2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
14 #include <linux/config.h>
15 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/smp_lock.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/watch.h>
43 #include <asm/types.h>
45 extern asmlinkage void handle_int(void);
46 extern asmlinkage void handle_tlbm(void);
47 extern asmlinkage void handle_tlbl(void);
48 extern asmlinkage void handle_tlbs(void);
49 extern asmlinkage void handle_adel(void);
50 extern asmlinkage void handle_ades(void);
51 extern asmlinkage void handle_ibe(void);
52 extern asmlinkage void handle_dbe(void);
53 extern asmlinkage void handle_sys(void);
54 extern asmlinkage void handle_bp(void);
55 extern asmlinkage void handle_ri(void);
56 extern asmlinkage void handle_cpu(void);
57 extern asmlinkage void handle_ov(void);
58 extern asmlinkage void handle_tr(void);
59 extern asmlinkage void handle_fpe(void);
60 extern asmlinkage void handle_mdmx(void);
61 extern asmlinkage void handle_watch(void);
62 extern asmlinkage void handle_mt(void);
63 extern asmlinkage void handle_dsp(void);
64 extern asmlinkage void handle_mcheck(void);
65 extern asmlinkage void handle_reserved(void);
67 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
68 struct mips_fpu_soft_struct *ctx);
70 void (*board_be_init)(void);
71 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
72 void (*board_nmi_handler_setup)(void);
73 void (*board_ejtag_handler_setup)(void);
74 void (*board_bind_eic_interrupt)(int irq, int regset);
77 * These constant is for searching for possible module text segments.
78 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
80 #define MODULE_RANGE (8*1024*1024)
83 * This routine abuses get_user()/put_user() to reference pointers
84 * with at least a bit of error checking ...
86 void show_stack(struct task_struct *task, unsigned long *sp)
88 const int field = 2 * sizeof(unsigned long);
93 if (task && task != current)
94 sp = (unsigned long *) task->thread.reg29;
96 sp = (unsigned long *) &sp;
101 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
102 if (i && ((i % (64 / field)) == 0))
109 if (__get_user(stackdata, sp++)) {
110 printk(" (Bad stack address)");
114 printk(" %0*lx", field, stackdata);
120 void show_trace(struct task_struct *task, unsigned long *stack)
122 const int field = 2 * sizeof(unsigned long);
126 if (task && task != current)
127 stack = (unsigned long *) task->thread.reg29;
129 stack = (unsigned long *) &stack;
132 printk("Call Trace:");
133 #ifdef CONFIG_KALLSYMS
136 while (!kstack_end(stack)) {
138 if (__kernel_text_address(addr)) {
139 printk(" [<%0*lx>] ", field, addr);
140 print_symbol("%s\n", addr);
147 * The architecture-independent dump_stack generator
149 void dump_stack(void)
153 show_trace(current, &stack);
156 EXPORT_SYMBOL(dump_stack);
158 void show_code(unsigned int *pc)
164 for(i = -3 ; i < 6 ; i++) {
166 if (__get_user(insn, pc + i)) {
167 printk(" (Bad address in epc)\n");
170 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
174 void show_regs(struct pt_regs *regs)
176 const int field = 2 * sizeof(unsigned long);
177 unsigned int cause = regs->cp0_cause;
180 printk("Cpu %d\n", smp_processor_id());
183 * Saved main processor registers
185 for (i = 0; i < 32; ) {
189 printk(" %0*lx", field, 0UL);
190 else if (i == 26 || i == 27)
191 printk(" %*s", field, "");
193 printk(" %0*lx", field, regs->regs[i]);
200 printk("Hi : %0*lx\n", field, regs->hi);
201 printk("Lo : %0*lx\n", field, regs->lo);
204 * Saved cp0 registers
206 printk("epc : %0*lx ", field, regs->cp0_epc);
207 print_symbol("%s ", regs->cp0_epc);
208 printk(" %s\n", print_tainted());
209 printk("ra : %0*lx ", field, regs->regs[31]);
210 print_symbol("%s\n", regs->regs[31]);
