ext4_ext_next_leaf_block:
1020 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1022 static unsigned ext4_ext_next_leaf_block(struct inode *inode,
1023 struct ext4_ext_path *path)
1027 BUG_ON(path == NULL);
1028 depth = path->p_depth;
1030 /* zero-tree has no leaf blocks at all */
1032 return EXT_MAX_BLOCK;
1034 /* go to index block */
1037 while (depth >= 0) {
1038 if (path[depth].p_idx !=
1039 EXT_LAST_INDEX(path[depth].p_hdr))
1040 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1044 return EXT_MAX_BLOCK;
1048 * ext4_ext_correct_indexes:
1049 * if leaf gets modified and modified extent is first in the leaf,
1050 * then we have to correct all indexes above.
1051 * TODO: do we need to correct tree in all cases?
1053 int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1054 struct ext4_ext_path *path)
1056 struct ext4_extent_header *eh;
1057 int depth = ext_depth(inode);
1058 struct ext4_extent *ex;
1062 eh = path[depth].p_hdr;
1063 ex = path[depth].p_ext;
1068 /* there is no tree at all */
1072 if (ex != EXT_FIRST_EXTENT(eh)) {
1073 /* we correct tree if first leaf got modified only */
1078 * TODO: we need correction if border is smaller than current one
1081 border = path[depth].p_ext->ee_block;
1082 err = ext4_ext_get_access(handle, inode, path + k);
1085 path[k].p_idx->ei_block = border;
1086 err = ext4_ext_dirty(handle, inode, path + k);
1091 /* change all left-side indexes */
1092 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1094 err = ext4_ext_get_access(handle, inode, path + k);
1097 path[k].p_idx->ei_block = border;
1098 err = ext4_ext_dirty(handle, inode, path + k);
1107 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1108 struct ext4_extent *ex2)
1110 if (le32_to_cpu(ex1->ee_block) + le16_to_cpu(ex1->ee_len) !=
1111 le32_to_cpu(ex2->ee_block))
1115 * To allow future support for preallocated extents to be added
1116 * as an RO_COMPAT feature, refuse to merge to extents if
1117 * this can result in the top bit of ee_len being set.
1119 if (le16_to_cpu(ex1->ee_len) + le16_to_cpu(ex2->ee_len) > EXT_MAX_LEN)
1121 #ifdef AGGRESSIVE_TEST
1122 if (le16_to_cpu(ex1->ee_len) >= 4)
1126 if (ext_pblock(ex1) + le16_to_cpu(ex1->ee_len) == ext_pblock(ex2))
1132 * ext4_ext_insert_extent:
1133 * tries to merge requsted extent into the existing extent or
1134 * inserts requested extent as new one into the tree,
1135 * creating new leaf in the no-space case.
1137 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1138 struct ext4_ext_path *path,
1139 struct ext4_extent *newext)
1141 struct ext4_extent_header * eh;
1142 struct ext4_extent *ex, *fex;
1143 struct ext4_extent *nearex; /* nearest extent */
1144 struct ext4_ext_path *npath = NULL;
1145 int depth, len, err, next;
1147 BUG_ON(newext->ee_len == 0);
1148 depth = ext_depth(inode);
1149 ex = path[depth].p_ext;
1150 BUG_ON(path[depth].p_hdr == NULL);
1152 /* try to insert block into found extent and return */
1153 if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1154 ext_debug("append %d block to %d:%d (from %llu)\n",
1155 le16_to_cpu(newext->ee_len),
1156 le32_to_cpu(ex->ee_block),
1157 le16_to_cpu(ex->ee_len), ext_pblock(ex));
1158 err = ext4_ext_get_access(handle, inode, path + depth);
1161 ex->ee_len = cpu_to_le16(le16_to_cpu(ex->ee_len)
1162 + le16_to_cpu(newext->ee_len));
1163 eh = path[depth].p_hdr;
1169 depth = ext_depth(inode);
1170 eh = path[depth].p_hdr;
1171 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1174 /* probably next leaf has space for us? */
1175 fex = EXT_LAST_EXTENT(eh);
1176 next = ext4_ext_next_leaf_block(inode, path);
1177 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1178 && next != EXT_MAX_BLOCK) {
1179 ext_debug("next leaf block - %d\n", next);
1180 BUG_ON(npath != NULL);
1181 npath = ext4_ext_find_extent(inode, next, NULL);
1183 return PTR_ERR(npath);
1184 BUG_ON(npath->p_depth != path->p_depth);
1185 eh = npath[depth].p_hdr;
1186 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1187 ext_debug("next leaf isnt full(%d)\n",
1188 le16_to_cpu(eh->eh_entries));
1192 ext_debug("next leaf has no free space(%d,%d)\n",
1193 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1197 * There is no free space in the found leaf.
