2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
45 #include <asm/processor.h>
48 #include <asm/machdep.h>
50 #include <asm/syscalls.h>
52 #include <asm/firmware.h>
54 #include <linux/kprobes.h>
55 #include <linux/kdebug.h>
57 extern unsigned long _get_SP(void);
60 struct task_struct *last_task_used_math = NULL;
61 struct task_struct *last_task_used_altivec = NULL;
62 struct task_struct *last_task_used_vsx = NULL;
63 struct task_struct *last_task_used_spe = NULL;
67 * Make sure the floating-point register state in the
68 * the thread_struct is up to date for task tsk.
70 void flush_fp_to_thread(struct task_struct *tsk)
72 if (tsk->thread.regs) {
74 * We need to disable preemption here because if we didn't,
75 * another process could get scheduled after the regs->msr
76 * test but before we have finished saving the FP registers
77 * to the thread_struct. That process could take over the
78 * FPU, and then when we get scheduled again we would store
79 * bogus values for the remaining FP registers.
82 if (tsk->thread.regs->msr & MSR_FP) {
85 * This should only ever be called for current or
86 * for a stopped child process. Since we save away
87 * the FP register state on context switch on SMP,
88 * there is something wrong if a stopped child appears
89 * to still have its FP state in the CPU registers.
91 BUG_ON(tsk != current);
99 void enable_kernel_fp(void)
101 WARN_ON(preemptible());
104 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
107 giveup_fpu(NULL); /* just enables FP for kernel */
109 giveup_fpu(last_task_used_math);
110 #endif /* CONFIG_SMP */
112 EXPORT_SYMBOL(enable_kernel_fp);
114 #ifdef CONFIG_ALTIVEC
115 void enable_kernel_altivec(void)
117 WARN_ON(preemptible());
120 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
121 giveup_altivec(current);
123 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
125 giveup_altivec(last_task_used_altivec);
126 #endif /* CONFIG_SMP */
128 EXPORT_SYMBOL(enable_kernel_altivec);
131 * Make sure the VMX/Altivec register state in the
132 * the thread_struct is up to date for task tsk.
134 void flush_altivec_to_thread(struct task_struct *tsk)
136 if (tsk->thread.regs) {
138 if (tsk->thread.regs->msr & MSR_VEC) {
140 BUG_ON(tsk != current);
147 #endif /* CONFIG_ALTIVEC */
151 /* not currently used, but some crazy RAID module might want to later */
152 void enable_kernel_vsx(void)
154 WARN_ON(preemptible());
157 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
160 giveup_vsx(NULL); /* just enable vsx for kernel - force */
162 giveup_vsx(last_task_used_vsx);
163 #endif /* CONFIG_SMP */
165 EXPORT_SYMBOL(enable_kernel_vsx);
168 void giveup_vsx(struct task_struct *tsk)
175 void flush_vsx_to_thread(struct task_struct *tsk)
177 if (tsk->thread.regs) {
179 if (tsk->thread.regs->msr & MSR_VSX) {
181 BUG_ON(tsk != current);
188 #endif /* CONFIG_VSX */
192 void enable_kernel_spe(void)
194 WARN_ON(preemptible());
197 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
200 giveup_spe(NULL); /* just enable SPE for kernel - force */
202 giveup_spe(last_task_used_spe);
203 #endif /* __SMP __ */
205 EXPORT_SYMBOL(enable_kernel_spe);
207 void flush_spe_to_thread(struct task_struct *tsk)
209 if (tsk->thread.regs) {
211 if (tsk->thread.regs->msr & MSR_SPE) {
213 BUG_ON(tsk != current);
220 #endif /* CONFIG_SPE */
224 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225 * and the current task has some state, discard it.
