4 Copyright (C) 1996 Digi International.
6 For technical support please email digiLinux@dgii.com or
7 call Digi tech support at (612) 912-3456
9 ** This driver is no longer supported by Digi **
11 Much of this design and code came from epca.c which was
12 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
13 modified by David Nugent, Christoph Lameter, Mike McLagan.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 --------------------------------------------------------------------------- */
30 /* See README.epca for change history --DAT*/
33 #include <linux/config.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/init.h>
38 #include <linux/serial.h>
39 #include <linux/delay.h>
40 #include <linux/ctype.h>
41 #include <linux/tty.h>
42 #include <linux/tty_flip.h>
43 #include <linux/slab.h>
44 #include <linux/ioport.h>
45 #include <linux/interrupt.h>
46 #include <asm/uaccess.h>
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
56 #include "epcaconfig.h"
58 /* ---------------------- Begin defines ------------------------ */
60 #define VERSION "1.3.0.1-LK2.6"
62 /* This major needs to be submitted to Linux to join the majors list */
64 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
68 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
72 /* ----------------- Begin global definitions ------------------- */
74 static int nbdevs, num_cards, liloconfig;
75 static int digi_poller_inhibited = 1 ;
77 static int setup_error_code;
78 static int invalid_lilo_config;
80 /* The ISA boards do window flipping into the same spaces so its only sane
81 with a single lock. It's still pretty efficient */
83 static spinlock_t epca_lock = SPIN_LOCK_UNLOCKED;
85 /* -----------------------------------------------------------------------
86 MAXBOARDS is typically 12, but ISA and EISA cards are restricted to
88 --------------------------------------------------------------------------*/
89 static struct board_info boards[MAXBOARDS];
92 /* ------------- Begin structures used for driver registeration ---------- */
94 static struct tty_driver *pc_driver;
95 static struct tty_driver *pc_info;
97 /* ------------------ Begin Digi specific structures -------------------- */
99 /* ------------------------------------------------------------------------
100 digi_channels represents an array of structures that keep track of
101 each channel of the Digi product. Information such as transmit and
102 receive pointers, termio data, and signal definitions (DTR, CTS, etc ...)
103 are stored here. This structure is NOT used to overlay the cards
104 physical channel structure.
105 -------------------------------------------------------------------------- */
107 static struct channel digi_channels[MAX_ALLOC];
109 /* ------------------------------------------------------------------------
110 card_ptr is an array used to hold the address of the
111 first channel structure of each card. This array will hold
112 the addresses of various channels located in digi_channels.
113 -------------------------------------------------------------------------- */
114 static struct channel *card_ptr[MAXCARDS];
116 static struct timer_list epca_timer;
118 /* ---------------------- Begin function prototypes --------------------- */
120 /* ----------------------------------------------------------------------
121 Begin generic memory functions. These functions will be alias
122 (point at) more specific functions dependent on the board being
124 ----------------------------------------------------------------------- */
126 static void memwinon(struct board_info *b, unsigned int win);
127 static void memwinoff(struct board_info *b, unsigned int win);
128 static void globalwinon(struct channel *ch);
129 static void rxwinon(struct channel *ch);
130 static void txwinon(struct channel *ch);
131 static void memoff(struct channel *ch);
132 static void assertgwinon(struct channel *ch);
133 static void assertmemoff(struct channel *ch);
135 /* ---- Begin more 'specific' memory functions for cx_like products --- */
137 static void pcxem_memwinon(struct board_info *b, unsigned int win);
138 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
139 static void pcxem_globalwinon(struct channel *ch);
140 static void pcxem_rxwinon(struct channel *ch);
141 static void pcxem_txwinon(struct channel *ch);
142 static void pcxem_memoff(struct channel *ch);
144 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
146 static void pcxe_memwinon(struct board_info *b, unsigned int win);
147 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
148 static void pcxe_globalwinon(struct channel *ch);
149 static void pcxe_rxwinon(struct channel *ch);
150 static void pcxe_txwinon(struct channel *ch);
151 static void pcxe_memoff(struct channel *ch);
153 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
154 /* Note : pc64xe and pcxi share the same windowing routines */
156 static void pcxi_memwinon(struct board_info *b, unsigned int win);
157 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
158 static void pcxi_globalwinon(struct channel *ch);
159 static void pcxi_rxwinon(struct channel *ch);
160 static void pcxi_txwinon(struct channel *ch);
161 static void pcxi_memoff(struct channel *ch);
163 /* - Begin 'specific' do nothing memory functions needed for some cards - */
165 static void dummy_memwinon(struct board_info *b, unsigned int win);
166 static void dummy_memwinoff(struct board_info *b, unsigned int win);
167 static void dummy_globalwinon(struct channel *ch);
168 static void dummy_rxwinon(struct channel *ch);
169 static void dummy_txwinon(struct channel *ch);
170 static void dummy_memoff(struct channel *ch);
171 static void dummy_assertgwinon(struct channel *ch);
172 static void dummy_assertmemoff(struct channel *ch);
174 /* ------------------- Begin declare functions ----------------------- */
176 static struct channel *verifyChannel(struct tty_struct *);
177 static void pc_sched_event(struct channel *, int);
