2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 /* debounce timing parameters in msecs { interval, duration, timeout } */
65 const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66 const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67 const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
69 static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
77 struct workqueue_struct *ata_aux_wq;
79 int atapi_enabled = 1;
80 module_param(atapi_enabled, int, 0444);
81 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 module_param(atapi_dmadir, int, 0444);
85 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 module_param_named(fua, libata_fua, int, 0444);
89 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91 MODULE_AUTHOR("Jeff Garzik");
92 MODULE_DESCRIPTION("Library module for ATA devices");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_VERSION);
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
107 * Inherited from caller.
110 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
129 fis[13] = tf->hob_nsect;
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
147 * Inherited from caller.
150 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
165 tf->hob_nsect = fis[13];
168 static const u8 ata_rw_cmds[] = {
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
195 ATA_CMD_WRITE_FUA_EXT
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
202 * Examine the device configuration and tf->flags to calculate
203 * the proper read/write commands and protocol to use.
208 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
214 int index, fua, lba48, write;
216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
226 index = dev->multi_count ? 0 : 8;
228 tf->protocol = ATA_PROT_DMA;
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
255 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
274 static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
287 static const struct ata_xfer_ent {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
308 * Matching XFER_* value, 0 if no match found.
310 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
325 * Return matching xfer_mask for @xfer_mode.
331 * Matching xfer_mask, 0 if no match found.
333 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
335 const struct ata_xfer_ent *ent;
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
347 * Return matching xfer_shift for @xfer_mode.
353 * Matching xfer_shift, -1 if no match found.
355 static int ata_xfer_mode2shift(unsigned int xfer_mode)
357 const struct ata_xfer_ent *ent;
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
369 * Determine string which represents the highest speed
370 * (highest bit in @modemask).
376 * Constant C string representing highest speed listed in
377 * @mode_mask, or the constant C string "<n/a>".
379 static const char *ata_mode_string(unsigned int xfer_mask)
381 static const char * const xfer_mode_str[] = {
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
407 static const char *sata_spd_string(unsigned int spd)
409 static const char * const spd_str[] = {
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
416 return spd_str[spd - 1];
419 void ata_dev_disable(struct ata_device *dev)
421 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
445 static unsigned int ata_pio_devchk(struct ata_port *ap,
448 struct ata_ioports *ioaddr = &ap->ioaddr;
451 ap->ops->dev_select(ap, device);
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
468 return 0; /* nothing found */
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
489 static unsigned int ata_mmio_devchk(struct ata_port *ap,
492 struct ata_ioports *ioaddr = &ap->ioaddr;
495 ap->ops->dev_select(ap, device);
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
512 return 0; /* nothing found */
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
528 static unsigned int ata_devchk(struct ata_port *ap,
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
552 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
579 * @r_err: Value of error register on completion
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
598 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
600 struct ata_taskfile tf;
604 ap->ops->dev_select(ap, device);
606 memset(&tf, 0, sizeof(tf));
608 ap->ops->tf_read(ap, &tf);
613 /* see if device passed diags */
616 else if ((device == 0) && (err == 0x81))
621 /* determine if device is ATA or ATAPI */
622 class = ata_dev_classify(&tf);
624 if (class == ATA_DEV_UNKNOWN)
626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
632 * ata_id_string - Convert IDENTIFY DEVICE page into string
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
646 void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
672 * This function is identical to ata_id_string except that it
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
679 void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
686 ata_id_string(id, s, ofs, len - 1);
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
694 static u64 ata_id_n_sectors(const u16 *id)
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
700 return ata_id_u32(id, 60);
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
705 return id[1] * id[3] * id[6];
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
714 * This function performs no actual function.
716 * May be used as the dev_select() entry in ata_port_operations.
721 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
733 * ATA channel. Works with both PIO and MMIO.
735 * May be used as the dev_select() entry in ata_port_operations.
741 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
746 tmp = ATA_DEVICE_OBS;
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
753 outb(tmp, ap->ioaddr.device_addr);
755 ata_pause(ap); /* needed; also flushes, for mmio */
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
777 void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
780 if (ata_msg_probe(ap)) {
781 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
782 "device %u, wait %u\n",
783 ap->id, device, wait);
789 ap->ops->dev_select(ap, device);
792 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
799 * ata_dump_id - IDENTIFY DEVICE info debugging output
800 * @id: IDENTIFY DEVICE page to dump
802 * Dump selected 16-bit words from the given IDENTIFY DEVICE
809 static inline void ata_dump_id(const u16 *id)
811 DPRINTK("49==0x%04x "
821 DPRINTK("80==0x%04x "
831 DPRINTK("88==0x%04x "
838 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
839 * @id: IDENTIFY data to compute xfer mask from
841 * Compute the xfermask for this device. This is not as trivial
842 * as it seems if we must consider early devices correctly.
844 * FIXME: pre IDE drive timing (do we care ?).
852 static unsigned int ata_id_xfermask(const u16 *id)
854 unsigned int pio_mask, mwdma_mask, udma_mask;
856 /* Usual case. Word 53 indicates word 64 is valid */
857 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
858 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
862 /* If word 64 isn't valid then Word 51 high byte holds
863 * the PIO timing number for the maximum. Turn it into
866 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
868 /* But wait.. there's more. Design your standards by
869 * committee and you too can get a free iordy field to
870 * process. However its the speeds not the modes that
871 * are supported... Note drivers using the timing API
872 * will get this right anyway
876 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
879 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
880 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
882 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
886 * ata_port_queue_task - Queue port_task
887 * @ap: The ata_port to queue port_task for
888 * @fn: workqueue function to be scheduled
889 * @data: data value to pass to workqueue function
890 * @delay: delay time for workqueue function
892 * Schedule @fn(@data) for execution after @delay jiffies using
893 * port_task. There is one port_task per port and it's the
894 * user(low level driver)'s responsibility to make sure that only
895 * one task is active at any given time.
897 * libata core layer takes care of synchronization between
898 * port_task and EH. ata_port_queue_task() may be ignored for EH
902 * Inherited from caller.
904 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
909 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
912 PREPARE_WORK(&ap->port_task, fn, data);
915 rc = queue_work(ata_wq, &ap->port_task);
917 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
919 /* rc == 0 means that another user is using port task */
924 * ata_port_flush_task - Flush port_task
925 * @ap: The ata_port to flush port_task for
927 * After this function completes, port_task is guranteed not to
928 * be running or scheduled.
931 * Kernel thread context (may sleep)
933 void ata_port_flush_task(struct ata_port *ap)
939 spin_lock_irqsave(ap->lock, flags);
940 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
941 spin_unlock_irqrestore(ap->lock, flags);
943 DPRINTK("flush #1\n");
944 flush_workqueue(ata_wq);
947 * At this point, if a task is running, it's guaranteed to see
948 * the FLUSH flag; thus, it will never queue pio tasks again.
951 if (!cancel_delayed_work(&ap->port_task)) {
953 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", __FUNCTION__);
954 flush_workqueue(ata_wq);
957 spin_lock_irqsave(ap->lock, flags);
958 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
959 spin_unlock_irqrestore(ap->lock, flags);
962 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
965 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
967 struct completion *waiting = qc->private_data;
973 * ata_exec_internal - execute libata internal command
974 * @dev: Device to which the command is sent
975 * @tf: Taskfile registers for the command and the result
976 * @cdb: CDB for packet command
977 * @dma_dir: Data tranfer direction of the command
978 * @buf: Data buffer of the command
979 * @buflen: Length of data buffer
981 * Executes libata internal command with timeout. @tf contains
982 * command on entry and result on return. Timeout and error
983 * conditions are reported via return value. No recovery action
984 * is taken after a command times out. It's caller's duty to
985 * clean up after timeout.
988 * None. Should be called with kernel context, might sleep.
991 * Zero on success, AC_ERR_* mask on failure
993 unsigned ata_exec_internal(struct ata_device *dev,
994 struct ata_taskfile *tf, const u8 *cdb,
995 int dma_dir, void *buf, unsigned int buflen)
997 struct ata_port *ap = dev->ap;
998 u8 command = tf->command;
999 struct ata_queued_cmd *qc;
1000 unsigned int tag, preempted_tag;
1001 u32 preempted_sactive, preempted_qc_active;
1002 DECLARE_COMPLETION(wait);
1003 unsigned long flags;
1004 unsigned int err_mask;
1007 spin_lock_irqsave(ap->lock, flags);
1009 /* no internal command while frozen */
1010 if (ap->flags & ATA_FLAG_FROZEN) {
1011 spin_unlock_irqrestore(ap->lock, flags);
1012 return AC_ERR_SYSTEM;
1015 /* initialize internal qc */
1017 /* XXX: Tag 0 is used for drivers with legacy EH as some
1018 * drivers choke if any other tag is given. This breaks
1019 * ata_tag_internal() test for those drivers. Don't use new
1020 * EH stuff without converting to it.
1022 if (ap->ops->error_handler)
1023 tag = ATA_TAG_INTERNAL;
1027 if (test_and_set_bit(tag, &ap->qc_allocated))
1029 qc = __ata_qc_from_tag(ap, tag);
1037 preempted_tag = ap->active_tag;
1038 preempted_sactive = ap->sactive;
1039 preempted_qc_active = ap->qc_active;
1040 ap->active_tag = ATA_TAG_POISON;
1044 /* prepare & issue qc */
1047 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1048 qc->flags |= ATA_QCFLAG_RESULT_TF;
1049 qc->dma_dir = dma_dir;
1050 if (dma_dir != DMA_NONE) {
1051 ata_sg_init_one(qc, buf, buflen);
1052 qc->nsect = buflen / ATA_SECT_SIZE;
1055 qc->private_data = &wait;
1056 qc->complete_fn = ata_qc_complete_internal;
1060 spin_unlock_irqrestore(ap->lock, flags);
1062 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1064 ata_port_flush_task(ap);
1067 spin_lock_irqsave(ap->lock, flags);
1069 /* We're racing with irq here. If we lose, the
1070 * following test prevents us from completing the qc
1071 * twice. If we win, the port is frozen and will be
1072 * cleaned up by ->post_internal_cmd().
1074 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1075 qc->err_mask |= AC_ERR_TIMEOUT;
1077 if (ap->ops->error_handler)
1078 ata_port_freeze(ap);
1080 ata_qc_complete(qc);
1082 if (ata_msg_warn(ap))
1083 ata_dev_printk(dev, KERN_WARNING,
1084 "qc timeout (cmd 0x%x)\n", command);
1087 spin_unlock_irqrestore(ap->lock, flags);
1090 /* do post_internal_cmd */
1091 if (ap->ops->post_internal_cmd)
1092 ap->ops->post_internal_cmd(qc);
1094 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1095 if (ata_msg_warn(ap))
1096 ata_dev_printk(dev, KERN_WARNING,
1097 "zero err_mask for failed "
1098 "internal command, assuming AC_ERR_OTHER\n");
1099 qc->err_mask |= AC_ERR_OTHER;
1103 spin_lock_irqsave(ap->lock, flags);
1105 *tf = qc->result_tf;
1106 err_mask = qc->err_mask;
1109 ap->active_tag = preempted_tag;
1110 ap->sactive = preempted_sactive;
1111 ap->qc_active = preempted_qc_active;
1113 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1114 * Until those drivers are fixed, we detect the condition
1115 * here, fail the command with AC_ERR_SYSTEM and reenable the
1118 * Note that this doesn't change any behavior as internal
1119 * command failure results in disabling the device in the
1120 * higher layer for LLDDs without new reset/EH callbacks.
1122 * Kill the following code as soon as those drivers are fixed.
1124 if (ap->flags & ATA_FLAG_DISABLED) {
1125 err_mask |= AC_ERR_SYSTEM;
1129 spin_unlock_irqrestore(ap->lock, flags);
1135 * ata_pio_need_iordy - check if iordy needed
1138 * Check if the current speed of the device requires IORDY. Used
1139 * by various controllers for chip configuration.
1142 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1145 int speed = adev->pio_mode - XFER_PIO_0;
1152 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1154 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1155 pio = adev->id[ATA_ID_EIDE_PIO];
1156 /* Is the speed faster than the drive allows non IORDY ? */
1158 /* This is cycle times not frequency - watch the logic! */
1159 if (pio > 240) /* PIO2 is 240nS per cycle */
1168 * ata_dev_read_id - Read ID data from the specified device
1169 * @dev: target device
1170 * @p_class: pointer to class of the target device (may be changed)
1171 * @post_reset: is this read ID post-reset?
1172 * @id: buffer to read IDENTIFY data into
1174 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1175 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1176 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1177 * for pre-ATA4 drives.
1180 * Kernel thread context (may sleep)
1183 * 0 on success, -errno otherwise.
1185 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1186 int post_reset, u16 *id)
1188 struct ata_port *ap = dev->ap;
1189 unsigned int class = *p_class;
1190 struct ata_taskfile tf;
1191 unsigned int err_mask = 0;
1195 if (ata_msg_ctl(ap))
1196 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1197 __FUNCTION__, ap->id, dev->devno);
1199 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1202 ata_tf_init(dev, &tf);
1206 tf.command = ATA_CMD_ID_ATA;
1209 tf.command = ATA_CMD_ID_ATAPI;
1213 reason = "unsupported class";
1217 tf.protocol = ATA_PROT_PIO;
1219 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1220 id, sizeof(id[0]) * ATA_ID_WORDS);
1223 reason = "I/O error";
1227 swap_buf_le16(id, ATA_ID_WORDS);
1230 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1232 reason = "device reports illegal type";
1236 if (post_reset && class == ATA_DEV_ATA) {
1238 * The exact sequence expected by certain pre-ATA4 drives is:
1241 * INITIALIZE DEVICE PARAMETERS
1243 * Some drives were very specific about that exact sequence.
1245 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1246 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1249 reason = "INIT_DEV_PARAMS failed";
1253 /* current CHS translation info (id[53-58]) might be
1254 * changed. reread the identify device info.
1266 if (ata_msg_warn(ap))
1267 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1268 "(%s, err_mask=0x%x)\n", reason, err_mask);
1272 static inline u8 ata_dev_knobble(struct ata_device *dev)
1274 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1277 static void ata_dev_config_ncq(struct ata_device *dev,
1278 char *desc, size_t desc_sz)
1280 struct ata_port *ap = dev->ap;
1281 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1283 if (!ata_id_has_ncq(dev->id)) {
1288 if (ap->flags & ATA_FLAG_NCQ) {
1289 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1290 dev->flags |= ATA_DFLAG_NCQ;
1293 if (hdepth >= ddepth)
1294 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1296 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1300 * ata_dev_configure - Configure the specified ATA/ATAPI device
1301 * @dev: Target device to configure
1302 * @print_info: Enable device info printout
1304 * Configure @dev according to @dev->id. Generic and low-level
1305 * driver specific fixups are also applied.