212 printk("Status: %08x ", (uint32_t) regs->cp0_status);
214 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
215 if (regs->cp0_status & ST0_KUO)
217 if (regs->cp0_status & ST0_IEO)
219 if (regs->cp0_status & ST0_KUP)
221 if (regs->cp0_status & ST0_IEP)
223 if (regs->cp0_status & ST0_KUC)
225 if (regs->cp0_status & ST0_IEC)
228 if (regs->cp0_status & ST0_KX)
230 if (regs->cp0_status & ST0_SX)
232 if (regs->cp0_status & ST0_UX)
234 switch (regs->cp0_status & ST0_KSU) {
239 printk("SUPERVISOR ");
248 if (regs->cp0_status & ST0_ERL)
250 if (regs->cp0_status & ST0_EXL)
252 if (regs->cp0_status & ST0_IE)
257 printk("Cause : %08x\n", cause);
259 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
260 if (1 <= cause && cause <= 5)
261 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
263 printk("PrId : %08x\n", read_c0_prid());
266 void show_registers(struct pt_regs *regs)
270 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
271 current->comm, current->pid, current_thread_info(), current);
272 show_stack(current, (long *) regs->regs[29]);
273 show_trace(current, (long *) regs->regs[29]);
274 show_code((unsigned int *) regs->cp0_epc);
278 static DEFINE_SPINLOCK(die_lock);
280 NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
282 static int die_counter;
283 #ifdef CONFIG_MIPS_MT_SMTC
284 unsigned long dvpret = dvpe();
285 #endif /* CONFIG_MIPS_MT_SMTC */
288 spin_lock_irq(&die_lock);
290 #ifdef CONFIG_MIPS_MT_SMTC
291 mips_mt_regdump(dvpret);
292 #endif /* CONFIG_MIPS_MT_SMTC */
293 printk("%s[#%d]:\n", str, ++die_counter);
294 show_registers(regs);
295 spin_unlock_irq(&die_lock);
299 extern const struct exception_table_entry __start___dbe_table[];
300 extern const struct exception_table_entry __stop___dbe_table[];
302 void __declare_dbe_table(void)
304 __asm__ __volatile__(
305 ".section\t__dbe_table,\"a\"\n\t"
310 /* Given an address, look for it in the exception tables. */
311 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
313 const struct exception_table_entry *e;
315 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
317 e = search_module_dbetables(addr);
321 asmlinkage void do_be(struct pt_regs *regs)
323 const int field = 2 * sizeof(unsigned long);
324 const struct exception_table_entry *fixup = NULL;
325 int data = regs->cp0_cause & 4;
326 int action = MIPS_BE_FATAL;
328 /* XXX For now. Fixme, this searches the wrong table ... */
329 if (data && !user_mode(regs))
330 fixup = search_dbe_tables(exception_epc(regs));
333 action = MIPS_BE_FIXUP;
335 if (board_be_handler)
336 action = board_be_handler(regs, fixup != 0);
339 case MIPS_BE_DISCARD:
343 regs->cp0_epc = fixup->nextinsn;
352 * Assume it would be too dangerous to continue ...
354 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
355 data ? "Data" : "Instruction",
356 field, regs->cp0_epc, field, regs->regs[31]);
357 die_if_kernel("Oops", regs);
358 force_sig(SIGBUS, current);
361 static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
363 unsigned int __user *epc;
365 epc = (unsigned int __user *) regs->cp0_epc +
366 ((regs->cp0_cause & CAUSEF_BD) != 0);
367 if (!get_user(*opcode, epc))
370 force_sig(SIGSEGV, current);
378 #define OPCODE 0xfc000000
379 #define BASE 0x03e00000
380 #define RT 0x001f0000
381 #define OFFSET 0x0000ffff
382 #define LL 0xc0000000
383 #define SC 0xe0000000
384 #define SPEC3 0x7c000000
385 #define RD 0x0000f800
386 #define FUNC 0x0000003f
387 #define RDHWR 0x0000003b
390 * The ll_bit is cleared by r*_switch.S
393 unsigned long ll_bit;
395 static struct task_struct *ll_task = NULL;
397 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
399 unsigned long value, __user *vaddr;
404 * analyse the ll instruction that just caused a ri exception
405 * and put the referenced address to addr.