178 static void epca_error(int, char *);
179 static void pc_close(struct tty_struct *, struct file *);
180 static void shutdown(struct channel *);
181 static void pc_hangup(struct tty_struct *);
182 static void pc_put_char(struct tty_struct *, unsigned char);
183 static int pc_write_room(struct tty_struct *);
184 static int pc_chars_in_buffer(struct tty_struct *);
185 static void pc_flush_buffer(struct tty_struct *);
186 static void pc_flush_chars(struct tty_struct *);
187 static int block_til_ready(struct tty_struct *, struct file *,
189 static int pc_open(struct tty_struct *, struct file *);
190 static void post_fep_init(unsigned int crd);
191 static void epcapoll(unsigned long);
192 static void doevent(int);
193 static void fepcmd(struct channel *, int, int, int, int, int);
194 static unsigned termios2digi_h(struct channel *ch, unsigned);
195 static unsigned termios2digi_i(struct channel *ch, unsigned);
196 static unsigned termios2digi_c(struct channel *ch, unsigned);
197 static void epcaparam(struct tty_struct *, struct channel *);
198 static void receive_data(struct channel *);
199 static int pc_ioctl(struct tty_struct *, struct file *,
200 unsigned int, unsigned long);
201 static int info_ioctl(struct tty_struct *, struct file *,
202 unsigned int, unsigned long);
203 static void pc_set_termios(struct tty_struct *, struct termios *);
204 static void do_softint(void *);
205 static void pc_stop(struct tty_struct *);
206 static void pc_start(struct tty_struct *);
207 static void pc_throttle(struct tty_struct * tty);
208 static void pc_unthrottle(struct tty_struct *tty);
209 static void digi_send_break(struct channel *ch, int msec);
210 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
211 void epca_setup(char *, int *);
213 static int get_termio(struct tty_struct *, struct termio __user *);
214 static int pc_write(struct tty_struct *, const unsigned char *, int);
215 static int pc_init(void);
216 static int init_PCI(void);
219 /* ------------------------------------------------------------------
220 Table of functions for each board to handle memory. Mantaining
221 parallelism is a *very* good idea here. The idea is for the
222 runtime code to blindly call these functions, not knowing/caring
223 about the underlying hardware. This stuff should contain no
224 conditionals; if more functionality is needed a different entry
225 should be established. These calls are the interface calls and
226 are the only functions that should be accessed. Anyone caught
227 making direct calls deserves what they get.
228 -------------------------------------------------------------------- */
230 static void memwinon(struct board_info *b, unsigned int win)
232 (b->memwinon)(b, win);
235 static void memwinoff(struct board_info *b, unsigned int win)
237 (b->memwinoff)(b, win);
240 static void globalwinon(struct channel *ch)
242 (ch->board->globalwinon)(ch);
245 static void rxwinon(struct channel *ch)
247 (ch->board->rxwinon)(ch);
250 static void txwinon(struct channel *ch)
252 (ch->board->txwinon)(ch);
255 static void memoff(struct channel *ch)
257 (ch->board->memoff)(ch);
259 static void assertgwinon(struct channel *ch)
261 (ch->board->assertgwinon)(ch);
264 static void assertmemoff(struct channel *ch)
266 (ch->board->assertmemoff)(ch);
269 /* ---------------------------------------------------------
270 PCXEM windowing is the same as that used in the PCXR
272 ------------------------------------------------------------ */
274 static void pcxem_memwinon(struct board_info *b, unsigned int win)
276 outb_p(FEPWIN|win, b->port + 1);
279 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
281 outb_p(0, b->port + 1);
284 static void pcxem_globalwinon(struct channel *ch)
286 outb_p( FEPWIN, (int)ch->board->port + 1);
289 static void pcxem_rxwinon(struct channel *ch)
291 outb_p(ch->rxwin, (int)ch->board->port + 1);
294 static void pcxem_txwinon(struct channel *ch)
296 outb_p(ch->txwin, (int)ch->board->port + 1);
299 static void pcxem_memoff(struct channel *ch)
301 outb_p(0, (int)ch->board->port + 1);
304 /* ----------------- Begin pcxe memory window stuff ------------------ */
306 static void pcxe_memwinon(struct board_info *b, unsigned int win)
308 outb_p(FEPWIN | win, b->port + 1);
311 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
313 outb_p(inb(b->port) & ~FEPMEM,
315 outb_p(0, b->port + 1);
318 static void pcxe_globalwinon(struct channel *ch)
320 outb_p( FEPWIN, (int)ch->board->port + 1);
323 static void pcxe_rxwinon(struct channel *ch)
325 outb_p(ch->rxwin, (int)ch->board->port + 1);
328 static void pcxe_txwinon(struct channel *ch)
330 outb_p(ch->txwin, (int)ch->board->port + 1);
333 static void pcxe_memoff(struct channel *ch)
335 outb_p(0, (int)ch->board->port);
336 outb_p(0, (int)ch->board->port + 1);
339 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
341 static void pcxi_memwinon(struct board_info *b, unsigned int win)
343 outb_p(inb(b->port) | FEPMEM, b->port);
346 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
348 outb_p(inb(b->port) & ~FEPMEM, b->port);
351 static void pcxi_globalwinon(struct channel *ch)
353 outb_p(FEPMEM, ch->board->port);
356 static void pcxi_rxwinon(struct channel *ch)
358 outb_p(FEPMEM, ch->board->port);
361 static void pcxi_txwinon(struct channel *ch)
363 outb_p(FEPMEM, ch->board->port);
366 static void pcxi_memoff(struct channel *ch)
368 outb_p(0, ch->board->port);
371 static void pcxi_assertgwinon(struct channel *ch)
373 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
376 static void pcxi_assertmemoff(struct channel *ch)
378 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
382 /* ----------------------------------------------------------------------
383 Not all of the cards need specific memory windowing routines. Some
384 cards (Such as PCI) needs no windowing routines at all. We provide
385 these do nothing routines so that the same code base can be used.