1308 * Kernel thread context (may sleep)
1311 * 0 on success, -errno otherwise
1313 int ata_dev_configure(struct ata_device *dev, int print_info)
1315 struct ata_port *ap = dev->ap;
1316 const u16 *id = dev->id;
1317 unsigned int xfer_mask;
1320 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1321 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1322 __FUNCTION__, ap->id, dev->devno);
1326 if (ata_msg_probe(ap))
1327 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1328 __FUNCTION__, ap->id, dev->devno);
1330 /* print device capabilities */
1331 if (ata_msg_probe(ap))
1332 ata_dev_printk(dev, KERN_DEBUG, "%s: cfg 49:%04x 82:%04x 83:%04x "
1333 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1335 id[49], id[82], id[83], id[84],
1336 id[85], id[86], id[87], id[88]);
1338 /* initialize to-be-configured parameters */
1339 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1340 dev->max_sectors = 0;
1348 * common ATA, ATAPI feature tests
1351 /* find max transfer mode; for printk only */
1352 xfer_mask = ata_id_xfermask(id);
1354 if (ata_msg_probe(ap))
1357 /* ATA-specific feature tests */
1358 if (dev->class == ATA_DEV_ATA) {
1359 dev->n_sectors = ata_id_n_sectors(id);
1361 if (ata_id_has_lba(id)) {
1362 const char *lba_desc;
1366 dev->flags |= ATA_DFLAG_LBA;
1367 if (ata_id_has_lba48(id)) {
1368 dev->flags |= ATA_DFLAG_LBA48;
1373 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1375 /* print device info to dmesg */
1376 if (ata_msg_info(ap))
1377 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1378 "max %s, %Lu sectors: %s %s\n",
1379 ata_id_major_version(id),
1380 ata_mode_string(xfer_mask),
1381 (unsigned long long)dev->n_sectors,
1382 lba_desc, ncq_desc);
1386 /* Default translation */
1387 dev->cylinders = id[1];
1389 dev->sectors = id[6];
1391 if (ata_id_current_chs_valid(id)) {
1392 /* Current CHS translation is valid. */
1393 dev->cylinders = id[54];
1394 dev->heads = id[55];
1395 dev->sectors = id[56];
1398 /* print device info to dmesg */
1399 if (ata_msg_info(ap))
1400 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1401 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1402 ata_id_major_version(id),
1403 ata_mode_string(xfer_mask),
1404 (unsigned long long)dev->n_sectors,
1405 dev->cylinders, dev->heads, dev->sectors);
1408 if (dev->id[59] & 0x100) {
1409 dev->multi_count = dev->id[59] & 0xff;
1410 if (ata_msg_info(ap))
1411 ata_dev_printk(dev, KERN_INFO, "ata%u: dev %u multi count %u\n",
1412 ap->id, dev->devno, dev->multi_count);
1418 /* ATAPI-specific feature tests */
1419 else if (dev->class == ATA_DEV_ATAPI) {
1420 char *cdb_intr_string = "";
1422 rc = atapi_cdb_len(id);
1423 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1424 if (ata_msg_warn(ap))
1425 ata_dev_printk(dev, KERN_WARNING,
1426 "unsupported CDB len\n");
1430 dev->cdb_len = (unsigned int) rc;
1432 if (ata_id_cdb_intr(dev->id)) {
1433 dev->flags |= ATA_DFLAG_CDB_INTR;
1434 cdb_intr_string = ", CDB intr";
1437 /* print device info to dmesg */
1438 if (ata_msg_info(ap))
1439 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1440 ata_mode_string(xfer_mask),
1444 ap->host->max_cmd_len = 0;
1445 for (i = 0; i < ATA_MAX_DEVICES; i++)
1446 ap->host->max_cmd_len = max_t(unsigned int,
1447 ap->host->max_cmd_len,
1448 ap->device[i].cdb_len);
1450 /* limit bridge transfers to udma5, 200 sectors */
1451 if (ata_dev_knobble(dev)) {
1452 if (ata_msg_info(ap))
1453 ata_dev_printk(dev, KERN_INFO,
1454 "applying bridge limits\n");
1455 dev->udma_mask &= ATA_UDMA5;
1456 dev->max_sectors = ATA_MAX_SECTORS;
1459 if (ap->ops->dev_config)
1460 ap->ops->dev_config(ap, dev);
1462 if (ata_msg_probe(ap))
1463 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1464 __FUNCTION__, ata_chk_status(ap));
1468 if (ata_msg_probe(ap))
1469 ata_dev_printk(dev, KERN_DEBUG,
1470 "%s: EXIT, err\n", __FUNCTION__);
1475 * ata_bus_probe - Reset and probe ATA bus
1478 * Master ATA bus probing function. Initiates a hardware-dependent
1479 * bus reset, then attempts to identify any devices found on
1483 * PCI/etc. bus probe sem.
1486 * Zero on success, negative errno otherwise.
1489 static int ata_bus_probe(struct ata_port *ap)
1491 unsigned int classes[ATA_MAX_DEVICES];
1492 int tries[ATA_MAX_DEVICES];
1493 int i, rc, down_xfermask;
1494 struct ata_device *dev;
1498 for (i = 0; i < ATA_MAX_DEVICES; i++)
1499 tries[i] = ATA_PROBE_MAX_TRIES;
1504 /* reset and determine device classes */
1505 ap->ops->phy_reset(ap);
1507 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1508 dev = &ap->device[i];
1510 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1511 dev->class != ATA_DEV_UNKNOWN)
1512 classes[dev->devno] = dev->class;
1514 classes[dev->devno] = ATA_DEV_NONE;
1516 dev->class = ATA_DEV_UNKNOWN;
1521 /* after the reset the device state is PIO 0 and the controller
1522 state is undefined. Record the mode */
1524 for (i = 0; i < ATA_MAX_DEVICES; i++)
1525 ap->device[i].pio_mode = XFER_PIO_0;
1527 /* read IDENTIFY page and configure devices */
1528 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1529 dev = &ap->device[i];
1532 dev->class = classes[i];
1534 if (!ata_dev_enabled(dev))
1537 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1541 rc = ata_dev_configure(dev, 1);
1546 /* configure transfer mode */
1547 rc = ata_set_mode(ap, &dev);
1553 for (i = 0; i < ATA_MAX_DEVICES; i++)
1554 if (ata_dev_enabled(&ap->device[i]))
1557 /* no device present, disable port */
1558 ata_port_disable(ap);
1559 ap->ops->port_disable(ap);
1566 tries[dev->devno] = 0;
1569 sata_down_spd_limit(ap);
1572 tries[dev->devno]--;
1573 if (down_xfermask &&
1574 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1575 tries[dev->devno] = 0;
1578 if (!tries[dev->devno]) {
1579 ata_down_xfermask_limit(dev, 1);
1580 ata_dev_disable(dev);
1587 * ata_port_probe - Mark port as enabled
1588 * @ap: Port for which we indicate enablement
1590 * Modify @ap data structure such that the system
1591 * thinks that the entire port is enabled.
1593 * LOCKING: host_set lock, or some other form of
1597 void ata_port_probe(struct ata_port *ap)
1599 ap->flags &= ~ATA_FLAG_DISABLED;
1603 * sata_print_link_status - Print SATA link status
1604 * @ap: SATA port to printk link status about
1606 * This function prints link speed and status of a SATA link.
1611 static void sata_print_link_status(struct ata_port *ap)
1613 u32 sstatus, scontrol, tmp;
1615 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1617 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1619 if (ata_port_online(ap)) {
1620 tmp = (sstatus >> 4) & 0xf;
1621 ata_port_printk(ap, KERN_INFO,
1622 "SATA link up %s (SStatus %X SControl %X)\n",
1623 sata_spd_string(tmp), sstatus, scontrol);
1625 ata_port_printk(ap, KERN_INFO,
1626 "SATA link down (SStatus %X SControl %X)\n",
1632 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1633 * @ap: SATA port associated with target SATA PHY.
1635 * This function issues commands to standard SATA Sxxx
1636 * PHY registers, to wake up the phy (and device), and
1637 * clear any reset condition.
1640 * PCI/etc. bus probe sem.
1643 void __sata_phy_reset(struct ata_port *ap)
1646 unsigned long timeout = jiffies + (HZ * 5);
1648 if (ap->flags & ATA_FLAG_SATA_RESET) {
1649 /* issue phy wake/reset */
1650 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1651 /* Couldn't find anything in SATA I/II specs, but
1652 * AHCI-1.1 10.4.2 says at least 1 ms. */
1655 /* phy wake/clear reset */
1656 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1658 /* wait for phy to become ready, if necessary */
1661 sata_scr_read(ap, SCR_STATUS, &sstatus);
1662 if ((sstatus & 0xf) != 1)
1664 } while (time_before(jiffies, timeout));
1666 /* print link status */
1667 sata_print_link_status(ap);
1669 /* TODO: phy layer with polling, timeouts, etc. */
1670 if (!ata_port_offline(ap))
1673 ata_port_disable(ap);
1675 if (ap->flags & ATA_FLAG_DISABLED)
1678 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1679 ata_port_disable(ap);
1683 ap->cbl = ATA_CBL_SATA;
1687 * sata_phy_reset - Reset SATA bus.
1688 * @ap: SATA port associated with target SATA PHY.
1690 * This function resets the SATA bus, and then probes
1691 * the bus for devices.
1694 * PCI/etc. bus probe sem.
1697 void sata_phy_reset(struct ata_port *ap)
1699 __sata_phy_reset(ap);
1700 if (ap->flags & ATA_FLAG_DISABLED)
1706 * ata_dev_pair - return other device on cable
1709 * Obtain the other device on the same cable, or if none is
1710 * present NULL is returned
1713 struct ata_device *ata_dev_pair(struct ata_device *adev)
1715 struct ata_port *ap = adev->ap;
1716 struct ata_device *pair = &ap->device[1 - adev->devno];
1717 if (!ata_dev_enabled(pair))
1723 * ata_port_disable - Disable port.
1724 * @ap: Port to be disabled.
1726 * Modify @ap data structure such that the system
1727 * thinks that the entire port is disabled, and should
1728 * never attempt to probe or communicate with devices
1731 * LOCKING: host_set lock, or some other form of
1735 void ata_port_disable(struct ata_port *ap)
1737 ap->device[0].class = ATA_DEV_NONE;
1738 ap->device[1].class = ATA_DEV_NONE;
1739 ap->flags |= ATA_FLAG_DISABLED;
1743 * sata_down_spd_limit - adjust SATA spd limit downward
1744 * @ap: Port to adjust SATA spd limit for
1746 * Adjust SATA spd limit of @ap downward. Note that this
1747 * function only adjusts the limit. The change must be applied
1748 * using sata_set_spd().
1751 * Inherited from caller.
1754 * 0 on success, negative errno on failure
1756 int sata_down_spd_limit(struct ata_port *ap)
1758 u32 sstatus, spd, mask;
1761 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1765 mask = ap->sata_spd_limit;
1768 highbit = fls(mask) - 1;
1769 mask &= ~(1 << highbit);
1771 spd = (sstatus >> 4) & 0xf;
1775 mask &= (1 << spd) - 1;
1779 ap->sata_spd_limit = mask;
1781 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1782 sata_spd_string(fls(mask)));
1787 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1791 if (ap->sata_spd_limit == UINT_MAX)
1794 limit = fls(ap->sata_spd_limit);
1796 spd = (*scontrol >> 4) & 0xf;
1797 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1799 return spd != limit;
1803 * sata_set_spd_needed - is SATA spd configuration needed
1804 * @ap: Port in question
1806 * Test whether the spd limit in SControl matches
1807 * @ap->sata_spd_limit. This function is used to determine
1808 * whether hardreset is necessary to apply SATA spd
1812 * Inherited from caller.
1815 * 1 if SATA spd configuration is needed, 0 otherwise.
1817 int sata_set_spd_needed(struct ata_port *ap)
1821 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1824 return __sata_set_spd_needed(ap, &scontrol);
1828 * sata_set_spd - set SATA spd according to spd limit
1829 * @ap: Port to set SATA spd for
1831 * Set SATA spd of @ap according to sata_spd_limit.
1834 * Inherited from caller.
1837 * 0 if spd doesn't need to be changed, 1 if spd has been
1838 * changed. Negative errno if SCR registers are inaccessible.
1840 int sata_set_spd(struct ata_port *ap)
1845 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1848 if (!__sata_set_spd_needed(ap, &scontrol))
1851 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1858 * This mode timing computation functionality is ported over from
1859 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1862 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1863 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1864 * for PIO 5, which is a nonstandard extension and UDMA6, which
1865 * is currently supported only by Maxtor drives.
1868 static const struct ata_timing ata_timing[] = {
1870 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1871 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1872 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1873 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1875 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1876 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1877 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1879 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1881 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1882 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1883 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1885 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1886 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1887 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1889 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1890 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1891 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1893 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1894 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1895 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1897 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1902 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1903 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1905 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1907 q->setup = EZ(t->setup * 1000, T);
1908 q->act8b = EZ(t->act8b * 1000, T);
1909 q->rec8b = EZ(t->rec8b * 1000, T);
1910 q->cyc8b = EZ(t->cyc8b * 1000, T);
1911 q->active = EZ(t->active * 1000, T);
1912 q->recover = EZ(t->recover * 1000, T);
1913 q->cycle = EZ(t->cycle * 1000, T);
1914 q->udma = EZ(t->udma * 1000, UT);
1917 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1918 struct ata_timing *m, unsigned int what)
1920 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1921 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1922 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1923 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1924 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1925 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1926 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1927 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1930 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1932 const struct ata_timing *t;
1934 for (t = ata_timing; t->mode != speed; t++)
1935 if (t->mode == 0xFF)
1940 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1941 struct ata_timing *t, int T, int UT)
1943 const struct ata_timing *s;
1944 struct ata_timing p;
1950 if (!(s = ata_timing_find_mode(speed)))
1953 memcpy(t, s, sizeof(*s));
1956 * If the drive is an EIDE drive, it can tell us it needs extended
1957 * PIO/MW_DMA cycle timing.
1960 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1961 memset(&p, 0, sizeof(p));
1962 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1963 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1964 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1965 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1966 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1968 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1972 * Convert the timing to bus clock counts.
1975 ata_timing_quantize(t, t, T, UT);
1978 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1979 * S.M.A.R.T * and some other commands. We have to ensure that the
1980 * DMA cycle timing is slower/equal than the fastest PIO timing.