408 /* sign extend offset */
409 offset = opcode & OFFSET;
413 vaddr = (unsigned long __user *)
414 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
416 if ((unsigned long)vaddr & 3) {
420 if (get_user(value, vaddr)) {
427 if (ll_task == NULL || ll_task == current) {
436 compute_return_epc(regs);
438 regs->regs[(opcode & RT) >> 16] = value;
443 force_sig(signal, current);
446 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
448 unsigned long __user *vaddr;
454 * analyse the sc instruction that just caused a ri exception
455 * and put the referenced address to addr.
458 /* sign extend offset */
459 offset = opcode & OFFSET;
463 vaddr = (unsigned long __user *)
464 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
465 reg = (opcode & RT) >> 16;
467 if ((unsigned long)vaddr & 3) {
474 if (ll_bit == 0 || ll_task != current) {
475 compute_return_epc(regs);
483 if (put_user(regs->regs[reg], vaddr)) {
488 compute_return_epc(regs);
494 force_sig(signal, current);
498 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
499 * opcodes are supposed to result in coprocessor unusable exceptions if
500 * executed on ll/sc-less processors. That's the theory. In practice a
501 * few processors such as NEC's VR4100 throw reserved instruction exceptions
502 * instead, so we're doing the emulation thing in both exception handlers.
504 static inline int simulate_llsc(struct pt_regs *regs)
508 if (unlikely(get_insn_opcode(regs, &opcode)))
511 if ((opcode & OPCODE) == LL) {
512 simulate_ll(regs, opcode);
515 if ((opcode & OPCODE) == SC) {
516 simulate_sc(regs, opcode);
520 return -EFAULT; /* Strange things going on ... */
524 * Simulate trapping 'rdhwr' instructions to provide user accessible
525 * registers not implemented in hardware. The only current use of this
526 * is the thread area pointer.
528 static inline int simulate_rdhwr(struct pt_regs *regs)
530 struct thread_info *ti = task_thread_info(current);
533 if (unlikely(get_insn_opcode(regs, &opcode)))
536 if (unlikely(compute_return_epc(regs)))
539 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
540 int rd = (opcode & RD) >> 11;
541 int rt = (opcode & RT) >> 16;
544 regs->regs[rt] = ti->tp_value;
555 asmlinkage void do_ov(struct pt_regs *regs)
559 die_if_kernel("Integer overflow", regs);
561 info.si_code = FPE_INTOVF;
562 info.si_signo = SIGFPE;
564 info.si_addr = (void __user *) regs->cp0_epc;
565 force_sig_info(SIGFPE, &info, current);
569 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
571 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
573 if (fcr31 & FPU_CSR_UNI_X) {
578 #ifdef CONFIG_PREEMPT
579 if (!is_fpu_owner()) {
580 /* We might lose fpu before disabling preempt... */
582 BUG_ON(!used_math());
587 * Unimplemented operation exception. If we've got the full
588 * software emulator on-board, let's use it...
590 * Force FPU to dump state into task/thread context. We're
591 * moving a lot of data here for what is probably a single
592 * instruction, but the alternative is to pre-decode the FP
593 * register operands before invoking the emulator, which seems
594 * a bit extreme for what should be an infrequent event.
597 /* Ensure 'resume' not overwrite saved fp context again. */
602 /* Run the emulator */
603 sig = fpu_emulator_cop1Handler (regs,
604 ¤t->thread.fpu.soft);
608 own_fpu(); /* Using the FPU again. */
610 * We can't allow the emulated instruction to leave any of
611 * the cause bit set in $fcr31.
613 current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X;
615 /* Restore the hardware register state */
620 /* If something went wrong, signal */
622 force_sig(sig, current);
627 force_sig(SIGFPE, current);
630 asmlinkage void do_bp(struct pt_regs *regs)
632 unsigned int opcode, bcode;
635 die_if_kernel("Break instruction in kernel code", regs);
637 if (get_insn_opcode(regs, &opcode))
641 * There is the ancient bug in the MIPS assemblers that the break
642 * code starts left to bit 16 instead to bit 6 in the opcode.