386 The driver will ALWAYS call a windowing routine if it thinks it needs
387 to; regardless of the card. However, dependent on the card the routine
388 may or may not do anything.
389 ---------------------------------------------------------------------------*/
391 static void dummy_memwinon(struct board_info *b, unsigned int win)
395 static void dummy_memwinoff(struct board_info *b, unsigned int win)
399 static void dummy_globalwinon(struct channel *ch)
403 static void dummy_rxwinon(struct channel *ch)
407 static void dummy_txwinon(struct channel *ch)
411 static void dummy_memoff(struct channel *ch)
415 static void dummy_assertgwinon(struct channel *ch)
419 static void dummy_assertmemoff(struct channel *ch)
423 /* ----------------- Begin verifyChannel function ----------------------- */
424 static struct channel *verifyChannel(struct tty_struct *tty)
425 { /* Begin verifyChannel */
426 /* --------------------------------------------------------------------
427 This routine basically provides a sanity check. It insures that
428 the channel returned is within the proper range of addresses as
429 well as properly initialized. If some bogus info gets passed in
430 through tty->driver_data this should catch it.
431 --------------------------------------------------------------------- */
433 struct channel *ch = (struct channel *)tty->driver_data;
434 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) {
435 if (ch->magic == EPCA_MAGIC)
441 } /* End verifyChannel */
443 /* ------------------ Begin pc_sched_event ------------------------- */
445 static void pc_sched_event(struct channel *ch, int event)
447 /* ----------------------------------------------------------------------
448 We call this to schedule interrupt processing on some event. The
449 kernel sees our request and calls the related routine in OUR driver.
450 -------------------------------------------------------------------------*/
451 ch->event |= 1 << event;
452 schedule_work(&ch->tqueue);
453 } /* End pc_sched_event */
455 /* ------------------ Begin epca_error ------------------------- */
457 static void epca_error(int line, char *msg)
459 printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg);
462 /* ------------------ Begin pc_close ------------------------- */
463 static void pc_close(struct tty_struct * tty, struct file * filp)
467 /* ---------------------------------------------------------
468 verifyChannel returns the channel from the tty struct
469 if it is valid. This serves as a sanity check.
470 ------------------------------------------------------------- */
471 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
472 spin_lock_irqsave(&epca_lock, flags);
473 if (tty_hung_up_p(filp)) {
474 spin_unlock_irqrestore(&epca_lock, flags);
477 /* Check to see if the channel is open more than once */
478 if (ch->count-- > 1) {
479 /* Begin channel is open more than once */
480 /* -------------------------------------------------------------
481 Return without doing anything. Someone might still be using
483 ---------------------------------------------------------------- */
484 spin_unlock_irqrestore(&epca_lock, flags);
486 } /* End channel is open more than once */
488 /* Port open only once go ahead with shutdown & reset */
492 /* ---------------------------------------------------------------
493 Let the rest of the driver know the channel is being closed.
494 This becomes important if an open is attempted before close
496 ------------------------------------------------------------------ */
497 ch->asyncflags |= ASYNC_CLOSING;
500 spin_unlock_irqrestore(&epca_lock, flags);
502 if (ch->asyncflags & ASYNC_INITIALIZED) {
503 /* Setup an event to indicate when the transmit buffer empties */
504 setup_empty_event(tty, ch);
505 tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */
507 if (tty->driver->flush_buffer)
508 tty->driver->flush_buffer(tty);
510 tty_ldisc_flush(tty);
513 spin_lock_irqsave(&epca_lock, flags);
517 spin_unlock_irqrestore(&epca_lock, flags);
519 if (ch->blocked_open) { /* Begin if blocked_open */
521 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
522 wake_up_interruptible(&ch->open_wait);
523 } /* End if blocked_open */
524 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
526 wake_up_interruptible(&ch->close_wait);
527 } /* End if ch != NULL */
530 /* ------------------ Begin shutdown ------------------------- */
532 static void shutdown(struct channel *ch)
533 { /* Begin shutdown */
536 struct tty_struct *tty;
537 struct board_chan *bc;
539 if (!(ch->asyncflags & ASYNC_INITIALIZED))
542 spin_lock_irqsave(&epca_lock, flags);
547 /* ------------------------------------------------------------------
548 In order for an event to be generated on the receipt of data the
549 idata flag must be set. Since we are shutting down, this is not
550 necessary clear this flag.
551 --------------------------------------------------------------------- */
554 writeb(0, &bc->idata);
557 /* ----------------------------------------------------------------
558 If we're a modem control device and HUPCL is on, drop RTS & DTR.
559 ------------------------------------------------------------------ */
561 if (tty->termios->c_cflag & HUPCL) {
562 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
563 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
567 /* ------------------------------------------------------------------
568 The channel has officialy been closed. The next time it is opened
569 it will have to reinitialized. Set a flag to indicate this.
570 ---------------------------------------------------------------------- */
572 /* Prevent future Digi programmed interrupts from coming active */
574 ch->asyncflags &= ~ASYNC_INITIALIZED;
575 spin_unlock_irqrestore(&epca_lock, flags);
579 /* ------------------ Begin pc_hangup ------------------------- */
581 static void pc_hangup(struct tty_struct *tty)
582 { /* Begin pc_hangup */
585 /* ---------------------------------------------------------
586 verifyChannel returns the channel from the tty struct
587 if it is valid. This serves as a sanity check.