1198 * We're gonna add a new leaf in the tree.
1200 err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1203 depth = ext_depth(inode);
1204 eh = path[depth].p_hdr;
1207 nearex = path[depth].p_ext;
1209 err = ext4_ext_get_access(handle, inode, path + depth);
1214 /* there is no extent in this leaf, create first one */
1215 ext_debug("first extent in the leaf: %d:%llu:%d\n",
1216 le32_to_cpu(newext->ee_block),
1218 le16_to_cpu(newext->ee_len));
1219 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1220 } else if (le32_to_cpu(newext->ee_block)
1221 > le32_to_cpu(nearex->ee_block)) {
1222 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1223 if (nearex != EXT_LAST_EXTENT(eh)) {
1224 len = EXT_MAX_EXTENT(eh) - nearex;
1225 len = (len - 1) * sizeof(struct ext4_extent);
1226 len = len < 0 ? 0 : len;
1227 ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1228 "move %d from 0x%p to 0x%p\n",
1229 le32_to_cpu(newext->ee_block),
1231 le16_to_cpu(newext->ee_len),
1232 nearex, len, nearex + 1, nearex + 2);
1233 memmove(nearex + 2, nearex + 1, len);
1235 path[depth].p_ext = nearex + 1;
1237 BUG_ON(newext->ee_block == nearex->ee_block);
1238 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1239 len = len < 0 ? 0 : len;
1240 ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1241 "move %d from 0x%p to 0x%p\n",
1242 le32_to_cpu(newext->ee_block),
1244 le16_to_cpu(newext->ee_len),
1245 nearex, len, nearex + 1, nearex + 2);
1246 memmove(nearex + 1, nearex, len);
1247 path[depth].p_ext = nearex;
1250 eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)+1);
1251 nearex = path[depth].p_ext;
1252 nearex->ee_block = newext->ee_block;
1253 nearex->ee_start = newext->ee_start;
1254 nearex->ee_start_hi = newext->ee_start_hi;
1255 nearex->ee_len = newext->ee_len;
1258 /* try to merge extents to the right */
1259 while (nearex < EXT_LAST_EXTENT(eh)) {
1260 if (!ext4_can_extents_be_merged(inode, nearex, nearex + 1))
1262 /* merge with next extent! */
1263 nearex->ee_len = cpu_to_le16(le16_to_cpu(nearex->ee_len)
1264 + le16_to_cpu(nearex[1].ee_len));
1265 if (nearex + 1 < EXT_LAST_EXTENT(eh)) {
1266 len = (EXT_LAST_EXTENT(eh) - nearex - 1)
1267 * sizeof(struct ext4_extent);
1268 memmove(nearex + 1, nearex + 2, len);
1270 eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)-1);
1271 BUG_ON(eh->eh_entries == 0);
1274 /* try to merge extents to the left */
1276 /* time to correct all indexes above */
1277 err = ext4_ext_correct_indexes(handle, inode, path);
1281 err = ext4_ext_dirty(handle, inode, path + depth);
1285 ext4_ext_drop_refs(npath);
1288 ext4_ext_tree_changed(inode);
1289 ext4_ext_invalidate_cache(inode);
1293 int ext4_ext_walk_space(struct inode *inode, unsigned long block,
1294 unsigned long num, ext_prepare_callback func,
1297 struct ext4_ext_path *path = NULL;
1298 struct ext4_ext_cache cbex;
1299 struct ext4_extent *ex;
1300 unsigned long next, start = 0, end = 0;
1301 unsigned long last = block + num;
1302 int depth, exists, err = 0;
1304 BUG_ON(func == NULL);
1305 BUG_ON(inode == NULL);
1307 while (block < last && block != EXT_MAX_BLOCK) {
1309 /* find extent for this block */
1310 path = ext4_ext_find_extent(inode, block, path);
1312 err = PTR_ERR(path);
1317 depth = ext_depth(inode);
1318 BUG_ON(path[depth].p_hdr == NULL);
1319 ex = path[depth].p_ext;
1320 next = ext4_ext_next_allocated_block(path);
1324 /* there is no extent yet, so try to allocate
1325 * all requested space */