643 * Gas is bug-compatible, but not always, grrr...
644 * We handle both cases with a simple heuristics. --macro
646 bcode = ((opcode >> 6) & ((1 << 20) - 1));
647 if (bcode < (1 << 10))
651 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
652 * insns, even for break codes that indicate arithmetic failures.
654 * But should we continue the brokenness??? --macro
657 case BRK_OVERFLOW << 10:
658 case BRK_DIVZERO << 10:
659 if (bcode == (BRK_DIVZERO << 10))
660 info.si_code = FPE_INTDIV;
662 info.si_code = FPE_INTOVF;
663 info.si_signo = SIGFPE;
665 info.si_addr = (void __user *) regs->cp0_epc;
666 force_sig_info(SIGFPE, &info, current);
669 force_sig(SIGTRAP, current);
673 asmlinkage void do_tr(struct pt_regs *regs)
675 unsigned int opcode, tcode = 0;
678 die_if_kernel("Trap instruction in kernel code", regs);
680 if (get_insn_opcode(regs, &opcode))
683 /* Immediate versions don't provide a code. */
684 if (!(opcode & OPCODE))
685 tcode = ((opcode >> 6) & ((1 << 10) - 1));
688 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
689 * insns, even for trap codes that indicate arithmetic failures.
691 * But should we continue the brokenness??? --macro
696 if (tcode == BRK_DIVZERO)
697 info.si_code = FPE_INTDIV;
699 info.si_code = FPE_INTOVF;
700 info.si_signo = SIGFPE;
702 info.si_addr = (void __user *) regs->cp0_epc;
703 force_sig_info(SIGFPE, &info, current);
706 force_sig(SIGTRAP, current);
710 asmlinkage void do_ri(struct pt_regs *regs)
712 die_if_kernel("Reserved instruction in kernel code", regs);
715 if (!simulate_llsc(regs))
718 if (!simulate_rdhwr(regs))
721 force_sig(SIGILL, current);
724 asmlinkage void do_cpu(struct pt_regs *regs)
728 die_if_kernel("do_cpu invoked from kernel context!", regs);
730 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
735 if (!simulate_llsc(regs))
738 if (!simulate_rdhwr(regs))
747 if (used_math()) { /* Using the FPU again. */
749 } else { /* First time FPU user. */
757 int sig = fpu_emulator_cop1Handler(regs,
758 ¤t->thread.fpu.soft);
760 force_sig(sig, current);
761 #ifdef CONFIG_MIPS_MT_FPAFF
764 * MIPS MT processors may have fewer FPU contexts
765 * than CPU threads. If we've emulated more than
766 * some threshold number of instructions, force
767 * migration to a "CPU" that has FP support.
769 if(mt_fpemul_threshold > 0
770 && ((current->thread.emulated_fp++
771 > mt_fpemul_threshold))) {
773 * If there's no FPU present, or if the
774 * application has already restricted
775 * the allowed set to exclude any CPUs
776 * with FPUs, we'll skip the procedure.
778 if (cpus_intersects(current->cpus_allowed,
783 current->thread.user_cpus_allowed,
785 set_cpus_allowed(current, tmask);
786 current->thread.mflags |= MF_FPUBOUND;
790 #endif /* CONFIG_MIPS_MT_FPAFF */
797 die_if_kernel("do_cpu invoked from kernel context!", regs);
801 force_sig(SIGILL, current);
804 asmlinkage void do_mdmx(struct pt_regs *regs)
806 force_sig(SIGILL, current);
809 asmlinkage void do_watch(struct pt_regs *regs)
812 * We use the watch exception where available to detect stack
817 panic("Caught WATCH exception - probably caused by stack overflow.");
820 asmlinkage void do_mcheck(struct pt_regs *regs)
825 * Some chips may have other causes of machine check (e.g. SB1
828 panic("Caught Machine Check exception - %scaused by multiple "
829 "matching entries in the TLB.",
830 (regs->cp0_status & ST0_TS) ? "" : "not ");
833 asmlinkage void do_mt(struct pt_regs *regs)
837 die_if_kernel("MIPS MT Thread exception in kernel", regs);
839 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
840 >> VPECONTROL_EXCPT_SHIFT;
843 printk(KERN_ERR "Thread Underflow\n");
846 printk(KERN_ERR "Thread Overflow\n");
849 printk(KERN_ERR "Invalid YIELD Qualifier\n");
852 printk(KERN_ERR "Gating Storage Exception\n");
855 printk(KERN_ERR "YIELD Scheduler Exception\n");
858 printk(KERN_ERR "Gating Storage Schedulier Exception\n");
861 printk(KERN_ERR "*** UNKNOWN THREAD EXCEPTION %d ***\n",
865 die_if_kernel("MIPS MT Thread exception in kernel", regs);
867 force_sig(SIGILL, current);
871 asmlinkage void do_dsp(struct pt_regs *regs)
874 panic("Unexpected DSP exception\n");
876 force_sig(SIGILL, current);
879 asmlinkage void do_reserved(struct pt_regs *regs)
882 * Game over - no way to handle this if it ever occurs. Most probably
883 * caused by a new unknown cpu type or after another deadly
884 * hard/software error.