588 ------------------------------------------------------------- */
590 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
593 if (tty->driver->flush_buffer)
594 tty->driver->flush_buffer(tty);
595 tty_ldisc_flush(tty);
598 spin_lock_irqsave(&epca_lock, flags);
602 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
603 spin_unlock_irqrestore(&epca_lock, flags);
604 wake_up_interruptible(&ch->open_wait);
605 } /* End if ch != NULL */
607 } /* End pc_hangup */
609 /* ------------------ Begin pc_write ------------------------- */
611 static int pc_write(struct tty_struct * tty,
612 const unsigned char *buf, int bytesAvailable)
613 { /* Begin pc_write */
614 unsigned int head, tail;
621 struct board_chan *bc;
623 /* ----------------------------------------------------------------
624 pc_write is primarily called directly by the kernel routine
625 tty_write (Though it can also be called by put_char) found in
626 tty_io.c. pc_write is passed a line discipline buffer where
627 the data to be written out is stored. The line discipline
628 implementation itself is done at the kernel level and is not
629 brought into the driver.
630 ------------------------------------------------------------------- */
632 /* ---------------------------------------------------------
633 verifyChannel returns the channel from the tty struct
634 if it is valid. This serves as a sanity check.
635 ------------------------------------------------------------- */
637 if ((ch = verifyChannel(tty)) == NULL)
640 /* Make a pointer to the channel data structure found on the board. */
643 size = ch->txbufsize;
646 spin_lock_irqsave(&epca_lock, flags);
649 head = readw(&bc->tin) & (size - 1);
650 tail = readw(&bc->tout);
652 if (tail != readw(&bc->tout))
653 tail = readw(&bc->tout);
656 /* If head >= tail, head has not wrapped around. */
657 if (head >= tail) { /* Begin head has not wrapped */
658 /* ---------------------------------------------------------------
659 remain (much like dataLen above) represents the total amount of
660 space available on the card for data. Here dataLen represents
661 the space existing between the head pointer and the end of
662 buffer. This is important because a memcpy cannot be told to
663 automatically wrap around when it hits the buffer end.
664 ------------------------------------------------------------------ */
665 dataLen = size - head;
666 remain = size - (head - tail) - 1;
667 } else { /* Begin head has wrapped around */
669 remain = tail - head - 1;
672 } /* End head has wrapped around */
673 /* -------------------------------------------------------------------
674 Check the space on the card. If we have more data than
675 space; reduce the amount of data to fit the space.
676 ---------------------------------------------------------------------- */
677 bytesAvailable = min(remain, bytesAvailable);
679 while (bytesAvailable > 0)
680 { /* Begin while there is data to copy onto card */
682 /* -----------------------------------------------------------------
683 If head is not wrapped, the below will make sure the first
684 data copy fills to the end of card buffer.
685 ------------------------------------------------------------------- */
687 dataLen = min(bytesAvailable, dataLen);
688 memcpy(ch->txptr + head, buf, dataLen);
691 amountCopied += dataLen;
692 bytesAvailable -= dataLen;
698 } /* End while there is data to copy onto card */
699 ch->statusflags |= TXBUSY;
701 writew(head, &bc->tin);
703 if ((ch->statusflags & LOWWAIT) == 0) {
704 ch->statusflags |= LOWWAIT;
705 writeb(1, &bc->ilow);
708 spin_unlock_irqrestore(&epca_lock, flags);
709 return(amountCopied);
713 /* ------------------ Begin pc_put_char ------------------------- */
715 static void pc_put_char(struct tty_struct *tty, unsigned char c)
716 { /* Begin pc_put_char */
717 pc_write(tty, &c, 1);
718 } /* End pc_put_char */
720 /* ------------------ Begin pc_write_room ------------------------- */
722 static int pc_write_room(struct tty_struct *tty)
723 { /* Begin pc_write_room */
728 unsigned int head, tail;
729 struct board_chan *bc;
733 /* ---------------------------------------------------------
734 verifyChannel returns the channel from the tty struct
735 if it is valid. This serves as a sanity check.
736 ------------------------------------------------------------- */
738 if ((ch = verifyChannel(tty)) != NULL) {
739 spin_lock_irqsave(&epca_lock, flags);
743 head = readw(&bc->tin) & (ch->txbufsize - 1);
744 tail = readw(&bc->tout);
746 if (tail != readw(&bc->tout))
747 tail = readw(&bc->tout);
748 /* Wrap tail if necessary */
749 tail &= (ch->txbufsize - 1);
751 if ((remain = tail - head - 1) < 0 )
752 remain += ch->txbufsize;
754 if (remain && (ch->statusflags & LOWWAIT) == 0) {
755 ch->statusflags |= LOWWAIT;
756 writeb(1, &bc->ilow);
759 spin_unlock_irqrestore(&epca_lock, flags);
761 /* Return how much room is left on card */
764 } /* End pc_write_room */
766 /* ------------------ Begin pc_chars_in_buffer ---------------------- */
768 static int pc_chars_in_buffer(struct tty_struct *tty)
769 { /* Begin pc_chars_in_buffer */
772 unsigned int ctail, head, tail;
776 struct board_chan *bc;
778 /* ---------------------------------------------------------
779 verifyChannel returns the channel from the tty struct
780 if it is valid. This serves as a sanity check.