1328 } else if (le32_to_cpu(ex->ee_block) > block) {
1329 /* need to allocate space before found extent */
1331 end = le32_to_cpu(ex->ee_block);
1332 if (block + num < end)
1335 le32_to_cpu(ex->ee_block) + le16_to_cpu(ex->ee_len)) {
1336 /* need to allocate space after found extent */
1341 } else if (block >= le32_to_cpu(ex->ee_block)) {
1343 * some part of requested space is covered
1347 end = le32_to_cpu(ex->ee_block) + le16_to_cpu(ex->ee_len);
1348 if (block + num < end)
1354 BUG_ON(end <= start);
1357 cbex.ec_block = start;
1358 cbex.ec_len = end - start;
1360 cbex.ec_type = EXT4_EXT_CACHE_GAP;
1362 cbex.ec_block = le32_to_cpu(ex->ee_block);
1363 cbex.ec_len = le16_to_cpu(ex->ee_len);
1364 cbex.ec_start = ext_pblock(ex);
1365 cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1368 BUG_ON(cbex.ec_len == 0);
1369 err = func(inode, path, &cbex, cbdata);
1370 ext4_ext_drop_refs(path);
1374 if (err == EXT_REPEAT)
1376 else if (err == EXT_BREAK) {
1381 if (ext_depth(inode) != depth) {
1382 /* depth was changed. we have to realloc path */
1387 block = cbex.ec_block + cbex.ec_len;
1391 ext4_ext_drop_refs(path);
1399 ext4_ext_put_in_cache(struct inode *inode, __u32 block,
1400 __u32 len, __u32 start, int type)
1402 struct ext4_ext_cache *cex;
1404 cex = &EXT4_I(inode)->i_cached_extent;
1405 cex->ec_type = type;
1406 cex->ec_block = block;
1408 cex->ec_start = start;
1412 * ext4_ext_put_gap_in_cache:
1413 * calculate boundaries of the gap that the requested block fits into
1414 * and cache this gap
1417 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1418 unsigned long block)
1420 int depth = ext_depth(inode);
1421 unsigned long lblock, len;
1422 struct ext4_extent *ex;
1424 ex = path[depth].p_ext;
1426 /* there is no extent yet, so gap is [0;-] */
1428 len = EXT_MAX_BLOCK;
1429 ext_debug("cache gap(whole file):");
1430 } else if (block < le32_to_cpu(ex->ee_block)) {
1432 len = le32_to_cpu(ex->ee_block) - block;
1433 ext_debug("cache gap(before): %lu [%lu:%lu]",
1434 (unsigned long) block,
1435 (unsigned long) le32_to_cpu(ex->ee_block),
1436 (unsigned long) le16_to_cpu(ex->ee_len));
1437 } else if (block >= le32_to_cpu(ex->ee_block)
1438 + le16_to_cpu(ex->ee_len)) {
1439 lblock = le32_to_cpu(ex->ee_block)
1440 + le16_to_cpu(ex->ee_len);
1441 len = ext4_ext_next_allocated_block(path);
1442 ext_debug("cache gap(after): [%lu:%lu] %lu",
1443 (unsigned long) le32_to_cpu(ex->ee_block),
1444 (unsigned long) le16_to_cpu(ex->ee_len),
1445 (unsigned long) block);
1446 BUG_ON(len == lblock);
1453 ext_debug(" -> %lu:%lu\n", (unsigned long) lblock, len);
1454 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1458 ext4_ext_in_cache(struct inode *inode, unsigned long block,
1459 struct ext4_extent *ex)
1461 struct ext4_ext_cache *cex;
1463 cex = &EXT4_I(inode)->i_cached_extent;
1465 /* has cache valid data? */
1466 if (cex->ec_type == EXT4_EXT_CACHE_NO)
1467 return EXT4_EXT_CACHE_NO;
1469 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1470 cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1471 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1472 ex->ee_block = cpu_to_le32(cex->ec_block);
1473 ext4_ext_store_pblock(ex, cex->ec_start);
1474 ex->ee_len = cpu_to_le16(cex->ec_len);
1475 ext_debug("%lu cached by %lu:%lu:%llu\n",
1476 (unsigned long) block,
1477 (unsigned long) cex->ec_block,
1478 (unsigned long) cex->ec_len,
1480 return cex->ec_type;
1484 return EXT4_EXT_CACHE_NO;
1489 * removes index from the index block.