887 panic("Caught reserved exception %ld - should not happen.",
888 (regs->cp0_cause & 0x7f) >> 2);
891 asmlinkage void do_default_vi(struct pt_regs *regs)
894 panic("Caught unexpected vectored interrupt.");
898 * Some MIPS CPUs can enable/disable for cache parity detection, but do
901 static inline void parity_protection_init(void)
903 switch (current_cpu_data.cputype) {
907 write_c0_ecc(0x80000000);
908 back_to_back_c0_hazard();
909 /* Set the PE bit (bit 31) in the c0_errctl register. */
910 printk(KERN_INFO "Cache parity protection %sabled\n",
911 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
915 /* Clear the DE bit (bit 16) in the c0_status register. */
916 printk(KERN_INFO "Enable cache parity protection for "
917 "MIPS 20KC/25KF CPUs.\n");
918 clear_c0_status(ST0_DE);
925 asmlinkage void cache_parity_error(void)
927 const int field = 2 * sizeof(unsigned long);
928 unsigned int reg_val;
930 /* For the moment, report the problem and hang. */
931 printk("Cache error exception:\n");
932 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
933 reg_val = read_c0_cacheerr();
934 printk("c0_cacheerr == %08x\n", reg_val);
936 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
937 reg_val & (1<<30) ? "secondary" : "primary",
938 reg_val & (1<<31) ? "data" : "insn");
939 printk("Error bits: %s%s%s%s%s%s%s\n",
940 reg_val & (1<<29) ? "ED " : "",
941 reg_val & (1<<28) ? "ET " : "",
942 reg_val & (1<<26) ? "EE " : "",
943 reg_val & (1<<25) ? "EB " : "",
944 reg_val & (1<<24) ? "EI " : "",
945 reg_val & (1<<23) ? "E1 " : "",
946 reg_val & (1<<22) ? "E0 " : "");
947 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
949 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
950 if (reg_val & (1<<22))
951 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
953 if (reg_val & (1<<23))
954 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
957 panic("Can't handle the cache error!");
961 * SDBBP EJTAG debug exception handler.
962 * We skip the instruction and return to the next instruction.
964 void ejtag_exception_handler(struct pt_regs *regs)
966 const int field = 2 * sizeof(unsigned long);
967 unsigned long depc, old_epc;
970 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
971 depc = read_c0_depc();
972 debug = read_c0_debug();
973 printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
974 if (debug & 0x80000000) {
976 * In branch delay slot.
977 * We cheat a little bit here and use EPC to calculate the
978 * debug return address (DEPC). EPC is restored after the
981 old_epc = regs->cp0_epc;
982 regs->cp0_epc = depc;
983 __compute_return_epc(regs);
984 depc = regs->cp0_epc;
985 regs->cp0_epc = old_epc;
991 printk("\n\n----- Enable EJTAG single stepping ----\n\n");
992 write_c0_debug(debug | 0x100);
997 * NMI exception handler.