227 void discard_lazy_cpu_state(void)
230 if (last_task_used_math == current)
231 last_task_used_math = NULL;
232 #ifdef CONFIG_ALTIVEC
233 if (last_task_used_altivec == current)
234 last_task_used_altivec = NULL;
235 #endif /* CONFIG_ALTIVEC */
237 if (last_task_used_vsx == current)
238 last_task_used_vsx = NULL;
239 #endif /* CONFIG_VSX */
241 if (last_task_used_spe == current)
242 last_task_used_spe = NULL;
246 #endif /* CONFIG_SMP */
248 void do_dabr(struct pt_regs *regs, unsigned long address,
249 unsigned long error_code)
253 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
254 11, SIGSEGV) == NOTIFY_STOP)
257 if (debugger_dabr_match(regs))
260 /* Clear the DAC and struct entries. One shot trigger */
261 #if defined(CONFIG_BOOKE)
262 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~(DBSR_DAC1R | DBSR_DAC1W
269 /* Deliver the signal to userspace */
270 info.si_signo = SIGTRAP;
272 info.si_code = TRAP_HWBKPT;
273 info.si_addr = (void __user *)address;
274 force_sig_info(SIGTRAP, &info, current);
277 static DEFINE_PER_CPU(unsigned long, current_dabr);
279 int set_dabr(unsigned long dabr)
281 __get_cpu_var(current_dabr) = dabr;
284 return ppc_md.set_dabr(dabr);
286 /* XXX should we have a CPU_FTR_HAS_DABR ? */
287 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
288 mtspr(SPRN_DABR, dabr);
291 #if defined(CONFIG_BOOKE)
292 mtspr(SPRN_DAC1, dabr);
299 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
302 struct task_struct *__switch_to(struct task_struct *prev,
303 struct task_struct *new)
305 struct thread_struct *new_thread, *old_thread;
307 struct task_struct *last;
310 /* avoid complexity of lazy save/restore of fpu
311 * by just saving it every time we switch out if
312 * this task used the fpu during the last quantum.
314 * If it tries to use the fpu again, it'll trap and
315 * reload its fp regs. So we don't have to do a restore
316 * every switch, just a save.
319 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
321 #ifdef CONFIG_ALTIVEC
323 * If the previous thread used altivec in the last quantum
324 * (thus changing altivec regs) then save them.
325 * We used to check the VRSAVE register but not all apps
326 * set it, so we don't rely on it now (and in fact we need
327 * to save & restore VSCR even if VRSAVE == 0). -- paulus
329 * On SMP we always save/restore altivec regs just to avoid the
330 * complexity of changing processors.
333 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
334 giveup_altivec(prev);
335 #endif /* CONFIG_ALTIVEC */
337 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
338 /* VMX and FPU registers are already save here */
340 #endif /* CONFIG_VSX */
343 * If the previous thread used spe in the last quantum
344 * (thus changing spe regs) then save them.
346 * On SMP we always save/restore spe regs just to avoid the
347 * complexity of changing processors.
349 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
351 #endif /* CONFIG_SPE */
353 #else /* CONFIG_SMP */
354 #ifdef CONFIG_ALTIVEC
355 /* Avoid the trap. On smp this this never happens since
356 * we don't set last_task_used_altivec -- Cort
358 if (new->thread.regs && last_task_used_altivec == new)
359 new->thread.regs->msr |= MSR_VEC;
360 #endif /* CONFIG_ALTIVEC */
362 if (new->thread.regs && last_task_used_vsx == new)
363 new->thread.regs->msr |= MSR_VSX;
364 #endif /* CONFIG_VSX */
366 /* Avoid the trap. On smp this this never happens since
367 * we don't set last_task_used_spe
369 if (new->thread.regs && last_task_used_spe == new)
370 new->thread.regs->msr |= MSR_SPE;
371 #endif /* CONFIG_SPE */
373 #endif /* CONFIG_SMP */
375 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
376 set_dabr(new->thread.dabr);
378 #if defined(CONFIG_BOOKE)
379 /* If new thread DAC (HW breakpoint) is the same then leave it */
380 if (new->thread.dabr)
381 set_dabr(new->thread.dabr);
384 new_thread = &new->thread;
385 old_thread = ¤t->thread;
389 * Collect processor utilization data per process
391 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
392 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
393 long unsigned start_tb, current_tb;
394 start_tb = old_thread->start_tb;
395 cu->current_tb = current_tb = mfspr(SPRN_PURR);
396 old_thread->accum_tb += (current_tb - start_tb);
397 new_thread->start_tb = current_tb;
401 local_irq_save(flags);
403 account_system_vtime(current);
404 account_process_vtime(current);
405 calculate_steal_time();
408 * We can't take a PMU exception inside _switch() since there is a
409 * window where the kernel stack SLB and the kernel stack are out
410 * of sync. Hard disable here.