1490 * It's used in truncate case only, thus all requests are for
1491 * last index in the block only.
1493 int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1494 struct ext4_ext_path *path)
1496 struct buffer_head *bh;
1500 /* free index block */
1502 leaf = idx_pblock(path->p_idx);
1503 BUG_ON(path->p_hdr->eh_entries == 0);
1504 err = ext4_ext_get_access(handle, inode, path);
1507 path->p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(path->p_hdr->eh_entries)-1);
1508 err = ext4_ext_dirty(handle, inode, path);
1511 ext_debug("index is empty, remove it, free block %llu\n", leaf);
1512 bh = sb_find_get_block(inode->i_sb, leaf);
1513 ext4_forget(handle, 1, inode, bh, leaf);
1514 ext4_free_blocks(handle, inode, leaf, 1);
1519 * ext4_ext_calc_credits_for_insert:
1520 * This routine returns max. credits that the extent tree can consume.
1521 * It should be OK for low-performance paths like ->writepage()
1522 * To allow many writing processes to fit into a single transaction,
1523 * the caller should calculate credits under truncate_mutex and
1524 * pass the actual path.
1526 int ext4_ext_calc_credits_for_insert(struct inode *inode,
1527 struct ext4_ext_path *path)
1532 /* probably there is space in leaf? */
1533 depth = ext_depth(inode);
1534 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1535 < le16_to_cpu(path[depth].p_hdr->eh_max))
1540 * given 32-bit logical block (4294967296 blocks), max. tree
1541 * can be 4 levels in depth -- 4 * 340^4 == 53453440000.
1542 * Let's also add one more level for imbalance.
1546 /* allocation of new data block(s) */
1550 * tree can be full, so it would need to grow in depth:
1551 * we need one credit to modify old root, credits for
1552 * new root will be added in split accounting
1557 * Index split can happen, we would need:
1558 * allocate intermediate indexes (bitmap + group)
1559 * + change two blocks at each level, but root (already included)
1561 needed += (depth * 2) + (depth * 2);
1563 /* any allocation modifies superblock */
1569 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
1570 struct ext4_extent *ex,
1571 unsigned long from, unsigned long to)
1573 struct buffer_head *bh;
1576 #ifdef EXTENTS_STATS
1578 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579 unsigned short ee_len = le16_to_cpu(ex->ee_len);
1580 spin_lock(&sbi->s_ext_stats_lock);
1581 sbi->s_ext_blocks += ee_len;
1582 sbi->s_ext_extents++;
1583 if (ee_len < sbi->s_ext_min)
1584 sbi->s_ext_min = ee_len;
1585 if (ee_len > sbi->s_ext_max)
1586 sbi->s_ext_max = ee_len;
1587 if (ext_depth(inode) > sbi->s_depth_max)
1588 sbi->s_depth_max = ext_depth(inode);
1589 spin_unlock(&sbi->s_ext_stats_lock);
1592 if (from >= le32_to_cpu(ex->ee_block)
1593 && to == le32_to_cpu(ex->ee_block) + le16_to_cpu(ex->ee_len) - 1) {
1597 num = le32_to_cpu(ex->ee_block) + le16_to_cpu(ex->ee_len) - from;
1598 start = ext_pblock(ex) + le16_to_cpu(ex->ee_len) - num;
1599 ext_debug("free last %lu blocks starting %llu\n", num, start);
1600 for (i = 0; i < num; i++) {
1601 bh = sb_find_get_block(inode->i_sb, start + i);
1602 ext4_forget(handle, 0, inode, bh, start + i);
1604 ext4_free_blocks(handle, inode, start, num);
1605 } else if (from == le32_to_cpu(ex->ee_block)
1606 && to <= le32_to_cpu(ex->ee_block) + le16_to_cpu(ex->ee_len) - 1) {
1607 printk("strange request: removal %lu-%lu from %u:%u\n",
1608 from, to, le32_to_cpu(ex->ee_block), le16_to_cpu(ex->ee_len));
1610 printk("strange request: removal(2) %lu-%lu from %u:%u\n",
1611 from, to, le32_to_cpu(ex->ee_block), le16_to_cpu(ex->ee_len));
1617 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
1618 struct ext4_ext_path *path, unsigned long start)