1983 if (speed > XFER_PIO_4) {
1984 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1985 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1989 * Lengthen active & recovery time so that cycle time is correct.
1992 if (t->act8b + t->rec8b < t->cyc8b) {
1993 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1994 t->rec8b = t->cyc8b - t->act8b;
1997 if (t->active + t->recover < t->cycle) {
1998 t->active += (t->cycle - (t->active + t->recover)) / 2;
1999 t->recover = t->cycle - t->active;
2006 * ata_down_xfermask_limit - adjust dev xfer masks downward
2007 * @dev: Device to adjust xfer masks
2008 * @force_pio0: Force PIO0
2010 * Adjust xfer masks of @dev downward. Note that this function
2011 * does not apply the change. Invoking ata_set_mode() afterwards
2012 * will apply the limit.
2015 * Inherited from caller.
2018 * 0 on success, negative errno on failure
2020 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2022 unsigned long xfer_mask;
2025 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2030 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2031 if (xfer_mask & ATA_MASK_UDMA)
2032 xfer_mask &= ~ATA_MASK_MWDMA;
2034 highbit = fls(xfer_mask) - 1;
2035 xfer_mask &= ~(1 << highbit);
2037 xfer_mask &= 1 << ATA_SHIFT_PIO;
2041 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2044 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2045 ata_mode_string(xfer_mask));
2053 static int ata_dev_set_mode(struct ata_device *dev)
2055 unsigned int err_mask;
2058 dev->flags &= ~ATA_DFLAG_PIO;
2059 if (dev->xfer_shift == ATA_SHIFT_PIO)
2060 dev->flags |= ATA_DFLAG_PIO;
2062 err_mask = ata_dev_set_xfermode(dev);
2064 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2065 "(err_mask=0x%x)\n", err_mask);
2069 rc = ata_dev_revalidate(dev, 0);
2073 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2074 dev->xfer_shift, (int)dev->xfer_mode);
2076 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2077 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2082 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2083 * @ap: port on which timings will be programmed
2084 * @r_failed_dev: out paramter for failed device
2086 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2087 * ata_set_mode() fails, pointer to the failing device is
2088 * returned in @r_failed_dev.
2091 * PCI/etc. bus probe sem.
2094 * 0 on success, negative errno otherwise
2096 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2098 struct ata_device *dev;
2099 int i, rc = 0, used_dma = 0, found = 0;
2101 /* has private set_mode? */
2102 if (ap->ops->set_mode) {
2103 /* FIXME: make ->set_mode handle no device case and
2104 * return error code and failing device on failure.
2106 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2107 if (ata_dev_enabled(&ap->device[i])) {
2108 ap->ops->set_mode(ap);
2115 /* step 1: calculate xfer_mask */
2116 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2117 unsigned int pio_mask, dma_mask;
2119 dev = &ap->device[i];
2121 if (!ata_dev_enabled(dev))
2124 ata_dev_xfermask(dev);
2126 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2127 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2128 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2129 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2138 /* step 2: always set host PIO timings */
2139 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2140 dev = &ap->device[i];
2141 if (!ata_dev_enabled(dev))
2144 if (!dev->pio_mode) {
2145 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2150 dev->xfer_mode = dev->pio_mode;
2151 dev->xfer_shift = ATA_SHIFT_PIO;
2152 if (ap->ops->set_piomode)
2153 ap->ops->set_piomode(ap, dev);
2156 /* step 3: set host DMA timings */
2157 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2158 dev = &ap->device[i];
2160 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2163 dev->xfer_mode = dev->dma_mode;
2164 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2165 if (ap->ops->set_dmamode)
2166 ap->ops->set_dmamode(ap, dev);
2169 /* step 4: update devices' xfer mode */
2170 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2171 dev = &ap->device[i];
2173 if (!ata_dev_enabled(dev))
2176 rc = ata_dev_set_mode(dev);
2181 /* Record simplex status. If we selected DMA then the other
2182 * host channels are not permitted to do so.
2184 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2185 ap->host_set->simplex_claimed = 1;
2187 /* step5: chip specific finalisation */
2188 if (ap->ops->post_set_mode)
2189 ap->ops->post_set_mode(ap);
2193 *r_failed_dev = dev;
2198 * ata_tf_to_host - issue ATA taskfile to host controller
2199 * @ap: port to which command is being issued
2200 * @tf: ATA taskfile register set
2202 * Issues ATA taskfile register set to ATA host controller,
2203 * with proper synchronization with interrupt handler and
2207 * spin_lock_irqsave(host_set lock)
2210 static inline void ata_tf_to_host(struct ata_port *ap,
2211 const struct ata_taskfile *tf)
2213 ap->ops->tf_load(ap, tf);
2214 ap->ops->exec_command(ap, tf);
2218 * ata_busy_sleep - sleep until BSY clears, or timeout
2219 * @ap: port containing status register to be polled
2220 * @tmout_pat: impatience timeout
2221 * @tmout: overall timeout
2223 * Sleep until ATA Status register bit BSY clears,
2224 * or a timeout occurs.
2229 unsigned int ata_busy_sleep (struct ata_port *ap,
2230 unsigned long tmout_pat, unsigned long tmout)
2232 unsigned long timer_start, timeout;
2235 status = ata_busy_wait(ap, ATA_BUSY, 300);
2236 timer_start = jiffies;
2237 timeout = timer_start + tmout_pat;
2238 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2240 status = ata_busy_wait(ap, ATA_BUSY, 3);
2243 if (status & ATA_BUSY)
2244 ata_port_printk(ap, KERN_WARNING,
2245 "port is slow to respond, please be patient\n");
2247 timeout = timer_start + tmout;
2248 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2250 status = ata_chk_status(ap);
2253 if (status & ATA_BUSY) {
2254 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2255 "(%lu secs)\n", tmout / HZ);
2262 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2264 struct ata_ioports *ioaddr = &ap->ioaddr;
2265 unsigned int dev0 = devmask & (1 << 0);
2266 unsigned int dev1 = devmask & (1 << 1);
2267 unsigned long timeout;
2269 /* if device 0 was found in ata_devchk, wait for its
2273 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2275 /* if device 1 was found in ata_devchk, wait for
2276 * register access, then wait for BSY to clear
2278 timeout = jiffies + ATA_TMOUT_BOOT;
2282 ap->ops->dev_select(ap, 1);
2283 if (ap->flags & ATA_FLAG_MMIO) {
2284 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2285 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2287 nsect = inb(ioaddr->nsect_addr);
2288 lbal = inb(ioaddr->lbal_addr);
2290 if ((nsect == 1) && (lbal == 1))
2292 if (time_after(jiffies, timeout)) {
2296 msleep(50); /* give drive a breather */
2299 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2301 /* is all this really necessary? */
2302 ap->ops->dev_select(ap, 0);
2304 ap->ops->dev_select(ap, 1);
2306 ap->ops->dev_select(ap, 0);
2309 static unsigned int ata_bus_softreset(struct ata_port *ap,
2310 unsigned int devmask)
2312 struct ata_ioports *ioaddr = &ap->ioaddr;
2314 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2316 /* software reset. causes dev0 to be selected */
2317 if (ap->flags & ATA_FLAG_MMIO) {
2318 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2319 udelay(20); /* FIXME: flush */
2320 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2321 udelay(20); /* FIXME: flush */
2322 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2324 outb(ap->ctl, ioaddr->ctl_addr);
2326 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2328 outb(ap->ctl, ioaddr->ctl_addr);
2331 /* spec mandates ">= 2ms" before checking status.
2332 * We wait 150ms, because that was the magic delay used for
2333 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2334 * between when the ATA command register is written, and then
2335 * status is checked. Because waiting for "a while" before
2336 * checking status is fine, post SRST, we perform this magic
2337 * delay here as well.
2339 * Old drivers/ide uses the 2mS rule and then waits for ready
2343 /* Before we perform post reset processing we want to see if
2344 * the bus shows 0xFF because the odd clown forgets the D7
2345 * pulldown resistor.
2347 if (ata_check_status(ap) == 0xFF) {
2348 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2349 return AC_ERR_OTHER;
2352 ata_bus_post_reset(ap, devmask);
2358 * ata_bus_reset - reset host port and associated ATA channel
2359 * @ap: port to reset
2361 * This is typically the first time we actually start issuing
2362 * commands to the ATA channel. We wait for BSY to clear, then
2363 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2364 * result. Determine what devices, if any, are on the channel
2365 * by looking at the device 0/1 error register. Look at the signature
2366 * stored in each device's taskfile registers, to determine if
2367 * the device is ATA or ATAPI.
2370 * PCI/etc. bus probe sem.
2371 * Obtains host_set lock.
2374 * Sets ATA_FLAG_DISABLED if bus reset fails.
2377 void ata_bus_reset(struct ata_port *ap)
2379 struct ata_ioports *ioaddr = &ap->ioaddr;
2380 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2382 unsigned int dev0, dev1 = 0, devmask = 0;
2384 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2386 /* determine if device 0/1 are present */
2387 if (ap->flags & ATA_FLAG_SATA_RESET)
2390 dev0 = ata_devchk(ap, 0);
2392 dev1 = ata_devchk(ap, 1);
2396 devmask |= (1 << 0);
2398 devmask |= (1 << 1);
2400 /* select device 0 again */
2401 ap->ops->dev_select(ap, 0);
2403 /* issue bus reset */
2404 if (ap->flags & ATA_FLAG_SRST)
2405 if (ata_bus_softreset(ap, devmask))
2409 * determine by signature whether we have ATA or ATAPI devices
2411 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2412 if ((slave_possible) && (err != 0x81))
2413 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2415 /* re-enable interrupts */
2416 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2419 /* is double-select really necessary? */
2420 if (ap->device[1].class != ATA_DEV_NONE)
2421 ap->ops->dev_select(ap, 1);
2422 if (ap->device[0].class != ATA_DEV_NONE)
2423 ap->ops->dev_select(ap, 0);
2425 /* if no devices were detected, disable this port */
2426 if ((ap->device[0].class == ATA_DEV_NONE) &&
2427 (ap->device[1].class == ATA_DEV_NONE))
2430 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2431 /* set up device control for ATA_FLAG_SATA_RESET */
2432 if (ap->flags & ATA_FLAG_MMIO)
2433 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2435 outb(ap->ctl, ioaddr->ctl_addr);
2442 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2443 ap->ops->port_disable(ap);
2449 * sata_phy_debounce - debounce SATA phy status
2450 * @ap: ATA port to debounce SATA phy status for
2451 * @params: timing parameters { interval, duratinon, timeout } in msec
2453 * Make sure SStatus of @ap reaches stable state, determined by
2454 * holding the same value where DET is not 1 for @duration polled
2455 * every @interval, before @timeout. Timeout constraints the
2456 * beginning of the stable state. Because, after hot unplugging,
2457 * DET gets stuck at 1 on some controllers, this functions waits
2458 * until timeout then returns 0 if DET is stable at 1.
2461 * Kernel thread context (may sleep)
2464 * 0 on success, -errno on failure.
2466 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2468 unsigned long interval_msec = params[0];
2469 unsigned long duration = params[1] * HZ / 1000;
2470 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2471 unsigned long last_jiffies;
2475 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2480 last_jiffies = jiffies;
2483 msleep(interval_msec);
2484 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2490 if (cur == 1 && time_before(jiffies, timeout))
2492 if (time_after(jiffies, last_jiffies + duration))
2497 /* unstable, start over */
2499 last_jiffies = jiffies;
2502 if (time_after(jiffies, timeout))
2508 * sata_phy_resume - resume SATA phy
2509 * @ap: ATA port to resume SATA phy for
2510 * @params: timing parameters { interval, duratinon, timeout } in msec
2512 * Resume SATA phy of @ap and debounce it.
2515 * Kernel thread context (may sleep)
2518 * 0 on success, -errno on failure.
2520 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2525 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2528 scontrol = (scontrol & 0x0f0) | 0x300;
2530 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2533 /* Some PHYs react badly if SStatus is pounded immediately
2534 * after resuming. Delay 200ms before debouncing.
2538 return sata_phy_debounce(ap, params);
2541 static void ata_wait_spinup(struct ata_port *ap)
2543 struct ata_eh_context *ehc = &ap->eh_context;
2544 unsigned long end, secs;
2547 /* first, debounce phy if SATA */
2548 if (ap->cbl == ATA_CBL_SATA) {
2549 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2551 /* if debounced successfully and offline, no need to wait */
2552 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2556 /* okay, let's give the drive time to spin up */
2557 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2558 secs = ((end - jiffies) + HZ - 1) / HZ;
2560 if (time_after(jiffies, end))
2564 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2565 "(%lu secs)\n", secs);
2567 schedule_timeout_uninterruptible(end - jiffies);
2571 * ata_std_prereset - prepare for reset
2572 * @ap: ATA port to be reset
2574 * @ap is about to be reset. Initialize it.
2577 * Kernel thread context (may sleep)
2580 * 0 on success, -errno otherwise.
2582 int ata_std_prereset(struct ata_port *ap)
2584 struct ata_eh_context *ehc = &ap->eh_context;
2585 const unsigned long *timing;
2589 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2590 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2591 ehc->i.action |= ATA_EH_HARDRESET;
2592 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2593 ata_wait_spinup(ap);
2596 /* if we're about to do hardreset, nothing more to do */
2597 if (ehc->i.action & ATA_EH_HARDRESET)
2600 /* if SATA, resume phy */
2601 if (ap->cbl == ATA_CBL_SATA) {
2602 if (ap->flags & ATA_FLAG_LOADING)
2603 timing = sata_deb_timing_boot;
2605 timing = sata_deb_timing_eh;
2607 rc = sata_phy_resume(ap, timing);
2608 if (rc && rc != -EOPNOTSUPP) {
2609 /* phy resume failed */
2610 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2611 "link for reset (errno=%d)\n", rc);
2616 /* Wait for !BSY if the controller can wait for the first D2H
2617 * Reg FIS and we don't know that no device is attached.
2619 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2620 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2626 * ata_std_softreset - reset host port via ATA SRST
2627 * @ap: port to reset
2628 * @classes: resulting classes of attached devices
2630 * Reset host port using ATA SRST.
2633 * Kernel thread context (may sleep)
2636 * 0 on success, -errno otherwise.