413 last = _switch(old_thread, new_thread);
415 local_irq_restore(flags);
420 static int instructions_to_print = 16;
422 static void show_instructions(struct pt_regs *regs)
425 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
428 printk("Instruction dump:");
430 for (i = 0; i < instructions_to_print; i++) {
436 #if !defined(CONFIG_BOOKE)
437 /* If executing with the IMMU off, adjust pc rather
438 * than print XXXXXXXX.
440 if (!(regs->msr & MSR_IR))
441 pc = (unsigned long)phys_to_virt(pc);
444 /* We use __get_user here *only* to avoid an OOPS on a
445 * bad address because the pc *should* only be a
448 if (!__kernel_text_address(pc) ||
449 __get_user(instr, (unsigned int __user *)pc)) {
453 printk("<%08x> ", instr);
455 printk("%08x ", instr);
464 static struct regbit {
481 static void printbits(unsigned long val, struct regbit *bits)
483 const char *sep = "";
486 for (; bits->bit; ++bits)
487 if (val & bits->bit) {
488 printk("%s%s", sep, bits->name);
496 #define REGS_PER_LINE 4
497 #define LAST_VOLATILE 13
500 #define REGS_PER_LINE 8
501 #define LAST_VOLATILE 12
504 void show_regs(struct pt_regs * regs)
508 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
509 regs->nip, regs->link, regs->ctr);
510 printk("REGS: %p TRAP: %04lx %s (%s)\n",
511 regs, regs->trap, print_tainted(), init_utsname()->release);
512 printk("MSR: "REG" ", regs->msr);
513 printbits(regs->msr, msr_bits);
514 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
516 if (trap == 0x300 || trap == 0x600)
517 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
518 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
520 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
522 printk("TASK = %p[%d] '%s' THREAD: %p",
523 current, task_pid_nr(current), current->comm, task_thread_info(current));
526 printk(" CPU: %d", raw_smp_processor_id());
527 #endif /* CONFIG_SMP */
529 for (i = 0; i < 32; i++) {
530 if ((i % REGS_PER_LINE) == 0)
531 printk("\n" KERN_INFO "GPR%02d: ", i);
532 printk(REG " ", regs->gpr[i]);
533 if (i == LAST_VOLATILE && !FULL_REGS(regs))
537 #ifdef CONFIG_KALLSYMS
539 * Lookup NIP late so we have the best change of getting the
540 * above info out without failing
542 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
543 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
545 show_stack(current, (unsigned long *) regs->gpr[1]);
546 if (!user_mode(regs))
547 show_instructions(regs);
550 void exit_thread(void)
552 discard_lazy_cpu_state();
555 void flush_thread(void)
558 struct thread_info *t = current_thread_info();
560 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
561 clear_ti_thread_flag(t, TIF_ABI_PENDING);
562 if (test_ti_thread_flag(t, TIF_32BIT))
563 clear_ti_thread_flag(t, TIF_32BIT);
565 set_ti_thread_flag(t, TIF_32BIT);
569 discard_lazy_cpu_state();
571 if (current->thread.dabr) {
572 current->thread.dabr = 0;
575 #if defined(CONFIG_BOOKE)
576 current->thread.dbcr0 &= ~(DBSR_DAC1R | DBSR_DAC1W);
582 release_thread(struct task_struct *t)
587 * This gets called before we allocate a new thread and copy
588 * the current task into it.