781 ------------------------------------------------------------- */
783 if ((ch = verifyChannel(tty)) == NULL)
786 spin_lock_irqsave(&epca_lock, flags);
790 tail = readw(&bc->tout);
791 head = readw(&bc->tin);
792 ctail = readw(&ch->mailbox->cout);
794 if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0)
796 else { /* Begin if some space on the card has been used */
797 head = readw(&bc->tin) & (ch->txbufsize - 1);
798 tail &= (ch->txbufsize - 1);
799 /* --------------------------------------------------------------
800 The logic here is basically opposite of the above pc_write_room
801 here we are finding the amount of bytes in the buffer filled.
802 Not the amount of bytes empty.
803 ------------------------------------------------------------------- */
804 if ((remain = tail - head - 1) < 0 )
805 remain += ch->txbufsize;
806 chars = (int)(ch->txbufsize - remain);
807 /* -------------------------------------------------------------
808 Make it possible to wakeup anything waiting for output
811 If not already set. Setup an event to indicate when the
812 transmit buffer empties
813 ----------------------------------------------------------------- */
814 if (!(ch->statusflags & EMPTYWAIT))
815 setup_empty_event(tty,ch);
817 } /* End if some space on the card has been used */
819 spin_unlock_irqrestore(&epca_lock, flags);
820 /* Return number of characters residing on card. */
823 } /* End pc_chars_in_buffer */
825 /* ------------------ Begin pc_flush_buffer ---------------------- */
827 static void pc_flush_buffer(struct tty_struct *tty)
828 { /* Begin pc_flush_buffer */
833 struct board_chan *bc;
834 /* ---------------------------------------------------------
835 verifyChannel returns the channel from the tty struct
836 if it is valid. This serves as a sanity check.
837 ------------------------------------------------------------- */
838 if ((ch = verifyChannel(tty)) == NULL)
841 spin_lock_irqsave(&epca_lock, flags);
844 tail = readw(&bc->tout);
845 /* Have FEP move tout pointer; effectively flushing transmit buffer */
846 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
848 spin_unlock_irqrestore(&epca_lock, flags);
849 wake_up_interruptible(&tty->write_wait);
851 } /* End pc_flush_buffer */
853 /* ------------------ Begin pc_flush_chars ---------------------- */
855 static void pc_flush_chars(struct tty_struct *tty)
856 { /* Begin pc_flush_chars */
858 /* ---------------------------------------------------------
859 verifyChannel returns the channel from the tty struct
860 if it is valid. This serves as a sanity check.
861 ------------------------------------------------------------- */
862 if ((ch = verifyChannel(tty)) != NULL) {
864 spin_lock_irqsave(&epca_lock, flags);
865 /* ----------------------------------------------------------------
866 If not already set and the transmitter is busy setup an event
867 to indicate when the transmit empties.
868 ------------------------------------------------------------------- */
869 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT))
870 setup_empty_event(tty,ch);
871 spin_unlock_irqrestore(&epca_lock, flags);
873 } /* End pc_flush_chars */
875 /* ------------------ Begin block_til_ready ---------------------- */
877 static int block_til_ready(struct tty_struct *tty,
878 struct file *filp, struct channel *ch)
879 { /* Begin block_til_ready */
880 DECLARE_WAITQUEUE(wait,current);
881 int retval, do_clocal = 0;
884 if (tty_hung_up_p(filp)) {
885 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
888 retval = -ERESTARTSYS;
892 /* -----------------------------------------------------------------
893 If the device is in the middle of being closed, then block
894 until it's done, and then try again.
895 -------------------------------------------------------------------- */
896 if (ch->asyncflags & ASYNC_CLOSING) {
897 interruptible_sleep_on(&ch->close_wait);
899 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
905 if (filp->f_flags & O_NONBLOCK) {
906 /* -----------------------------------------------------------------
907 If non-blocking mode is set, then make the check up front
909 -------------------------------------------------------------------- */
910 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
913 if (tty->termios->c_cflag & CLOCAL)
915 /* Block waiting for the carrier detect and the line to become free */
918 add_wait_queue(&ch->open_wait, &wait);
920 spin_lock_irqsave(&epca_lock, flags);
921 /* We dec count so that pc_close will know when to free things */
922 if (!tty_hung_up_p(filp))
926 { /* Begin forever while */
927 set_current_state(TASK_INTERRUPTIBLE);
928 if (tty_hung_up_p(filp) ||
929 !(ch->asyncflags & ASYNC_INITIALIZED))
931 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
934 retval = -ERESTARTSYS;
937 if (!(ch->asyncflags & ASYNC_CLOSING) &&
938 (do_clocal || (ch->imodem & ch->dcd)))
940 if (signal_pending(current)) {
941 retval = -ERESTARTSYS;
944 spin_unlock_irqrestore(&epca_lock, flags);
945 /* ---------------------------------------------------------------
946 Allow someone else to be scheduled. We will occasionally go
947 through this loop until one of the above conditions change.
948 The below schedule call will allow other processes to enter and
949 prevent this loop from hogging the cpu.