2638 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2640 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2641 unsigned int devmask = 0, err_mask;
2646 if (ata_port_offline(ap)) {
2647 classes[0] = ATA_DEV_NONE;
2651 /* determine if device 0/1 are present */
2652 if (ata_devchk(ap, 0))
2653 devmask |= (1 << 0);
2654 if (slave_possible && ata_devchk(ap, 1))
2655 devmask |= (1 << 1);
2657 /* select device 0 again */
2658 ap->ops->dev_select(ap, 0);
2660 /* issue bus reset */
2661 DPRINTK("about to softreset, devmask=%x\n", devmask);
2662 err_mask = ata_bus_softreset(ap, devmask);
2664 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2669 /* determine by signature whether we have ATA or ATAPI devices */
2670 classes[0] = ata_dev_try_classify(ap, 0, &err);
2671 if (slave_possible && err != 0x81)
2672 classes[1] = ata_dev_try_classify(ap, 1, &err);
2675 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2680 * sata_std_hardreset - reset host port via SATA phy reset
2681 * @ap: port to reset
2682 * @class: resulting class of attached device
2684 * SATA phy-reset host port using DET bits of SControl register.
2687 * Kernel thread context (may sleep)
2690 * 0 on success, -errno otherwise.
2692 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2699 if (sata_set_spd_needed(ap)) {
2700 /* SATA spec says nothing about how to reconfigure
2701 * spd. To be on the safe side, turn off phy during
2702 * reconfiguration. This works for at least ICH7 AHCI
2705 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2708 scontrol = (scontrol & 0x0f0) | 0x302;
2710 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2716 /* issue phy wake/reset */
2717 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2720 scontrol = (scontrol & 0x0f0) | 0x301;
2722 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2725 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2726 * 10.4.2 says at least 1 ms.
2730 /* bring phy back */
2731 sata_phy_resume(ap, sata_deb_timing_eh);
2733 /* TODO: phy layer with polling, timeouts, etc. */
2734 if (ata_port_offline(ap)) {
2735 *class = ATA_DEV_NONE;
2736 DPRINTK("EXIT, link offline\n");
2740 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2741 ata_port_printk(ap, KERN_ERR,
2742 "COMRESET failed (device not ready)\n");
2746 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2748 *class = ata_dev_try_classify(ap, 0, NULL);
2750 DPRINTK("EXIT, class=%u\n", *class);
2755 * ata_std_postreset - standard postreset callback
2756 * @ap: the target ata_port
2757 * @classes: classes of attached devices
2759 * This function is invoked after a successful reset. Note that
2760 * the device might have been reset more than once using
2761 * different reset methods before postreset is invoked.
2764 * Kernel thread context (may sleep)
2766 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2772 /* print link status */
2773 sata_print_link_status(ap);
2776 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2777 sata_scr_write(ap, SCR_ERROR, serror);
2779 /* re-enable interrupts */
2780 if (!ap->ops->error_handler) {
2781 /* FIXME: hack. create a hook instead */
2782 if (ap->ioaddr.ctl_addr)
2786 /* is double-select really necessary? */
2787 if (classes[0] != ATA_DEV_NONE)
2788 ap->ops->dev_select(ap, 1);
2789 if (classes[1] != ATA_DEV_NONE)
2790 ap->ops->dev_select(ap, 0);
2792 /* bail out if no device is present */
2793 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2794 DPRINTK("EXIT, no device\n");
2798 /* set up device control */
2799 if (ap->ioaddr.ctl_addr) {
2800 if (ap->flags & ATA_FLAG_MMIO)
2801 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2803 outb(ap->ctl, ap->ioaddr.ctl_addr);
2810 * ata_dev_same_device - Determine whether new ID matches configured device
2811 * @dev: device to compare against
2812 * @new_class: class of the new device
2813 * @new_id: IDENTIFY page of the new device
2815 * Compare @new_class and @new_id against @dev and determine
2816 * whether @dev is the device indicated by @new_class and
2823 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2825 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2828 const u16 *old_id = dev->id;
2829 unsigned char model[2][41], serial[2][21];
2832 if (dev->class != new_class) {
2833 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2834 dev->class, new_class);
2838 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2839 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2840 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2841 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2842 new_n_sectors = ata_id_n_sectors(new_id);
2844 if (strcmp(model[0], model[1])) {
2845 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2846 "'%s' != '%s'\n", model[0], model[1]);
2850 if (strcmp(serial[0], serial[1])) {
2851 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2852 "'%s' != '%s'\n", serial[0], serial[1]);
2856 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2857 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2859 (unsigned long long)dev->n_sectors,
2860 (unsigned long long)new_n_sectors);
2868 * ata_dev_revalidate - Revalidate ATA device
2869 * @dev: device to revalidate
2870 * @post_reset: is this revalidation after reset?
2872 * Re-read IDENTIFY page and make sure @dev is still attached to
2876 * Kernel thread context (may sleep)
2879 * 0 on success, negative errno otherwise
2881 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2883 unsigned int class = dev->class;
2884 u16 *id = (void *)dev->ap->sector_buf;
2887 if (!ata_dev_enabled(dev)) {
2893 rc = ata_dev_read_id(dev, &class, post_reset, id);
2897 /* is the device still there? */
2898 if (!ata_dev_same_device(dev, class, id)) {
2903 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2905 /* configure device according to the new ID */
2906 rc = ata_dev_configure(dev, 0);
2911 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2915 static const char * const ata_dma_blacklist [] = {
2916 "WDC AC11000H", NULL,
2917 "WDC AC22100H", NULL,
2918 "WDC AC32500H", NULL,
2919 "WDC AC33100H", NULL,
2920 "WDC AC31600H", NULL,
2921 "WDC AC32100H", "24.09P07",
2922 "WDC AC23200L", "21.10N21",
2923 "Compaq CRD-8241B", NULL,
2928 "SanDisk SDP3B", NULL,
2929 "SanDisk SDP3B-64", NULL,
2930 "SANYO CD-ROM CRD", NULL,
2931 "HITACHI CDR-8", NULL,
2932 "HITACHI CDR-8335", NULL,
2933 "HITACHI CDR-8435", NULL,
2934 "Toshiba CD-ROM XM-6202B", NULL,
2935 "TOSHIBA CD-ROM XM-1702BC", NULL,
2937 "E-IDE CD-ROM CR-840", NULL,
2938 "CD-ROM Drive/F5A", NULL,
2939 "WPI CDD-820", NULL,
2940 "SAMSUNG CD-ROM SC-148C", NULL,
2941 "SAMSUNG CD-ROM SC", NULL,
2942 "SanDisk SDP3B-64", NULL,
2943 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2944 "_NEC DV5800A", NULL,
2945 "SAMSUNG CD-ROM SN-124", "N001"
2948 static int ata_strim(char *s, size_t len)
2950 len = strnlen(s, len);
2952 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2953 while ((len > 0) && (s[len - 1] == ' ')) {
2960 static int ata_dma_blacklisted(const struct ata_device *dev)
2962 unsigned char model_num[40];
2963 unsigned char model_rev[16];
2964 unsigned int nlen, rlen;
2967 /* We don't support polling DMA.
2968 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
2969 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
2971 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
2972 (dev->flags & ATA_DFLAG_CDB_INTR))
2975 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2977 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2979 nlen = ata_strim(model_num, sizeof(model_num));
2980 rlen = ata_strim(model_rev, sizeof(model_rev));
2982 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2983 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2984 if (ata_dma_blacklist[i+1] == NULL)
2986 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2994 * ata_dev_xfermask - Compute supported xfermask of the given device
2995 * @dev: Device to compute xfermask for
2997 * Compute supported xfermask of @dev and store it in
2998 * dev->*_mask. This function is responsible for applying all
2999 * known limits including host controller limits, device
3002 * FIXME: The current implementation limits all transfer modes to
3003 * the fastest of the lowested device on the port. This is not
3004 * required on most controllers.
3009 static void ata_dev_xfermask(struct ata_device *dev)
3011 struct ata_port *ap = dev->ap;
3012 struct ata_host_set *hs = ap->host_set;
3013 unsigned long xfer_mask;
3016 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3017 ap->mwdma_mask, ap->udma_mask);
3019 /* Apply cable rule here. Don't apply it early because when
3020 * we handle hot plug the cable type can itself change.
3022 if (ap->cbl == ATA_CBL_PATA40)
3023 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3025 /* FIXME: Use port-wide xfermask for now */
3026 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3027 struct ata_device *d = &ap->device[i];
3029 if (ata_dev_absent(d))
3032 if (ata_dev_disabled(d)) {
3033 /* to avoid violating device selection timing */
3034 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3035 UINT_MAX, UINT_MAX);
3039 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3040 d->mwdma_mask, d->udma_mask);
3041 xfer_mask &= ata_id_xfermask(d->id);
3042 if (ata_dma_blacklisted(d))
3043 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3046 if (ata_dma_blacklisted(dev))
3047 ata_dev_printk(dev, KERN_WARNING,
3048 "device is on DMA blacklist, disabling DMA\n");
3050 if (hs->flags & ATA_HOST_SIMPLEX) {
3051 if (hs->simplex_claimed)
3052 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3055 if (ap->ops->mode_filter)
3056 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3058 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3059 &dev->mwdma_mask, &dev->udma_mask);
3063 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3064 * @dev: Device to which command will be sent
3066 * Issue SET FEATURES - XFER MODE command to device @dev
3070 * PCI/etc. bus probe sem.
3073 * 0 on success, AC_ERR_* mask otherwise.
3076 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3078 struct ata_taskfile tf;
3079 unsigned int err_mask;
3081 /* set up set-features taskfile */
3082 DPRINTK("set features - xfer mode\n");
3084 ata_tf_init(dev, &tf);
3085 tf.command = ATA_CMD_SET_FEATURES;
3086 tf.feature = SETFEATURES_XFER;
3087 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3088 tf.protocol = ATA_PROT_NODATA;
3089 tf.nsect = dev->xfer_mode;
3091 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3093 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3098 * ata_dev_init_params - Issue INIT DEV PARAMS command
3099 * @dev: Device to which command will be sent
3100 * @heads: Number of heads (taskfile parameter)
3101 * @sectors: Number of sectors (taskfile parameter)
3104 * Kernel thread context (may sleep)
3107 * 0 on success, AC_ERR_* mask otherwise.
3109 static unsigned int ata_dev_init_params(struct ata_device *dev,
3110 u16 heads, u16 sectors)
3112 struct ata_taskfile tf;
3113 unsigned int err_mask;
3115 /* Number of sectors per track 1-255. Number of heads 1-16 */
3116 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3117 return AC_ERR_INVALID;
3119 /* set up init dev params taskfile */
3120 DPRINTK("init dev params \n");
3122 ata_tf_init(dev, &tf);
3123 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3124 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3125 tf.protocol = ATA_PROT_NODATA;
3127 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3129 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3131 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3136 * ata_sg_clean - Unmap DMA memory associated with command
3137 * @qc: Command containing DMA memory to be released
3139 * Unmap all mapped DMA memory associated with this command.
3142 * spin_lock_irqsave(host_set lock)
3145 static void ata_sg_clean(struct ata_queued_cmd *qc)
3147 struct ata_port *ap = qc->ap;
3148 struct scatterlist *sg = qc->__sg;
3149 int dir = qc->dma_dir;
3150 void *pad_buf = NULL;
3152 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3153 WARN_ON(sg == NULL);
3155 if (qc->flags & ATA_QCFLAG_SINGLE)
3156 WARN_ON(qc->n_elem > 1);
3158 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3160 /* if we padded the buffer out to 32-bit bound, and data
3161 * xfer direction is from-device, we must copy from the
3162 * pad buffer back into the supplied buffer
3164 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3165 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3167 if (qc->flags & ATA_QCFLAG_SG) {
3169 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3170 /* restore last sg */
3171 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3173 struct scatterlist *psg = &qc->pad_sgent;
3174 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3175 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3176 kunmap_atomic(addr, KM_IRQ0);
3180 dma_unmap_single(ap->dev,
3181 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3184 sg->length += qc->pad_len;
3186 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3187 pad_buf, qc->pad_len);
3190 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3195 * ata_fill_sg - Fill PCI IDE PRD table
3196 * @qc: Metadata associated with taskfile to be transferred
3198 * Fill PCI IDE PRD (scatter-gather) table with segments
3199 * associated with the current disk command.
3202 * spin_lock_irqsave(host_set lock)
3205 static void ata_fill_sg(struct ata_queued_cmd *qc)
3207 struct ata_port *ap = qc->ap;
3208 struct scatterlist *sg;
3211 WARN_ON(qc->__sg == NULL);
3212 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3215 ata_for_each_sg(sg, qc) {
3219 /* determine if physical DMA addr spans 64K boundary.
3220 * Note h/w doesn't support 64-bit, so we unconditionally
3221 * truncate dma_addr_t to u32.
3223 addr = (u32) sg_dma_address(sg);
3224 sg_len = sg_dma_len(sg);
3227 offset = addr & 0xffff;
3229 if ((offset + sg_len) > 0x10000)
3230 len = 0x10000 - offset;
3232 ap->prd[idx].addr = cpu_to_le32(addr);
3233 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3234 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3243 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3246 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3247 * @qc: Metadata associated with taskfile to check
3249 * Allow low-level driver to filter ATA PACKET commands, returning
3250 * a status indicating whether or not it is OK to use DMA for the
3251 * supplied PACKET command.
3254 * spin_lock_irqsave(host_set lock)
3256 * RETURNS: 0 when ATAPI DMA can be used
3259 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3261 struct ata_port *ap = qc->ap;
3262 int rc = 0; /* Assume ATAPI DMA is OK by default */
3264 if (ap->ops->check_atapi_dma)
3265 rc = ap->ops->check_atapi_dma(qc);
3270 * ata_qc_prep - Prepare taskfile for submission
3271 * @qc: Metadata associated with taskfile to be prepared
3273 * Prepare ATA taskfile for submission.
3276 * spin_lock_irqsave(host_set lock)
3278 void ata_qc_prep(struct ata_queued_cmd *qc)
3280 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3286 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3289 * ata_sg_init_one - Associate command with memory buffer
3290 * @qc: Command to be associated
3291 * @buf: Memory buffer
3292 * @buflen: Length of memory buffer, in bytes.
3294 * Initialize the data-related elements of queued_cmd @qc
3295 * to point to a single memory buffer, @buf of byte length @buflen.
3298 * spin_lock_irqsave(host_set lock)
3301 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3303 struct scatterlist *sg;
3305 qc->flags |= ATA_QCFLAG_SINGLE;
3307 memset(&qc->sgent, 0, sizeof(qc->sgent));
3308 qc->__sg = &qc->sgent;
3310 qc->orig_n_elem = 1;
3312 qc->nbytes = buflen;
3315 sg_init_one(sg, buf, buflen);
3319 * ata_sg_init - Associate command with scatter-gather table.
3320 * @qc: Command to be associated
3321 * @sg: Scatter-gather table.
3322 * @n_elem: Number of elements in s/g table.