590 void prepare_to_copy(struct task_struct *tsk)
592 flush_fp_to_thread(current);
593 flush_altivec_to_thread(current);
594 flush_vsx_to_thread(current);
595 flush_spe_to_thread(current);
601 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
602 unsigned long unused, struct task_struct *p,
603 struct pt_regs *regs)
605 struct pt_regs *childregs, *kregs;
606 extern void ret_from_fork(void);
607 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
609 CHECK_FULL_REGS(regs);
611 sp -= sizeof(struct pt_regs);
612 childregs = (struct pt_regs *) sp;
614 if ((childregs->msr & MSR_PR) == 0) {
615 /* for kernel thread, set `current' and stackptr in new task */
616 childregs->gpr[1] = sp + sizeof(struct pt_regs);
618 childregs->gpr[2] = (unsigned long) p;
620 clear_tsk_thread_flag(p, TIF_32BIT);
622 p->thread.regs = NULL; /* no user register state */
624 childregs->gpr[1] = usp;
625 p->thread.regs = childregs;
626 if (clone_flags & CLONE_SETTLS) {
628 if (!test_thread_flag(TIF_32BIT))
629 childregs->gpr[13] = childregs->gpr[6];
632 childregs->gpr[2] = childregs->gpr[6];
635 childregs->gpr[3] = 0; /* Result from fork() */
636 sp -= STACK_FRAME_OVERHEAD;
639 * The way this works is that at some point in the future
640 * some task will call _switch to switch to the new task.
641 * That will pop off the stack frame created below and start
642 * the new task running at ret_from_fork. The new task will
643 * do some house keeping and then return from the fork or clone
644 * system call, using the stack frame created above.
646 sp -= sizeof(struct pt_regs);
647 kregs = (struct pt_regs *) sp;
648 sp -= STACK_FRAME_OVERHEAD;
650 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
651 _ALIGN_UP(sizeof(struct thread_info), 16);
654 if (cpu_has_feature(CPU_FTR_SLB)) {
655 unsigned long sp_vsid;
656 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
658 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
659 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
660 << SLB_VSID_SHIFT_1T;
662 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
664 sp_vsid |= SLB_VSID_KERNEL | llp;
665 p->thread.ksp_vsid = sp_vsid;
669 * The PPC64 ABI makes use of a TOC to contain function
670 * pointers. The function (ret_from_except) is actually a pointer
671 * to the TOC entry. The first entry is a pointer to the actual
674 kregs->nip = *((unsigned long *)ret_from_fork);
676 kregs->nip = (unsigned long)ret_from_fork;
683 * Set up a thread for executing a new program
685 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
688 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
694 * If we exec out of a kernel thread then thread.regs will not be
697 if (!current->thread.regs) {
698 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
699 current->thread.regs = regs - 1;
702 memset(regs->gpr, 0, sizeof(regs->gpr));
710 * We have just cleared all the nonvolatile GPRs, so make
711 * FULL_REGS(regs) return true. This is necessary to allow
712 * ptrace to examine the thread immediately after exec.
719 regs->msr = MSR_USER;
721 if (!test_thread_flag(TIF_32BIT)) {
722 unsigned long entry, toc;
724 /* start is a relocated pointer to the function descriptor for
725 * the elf _start routine. The first entry in the function
726 * descriptor is the entry address of _start and the second
727 * entry is the TOC value we need to use.
729 __get_user(entry, (unsigned long __user *)start);
730 __get_user(toc, (unsigned long __user *)start+1);
732 /* Check whether the e_entry function descriptor entries
733 * need to be relocated before we can use them.