999 void nmi_exception_handler(struct pt_regs *regs)
1001 #ifdef CONFIG_MIPS_MT_SMTC
1002 unsigned long dvpret = dvpe();
1004 printk("NMI taken!!!!\n");
1005 mips_mt_regdump(dvpret);
1008 printk("NMI taken!!!!\n");
1009 #endif /* CONFIG_MIPS_MT_SMTC */
1014 #define VECTORSPACING 0x100 /* for EI/VI mode */
1016 unsigned long ebase;
1017 unsigned long exception_handlers[32];
1018 unsigned long vi_handlers[64];
1021 * As a side effect of the way this is implemented we're limited
1022 * to interrupt handlers in the address range from
1023 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1025 void *set_except_vector(int n, void *addr)
1027 unsigned long handler = (unsigned long) addr;
1028 unsigned long old_handler = exception_handlers[n];
1030 exception_handlers[n] = handler;
1031 if (n == 0 && cpu_has_divec) {
1032 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1033 (0x03ffffff & (handler >> 2));
1034 flush_icache_range(ebase + 0x200, ebase + 0x204);
1036 return (void *)old_handler;
1039 #ifdef CONFIG_CPU_MIPSR2
1041 * MIPSR2 shadow register set allocation
1045 static struct shadow_registers {
1047 * Number of shadow register sets supported
1049 unsigned long sr_supported;
1051 * Bitmap of allocated shadow registers
1053 unsigned long sr_allocated;
1056 static void mips_srs_init(void)
1058 #ifdef CONFIG_CPU_MIPSR2_SRS
1059 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1060 printk(KERN_INFO "%d MIPSR2 register sets available\n",
1061 shadow_registers.sr_supported);
1063 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
1066 int mips_srs_max(void)
1068 return shadow_registers.sr_supported;
1071 int mips_srs_alloc(void)
1073 struct shadow_registers *sr = &shadow_registers;
1077 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1078 if (set >= sr->sr_supported)
1081 if (test_and_set_bit(set, &sr->sr_allocated))
1087 void mips_srs_free(int set)
1089 struct shadow_registers *sr = &shadow_registers;
1091 clear_bit(set, &sr->sr_allocated);
1094 static void *set_vi_srs_handler(int n, void *addr, int srs)
1096 unsigned long handler;
1097 unsigned long old_handler = vi_handlers[n];
1101 if (!cpu_has_veic && !cpu_has_vint)
1105 handler = (unsigned long) do_default_vi;
1108 handler = (unsigned long) addr;
1109 vi_handlers[n] = (unsigned long) addr;
1111 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1113 if (srs >= mips_srs_max())
1114 panic("Shadow register set %d not supported", srs);
1117 if (board_bind_eic_interrupt)
1118 board_bind_eic_interrupt (n, srs);
1119 } else if (cpu_has_vint) {
1120 /* SRSMap is only defined if shadow sets are implemented */
1121 if (mips_srs_max() > 1)
1122 change_c0_srsmap (0xf << n*4, srs << n*4);
1127 * If no shadow set is selected then use the default handler
1128 * that does normal register saving and a standard interrupt exit
1131 extern char except_vec_vi, except_vec_vi_lui;
1132 extern char except_vec_vi_ori, except_vec_vi_end;
1133 #ifdef CONFIG_MIPS_MT_SMTC
1135 * We need to provide the SMTC vectored interrupt handler
1136 * not only with the address of the handler, but with the
1137 * Status.IM bit to be masked before going there.