3324 * Initialize the data-related elements of queued_cmd @qc
3325 * to point to a scatter-gather table @sg, containing @n_elem
3329 * spin_lock_irqsave(host_set lock)
3332 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3333 unsigned int n_elem)
3335 qc->flags |= ATA_QCFLAG_SG;
3337 qc->n_elem = n_elem;
3338 qc->orig_n_elem = n_elem;
3342 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3343 * @qc: Command with memory buffer to be mapped.
3345 * DMA-map the memory buffer associated with queued_cmd @qc.
3348 * spin_lock_irqsave(host_set lock)
3351 * Zero on success, negative on error.
3354 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3356 struct ata_port *ap = qc->ap;
3357 int dir = qc->dma_dir;
3358 struct scatterlist *sg = qc->__sg;
3359 dma_addr_t dma_address;
3362 /* we must lengthen transfers to end on a 32-bit boundary */
3363 qc->pad_len = sg->length & 3;
3365 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3366 struct scatterlist *psg = &qc->pad_sgent;
3368 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3370 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3372 if (qc->tf.flags & ATA_TFLAG_WRITE)
3373 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3376 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3377 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3379 sg->length -= qc->pad_len;
3380 if (sg->length == 0)
3383 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3384 sg->length, qc->pad_len);
3392 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3394 if (dma_mapping_error(dma_address)) {
3396 sg->length += qc->pad_len;
3400 sg_dma_address(sg) = dma_address;
3401 sg_dma_len(sg) = sg->length;
3404 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3405 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3411 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3412 * @qc: Command with scatter-gather table to be mapped.
3414 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3417 * spin_lock_irqsave(host_set lock)
3420 * Zero on success, negative on error.
3424 static int ata_sg_setup(struct ata_queued_cmd *qc)
3426 struct ata_port *ap = qc->ap;
3427 struct scatterlist *sg = qc->__sg;
3428 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3429 int n_elem, pre_n_elem, dir, trim_sg = 0;
3431 VPRINTK("ENTER, ata%u\n", ap->id);
3432 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3434 /* we must lengthen transfers to end on a 32-bit boundary */
3435 qc->pad_len = lsg->length & 3;
3437 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3438 struct scatterlist *psg = &qc->pad_sgent;
3439 unsigned int offset;
3441 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3443 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3446 * psg->page/offset are used to copy to-be-written
3447 * data in this function or read data in ata_sg_clean.
3449 offset = lsg->offset + lsg->length - qc->pad_len;
3450 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3451 psg->offset = offset_in_page(offset);
3453 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3454 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3455 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3456 kunmap_atomic(addr, KM_IRQ0);
3459 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3460 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3462 lsg->length -= qc->pad_len;
3463 if (lsg->length == 0)
3466 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3467 qc->n_elem - 1, lsg->length, qc->pad_len);
3470 pre_n_elem = qc->n_elem;
3471 if (trim_sg && pre_n_elem)
3480 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3482 /* restore last sg */
3483 lsg->length += qc->pad_len;
3487 DPRINTK("%d sg elements mapped\n", n_elem);
3490 qc->n_elem = n_elem;
3496 * swap_buf_le16 - swap halves of 16-bit words in place
3497 * @buf: Buffer to swap
3498 * @buf_words: Number of 16-bit words in buffer.
3500 * Swap halves of 16-bit words if needed to convert from
3501 * little-endian byte order to native cpu byte order, or
3505 * Inherited from caller.
3507 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3512 for (i = 0; i < buf_words; i++)
3513 buf[i] = le16_to_cpu(buf[i]);
3514 #endif /* __BIG_ENDIAN */
3518 * ata_mmio_data_xfer - Transfer data by MMIO
3519 * @adev: device for this I/O
3521 * @buflen: buffer length
3522 * @write_data: read/write
3524 * Transfer data from/to the device data register by MMIO.
3527 * Inherited from caller.
3530 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3531 unsigned int buflen, int write_data)
3533 struct ata_port *ap = adev->ap;
3535 unsigned int words = buflen >> 1;
3536 u16 *buf16 = (u16 *) buf;
3537 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3539 /* Transfer multiple of 2 bytes */
3541 for (i = 0; i < words; i++)
3542 writew(le16_to_cpu(buf16[i]), mmio);
3544 for (i = 0; i < words; i++)
3545 buf16[i] = cpu_to_le16(readw(mmio));
3548 /* Transfer trailing 1 byte, if any. */
3549 if (unlikely(buflen & 0x01)) {
3550 u16 align_buf[1] = { 0 };
3551 unsigned char *trailing_buf = buf + buflen - 1;
3554 memcpy(align_buf, trailing_buf, 1);
3555 writew(le16_to_cpu(align_buf[0]), mmio);
3557 align_buf[0] = cpu_to_le16(readw(mmio));
3558 memcpy(trailing_buf, align_buf, 1);
3564 * ata_pio_data_xfer - Transfer data by PIO
3565 * @adev: device to target
3567 * @buflen: buffer length
3568 * @write_data: read/write
3570 * Transfer data from/to the device data register by PIO.
3573 * Inherited from caller.
3576 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3577 unsigned int buflen, int write_data)
3579 struct ata_port *ap = adev->ap;
3580 unsigned int words = buflen >> 1;
3582 /* Transfer multiple of 2 bytes */
3584 outsw(ap->ioaddr.data_addr, buf, words);
3586 insw(ap->ioaddr.data_addr, buf, words);
3588 /* Transfer trailing 1 byte, if any. */
3589 if (unlikely(buflen & 0x01)) {
3590 u16 align_buf[1] = { 0 };
3591 unsigned char *trailing_buf = buf + buflen - 1;
3594 memcpy(align_buf, trailing_buf, 1);
3595 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3597 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3598 memcpy(trailing_buf, align_buf, 1);
3604 * ata_pio_data_xfer_noirq - Transfer data by PIO
3605 * @adev: device to target
3607 * @buflen: buffer length
3608 * @write_data: read/write
3610 * Transfer data from/to the device data register by PIO. Do the
3611 * transfer with interrupts disabled.
3614 * Inherited from caller.
3617 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3618 unsigned int buflen, int write_data)
3620 unsigned long flags;
3621 local_irq_save(flags);
3622 ata_pio_data_xfer(adev, buf, buflen, write_data);
3623 local_irq_restore(flags);
3628 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3629 * @qc: Command on going
3631 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3634 * Inherited from caller.
3637 static void ata_pio_sector(struct ata_queued_cmd *qc)
3639 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3640 struct scatterlist *sg = qc->__sg;
3641 struct ata_port *ap = qc->ap;
3643 unsigned int offset;
3646 if (qc->cursect == (qc->nsect - 1))
3647 ap->hsm_task_state = HSM_ST_LAST;
3649 page = sg[qc->cursg].page;
3650 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3652 /* get the current page and offset */
3653 page = nth_page(page, (offset >> PAGE_SHIFT));
3654 offset %= PAGE_SIZE;
3656 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3658 if (PageHighMem(page)) {
3659 unsigned long flags;
3661 /* FIXME: use a bounce buffer */
3662 local_irq_save(flags);
3663 buf = kmap_atomic(page, KM_IRQ0);
3665 /* do the actual data transfer */
3666 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3668 kunmap_atomic(buf, KM_IRQ0);
3669 local_irq_restore(flags);
3671 buf = page_address(page);
3672 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3678 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3685 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3686 * @qc: Command on going
3688 * Transfer one or many ATA_SECT_SIZE of data from/to the
3689 * ATA device for the DRQ request.
3692 * Inherited from caller.
3695 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3697 if (is_multi_taskfile(&qc->tf)) {
3698 /* READ/WRITE MULTIPLE */
3701 WARN_ON(qc->dev->multi_count == 0);
3703 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3711 * atapi_send_cdb - Write CDB bytes to hardware
3712 * @ap: Port to which ATAPI device is attached.
3713 * @qc: Taskfile currently active
3715 * When device has indicated its readiness to accept
3716 * a CDB, this function is called. Send the CDB.
3722 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3725 DPRINTK("send cdb\n");
3726 WARN_ON(qc->dev->cdb_len < 12);
3728 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3729 ata_altstatus(ap); /* flush */
3731 switch (qc->tf.protocol) {
3732 case ATA_PROT_ATAPI:
3733 ap->hsm_task_state = HSM_ST;
3735 case ATA_PROT_ATAPI_NODATA:
3736 ap->hsm_task_state = HSM_ST_LAST;
3738 case ATA_PROT_ATAPI_DMA:
3739 ap->hsm_task_state = HSM_ST_LAST;
3740 /* initiate bmdma */
3741 ap->ops->bmdma_start(qc);
3747 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3748 * @qc: Command on going
3749 * @bytes: number of bytes
3751 * Transfer Transfer data from/to the ATAPI device.
3754 * Inherited from caller.
3758 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3760 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3761 struct scatterlist *sg = qc->__sg;
3762 struct ata_port *ap = qc->ap;
3765 unsigned int offset, count;
3767 if (qc->curbytes + bytes >= qc->nbytes)
3768 ap->hsm_task_state = HSM_ST_LAST;
3771 if (unlikely(qc->cursg >= qc->n_elem)) {
3773 * The end of qc->sg is reached and the device expects
3774 * more data to transfer. In order not to overrun qc->sg
3775 * and fulfill length specified in the byte count register,
3776 * - for read case, discard trailing data from the device
3777 * - for write case, padding zero data to the device
3779 u16 pad_buf[1] = { 0 };
3780 unsigned int words = bytes >> 1;
3783 if (words) /* warning if bytes > 1 */
3784 ata_dev_printk(qc->dev, KERN_WARNING,
3785 "%u bytes trailing data\n", bytes);
3787 for (i = 0; i < words; i++)
3788 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3790 ap->hsm_task_state = HSM_ST_LAST;
3794 sg = &qc->__sg[qc->cursg];
3797 offset = sg->offset + qc->cursg_ofs;
3799 /* get the current page and offset */
3800 page = nth_page(page, (offset >> PAGE_SHIFT));
3801 offset %= PAGE_SIZE;
3803 /* don't overrun current sg */
3804 count = min(sg->length - qc->cursg_ofs, bytes);
3806 /* don't cross page boundaries */
3807 count = min(count, (unsigned int)PAGE_SIZE - offset);
3809 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3811 if (PageHighMem(page)) {
3812 unsigned long flags;
3814 /* FIXME: use bounce buffer */
3815 local_irq_save(flags);
3816 buf = kmap_atomic(page, KM_IRQ0);
3818 /* do the actual data transfer */
3819 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3821 kunmap_atomic(buf, KM_IRQ0);
3822 local_irq_restore(flags);
3824 buf = page_address(page);
3825 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3829 qc->curbytes += count;
3830 qc->cursg_ofs += count;
3832 if (qc->cursg_ofs == sg->length) {
3842 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3843 * @qc: Command on going
3845 * Transfer Transfer data from/to the ATAPI device.
3848 * Inherited from caller.
3851 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3853 struct ata_port *ap = qc->ap;
3854 struct ata_device *dev = qc->dev;
3855 unsigned int ireason, bc_lo, bc_hi, bytes;
3856 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3858 /* Abuse qc->result_tf for temp storage of intermediate TF
3859 * here to save some kernel stack usage.
3860 * For normal completion, qc->result_tf is not relevant. For
3861 * error, qc->result_tf is later overwritten by ata_qc_complete().
3862 * So, the correctness of qc->result_tf is not affected.
3864 ap->ops->tf_read(ap, &qc->result_tf);
3865 ireason = qc->result_tf.nsect;
3866 bc_lo = qc->result_tf.lbam;
3867 bc_hi = qc->result_tf.lbah;
3868 bytes = (bc_hi << 8) | bc_lo;
3870 /* shall be cleared to zero, indicating xfer of data */
3871 if (ireason & (1 << 0))
3874 /* make sure transfer direction matches expected */
3875 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3876 if (do_write != i_write)
3879 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3881 __atapi_pio_bytes(qc, bytes);
3886 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3887 qc->err_mask |= AC_ERR_HSM;
3888 ap->hsm_task_state = HSM_ST_ERR;
3892 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3893 * @ap: the target ata_port
3897 * 1 if ok in workqueue, 0 otherwise.
3900 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3902 if (qc->tf.flags & ATA_TFLAG_POLLING)
3905 if (ap->hsm_task_state == HSM_ST_FIRST) {
3906 if (qc->tf.protocol == ATA_PROT_PIO &&
3907 (qc->tf.flags & ATA_TFLAG_WRITE))
3910 if (is_atapi_taskfile(&qc->tf) &&
3911 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3919 * ata_hsm_qc_complete - finish a qc running on standard HSM
3920 * @qc: Command to complete
3921 * @in_wq: 1 if called from workqueue, 0 otherwise
3923 * Finish @qc which is running on standard HSM.
3926 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3927 * Otherwise, none on entry and grabs host lock.
3929 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3931 struct ata_port *ap = qc->ap;
3932 unsigned long flags;
3934 if (ap->ops->error_handler) {
3936 spin_lock_irqsave(ap->lock, flags);
3938 /* EH might have kicked in while host_set lock
3941 qc = ata_qc_from_tag(ap, qc->tag);
3943 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3945 ata_qc_complete(qc);
3947 ata_port_freeze(ap);
3950 spin_unlock_irqrestore(ap->lock, flags);
3952 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3953 ata_qc_complete(qc);
3955 ata_port_freeze(ap);
3959 spin_lock_irqsave(ap->lock, flags);
3961 ata_qc_complete(qc);
3962 spin_unlock_irqrestore(ap->lock, flags);
3964 ata_qc_complete(qc);
3967 ata_altstatus(ap); /* flush */
3971 * ata_hsm_move - move the HSM to the next state.
3972 * @ap: the target ata_port
3974 * @status: current device status
3975 * @in_wq: 1 if called from workqueue, 0 otherwise
3978 * 1 when poll next status needed, 0 otherwise.
3980 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3981 u8 status, int in_wq)
3983 unsigned long flags = 0;
3986 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3988 /* Make sure ata_qc_issue_prot() does not throw things
3989 * like DMA polling into the workqueue. Notice that
3990 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3992 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
3995 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3996 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
3998 switch (ap->hsm_task_state) {
4000 /* Send first data block or PACKET CDB */
4002 /* If polling, we will stay in the work queue after
4003 * sending the data. Otherwise, interrupt handler
4004 * takes over after sending the data.
4006 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4008 /* check device status */
4009 if (unlikely((status & ATA_DRQ) == 0)) {
4010 /* handle BSY=0, DRQ=0 as error */
4011 if (likely(status & (ATA_ERR | ATA_DF)))
4012 /* device stops HSM for abort/error */
4013 qc->err_mask |= AC_ERR_DEV;
4015 /* HSM violation. Let EH handle this */
4016 qc->err_mask |= AC_ERR_HSM;
4018 ap->hsm_task_state = HSM_ST_ERR;
4022 /* Device should not ask for data transfer (DRQ=1)
4023 * when it finds something wrong.