1620 int err = 0, correct_index = 0;
1621 int depth = ext_depth(inode), credits;
1622 struct ext4_extent_header *eh;
1623 unsigned a, b, block, num;
1624 unsigned long ex_ee_block;
1625 unsigned short ex_ee_len;
1626 struct ext4_extent *ex;
1628 ext_debug("truncate since %lu in leaf\n", start);
1629 if (!path[depth].p_hdr)
1630 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
1631 eh = path[depth].p_hdr;
1633 BUG_ON(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max));
1634 BUG_ON(eh->eh_magic != EXT4_EXT_MAGIC);
1636 /* find where to start removing */
1637 ex = EXT_LAST_EXTENT(eh);
1639 ex_ee_block = le32_to_cpu(ex->ee_block);
1640 ex_ee_len = le16_to_cpu(ex->ee_len);
1642 while (ex >= EXT_FIRST_EXTENT(eh) &&
1643 ex_ee_block + ex_ee_len > start) {
1644 ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
1645 path[depth].p_ext = ex;
1647 a = ex_ee_block > start ? ex_ee_block : start;
1648 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
1649 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
1651 ext_debug(" border %u:%u\n", a, b);
1653 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
1657 } else if (a != ex_ee_block) {
1658 /* remove tail of the extent */
1659 block = ex_ee_block;
1661 } else if (b != ex_ee_block + ex_ee_len - 1) {
1662 /* remove head of the extent */
1665 /* there is no "make a hole" API yet */
1668 /* remove whole extent: excellent! */
1669 block = ex_ee_block;
1671 BUG_ON(a != ex_ee_block);
1672 BUG_ON(b != ex_ee_block + ex_ee_len - 1);
1675 /* at present, extent can't cross block group: */
1676 /* leaf + bitmap + group desc + sb + inode */
1678 if (ex == EXT_FIRST_EXTENT(eh)) {
1680 credits += (ext_depth(inode)) + 1;
1683 credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
1686 handle = ext4_ext_journal_restart(handle, credits);
1687 if (IS_ERR(handle)) {
1688 err = PTR_ERR(handle);
1692 err = ext4_ext_get_access(handle, inode, path + depth);
1696 err = ext4_remove_blocks(handle, inode, ex, a, b);
1701 /* this extent is removed; mark slot entirely unused */
1702 ext4_ext_store_pblock(ex, 0);
1703 eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)-1);
1706 ex->ee_block = cpu_to_le32(block);
1707 ex->ee_len = cpu_to_le16(num);
1709 err = ext4_ext_dirty(handle, inode, path + depth);
1713 ext_debug("new extent: %u:%u:%llu\n", block, num,
1716 ex_ee_block = le32_to_cpu(ex->ee_block);
1717 ex_ee_len = le16_to_cpu(ex->ee_len);
1720 if (correct_index && eh->eh_entries)
1721 err = ext4_ext_correct_indexes(handle, inode, path);
1723 /* if this leaf is free, then we should
1724 * remove it from index block above */
1725 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
1726 err = ext4_ext_rm_idx(handle, inode, path + depth);
1733 * ext4_ext_more_to_rm:
1734 * returns 1 if current index has to be freed (even partial)
1737 ext4_ext_more_to_rm(struct ext4_ext_path *path)
1739 BUG_ON(path->p_idx == NULL);
1741 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
1745 * if truncate on deeper level happened, it wasn't partial,
1746 * so we have to consider current index for truncation
1748 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
1753 int ext4_ext_remove_space(struct inode *inode, unsigned long start)
1755 struct super_block *sb = inode->i_sb;
1756 int depth = ext_depth(inode);
1757 struct ext4_ext_path *path;
1761 ext_debug("truncate since %lu\n", start);
1763 /* probably first extent we're gonna free will be last in block */
1764 handle = ext4_journal_start(inode, depth + 1);
1766 return PTR_ERR(handle);
1768 ext4_ext_invalidate_cache(inode);
1771 * We start scanning from right side, freeing all the blocks
1772 * after i_size and walking into the tree depth-wise.