1139 extern char except_vec_vi_mori;
1140 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1141 #endif /* CONFIG_MIPS_MT_SMTC */
1142 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1143 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1144 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1146 if (handler_len > VECTORSPACING) {
1148 * Sigh... panicing won't help as the console
1149 * is probably not configured :(
1151 panic ("VECTORSPACING too small");
1154 memcpy (b, &except_vec_vi, handler_len);
1155 #ifdef CONFIG_MIPS_MT_SMTC
1157 printk("Vector index %d exceeds SMTC maximum\n", n);
1158 w = (u32 *)(b + mori_offset);
1159 *w = (*w & 0xffff0000) | (0x100 << n);
1160 #endif /* CONFIG_MIPS_MT_SMTC */
1161 w = (u32 *)(b + lui_offset);
1162 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1163 w = (u32 *)(b + ori_offset);
1164 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1165 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1169 * In other cases jump directly to the interrupt handler
1171 * It is the handlers responsibility to save registers if required
1172 * (eg hi/lo) and return from the exception using "eret"
1175 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1177 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1180 return (void *)old_handler;
1183 void *set_vi_handler(int n, void *addr)
1185 return set_vi_srs_handler(n, addr, 0);
1190 * This is used by native signal handling
1192 asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1193 asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1195 extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1196 extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1198 extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1199 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1202 static int smp_save_fp_context(struct sigcontext *sc)
1205 ? _save_fp_context(sc)
1206 : fpu_emulator_save_context(sc);
1209 static int smp_restore_fp_context(struct sigcontext *sc)
1212 ? _restore_fp_context(sc)
1213 : fpu_emulator_restore_context(sc);
1217 static inline void signal_init(void)
1220 /* For now just do the cpu_has_fpu check when the functions are invoked */
1221 save_fp_context = smp_save_fp_context;
1222 restore_fp_context = smp_restore_fp_context;
1225 save_fp_context = _save_fp_context;
1226 restore_fp_context = _restore_fp_context;
1228 save_fp_context = fpu_emulator_save_context;
1229 restore_fp_context = fpu_emulator_restore_context;
1234 #ifdef CONFIG_MIPS32_COMPAT
1237 * This is used by 32-bit signal stuff on the 64-bit kernel
1239 asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1240 asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1242 extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1243 extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1245 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1246 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1248 static inline void signal32_init(void)
1251 save_fp_context32 = _save_fp_context32;
1252 restore_fp_context32 = _restore_fp_context32;
1254 save_fp_context32 = fpu_emulator_save_context32;
1255 restore_fp_context32 = fpu_emulator_restore_context32;
1260 extern void cpu_cache_init(void);
1261 extern void tlb_init(void);
1262 extern void flush_tlb_handlers(void);
1264 void __init per_cpu_trap_init(void)
1266 unsigned int cpu = smp_processor_id();
1267 unsigned int status_set = ST0_CU0;
1268 #ifdef CONFIG_MIPS_MT_SMTC
1269 int secondaryTC = 0;
1270 int bootTC = (cpu == 0);
1273 * Only do per_cpu_trap_init() for first TC of Each VPE.
1274 * Note that this hack assumes that the SMTC init code
1275 * assigns TCs consecutively and in ascending order.
1278 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1279 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1281 #endif /* CONFIG_MIPS_MT_SMTC */
1284 * Disable coprocessors and select 32-bit or 64-bit addressing
1285 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1286 * flag that some firmware may have left set and the TS bit (for
1287 * IP27). Set XX for ISA IV code to work.
1290 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1292 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1293 status_set |= ST0_XX;
1294 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1298 set_c0_status(ST0_MX);
1300 #ifdef CONFIG_CPU_MIPSR2
1301 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1304 #ifdef CONFIG_MIPS_MT_SMTC
1306 #endif /* CONFIG_MIPS_MT_SMTC */
1309 * Interrupt handling.
1311 if (cpu_has_veic || cpu_has_vint) {
1312 write_c0_ebase (ebase);
1313 /* Setting vector spacing enables EI/VI mode */
1314 change_c0_intctl (0x3e0, VECTORSPACING);
1316 if (cpu_has_divec) {
1317 if (cpu_has_mipsmt) {
1318 unsigned int vpflags = dvpe();
1319 set_c0_cause(CAUSEF_IV);
1322 set_c0_cause(CAUSEF_IV);
1324 #ifdef CONFIG_MIPS_MT_SMTC
1326 #endif /* CONFIG_MIPS_MT_SMTC */
1328 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1329 TLBMISS_HANDLER_SETUP();
1331 atomic_inc(&init_mm.mm_count);
1332 current->active_mm = &init_mm;
1333 BUG_ON(current->mm);
1334 enter_lazy_tlb(&init_mm, current);
1336 #ifdef CONFIG_MIPS_MT_SMTC
1338 #endif /* CONFIG_MIPS_MT_SMTC */
1341 #ifdef CONFIG_MIPS_MT_SMTC
1343 #endif /* CONFIG_MIPS_MT_SMTC */
1346 /* Install CPU exception handler */
1347 void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1349 memcpy((void *)(ebase + offset), addr, size);
1350 flush_icache_range(ebase + offset, ebase + offset + size);
1353 /* Install uncached CPU exception handler */
1354 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1357 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1360 unsigned long uncached_ebase = TO_UNCAC(ebase);
1363 memcpy((void *)(uncached_ebase + offset), addr, size);
1366 void __init trap_init(void)
1368 extern char except_vec3_generic, except_vec3_r4000;
1369 extern char except_vec4;
1372 if (cpu_has_veic || cpu_has_vint)
1373 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1377 #ifdef CONFIG_CPU_MIPSR2
1381 per_cpu_trap_init();
1384 * Copy the generic exception handlers to their final destination.