4024 * We ignore DRQ here and stop the HSM by
4025 * changing hsm_task_state to HSM_ST_ERR and
4026 * let the EH abort the command or reset the device.
4028 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4029 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4031 qc->err_mask |= AC_ERR_HSM;
4032 ap->hsm_task_state = HSM_ST_ERR;
4036 /* Send the CDB (atapi) or the first data block (ata pio out).
4037 * During the state transition, interrupt handler shouldn't
4038 * be invoked before the data transfer is complete and
4039 * hsm_task_state is changed. Hence, the following locking.
4042 spin_lock_irqsave(ap->lock, flags);
4044 if (qc->tf.protocol == ATA_PROT_PIO) {
4045 /* PIO data out protocol.
4046 * send first data block.
4049 /* ata_pio_sectors() might change the state
4050 * to HSM_ST_LAST. so, the state is changed here
4051 * before ata_pio_sectors().
4053 ap->hsm_task_state = HSM_ST;
4054 ata_pio_sectors(qc);
4055 ata_altstatus(ap); /* flush */
4058 atapi_send_cdb(ap, qc);
4061 spin_unlock_irqrestore(ap->lock, flags);
4063 /* if polling, ata_pio_task() handles the rest.
4064 * otherwise, interrupt handler takes over from here.
4069 /* complete command or read/write the data register */
4070 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4071 /* ATAPI PIO protocol */
4072 if ((status & ATA_DRQ) == 0) {
4073 /* No more data to transfer or device error.
4074 * Device error will be tagged in HSM_ST_LAST.
4076 ap->hsm_task_state = HSM_ST_LAST;
4080 /* Device should not ask for data transfer (DRQ=1)
4081 * when it finds something wrong.
4082 * We ignore DRQ here and stop the HSM by
4083 * changing hsm_task_state to HSM_ST_ERR and
4084 * let the EH abort the command or reset the device.
4086 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4087 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4089 qc->err_mask |= AC_ERR_HSM;
4090 ap->hsm_task_state = HSM_ST_ERR;
4094 atapi_pio_bytes(qc);
4096 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4097 /* bad ireason reported by device */
4101 /* ATA PIO protocol */
4102 if (unlikely((status & ATA_DRQ) == 0)) {
4103 /* handle BSY=0, DRQ=0 as error */
4104 if (likely(status & (ATA_ERR | ATA_DF)))
4105 /* device stops HSM for abort/error */
4106 qc->err_mask |= AC_ERR_DEV;
4108 /* HSM violation. Let EH handle this */
4109 qc->err_mask |= AC_ERR_HSM;
4111 ap->hsm_task_state = HSM_ST_ERR;
4115 /* For PIO reads, some devices may ask for
4116 * data transfer (DRQ=1) alone with ERR=1.
4117 * We respect DRQ here and transfer one
4118 * block of junk data before changing the
4119 * hsm_task_state to HSM_ST_ERR.
4121 * For PIO writes, ERR=1 DRQ=1 doesn't make
4122 * sense since the data block has been
4123 * transferred to the device.
4125 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4126 /* data might be corrputed */
4127 qc->err_mask |= AC_ERR_DEV;
4129 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4130 ata_pio_sectors(qc);
4132 status = ata_wait_idle(ap);
4135 if (status & (ATA_BUSY | ATA_DRQ))
4136 qc->err_mask |= AC_ERR_HSM;
4138 /* ata_pio_sectors() might change the
4139 * state to HSM_ST_LAST. so, the state
4140 * is changed after ata_pio_sectors().
4142 ap->hsm_task_state = HSM_ST_ERR;
4146 ata_pio_sectors(qc);
4148 if (ap->hsm_task_state == HSM_ST_LAST &&
4149 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4152 status = ata_wait_idle(ap);
4157 ata_altstatus(ap); /* flush */
4162 if (unlikely(!ata_ok(status))) {
4163 qc->err_mask |= __ac_err_mask(status);
4164 ap->hsm_task_state = HSM_ST_ERR;
4168 /* no more data to transfer */
4169 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4170 ap->id, qc->dev->devno, status);
4172 WARN_ON(qc->err_mask);
4174 ap->hsm_task_state = HSM_ST_IDLE;
4176 /* complete taskfile transaction */
4177 ata_hsm_qc_complete(qc, in_wq);
4183 /* make sure qc->err_mask is available to
4184 * know what's wrong and recover
4186 WARN_ON(qc->err_mask == 0);
4188 ap->hsm_task_state = HSM_ST_IDLE;
4190 /* complete taskfile transaction */
4191 ata_hsm_qc_complete(qc, in_wq);
4203 static void ata_pio_task(void *_data)
4205 struct ata_queued_cmd *qc = _data;
4206 struct ata_port *ap = qc->ap;
4211 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4214 * This is purely heuristic. This is a fast path.
4215 * Sometimes when we enter, BSY will be cleared in
4216 * a chk-status or two. If not, the drive is probably seeking
4217 * or something. Snooze for a couple msecs, then
4218 * chk-status again. If still busy, queue delayed work.
4220 status = ata_busy_wait(ap, ATA_BUSY, 5);
4221 if (status & ATA_BUSY) {
4223 status = ata_busy_wait(ap, ATA_BUSY, 10);
4224 if (status & ATA_BUSY) {
4225 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4231 poll_next = ata_hsm_move(ap, qc, status, 1);
4233 /* another command or interrupt handler
4234 * may be running at this point.
4241 * ata_qc_new - Request an available ATA command, for queueing
4242 * @ap: Port associated with device @dev
4243 * @dev: Device from whom we request an available command structure
4249 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4251 struct ata_queued_cmd *qc = NULL;
4254 /* no command while frozen */
4255 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4258 /* the last tag is reserved for internal command. */
4259 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4260 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4261 qc = __ata_qc_from_tag(ap, i);
4272 * ata_qc_new_init - Request an available ATA command, and initialize it
4273 * @dev: Device from whom we request an available command structure
4279 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4281 struct ata_port *ap = dev->ap;
4282 struct ata_queued_cmd *qc;
4284 qc = ata_qc_new(ap);
4297 * ata_qc_free - free unused ata_queued_cmd
4298 * @qc: Command to complete
4300 * Designed to free unused ata_queued_cmd object
4301 * in case something prevents using it.
4304 * spin_lock_irqsave(host_set lock)
4306 void ata_qc_free(struct ata_queued_cmd *qc)
4308 struct ata_port *ap = qc->ap;
4311 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4315 if (likely(ata_tag_valid(tag))) {
4316 qc->tag = ATA_TAG_POISON;
4317 clear_bit(tag, &ap->qc_allocated);
4321 void __ata_qc_complete(struct ata_queued_cmd *qc)
4323 struct ata_port *ap = qc->ap;
4325 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4326 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4328 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4331 /* command should be marked inactive atomically with qc completion */
4332 if (qc->tf.protocol == ATA_PROT_NCQ)
4333 ap->sactive &= ~(1 << qc->tag);
4335 ap->active_tag = ATA_TAG_POISON;
4337 /* atapi: mark qc as inactive to prevent the interrupt handler
4338 * from completing the command twice later, before the error handler
4339 * is called. (when rc != 0 and atapi request sense is needed)
4341 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4342 ap->qc_active &= ~(1 << qc->tag);
4344 /* call completion callback */
4345 qc->complete_fn(qc);
4349 * ata_qc_complete - Complete an active ATA command
4350 * @qc: Command to complete
4351 * @err_mask: ATA Status register contents
4353 * Indicate to the mid and upper layers that an ATA
4354 * command has completed, with either an ok or not-ok status.
4357 * spin_lock_irqsave(host_set lock)
4359 void ata_qc_complete(struct ata_queued_cmd *qc)
4361 struct ata_port *ap = qc->ap;
4363 /* XXX: New EH and old EH use different mechanisms to
4364 * synchronize EH with regular execution path.
4366 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4367 * Normal execution path is responsible for not accessing a
4368 * failed qc. libata core enforces the rule by returning NULL
4369 * from ata_qc_from_tag() for failed qcs.
4371 * Old EH depends on ata_qc_complete() nullifying completion
4372 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4373 * not synchronize with interrupt handler. Only PIO task is
4376 if (ap->ops->error_handler) {
4377 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4379 if (unlikely(qc->err_mask))
4380 qc->flags |= ATA_QCFLAG_FAILED;
4382 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4383 if (!ata_tag_internal(qc->tag)) {
4384 /* always fill result TF for failed qc */
4385 ap->ops->tf_read(ap, &qc->result_tf);
4386 ata_qc_schedule_eh(qc);
4391 /* read result TF if requested */
4392 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4393 ap->ops->tf_read(ap, &qc->result_tf);
4395 __ata_qc_complete(qc);
4397 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4400 /* read result TF if failed or requested */
4401 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4402 ap->ops->tf_read(ap, &qc->result_tf);
4404 __ata_qc_complete(qc);
4409 * ata_qc_complete_multiple - Complete multiple qcs successfully
4410 * @ap: port in question
4411 * @qc_active: new qc_active mask
4412 * @finish_qc: LLDD callback invoked before completing a qc
4414 * Complete in-flight commands. This functions is meant to be
4415 * called from low-level driver's interrupt routine to complete
4416 * requests normally. ap->qc_active and @qc_active is compared
4417 * and commands are completed accordingly.
4420 * spin_lock_irqsave(host_set lock)
4423 * Number of completed commands on success, -errno otherwise.
4425 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4426 void (*finish_qc)(struct ata_queued_cmd *))
4432 done_mask = ap->qc_active ^ qc_active;
4434 if (unlikely(done_mask & qc_active)) {
4435 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4436 "(%08x->%08x)\n", ap->qc_active, qc_active);
4440 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4441 struct ata_queued_cmd *qc;
4443 if (!(done_mask & (1 << i)))
4446 if ((qc = ata_qc_from_tag(ap, i))) {
4449 ata_qc_complete(qc);
4457 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4459 struct ata_port *ap = qc->ap;
4461 switch (qc->tf.protocol) {
4464 case ATA_PROT_ATAPI_DMA:
4467 case ATA_PROT_ATAPI:
4469 if (ap->flags & ATA_FLAG_PIO_DMA)
4482 * ata_qc_issue - issue taskfile to device
4483 * @qc: command to issue to device
4485 * Prepare an ATA command to submission to device.
4486 * This includes mapping the data into a DMA-able
4487 * area, filling in the S/G table, and finally
4488 * writing the taskfile to hardware, starting the command.
4491 * spin_lock_irqsave(host_set lock)
4493 void ata_qc_issue(struct ata_queued_cmd *qc)
4495 struct ata_port *ap = qc->ap;
4497 /* Make sure only one non-NCQ command is outstanding. The
4498 * check is skipped for old EH because it reuses active qc to
4499 * request ATAPI sense.
4501 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4503 if (qc->tf.protocol == ATA_PROT_NCQ) {
4504 WARN_ON(ap->sactive & (1 << qc->tag));
4505 ap->sactive |= 1 << qc->tag;
4507 WARN_ON(ap->sactive);
4508 ap->active_tag = qc->tag;
4511 qc->flags |= ATA_QCFLAG_ACTIVE;
4512 ap->qc_active |= 1 << qc->tag;
4514 if (ata_should_dma_map(qc)) {
4515 if (qc->flags & ATA_QCFLAG_SG) {
4516 if (ata_sg_setup(qc))
4518 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4519 if (ata_sg_setup_one(qc))
4523 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4526 ap->ops->qc_prep(qc);
4528 qc->err_mask |= ap->ops->qc_issue(qc);
4529 if (unlikely(qc->err_mask))
4534 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4535 qc->err_mask |= AC_ERR_SYSTEM;
4537 ata_qc_complete(qc);
4541 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4542 * @qc: command to issue to device
4544 * Using various libata functions and hooks, this function
4545 * starts an ATA command. ATA commands are grouped into
4546 * classes called "protocols", and issuing each type of protocol
4547 * is slightly different.
4549 * May be used as the qc_issue() entry in ata_port_operations.
4552 * spin_lock_irqsave(host_set lock)
4555 * Zero on success, AC_ERR_* mask on failure
4558 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4560 struct ata_port *ap = qc->ap;
4562 /* Use polling pio if the LLD doesn't handle
4563 * interrupt driven pio and atapi CDB interrupt.
4565 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4566 switch (qc->tf.protocol) {
4568 case ATA_PROT_ATAPI:
4569 case ATA_PROT_ATAPI_NODATA:
4570 qc->tf.flags |= ATA_TFLAG_POLLING;
4572 case ATA_PROT_ATAPI_DMA:
4573 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4574 /* see ata_dma_blacklisted() */
4582 /* select the device */
4583 ata_dev_select(ap, qc->dev->devno, 1, 0);
4585 /* start the command */
4586 switch (qc->tf.protocol) {
4587 case ATA_PROT_NODATA:
4588 if (qc->tf.flags & ATA_TFLAG_POLLING)
4589 ata_qc_set_polling(qc);
4591 ata_tf_to_host(ap, &qc->tf);
4592 ap->hsm_task_state = HSM_ST_LAST;
4594 if (qc->tf.flags & ATA_TFLAG_POLLING)
4595 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4600 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4602 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4603 ap->ops->bmdma_setup(qc); /* set up bmdma */
4604 ap->ops->bmdma_start(qc); /* initiate bmdma */
4605 ap->hsm_task_state = HSM_ST_LAST;
4609 if (qc->tf.flags & ATA_TFLAG_POLLING)
4610 ata_qc_set_polling(qc);
4612 ata_tf_to_host(ap, &qc->tf);
4614 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4615 /* PIO data out protocol */
4616 ap->hsm_task_state = HSM_ST_FIRST;
4617 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4619 /* always send first data block using
4620 * the ata_pio_task() codepath.
4623 /* PIO data in protocol */
4624 ap->hsm_task_state = HSM_ST;
4626 if (qc->tf.flags & ATA_TFLAG_POLLING)
4627 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4629 /* if polling, ata_pio_task() handles the rest.
4630 * otherwise, interrupt handler takes over from here.