950 ------------------------------------------------------------------ */
952 spin_lock_irqsave(&epca_lock, flags);
954 } /* End forever while */
956 current->state = TASK_RUNNING;
957 remove_wait_queue(&ch->open_wait, &wait);
958 if (!tty_hung_up_p(filp))
962 spin_unlock_irqrestore(&epca_lock, flags);
967 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
969 } /* End block_til_ready */
971 /* ------------------ Begin pc_open ---------------------- */
973 static int pc_open(struct tty_struct *tty, struct file * filp)
974 { /* Begin pc_open */
978 int line, retval, boardnum;
979 struct board_chan *bc;
983 if (line < 0 || line >= nbdevs)
986 ch = &digi_channels[line];
987 boardnum = ch->boardnum;
989 /* Check status of board configured in system. */
991 /* -----------------------------------------------------------------
992 I check to see if the epca_setup routine detected an user error.
993 It might be better to put this in pc_init, but for the moment it
995 ---------------------------------------------------------------------- */
997 if (invalid_lilo_config) {
998 if (setup_error_code & INVALID_BOARD_TYPE)
999 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
1000 if (setup_error_code & INVALID_NUM_PORTS)
1001 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
1002 if (setup_error_code & INVALID_MEM_BASE)
1003 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
1004 if (setup_error_code & INVALID_PORT_BASE)
1005 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
1006 if (setup_error_code & INVALID_BOARD_STATUS)
1007 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
1008 if (setup_error_code & INVALID_ALTPIN)
1009 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
1010 tty->driver_data = NULL; /* Mark this device as 'down' */
1013 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
1014 tty->driver_data = NULL; /* Mark this device as 'down' */
1018 if ((bc = ch->brdchan) == 0) {
1019 tty->driver_data = NULL;
1023 spin_lock_irqsave(&epca_lock, flags);
1024 /* ------------------------------------------------------------------
1025 Every time a channel is opened, increment a counter. This is
1026 necessary because we do not wish to flush and shutdown the channel
1027 until the last app holding the channel open, closes it.
1028 --------------------------------------------------------------------- */
1030 /* ----------------------------------------------------------------
1031 Set a kernel structures pointer to our local channel
1032 structure. This way we can get to it when passed only
1034 ------------------------------------------------------------------ */
1035 tty->driver_data = ch;
1036 /* ----------------------------------------------------------------
1037 If this is the first time the channel has been opened, initialize
1038 the tty->termios struct otherwise let pc_close handle it.
1039 -------------------------------------------------------------------- */
1041 ch->statusflags = 0;
1043 /* Save boards current modem status */
1044 ch->imodem = bc->mstat;
1046 /* ----------------------------------------------------------------
1047 Set receive head and tail ptrs to each other. This indicates
1048 no data available to read.
1049 ----------------------------------------------------------------- */
1050 head = readw(&bc->rin);
1051 writew(head, &bc->rout);
1053 /* Set the channels associated tty structure */
1056 /* -----------------------------------------------------------------
1057 The below routine generally sets up parity, baud, flow control
1058 issues, etc.... It effect both control flags and input flags.
1059 -------------------------------------------------------------------- */
1061 ch->asyncflags |= ASYNC_INITIALIZED;
1063 spin_unlock_irqrestore(&epca_lock, flags);
1065 retval = block_til_ready(tty, filp, ch);
1068 /* -------------------------------------------------------------
1069 Set this again in case a hangup set it to zero while this
1070 open() was waiting for the line...
1071 --------------------------------------------------------------- */
1072 spin_lock_irqsave(&epca_lock, flags);
1075 /* Enable Digi Data events */
1076 writeb(1, &bc->idata);
1078 spin_unlock_irqrestore(&epca_lock, flags);
1082 static int __init epca_module_init(void)
1083 { /* Begin init_module */
1087 module_init(epca_module_init);
1089 static struct pci_driver epca_driver;
1091 static void __exit epca_module_exit(void)
1094 struct board_info *bd;
1097 del_timer_sync(&epca_timer);
1099 if ((tty_unregister_driver(pc_driver)) ||
1100 (tty_unregister_driver(pc_info)))
1102 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1105 put_tty_driver(pc_driver);
1106 put_tty_driver(pc_info);
1108 for (crd = 0; crd < num_cards; crd++) { /* Begin for each card */
1111 { /* Begin sanity check */
1112 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1114 } /* End sanity check */
1116 for (count = 0; count < bd->numports; count++, ch++)
1117 { /* Begin for each port */
1120 tty_hangup(ch->tty);
1123 } /* End for each port */
1124 } /* End for each card */
1125 pci_unregister_driver (&epca_driver);
1128 module_exit(epca_module_exit);
1130 static struct tty_operations pc_ops = {
1134 .write_room = pc_write_room,
1135 .flush_buffer = pc_flush_buffer,
1136 .chars_in_buffer = pc_chars_in_buffer,
1137 .flush_chars = pc_flush_chars,
1138 .put_char = pc_put_char,
1140 .set_termios = pc_set_termios,
1143 .throttle = pc_throttle,
1144 .unthrottle = pc_unthrottle,
1145 .hangup = pc_hangup,
1148 static int info_open(struct tty_struct *tty, struct file * filp)
1153 static struct tty_operations info_ops = {
1155 .ioctl = info_ioctl,
1158 /* ------------------ Begin pc_init ---------------------- */
1160 static int __init pc_init(void)
1161 { /* Begin pc_init */
1163 struct board_info *bd;
1164 unsigned char board_id = 0;
1166 int pci_boards_found, pci_count;
1170 pc_driver = alloc_tty_driver(MAX_ALLOC);
1174 pc_info = alloc_tty_driver(MAX_ALLOC);
1176 put_tty_driver(pc_driver);
1180 /* -----------------------------------------------------------------------
1181 If epca_setup has not been ran by LILO set num_cards to defaults; copy
1182 board structure defined by digiConfig into drivers board structure.