1385 * This will be overriden later as suitable for a particular
1388 set_handler(0x180, &except_vec3_generic, 0x80);
1391 * Setup default vectors
1393 for (i = 0; i <= 31; i++)
1394 set_except_vector(i, handle_reserved);
1397 * Copy the EJTAG debug exception vector handler code to it's final
1400 if (cpu_has_ejtag && board_ejtag_handler_setup)
1401 board_ejtag_handler_setup ();
1404 * Only some CPUs have the watch exceptions.
1407 set_except_vector(23, handle_watch);
1410 * Initialise interrupt handlers
1412 if (cpu_has_veic || cpu_has_vint) {
1413 int nvec = cpu_has_veic ? 64 : 8;
1414 for (i = 0; i < nvec; i++)
1415 set_vi_handler(i, NULL);
1417 else if (cpu_has_divec)
1418 set_handler(0x200, &except_vec4, 0x8);
1421 * Some CPUs can enable/disable for cache parity detection, but does
1422 * it different ways.
1424 parity_protection_init();
1427 * The Data Bus Errors / Instruction Bus Errors are signaled
1428 * by external hardware. Therefore these two exceptions
1429 * may have board specific handlers.
1434 set_except_vector(0, handle_int);
1435 set_except_vector(1, handle_tlbm);
1436 set_except_vector(2, handle_tlbl);
1437 set_except_vector(3, handle_tlbs);
1439 set_except_vector(4, handle_adel);
1440 set_except_vector(5, handle_ades);
1442 set_except_vector(6, handle_ibe);
1443 set_except_vector(7, handle_dbe);
1445 set_except_vector(8, handle_sys);
1446 set_except_vector(9, handle_bp);
1447 set_except_vector(10, handle_ri);
1448 set_except_vector(11, handle_cpu);
1449 set_except_vector(12, handle_ov);
1450 set_except_vector(13, handle_tr);
1452 if (current_cpu_data.cputype == CPU_R6000 ||
1453 current_cpu_data.cputype == CPU_R6000A) {
1455 * The R6000 is the only R-series CPU that features a machine
1456 * check exception (similar to the R4000 cache error) and
1457 * unaligned ldc1/sdc1 exception. The handlers have not been
1458 * written yet. Well, anyway there is no R6000 machine on the
1459 * current list of targets for Linux/MIPS.
1460 * (Duh, crap, there is someone with a triple R6k machine)
1462 //set_except_vector(14, handle_mc);
1463 //set_except_vector(15, handle_ndc);
1467 if (board_nmi_handler_setup)
1468 board_nmi_handler_setup();
1470 if (cpu_has_fpu && !cpu_has_nofpuex)
1471 set_except_vector(15, handle_fpe);
1473 set_except_vector(22, handle_mdmx);
1476 set_except_vector(24, handle_mcheck);
1479 set_except_vector(25, handle_mt);
1482 set_except_vector(26, handle_dsp);
1485 /* Special exception: R4[04]00 uses also the divec space. */
1486 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1487 else if (cpu_has_4kex)
1488 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1490 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1493 #ifdef CONFIG_MIPS32_COMPAT
1497 flush_icache_range(ebase, ebase + 0x400);
1498 flush_tlb_handlers();