4636 case ATA_PROT_ATAPI:
4637 case ATA_PROT_ATAPI_NODATA:
4638 if (qc->tf.flags & ATA_TFLAG_POLLING)
4639 ata_qc_set_polling(qc);
4641 ata_tf_to_host(ap, &qc->tf);
4643 ap->hsm_task_state = HSM_ST_FIRST;
4645 /* send cdb by polling if no cdb interrupt */
4646 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4647 (qc->tf.flags & ATA_TFLAG_POLLING))
4648 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4651 case ATA_PROT_ATAPI_DMA:
4652 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4654 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4655 ap->ops->bmdma_setup(qc); /* set up bmdma */
4656 ap->hsm_task_state = HSM_ST_FIRST;
4658 /* send cdb by polling if no cdb interrupt */
4659 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4660 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4665 return AC_ERR_SYSTEM;
4672 * ata_host_intr - Handle host interrupt for given (port, task)
4673 * @ap: Port on which interrupt arrived (possibly...)
4674 * @qc: Taskfile currently active in engine
4676 * Handle host interrupt for given queued command. Currently,
4677 * only DMA interrupts are handled. All other commands are
4678 * handled via polling with interrupts disabled (nIEN bit).
4681 * spin_lock_irqsave(host_set lock)
4684 * One if interrupt was handled, zero if not (shared irq).
4687 inline unsigned int ata_host_intr (struct ata_port *ap,
4688 struct ata_queued_cmd *qc)
4690 u8 status, host_stat = 0;
4692 VPRINTK("ata%u: protocol %d task_state %d\n",
4693 ap->id, qc->tf.protocol, ap->hsm_task_state);
4695 /* Check whether we are expecting interrupt in this state */
4696 switch (ap->hsm_task_state) {
4698 /* Some pre-ATAPI-4 devices assert INTRQ
4699 * at this state when ready to receive CDB.
4702 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4703 * The flag was turned on only for atapi devices.
4704 * No need to check is_atapi_taskfile(&qc->tf) again.
4706 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4710 if (qc->tf.protocol == ATA_PROT_DMA ||
4711 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4712 /* check status of DMA engine */
4713 host_stat = ap->ops->bmdma_status(ap);
4714 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4716 /* if it's not our irq... */
4717 if (!(host_stat & ATA_DMA_INTR))
4720 /* before we do anything else, clear DMA-Start bit */
4721 ap->ops->bmdma_stop(qc);
4723 if (unlikely(host_stat & ATA_DMA_ERR)) {
4724 /* error when transfering data to/from memory */
4725 qc->err_mask |= AC_ERR_HOST_BUS;
4726 ap->hsm_task_state = HSM_ST_ERR;
4736 /* check altstatus */
4737 status = ata_altstatus(ap);
4738 if (status & ATA_BUSY)
4741 /* check main status, clearing INTRQ */
4742 status = ata_chk_status(ap);
4743 if (unlikely(status & ATA_BUSY))
4746 /* ack bmdma irq events */
4747 ap->ops->irq_clear(ap);
4749 ata_hsm_move(ap, qc, status, 0);
4750 return 1; /* irq handled */
4753 ap->stats.idle_irq++;
4756 if ((ap->stats.idle_irq % 1000) == 0) {
4757 ata_irq_ack(ap, 0); /* debug trap */
4758 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4762 return 0; /* irq not handled */
4766 * ata_interrupt - Default ATA host interrupt handler
4767 * @irq: irq line (unused)
4768 * @dev_instance: pointer to our ata_host_set information structure
4771 * Default interrupt handler for PCI IDE devices. Calls
4772 * ata_host_intr() for each port that is not disabled.
4775 * Obtains host_set lock during operation.
4778 * IRQ_NONE or IRQ_HANDLED.
4781 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4783 struct ata_host_set *host_set = dev_instance;
4785 unsigned int handled = 0;
4786 unsigned long flags;
4788 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4789 spin_lock_irqsave(&host_set->lock, flags);
4791 for (i = 0; i < host_set->n_ports; i++) {
4792 struct ata_port *ap;
4794 ap = host_set->ports[i];
4796 !(ap->flags & ATA_FLAG_DISABLED)) {
4797 struct ata_queued_cmd *qc;
4799 qc = ata_qc_from_tag(ap, ap->active_tag);
4800 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4801 (qc->flags & ATA_QCFLAG_ACTIVE))
4802 handled |= ata_host_intr(ap, qc);
4806 spin_unlock_irqrestore(&host_set->lock, flags);
4808 return IRQ_RETVAL(handled);
4812 * sata_scr_valid - test whether SCRs are accessible
4813 * @ap: ATA port to test SCR accessibility for
4815 * Test whether SCRs are accessible for @ap.
4821 * 1 if SCRs are accessible, 0 otherwise.
4823 int sata_scr_valid(struct ata_port *ap)
4825 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4829 * sata_scr_read - read SCR register of the specified port
4830 * @ap: ATA port to read SCR for
4832 * @val: Place to store read value
4834 * Read SCR register @reg of @ap into *@val. This function is
4835 * guaranteed to succeed if the cable type of the port is SATA
4836 * and the port implements ->scr_read.
4842 * 0 on success, negative errno on failure.
4844 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4846 if (sata_scr_valid(ap)) {
4847 *val = ap->ops->scr_read(ap, reg);
4854 * sata_scr_write - write SCR register of the specified port
4855 * @ap: ATA port to write SCR for
4856 * @reg: SCR to write
4857 * @val: value to write
4859 * Write @val to SCR register @reg of @ap. This function is
4860 * guaranteed to succeed if the cable type of the port is SATA
4861 * and the port implements ->scr_read.
4867 * 0 on success, negative errno on failure.
4869 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4871 if (sata_scr_valid(ap)) {
4872 ap->ops->scr_write(ap, reg, val);
4879 * sata_scr_write_flush - write SCR register of the specified port and flush
4880 * @ap: ATA port to write SCR for
4881 * @reg: SCR to write
4882 * @val: value to write
4884 * This function is identical to sata_scr_write() except that this
4885 * function performs flush after writing to the register.
4891 * 0 on success, negative errno on failure.
4893 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4895 if (sata_scr_valid(ap)) {
4896 ap->ops->scr_write(ap, reg, val);
4897 ap->ops->scr_read(ap, reg);
4904 * ata_port_online - test whether the given port is online
4905 * @ap: ATA port to test
4907 * Test whether @ap is online. Note that this function returns 0
4908 * if online status of @ap cannot be obtained, so
4909 * ata_port_online(ap) != !ata_port_offline(ap).
4915 * 1 if the port online status is available and online.
4917 int ata_port_online(struct ata_port *ap)
4921 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4927 * ata_port_offline - test whether the given port is offline
4928 * @ap: ATA port to test
4930 * Test whether @ap is offline. Note that this function returns
4931 * 0 if offline status of @ap cannot be obtained, so
4932 * ata_port_online(ap) != !ata_port_offline(ap).
4938 * 1 if the port offline status is available and offline.
4940 int ata_port_offline(struct ata_port *ap)
4944 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4950 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4951 * without filling any other registers
4953 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
4955 struct ata_taskfile tf;
4958 ata_tf_init(dev, &tf);
4961 tf.flags |= ATA_TFLAG_DEVICE;
4962 tf.protocol = ATA_PROT_NODATA;
4964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4966 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4972 static int ata_flush_cache(struct ata_device *dev)
4976 if (!ata_try_flush_cache(dev))
4979 if (ata_id_has_flush_ext(dev->id))
4980 cmd = ATA_CMD_FLUSH_EXT;
4982 cmd = ATA_CMD_FLUSH;
4984 return ata_do_simple_cmd(dev, cmd);
4987 static int ata_standby_drive(struct ata_device *dev)
4989 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
4992 static int ata_start_drive(struct ata_device *dev)
4994 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
4998 * ata_device_resume - wakeup a previously suspended devices
4999 * @dev: the device to resume
5001 * Kick the drive back into action, by sending it an idle immediate
5002 * command and making sure its transfer mode matches between drive
5006 int ata_device_resume(struct ata_device *dev)
5008 struct ata_port *ap = dev->ap;
5010 if (ap->flags & ATA_FLAG_SUSPENDED) {
5011 struct ata_device *failed_dev;
5013 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
5014 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
5016 ap->flags &= ~ATA_FLAG_SUSPENDED;
5017 while (ata_set_mode(ap, &failed_dev))
5018 ata_dev_disable(failed_dev);
5020 if (!ata_dev_enabled(dev))
5022 if (dev->class == ATA_DEV_ATA)
5023 ata_start_drive(dev);
5029 * ata_device_suspend - prepare a device for suspend
5030 * @dev: the device to suspend
5031 * @state: target power management state
5033 * Flush the cache on the drive, if appropriate, then issue a
5034 * standbynow command.
5036 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5038 struct ata_port *ap = dev->ap;
5040 if (!ata_dev_enabled(dev))
5042 if (dev->class == ATA_DEV_ATA)
5043 ata_flush_cache(dev);
5045 if (state.event != PM_EVENT_FREEZE)
5046 ata_standby_drive(dev);
5047 ap->flags |= ATA_FLAG_SUSPENDED;
5052 * ata_port_start - Set port up for dma.
5053 * @ap: Port to initialize
5055 * Called just after data structures for each port are
5056 * initialized. Allocates space for PRD table.
5058 * May be used as the port_start() entry in ata_port_operations.
5061 * Inherited from caller.
5064 int ata_port_start (struct ata_port *ap)
5066 struct device *dev = ap->dev;
5069 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5073 rc = ata_pad_alloc(ap, dev);
5075 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5079 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5086 * ata_port_stop - Undo ata_port_start()
5087 * @ap: Port to shut down
5089 * Frees the PRD table.
5091 * May be used as the port_stop() entry in ata_port_operations.
5094 * Inherited from caller.
5097 void ata_port_stop (struct ata_port *ap)
5099 struct device *dev = ap->dev;
5101 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5102 ata_pad_free(ap, dev);
5105 void ata_host_stop (struct ata_host_set *host_set)
5107 if (host_set->mmio_base)
5108 iounmap(host_set->mmio_base);
5113 * ata_host_remove - Unregister SCSI host structure with upper layers
5114 * @ap: Port to unregister
5115 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5118 * Inherited from caller.
5121 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5123 struct Scsi_Host *sh = ap->host;
5128 scsi_remove_host(sh);
5130 ap->ops->port_stop(ap);
5134 * ata_dev_init - Initialize an ata_device structure
5135 * @dev: Device structure to initialize
5137 * Initialize @dev in preparation for probing.
5140 * Inherited from caller.
5142 void ata_dev_init(struct ata_device *dev)
5144 struct ata_port *ap = dev->ap;
5145 unsigned long flags;
5147 /* SATA spd limit is bound to the first device */
5148 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5150 /* High bits of dev->flags are used to record warm plug
5151 * requests which occur asynchronously. Synchronize using
5154 spin_lock_irqsave(ap->lock, flags);
5155 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5156 spin_unlock_irqrestore(ap->lock, flags);
5158 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5159 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5160 dev->pio_mask = UINT_MAX;
5161 dev->mwdma_mask = UINT_MAX;
5162 dev->udma_mask = UINT_MAX;
5166 * ata_host_init - Initialize an ata_port structure
5167 * @ap: Structure to initialize
5168 * @host: associated SCSI mid-layer structure
5169 * @host_set: Collection of hosts to which @ap belongs
5170 * @ent: Probe information provided by low-level driver
5171 * @port_no: Port number associated with this ata_port
5173 * Initialize a new ata_port structure, and its associated
5177 * Inherited from caller.
5179 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5180 struct ata_host_set *host_set,
5181 const struct ata_probe_ent *ent, unsigned int port_no)
5187 host->max_channel = 1;
5188 host->unique_id = ata_unique_id++;
5189 host->max_cmd_len = 12;
5191 ap->lock = &host_set->lock;
5192 ap->flags = ATA_FLAG_DISABLED;
5193 ap->id = host->unique_id;
5195 ap->ctl = ATA_DEVCTL_OBS;
5196 ap->host_set = host_set;
5198 ap->port_no = port_no;
5200 ent->legacy_mode ? ent->hard_port_no : port_no;
5201 ap->pio_mask = ent->pio_mask;
5202 ap->mwdma_mask = ent->mwdma_mask;
5203 ap->udma_mask = ent->udma_mask;
5204 ap->flags |= ent->host_flags;
5205 ap->ops = ent->port_ops;
5206 ap->hw_sata_spd_limit = UINT_MAX;
5207 ap->active_tag = ATA_TAG_POISON;
5208 ap->last_ctl = 0xFF;
5210 #if defined(ATA_VERBOSE_DEBUG)
5211 /* turn on all debugging levels */
5212 ap->msg_enable = 0x00FF;
5213 #elif defined(ATA_DEBUG)
5214 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5216 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5219 INIT_WORK(&ap->port_task, NULL, NULL);
5220 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5221 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5222 INIT_LIST_HEAD(&ap->eh_done_q);
5223 init_waitqueue_head(&ap->eh_wait_q);
5225 /* set cable type */
5226 ap->cbl = ATA_CBL_NONE;
5227 if (ap->flags & ATA_FLAG_SATA)
5228 ap->cbl = ATA_CBL_SATA;
5230 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5231 struct ata_device *dev = &ap->device[i];
5238 ap->stats.unhandled_irq = 1;
5239 ap->stats.idle_irq = 1;
5242 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5246 * ata_host_add - Attach low-level ATA driver to system
5247 * @ent: Information provided by low-level driver
5248 * @host_set: Collections of ports to which we add
5249 * @port_no: Port number associated with this host
5251 * Attach low-level ATA driver to system.
5254 * PCI/etc. bus probe sem.
5257 * New ata_port on success, for NULL on error.
5260 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5261 struct ata_host_set *host_set,
5262 unsigned int port_no)
5264 struct Scsi_Host *host;
5265 struct ata_port *ap;
5270 if (!ent->port_ops->error_handler &&
5271 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5272 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5277 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5281 host->transportt = &ata_scsi_transport_template;
5283 ap = ata_shost_to_port(host);
5285 ata_host_init(ap, host, host_set, ent, port_no);
5287 rc = ap->ops->port_start(ap);
5294 scsi_host_put(host);
5299 * ata_device_add - Register hardware device with ATA and SCSI layers
5300 * @ent: Probe information describing hardware device to be registered
5302 * This function processes the information provided in the probe
5303 * information struct @ent, allocates the necessary ATA and SCSI
5304 * host information structures, initializes them, and registers
5305 * everything with requisite kernel subsystems.
5307 * This function requests irqs, probes the ATA bus, and probes
5311 * PCI/etc. bus probe sem.
5314 * Number of ports registered. Zero on error (no ports registered).