1183 Note : If LILO has ran epca_setup then epca_setup will handle defining
1184 num_cards as well as copying the data into the board structure.
1185 -------------------------------------------------------------------------- */
1186 if (!liloconfig) { /* Begin driver has been configured via. epcaconfig */
1189 num_cards = NUMCARDS;
1190 memcpy((void *)&boards, (void *)&static_boards,
1191 (sizeof(struct board_info) * NUMCARDS));
1192 } /* End driver has been configured via. epcaconfig */
1194 /* -----------------------------------------------------------------
1195 Note : If lilo was used to configure the driver and the
1196 ignore epcaconfig option was choosen (digiepca=2) then
1197 nbdevs and num_cards will equal 0 at this point. This is
1198 okay; PCI cards will still be picked up if detected.
1199 --------------------------------------------------------------------- */
1201 /* -----------------------------------------------------------
1202 Set up interrupt, we will worry about memory allocation in
1204 --------------------------------------------------------------- */
1207 printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION);
1209 /* ------------------------------------------------------------------
1210 NOTE : This code assumes that the number of ports found in
1211 the boards array is correct. This could be wrong if
1212 the card in question is PCI (And therefore has no ports
1213 entry in the boards structure.) The rest of the
1214 information will be valid for PCI because the beginning
1215 of pc_init scans for PCI and determines i/o and base
1216 memory addresses. I am not sure if it is possible to
1217 read the number of ports supported by the card prior to
1218 it being booted (Since that is the state it is in when
1219 pc_init is run). Because it is not possible to query the
1220 number of supported ports until after the card has booted;
1221 we are required to calculate the card_ptrs as the card is
1222 is initialized (Inside post_fep_init). The negative thing
1223 about this approach is that digiDload's call to GET_INFO
1224 will have a bad port value. (Since this is called prior
1227 --------------------------------------------------------------------- */
1229 pci_boards_found = 0;
1230 if(num_cards < MAXBOARDS)
1231 pci_boards_found += init_PCI();
1232 num_cards += pci_boards_found;
1234 pc_driver->owner = THIS_MODULE;
1235 pc_driver->name = "ttyD";
1236 pc_driver->devfs_name = "tts/D";
1237 pc_driver->major = DIGI_MAJOR;
1238 pc_driver->minor_start = 0;
1239 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1240 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1241 pc_driver->init_termios = tty_std_termios;
1242 pc_driver->init_termios.c_iflag = 0;
1243 pc_driver->init_termios.c_oflag = 0;
1244 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1245 pc_driver->init_termios.c_lflag = 0;
1246 pc_driver->flags = TTY_DRIVER_REAL_RAW;
1247 tty_set_operations(pc_driver, &pc_ops);
1249 pc_info->owner = THIS_MODULE;
1250 pc_info->name = "digi_ctl";
1251 pc_info->major = DIGIINFOMAJOR;
1252 pc_info->minor_start = 0;
1253 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1254 pc_info->subtype = SERIAL_TYPE_INFO;
1255 pc_info->init_termios = tty_std_termios;
1256 pc_info->init_termios.c_iflag = 0;
1257 pc_info->init_termios.c_oflag = 0;
1258 pc_info->init_termios.c_lflag = 0;
1259 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1260 pc_info->flags = TTY_DRIVER_REAL_RAW;
1261 tty_set_operations(pc_info, &info_ops);
1264 for (crd = 0; crd < num_cards; crd++)
1265 { /* Begin for each card */
1267 /* ------------------------------------------------------------------
1268 This is where the appropriate memory handlers for the hardware is
1269 set. Everything at runtime blindly jumps through these vectors.