1774 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_KERNEL);
1776 ext4_journal_stop(handle);
1779 path[0].p_hdr = ext_inode_hdr(inode);
1780 if (ext4_ext_check_header(__FUNCTION__, inode, path[0].p_hdr)) {
1784 path[0].p_depth = depth;
1786 while (i >= 0 && err == 0) {
1788 /* this is leaf block */
1789 err = ext4_ext_rm_leaf(handle, inode, path, start);
1790 /* root level has p_bh == NULL, brelse() eats this */
1791 brelse(path[i].p_bh);
1792 path[i].p_bh = NULL;
1797 /* this is index block */
1798 if (!path[i].p_hdr) {
1799 ext_debug("initialize header\n");
1800 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
1801 if (ext4_ext_check_header(__FUNCTION__, inode,
1808 BUG_ON(le16_to_cpu(path[i].p_hdr->eh_entries)
1809 > le16_to_cpu(path[i].p_hdr->eh_max));
1810 BUG_ON(path[i].p_hdr->eh_magic != EXT4_EXT_MAGIC);
1812 if (!path[i].p_idx) {
1813 /* this level hasn't been touched yet */
1814 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
1815 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
1816 ext_debug("init index ptr: hdr 0x%p, num %d\n",
1818 le16_to_cpu(path[i].p_hdr->eh_entries));
1820 /* we were already here, see at next index */
1824 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
1825 i, EXT_FIRST_INDEX(path[i].p_hdr),
1827 if (ext4_ext_more_to_rm(path + i)) {
1828 /* go to the next level */
1829 ext_debug("move to level %d (block %llu)\n",
1830 i + 1, idx_pblock(path[i].p_idx));
1831 memset(path + i + 1, 0, sizeof(*path));
1833 sb_bread(sb, idx_pblock(path[i].p_idx));
1834 if (!path[i+1].p_bh) {
1835 /* should we reset i_size? */
1840 /* save actual number of indexes since this
1841 * number is changed at the next iteration */
1842 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
1845 /* we finished processing this index, go up */
1846 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
1847 /* index is empty, remove it;
1848 * handle must be already prepared by the
1849 * truncatei_leaf() */
1850 err = ext4_ext_rm_idx(handle, inode, path + i);
1852 /* root level has p_bh == NULL, brelse() eats this */
1853 brelse(path[i].p_bh);
1854 path[i].p_bh = NULL;
1856 ext_debug("return to level %d\n", i);
1860 /* TODO: flexible tree reduction should be here */
1861 if (path->p_hdr->eh_entries == 0) {
1863 * truncate to zero freed all the tree,
1864 * so we need to correct eh_depth
1866 err = ext4_ext_get_access(handle, inode, path);
1868 ext_inode_hdr(inode)->eh_depth = 0;
1869 ext_inode_hdr(inode)->eh_max =
1870 cpu_to_le16(ext4_ext_space_root(inode));
1871 err = ext4_ext_dirty(handle, inode, path);
1875 ext4_ext_tree_changed(inode);
1876 ext4_ext_drop_refs(path);
1878 ext4_journal_stop(handle);
1884 * called at mount time
1886 void ext4_ext_init(struct super_block *sb)
1889 * possible initialization would be here
1892 if (test_opt(sb, EXTENTS)) {
1893 printk("EXT4-fs: file extents enabled");
1894 #ifdef AGGRESSIVE_TEST
1895 printk(", aggressive tests");
1897 #ifdef CHECK_BINSEARCH
1898 printk(", check binsearch");
1900 #ifdef EXTENTS_STATS
1904 #ifdef EXTENTS_STATS
1905 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
1906 EXT4_SB(sb)->s_ext_min = 1 << 30;
1907 EXT4_SB(sb)->s_ext_max = 0;