5316 int ata_device_add(const struct ata_probe_ent *ent)
5318 unsigned int count = 0, i;
5319 struct device *dev = ent->dev;
5320 struct ata_host_set *host_set;
5324 /* alloc a container for our list of ATA ports (buses) */
5325 host_set = kzalloc(sizeof(struct ata_host_set) +
5326 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5329 spin_lock_init(&host_set->lock);
5331 host_set->dev = dev;
5332 host_set->n_ports = ent->n_ports;
5333 host_set->irq = ent->irq;
5334 host_set->mmio_base = ent->mmio_base;
5335 host_set->private_data = ent->private_data;
5336 host_set->ops = ent->port_ops;
5337 host_set->flags = ent->host_set_flags;
5339 /* register each port bound to this device */
5340 for (i = 0; i < ent->n_ports; i++) {
5341 struct ata_port *ap;
5342 unsigned long xfer_mode_mask;
5344 ap = ata_host_add(ent, host_set, i);
5348 host_set->ports[i] = ap;
5349 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5350 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5351 (ap->pio_mask << ATA_SHIFT_PIO);
5353 /* print per-port info to dmesg */
5354 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5355 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5356 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5357 ata_mode_string(xfer_mode_mask),
5358 ap->ioaddr.cmd_addr,
5359 ap->ioaddr.ctl_addr,
5360 ap->ioaddr.bmdma_addr,
5364 host_set->ops->irq_clear(ap);
5365 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5372 /* obtain irq, that is shared between channels */
5373 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5374 DRV_NAME, host_set);
5376 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5381 /* perform each probe synchronously */
5382 DPRINTK("probe begin\n");
5383 for (i = 0; i < count; i++) {
5384 struct ata_port *ap;
5388 ap = host_set->ports[i];
5390 /* init sata_spd_limit to the current value */
5391 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5392 int spd = (scontrol >> 4) & 0xf;
5393 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5395 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5397 rc = scsi_add_host(ap->host, dev);
5399 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5400 /* FIXME: do something useful here */
5401 /* FIXME: handle unconditional calls to
5402 * scsi_scan_host and ata_host_remove, below,
5407 if (ap->ops->error_handler) {
5408 unsigned long flags;
5412 /* kick EH for boot probing */
5413 spin_lock_irqsave(ap->lock, flags);
5415 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5416 ap->eh_info.action |= ATA_EH_SOFTRESET;
5418 ap->flags |= ATA_FLAG_LOADING;
5419 ata_port_schedule_eh(ap);
5421 spin_unlock_irqrestore(ap->lock, flags);
5423 /* wait for EH to finish */
5424 ata_port_wait_eh(ap);
5426 DPRINTK("ata%u: bus probe begin\n", ap->id);
5427 rc = ata_bus_probe(ap);
5428 DPRINTK("ata%u: bus probe end\n", ap->id);
5431 /* FIXME: do something useful here?
5432 * Current libata behavior will
5433 * tear down everything when
5434 * the module is removed
5435 * or the h/w is unplugged.
5441 /* probes are done, now scan each port's disk(s) */
5442 DPRINTK("host probe begin\n");
5443 for (i = 0; i < count; i++) {
5444 struct ata_port *ap = host_set->ports[i];
5446 ata_scsi_scan_host(ap);
5449 dev_set_drvdata(dev, host_set);
5451 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5452 return ent->n_ports; /* success */
5455 for (i = 0; i < count; i++) {
5456 ata_host_remove(host_set->ports[i], 1);
5457 scsi_host_put(host_set->ports[i]->host);
5461 VPRINTK("EXIT, returning 0\n");
5466 * ata_port_detach - Detach ATA port in prepration of device removal
5467 * @ap: ATA port to be detached
5469 * Detach all ATA devices and the associated SCSI devices of @ap;
5470 * then, remove the associated SCSI host. @ap is guaranteed to
5471 * be quiescent on return from this function.
5474 * Kernel thread context (may sleep).
5476 void ata_port_detach(struct ata_port *ap)
5478 unsigned long flags;
5481 if (!ap->ops->error_handler)
5484 /* tell EH we're leaving & flush EH */
5485 spin_lock_irqsave(ap->lock, flags);
5486 ap->flags |= ATA_FLAG_UNLOADING;
5487 spin_unlock_irqrestore(ap->lock, flags);
5489 ata_port_wait_eh(ap);
5491 /* EH is now guaranteed to see UNLOADING, so no new device
5492 * will be attached. Disable all existing devices.
5494 spin_lock_irqsave(ap->lock, flags);
5496 for (i = 0; i < ATA_MAX_DEVICES; i++)
5497 ata_dev_disable(&ap->device[i]);
5499 spin_unlock_irqrestore(ap->lock, flags);
5501 /* Final freeze & EH. All in-flight commands are aborted. EH
5502 * will be skipped and retrials will be terminated with bad
5505 spin_lock_irqsave(ap->lock, flags);
5506 ata_port_freeze(ap); /* won't be thawed */
5507 spin_unlock_irqrestore(ap->lock, flags);
5509 ata_port_wait_eh(ap);
5511 /* Flush hotplug task. The sequence is similar to
5512 * ata_port_flush_task().
5514 flush_workqueue(ata_aux_wq);
5515 cancel_delayed_work(&ap->hotplug_task);
5516 flush_workqueue(ata_aux_wq);
5518 /* remove the associated SCSI host */
5519 scsi_remove_host(ap->host);
5523 * ata_host_set_remove - PCI layer callback for device removal
5524 * @host_set: ATA host set that was removed
5526 * Unregister all objects associated with this host set. Free those
5530 * Inherited from calling layer (may sleep).
5533 void ata_host_set_remove(struct ata_host_set *host_set)
5537 for (i = 0; i < host_set->n_ports; i++)
5538 ata_port_detach(host_set->ports[i]);
5540 free_irq(host_set->irq, host_set);
5542 for (i = 0; i < host_set->n_ports; i++) {
5543 struct ata_port *ap = host_set->ports[i];
5545 ata_scsi_release(ap->host);
5547 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5548 struct ata_ioports *ioaddr = &ap->ioaddr;
5550 if (ioaddr->cmd_addr == 0x1f0)
5551 release_region(0x1f0, 8);
5552 else if (ioaddr->cmd_addr == 0x170)
5553 release_region(0x170, 8);
5556 scsi_host_put(ap->host);
5559 if (host_set->ops->host_stop)
5560 host_set->ops->host_stop(host_set);
5566 * ata_scsi_release - SCSI layer callback hook for host unload
5567 * @host: libata host to be unloaded
5569 * Performs all duties necessary to shut down a libata port...
5570 * Kill port kthread, disable port, and release resources.
5573 * Inherited from SCSI layer.
5579 int ata_scsi_release(struct Scsi_Host *host)
5581 struct ata_port *ap = ata_shost_to_port(host);
5585 ap->ops->port_disable(ap);
5586 ata_host_remove(ap, 0);
5593 * ata_std_ports - initialize ioaddr with standard port offsets.
5594 * @ioaddr: IO address structure to be initialized
5596 * Utility function which initializes data_addr, error_addr,
5597 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5598 * device_addr, status_addr, and command_addr to standard offsets
5599 * relative to cmd_addr.
5601 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5604 void ata_std_ports(struct ata_ioports *ioaddr)
5606 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5607 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5608 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5609 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5610 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5611 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5612 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5613 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5614 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5615 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5621 void ata_pci_host_stop (struct ata_host_set *host_set)
5623 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5625 pci_iounmap(pdev, host_set->mmio_base);
5629 * ata_pci_remove_one - PCI layer callback for device removal
5630 * @pdev: PCI device that was removed
5632 * PCI layer indicates to libata via this hook that
5633 * hot-unplug or module unload event has occurred.
5634 * Handle this by unregistering all objects associated
5635 * with this PCI device. Free those objects. Then finally
5636 * release PCI resources and disable device.
5639 * Inherited from PCI layer (may sleep).
5642 void ata_pci_remove_one (struct pci_dev *pdev)
5644 struct device *dev = pci_dev_to_dev(pdev);
5645 struct ata_host_set *host_set = dev_get_drvdata(dev);
5646 struct ata_host_set *host_set2 = host_set->next;
5648 ata_host_set_remove(host_set);
5650 ata_host_set_remove(host_set2);
5652 pci_release_regions(pdev);
5653 pci_disable_device(pdev);
5654 dev_set_drvdata(dev, NULL);
5657 /* move to PCI subsystem */
5658 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5660 unsigned long tmp = 0;
5662 switch (bits->width) {
5665 pci_read_config_byte(pdev, bits->reg, &tmp8);
5671 pci_read_config_word(pdev, bits->reg, &tmp16);
5677 pci_read_config_dword(pdev, bits->reg, &tmp32);
5688 return (tmp == bits->val) ? 1 : 0;
5691 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5693 pci_save_state(pdev);
5694 pci_disable_device(pdev);
5695 pci_set_power_state(pdev, PCI_D3hot);
5699 int ata_pci_device_resume(struct pci_dev *pdev)
5701 pci_set_power_state(pdev, PCI_D0);
5702 pci_restore_state(pdev);
5703 pci_enable_device(pdev);
5704 pci_set_master(pdev);
5707 #endif /* CONFIG_PCI */
5710 static int __init ata_init(void)
5712 ata_wq = create_workqueue("ata");
5716 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5718 destroy_workqueue(ata_wq);
5722 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5726 static void __exit ata_exit(void)
5728 destroy_workqueue(ata_wq);
5729 destroy_workqueue(ata_aux_wq);
5732 module_init(ata_init);
5733 module_exit(ata_exit);
5735 static unsigned long ratelimit_time;
5736 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5738 int ata_ratelimit(void)
5741 unsigned long flags;
5743 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5745 if (time_after(jiffies, ratelimit_time)) {
5747 ratelimit_time = jiffies + (HZ/5);
5751 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5757 * ata_wait_register - wait until register value changes
5758 * @reg: IO-mapped register
5759 * @mask: Mask to apply to read register value
5760 * @val: Wait condition
5761 * @interval_msec: polling interval in milliseconds
5762 * @timeout_msec: timeout in milliseconds
5764 * Waiting for some bits of register to change is a common
5765 * operation for ATA controllers. This function reads 32bit LE
5766 * IO-mapped register @reg and tests for the following condition.
5768 * (*@reg & mask) != val
5770 * If the condition is met, it returns; otherwise, the process is
5771 * repeated after @interval_msec until timeout.
5774 * Kernel thread context (may sleep)
5777 * The final register value.
5779 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5780 unsigned long interval_msec,
5781 unsigned long timeout_msec)
5783 unsigned long timeout;
5786 tmp = ioread32(reg);
5788 /* Calculate timeout _after_ the first read to make sure
5789 * preceding writes reach the controller before starting to
5790 * eat away the timeout.
5792 timeout = jiffies + (timeout_msec * HZ) / 1000;
5794 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5795 msleep(interval_msec);
5796 tmp = ioread32(reg);
5803 * libata is essentially a library of internal helper functions for
5804 * low-level ATA host controller drivers. As such, the API/ABI is
5805 * likely to change as new drivers are added and updated.
5806 * Do not depend on ABI/API stability.
5809 EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5810 EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5811 EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
5812 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5813 EXPORT_SYMBOL_GPL(ata_std_ports);
5814 EXPORT_SYMBOL_GPL(ata_device_add);
5815 EXPORT_SYMBOL_GPL(ata_port_detach);
5816 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5817 EXPORT_SYMBOL_GPL(ata_sg_init);
5818 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5819 EXPORT_SYMBOL_GPL(ata_hsm_move);
5820 EXPORT_SYMBOL_GPL(ata_qc_complete);
5821 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5822 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5823 EXPORT_SYMBOL_GPL(ata_tf_load);
5824 EXPORT_SYMBOL_GPL(ata_tf_read);
5825 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5826 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5827 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5828 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5829 EXPORT_SYMBOL_GPL(ata_check_status);
5830 EXPORT_SYMBOL_GPL(ata_altstatus);
5831 EXPORT_SYMBOL_GPL(ata_exec_command);
5832 EXPORT_SYMBOL_GPL(ata_port_start);
5833 EXPORT_SYMBOL_GPL(ata_port_stop);
5834 EXPORT_SYMBOL_GPL(ata_host_stop);
5835 EXPORT_SYMBOL_GPL(ata_interrupt);
5836 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5837 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5838 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5839 EXPORT_SYMBOL_GPL(ata_qc_prep);
5840 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5841 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5842 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5843 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5844 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5845 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5846 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5847 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5848 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5849 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5850 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5851 EXPORT_SYMBOL_GPL(ata_port_probe);
5852 EXPORT_SYMBOL_GPL(sata_set_spd);
5853 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5854 EXPORT_SYMBOL_GPL(sata_phy_resume);
5855 EXPORT_SYMBOL_GPL(sata_phy_reset);
5856 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5857 EXPORT_SYMBOL_GPL(ata_bus_reset);
5858 EXPORT_SYMBOL_GPL(ata_std_prereset);
5859 EXPORT_SYMBOL_GPL(ata_std_softreset);
5860 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5861 EXPORT_SYMBOL_GPL(ata_std_postreset);
5862 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5863 EXPORT_SYMBOL_GPL(ata_dev_classify);
5864 EXPORT_SYMBOL_GPL(ata_dev_pair);
5865 EXPORT_SYMBOL_GPL(ata_port_disable);
5866 EXPORT_SYMBOL_GPL(ata_ratelimit);
5867 EXPORT_SYMBOL_GPL(ata_wait_register);
5868 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5869 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5870 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5871 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5872 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5873 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
5874 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5875 EXPORT_SYMBOL_GPL(ata_scsi_release);
5876 EXPORT_SYMBOL_GPL(ata_host_intr);
5877 EXPORT_SYMBOL_GPL(sata_scr_valid);
5878 EXPORT_SYMBOL_GPL(sata_scr_read);
5879 EXPORT_SYMBOL_GPL(sata_scr_write);
5880 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5881 EXPORT_SYMBOL_GPL(ata_port_online);
5882 EXPORT_SYMBOL_GPL(ata_port_offline);
5883 EXPORT_SYMBOL_GPL(ata_id_string);
5884 EXPORT_SYMBOL_GPL(ata_id_c_string);
5885 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5887 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5888 EXPORT_SYMBOL_GPL(ata_timing_compute);
5889 EXPORT_SYMBOL_GPL(ata_timing_merge);
5892 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5893 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5894 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5895 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5896 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5897 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5898 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5899 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5900 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5901 #endif /* CONFIG_PCI */
5903 EXPORT_SYMBOL_GPL(ata_device_suspend);
5904 EXPORT_SYMBOL_GPL(ata_device_resume);
5905 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5906 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5908 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5909 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5910 EXPORT_SYMBOL_GPL(ata_port_abort);
5911 EXPORT_SYMBOL_GPL(ata_port_freeze);
5912 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5913 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5914 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5915 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5916 EXPORT_SYMBOL_GPL(ata_do_eh);