735 if (load_addr != 0) {
741 regs->msr = MSR_USER64;
745 regs->msr = MSR_USER32;
749 discard_lazy_cpu_state();
751 current->thread.used_vsr = 0;
753 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
754 current->thread.fpscr.val = 0;
755 #ifdef CONFIG_ALTIVEC
756 memset(current->thread.vr, 0, sizeof(current->thread.vr));
757 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr));
758 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
759 current->thread.vrsave = 0;
760 current->thread.used_vr = 0;
761 #endif /* CONFIG_ALTIVEC */
763 memset(current->thread.evr, 0, sizeof(current->thread.evr));
764 current->thread.acc = 0;
765 current->thread.spefscr = 0;
766 current->thread.used_spe = 0;
767 #endif /* CONFIG_SPE */
770 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
771 | PR_FP_EXC_RES | PR_FP_EXC_INV)
773 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
775 struct pt_regs *regs = tsk->thread.regs;
777 /* This is a bit hairy. If we are an SPE enabled processor
778 * (have embedded fp) we store the IEEE exception enable flags in
779 * fpexc_mode. fpexc_mode is also used for setting FP exception
780 * mode (asyn, precise, disabled) for 'Classic' FP. */
781 if (val & PR_FP_EXC_SW_ENABLE) {
783 if (cpu_has_feature(CPU_FTR_SPE)) {
784 tsk->thread.fpexc_mode = val &
785 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
795 /* on a CONFIG_SPE this does not hurt us. The bits that
796 * __pack_fe01 use do not overlap with bits used for
797 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
798 * on CONFIG_SPE implementations are reserved so writing to
799 * them does not change anything */
800 if (val > PR_FP_EXC_PRECISE)
802 tsk->thread.fpexc_mode = __pack_fe01(val);
803 if (regs != NULL && (regs->msr & MSR_FP) != 0)
804 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
805 | tsk->thread.fpexc_mode;
809 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
813 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
815 if (cpu_has_feature(CPU_FTR_SPE))
816 val = tsk->thread.fpexc_mode;
823 val = __unpack_fe01(tsk->thread.fpexc_mode);
824 return put_user(val, (unsigned int __user *) adr);
827 int set_endian(struct task_struct *tsk, unsigned int val)
829 struct pt_regs *regs = tsk->thread.regs;
831 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
832 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
838 if (val == PR_ENDIAN_BIG)
839 regs->msr &= ~MSR_LE;
840 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
848 int get_endian(struct task_struct *tsk, unsigned long adr)
850 struct pt_regs *regs = tsk->thread.regs;
853 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
854 !cpu_has_feature(CPU_FTR_REAL_LE))
860 if (regs->msr & MSR_LE) {
861 if (cpu_has_feature(CPU_FTR_REAL_LE))
862 val = PR_ENDIAN_LITTLE;
864 val = PR_ENDIAN_PPC_LITTLE;
868 return put_user(val, (unsigned int __user *)adr);
871 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
873 tsk->thread.align_ctl = val;
877 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
879 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
882 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
884 int sys_clone(unsigned long clone_flags, unsigned long usp,
885 int __user *parent_tidp, void __user *child_threadptr,
886 int __user *child_tidp, int p6,
887 struct pt_regs *regs)
889 CHECK_FULL_REGS(regs);
891 usp = regs->gpr[1]; /* stack pointer for child */
893 if (test_thread_flag(TIF_32BIT)) {
894 parent_tidp = TRUNC_PTR(parent_tidp);
895 child_tidp = TRUNC_PTR(child_tidp);
898 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
901 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
902 unsigned long p4, unsigned long p5, unsigned long p6,
903 struct pt_regs *regs)
905 CHECK_FULL_REGS(regs);
906 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
909 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
910 unsigned long p4, unsigned long p5, unsigned long p6,
911 struct pt_regs *regs)
913 CHECK_FULL_REGS(regs);
914 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
915 regs, 0, NULL, NULL);
918 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
919 unsigned long a3, unsigned long a4, unsigned long a5,
920 struct pt_regs *regs)
925 filename = getname((char __user *) a0);
926 error = PTR_ERR(filename);
927 if (IS_ERR(filename))
929 flush_fp_to_thread(current);
930 flush_altivec_to_thread(current);
931 flush_spe_to_thread(current);
932 error = do_execve(filename, (char __user * __user *) a1,
933 (char __user * __user *) a2, regs);
939 #ifdef CONFIG_IRQSTACKS
940 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
941 unsigned long nbytes)
943 unsigned long stack_page;
944 unsigned long cpu = task_cpu(p);
947 * Avoid crashing if the stack has overflowed and corrupted
948 * task_cpu(p), which is in the thread_info struct.