1913 * called at umount time
1915 void ext4_ext_release(struct super_block *sb)
1917 if (!test_opt(sb, EXTENTS))
1920 #ifdef EXTENTS_STATS
1921 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
1922 struct ext4_sb_info *sbi = EXT4_SB(sb);
1923 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
1924 sbi->s_ext_blocks, sbi->s_ext_extents,
1925 sbi->s_ext_blocks / sbi->s_ext_extents);
1926 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
1927 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
1932 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
1933 ext4_fsblk_t iblock,
1934 unsigned long max_blocks, struct buffer_head *bh_result,
1935 int create, int extend_disksize)
1937 struct ext4_ext_path *path = NULL;
1938 struct ext4_extent newex, *ex;
1939 ext4_fsblk_t goal, newblock;
1941 unsigned long allocated = 0;
1943 __clear_bit(BH_New, &bh_result->b_state);
1944 ext_debug("blocks %d/%lu requested for inode %u\n", (int) iblock,
1945 max_blocks, (unsigned) inode->i_ino);
1946 mutex_lock(&EXT4_I(inode)->truncate_mutex);
1948 /* check in cache */
1949 goal = ext4_ext_in_cache(inode, iblock, &newex);
1951 if (goal == EXT4_EXT_CACHE_GAP) {
1953 /* block isn't allocated yet and
1954 * user doesn't want to allocate it */
1957 /* we should allocate requested block */
1958 } else if (goal == EXT4_EXT_CACHE_EXTENT) {
1959 /* block is already allocated */
1961 - le32_to_cpu(newex.ee_block)
1962 + ext_pblock(&newex);
1963 /* number of remaining blocks in the extent */
1964 allocated = le16_to_cpu(newex.ee_len) -
1965 (iblock - le32_to_cpu(newex.ee_block));
1972 /* find extent for this block */
1973 path = ext4_ext_find_extent(inode, iblock, NULL);
1975 err = PTR_ERR(path);
1980 depth = ext_depth(inode);
1983 * consistent leaf must not be empty;
1984 * this situation is possible, though, _during_ tree modification;
1985 * this is why assert can't be put in ext4_ext_find_extent()
1987 BUG_ON(path[depth].p_ext == NULL && depth != 0);
1989 ex = path[depth].p_ext;
1991 unsigned long ee_block = le32_to_cpu(ex->ee_block);
1992 ext4_fsblk_t ee_start = ext_pblock(ex);
1993 unsigned short ee_len = le16_to_cpu(ex->ee_len);
1996 * Allow future support for preallocated extents to be added
1997 * as an RO_COMPAT feature:
1998 * Uninitialized extents are treated as holes, except that
1999 * we avoid (fail) allocating new blocks during a write.
2001 if (ee_len > EXT_MAX_LEN)
2003 /* if found extent covers block, simply return it */
2004 if (iblock >= ee_block && iblock < ee_block + ee_len) {
2005 newblock = iblock - ee_block + ee_start;
2006 /* number of remaining blocks in the extent */
2007 allocated = ee_len - (iblock - ee_block);
2008 ext_debug("%d fit into %lu:%d -> %llu\n", (int) iblock,
2009 ee_block, ee_len, newblock);
2010 ext4_ext_put_in_cache(inode, ee_block, ee_len,
2011 ee_start, EXT4_EXT_CACHE_EXTENT);
2017 * requested block isn't allocated yet;
2018 * we couldn't try to create block if create flag is zero
2021 /* put just found gap into cache to speed up
2022 * subsequent requests */
2023 ext4_ext_put_gap_in_cache(inode, path, iblock);
2027 * Okay, we need to do block allocation. Lazily initialize the block
2028 * allocation info here if necessary.
2030 if (S_ISREG(inode->i_mode) && (!EXT4_I(inode)->i_block_alloc_info))
2031 ext4_init_block_alloc_info(inode);
2033 /* allocate new block */
2034 goal = ext4_ext_find_goal(inode, path, iblock);
2035 allocated = max_blocks;
2036 newblock = ext4_new_blocks(handle, inode, goal, &allocated, &err);
2039 ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2040 goal, newblock, allocated);
2042 /* try to insert new extent into found leaf and return */
2043 newex.ee_block = cpu_to_le32(iblock);
2044 ext4_ext_store_pblock(&newex, newblock);
2045 newex.ee_len = cpu_to_le16(allocated);
2046 err = ext4_ext_insert_extent(handle, inode, path, &newex);
2050 if (extend_disksize && inode->i_size > EXT4_I(inode)->i_disksize)
2051 EXT4_I(inode)->i_disksize = inode->i_size;
2053 /* previous routine could use block we allocated */
2054 newblock = ext_pblock(&newex);
2055 __set_bit(BH_New, &bh_result->b_state);
2057 ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2058 EXT4_EXT_CACHE_EXTENT);
2060 if (allocated > max_blocks)
2061 allocated = max_blocks;
2062 ext4_ext_show_leaf(inode, path);
2063 __set_bit(BH_Mapped, &bh_result->b_state);
2064 bh_result->b_bdev = inode->i_sb->s_bdev;
2065 bh_result->b_blocknr = newblock;
2068 ext4_ext_drop_refs(path);
2071 mutex_unlock(&EXT4_I(inode)->truncate_mutex);
2073 return err ? err : allocated;
2076 void ext4_ext_truncate(struct inode * inode, struct page *page)
2078 struct address_space *mapping = inode->i_mapping;
2079 struct super_block *sb = inode->i_sb;
2080 unsigned long last_block;
2085 * probably first extent we're gonna free will be last in block
2087 err = ext4_writepage_trans_blocks(inode) + 3;
2088 handle = ext4_journal_start(inode, err);
2089 if (IS_ERR(handle)) {
2091 clear_highpage(page);
2092 flush_dcache_page(page);
2094 page_cache_release(page);
2100 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2102 mutex_lock(&EXT4_I(inode)->truncate_mutex);
2103 ext4_ext_invalidate_cache(inode);
2106 * TODO: optimization is possible here.
2107 * Probably we need not scan at all,
2108 * because page truncation is enough.
2110 if (ext4_orphan_add(handle, inode))
2113 /* we have to know where to truncate from in crash case */
2114 EXT4_I(inode)->i_disksize = inode->i_size;
2115 ext4_mark_inode_dirty(handle, inode);
2117 last_block = (inode->i_size + sb->s_blocksize - 1)
2118 >> EXT4_BLOCK_SIZE_BITS(sb);
2119 err = ext4_ext_remove_space(inode, last_block);
2121 /* In a multi-transaction truncate, we only make the final
2122 * transaction synchronous. */
2128 * If this was a simple ftruncate() and the file will remain alive,
2129 * then we need to clear up the orphan record which we created above.
2130 * However, if this was a real unlink then we were called by
2131 * ext4_delete_inode(), and we allow that function to clean up the
2132 * orphan info for us.
2135 ext4_orphan_del(handle, inode);
2137 mutex_unlock(&EXT4_I(inode)->truncate_mutex);
2138 ext4_journal_stop(handle);
2142 * ext4_ext_writepage_trans_blocks:
2143 * calculate max number of blocks we could modify
2144 * in order to allocate new block for an inode
2146 int ext4_ext_writepage_trans_blocks(struct inode *inode, int num)
2150 needed = ext4_ext_calc_credits_for_insert(inode, NULL);
2152 /* caller wants to allocate num blocks, but note it includes sb */
2153 needed = needed * num - (num - 1);
2156 needed += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2162 EXPORT_SYMBOL(ext4_mark_inode_dirty);
2163 EXPORT_SYMBOL(ext4_ext_invalidate_cache);
2164 EXPORT_SYMBOL(ext4_ext_insert_extent);
2165 EXPORT_SYMBOL(ext4_ext_walk_space);
2166 EXPORT_SYMBOL(ext4_ext_find_goal);
2167 EXPORT_SYMBOL(ext4_ext_calc_credits_for_insert);