950 if (cpu < NR_CPUS && cpu_possible(cpu)) {
951 stack_page = (unsigned long) hardirq_ctx[cpu];
952 if (sp >= stack_page + sizeof(struct thread_struct)
953 && sp <= stack_page + THREAD_SIZE - nbytes)
956 stack_page = (unsigned long) softirq_ctx[cpu];
957 if (sp >= stack_page + sizeof(struct thread_struct)
958 && sp <= stack_page + THREAD_SIZE - nbytes)
965 #define valid_irq_stack(sp, p, nb) 0
966 #endif /* CONFIG_IRQSTACKS */
968 int validate_sp(unsigned long sp, struct task_struct *p,
969 unsigned long nbytes)
971 unsigned long stack_page = (unsigned long)task_stack_page(p);
973 if (sp >= stack_page + sizeof(struct thread_struct)
974 && sp <= stack_page + THREAD_SIZE - nbytes)
977 return valid_irq_stack(sp, p, nbytes);
980 EXPORT_SYMBOL(validate_sp);
982 unsigned long get_wchan(struct task_struct *p)
984 unsigned long ip, sp;
987 if (!p || p == current || p->state == TASK_RUNNING)
991 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
995 sp = *(unsigned long *)sp;
996 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
999 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1000 if (!in_sched_functions(ip))
1003 } while (count++ < 16);
1007 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1009 void show_stack(struct task_struct *tsk, unsigned long *stack)
1011 unsigned long sp, ip, lr, newsp;
1014 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1015 int curr_frame = current->curr_ret_stack;
1016 extern void return_to_handler(void);
1017 unsigned long addr = (unsigned long)return_to_handler;
1019 addr = *(unsigned long*)addr;
1023 sp = (unsigned long) stack;
1028 asm("mr %0,1" : "=r" (sp));
1030 sp = tsk->thread.ksp;
1034 printk("Call Trace:\n");
1036 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1039 stack = (unsigned long *) sp;
1041 ip = stack[STACK_FRAME_LR_SAVE];
1042 if (!firstframe || ip != lr) {
1043 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1044 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1045 if (ip == addr && curr_frame >= 0) {
1047 (void *)current->ret_stack[curr_frame].ret);
1052 printk(" (unreliable)");
1058 * See if this is an exception frame.
1059 * We look for the "regshere" marker in the current frame.
1061 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1062 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1063 struct pt_regs *regs = (struct pt_regs *)
1064 (sp + STACK_FRAME_OVERHEAD);
1066 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1067 regs->trap, (void *)regs->nip, (void *)lr);
1072 } while (count++ < kstack_depth_to_print);
1075 void dump_stack(void)
1077 show_stack(current, NULL);
1079 EXPORT_SYMBOL(dump_stack);
1082 void ppc64_runlatch_on(void)
1086 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1089 ctrl = mfspr(SPRN_CTRLF);
1090 ctrl |= CTRL_RUNLATCH;
1091 mtspr(SPRN_CTRLT, ctrl);
1093 set_thread_flag(TIF_RUNLATCH);
1097 void ppc64_runlatch_off(void)
1101 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1104 clear_thread_flag(TIF_RUNLATCH);
1106 ctrl = mfspr(SPRN_CTRLF);
1107 ctrl &= ~CTRL_RUNLATCH;
1108 mtspr(SPRN_CTRLT, ctrl);
1113 #if THREAD_SHIFT < PAGE_SHIFT
1115 static struct kmem_cache *thread_info_cache;
1117 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1119 struct thread_info *ti;
1121 ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1122 if (unlikely(ti == NULL))
1124 #ifdef CONFIG_DEBUG_STACK_USAGE
1125 memset(ti, 0, THREAD_SIZE);
1130 void free_thread_info(struct thread_info *ti)
1132 kmem_cache_free(thread_info_cache, ti);
1135 void thread_info_cache_init(void)
1137 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1138 THREAD_SIZE, 0, NULL);
1139 BUG_ON(thread_info_cache == NULL);
1142 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1144 unsigned long arch_align_stack(unsigned long sp)
1146 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1147 sp -= get_random_int() & ~PAGE_MASK;
1151 static inline unsigned long brk_rnd(void)
1153 unsigned long rnd = 0;
1155 /* 8MB for 32bit, 1GB for 64bit */
1156 if (is_32bit_task())
1157 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1159 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1161 return rnd << PAGE_SHIFT;
1164 unsigned long arch_randomize_brk(struct mm_struct *mm)
1166 unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
1174 unsigned long randomize_et_dyn(unsigned long base)
1176 unsigned long ret = PAGE_ALIGN(base + brk_rnd());