1270 ---------------------------------------------------------------------- */
1272 /* defined in epcaconfig.h */
1276 { /* Begin switch on bd->type {board type} */
1279 bd->memwinon = pcxem_memwinon ;
1280 bd->memwinoff = pcxem_memwinoff ;
1281 bd->globalwinon = pcxem_globalwinon ;
1282 bd->txwinon = pcxem_txwinon ;
1283 bd->rxwinon = pcxem_rxwinon ;
1284 bd->memoff = pcxem_memoff ;
1285 bd->assertgwinon = dummy_assertgwinon;
1286 bd->assertmemoff = dummy_assertmemoff;
1292 bd->memwinon = dummy_memwinon;
1293 bd->memwinoff = dummy_memwinoff;
1294 bd->globalwinon = dummy_globalwinon;
1295 bd->txwinon = dummy_txwinon;
1296 bd->rxwinon = dummy_rxwinon;
1297 bd->memoff = dummy_memoff;
1298 bd->assertgwinon = dummy_assertgwinon;
1299 bd->assertmemoff = dummy_assertmemoff;
1305 bd->memwinon = pcxe_memwinon;
1306 bd->memwinoff = pcxe_memwinoff;
1307 bd->globalwinon = pcxe_globalwinon;
1308 bd->txwinon = pcxe_txwinon;
1309 bd->rxwinon = pcxe_rxwinon;
1310 bd->memoff = pcxe_memoff;
1311 bd->assertgwinon = dummy_assertgwinon;
1312 bd->assertmemoff = dummy_assertmemoff;
1318 bd->memwinon = pcxi_memwinon;
1319 bd->memwinoff = pcxi_memwinoff;
1320 bd->globalwinon = pcxi_globalwinon;
1321 bd->txwinon = pcxi_txwinon;
1322 bd->rxwinon = pcxi_rxwinon;
1323 bd->memoff = pcxi_memoff;
1324 bd->assertgwinon = pcxi_assertgwinon;
1325 bd->assertmemoff = pcxi_assertmemoff;
1331 } /* End switch on bd->type */
1333 /* ---------------------------------------------------------------
1334 Some cards need a memory segment to be defined for use in
1335 transmit and receive windowing operations. These boards
1336 are listed in the below switch. In the case of the XI the
1337 amount of memory on the board is variable so the memory_seg
1338 is also variable. This code determines what they segment
1340 ----------------------------------------------------------------- */
1343 { /* Begin switch on bd->type {board type} */
1348 bd->memory_seg = 0xf000;
1352 board_id = inb((int)bd->port);
1353 if ((board_id & 0x1) == 0x1)
1354 { /* Begin it's an XI card */
1356 /* Is it a 64K board */
1357 if ((board_id & 0x30) == 0)
1358 bd->memory_seg = 0xf000;
1360 /* Is it a 128K board */
1361 if ((board_id & 0x30) == 0x10)
1362 bd->memory_seg = 0xe000;
1364 /* Is is a 256K board */
1365 if ((board_id & 0x30) == 0x20)
1366 bd->memory_seg = 0xc000;
1368 /* Is it a 512K board */
1369 if ((board_id & 0x30) == 0x30)
1370 bd->memory_seg = 0x8000;
1372 } else printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port);
1375 } /* End switch on bd->type */
1377 } /* End for each card */
1379 if (tty_register_driver(pc_driver))
1380 panic("Couldn't register Digi PC/ driver");
1382 if (tty_register_driver(pc_info))
1383 panic("Couldn't register Digi PC/ info ");
1385 /* -------------------------------------------------------------------
1386 Start up the poller to check for events on all enabled boards
1387 ---------------------------------------------------------------------- */
1389 init_timer(&epca_timer);
1390 epca_timer.function = epcapoll;
1391 mod_timer(&epca_timer, jiffies + HZ/25);
1396 /* ------------------ Begin post_fep_init ---------------------- */
1398 static void post_fep_init(unsigned int crd)
1399 { /* Begin post_fep_init */
1402 unsigned char *memaddr;
1403 struct global_data *gd;
1404 struct board_info *bd;
1405 struct board_chan *bc;
1407 int shrinkmem = 0, lowwater ;
1409 /* -------------------------------------------------------------
1410 This call is made by the user via. the ioctl call DIGI_INIT.
1411 It is responsible for setting up all the card specific stuff.
1412 ---------------------------------------------------------------- */
1415 /* -----------------------------------------------------------------
1416 If this is a PCI board, get the port info. Remember PCI cards
1417 do not have entries into the epcaconfig.h file, so we can't get
1418 the number of ports from it. Unfortunetly, this means that anyone
1419 doing a DIGI_GETINFO before the board has booted will get an invalid
1420 number of ports returned (It should return 0). Calls to DIGI_GETINFO
1421 after DIGI_INIT has been called will return the proper values.
1422 ------------------------------------------------------------------- */
1424 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1425 /* --------------------------------------------------------------------
1426 Below we use XEMPORTS as a memory offset regardless of which PCI
1427 card it is. This is because all of the supported PCI cards have
1428 the same memory offset for the channel data. This will have to be
1429 changed if we ever develop a PCI/XE card. NOTE : The FEP manual
1430 states that the port offset is 0xC22 as opposed to 0xC02. This is
1431 only true for PC/XE, and PC/XI cards; not for the XEM, or CX series.
1432 On the PCI cards the number of ports is determined by reading a
1433 ID PROM located in the box attached to the card. The card can then
1434 determine the index the id to determine the number of ports available.
1435 (FYI - The id should be located at 0x1ac (And may use up to 4 bytes
1436 if the box in question is a XEM or CX)).
1437 ------------------------------------------------------------------------ */
1438 /* PCI cards are already remapped at this point ISA are not */
1439 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1440 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports");
1441 nbdevs += (bd->numports);
1443 /* Fix up the mappings for ISA/EISA etc */
1444 /* FIXME: 64K - can we be smarter ? */
1445 bd->re_map_membase = ioremap(bd->membase, 0x10000);
1449 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1451 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1454 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1456 memaddr = bd->re_map_membase;
1458 /* -----------------------------------------------------------------
1459 The below assignment will set bc to point at the BEGINING of
1460 the cards channel structures. For 1 card there will be between
1461 8 and 64 of these structures.
1462 -------------------------------------------------------------------- */
1464 bc = (struct board_chan *)(memaddr + CHANSTRUCT);
1466 /* -------------------------------------------------------------------
1467 The below assignment will set gd to point at the BEGINING of
1468 global memory address 0xc00. The first data in that global
1469 memory actually starts at address 0xc1a. The command in
1470 pointer begins at 0xd10.
1471 ---------------------------------------------------------------------- */
1473 gd = (struct global_data *)(memaddr + GLOBAL);
1475 /* --------------------------------------------------------------------
1476 XEPORTS (address 0xc22) points at the number of channels the
1477 card supports. (For 64XE, XI, XEM, and XR use 0xc02)
1478 ----------------------------------------------------------------------- */
1480 if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3))
1482 if (bd->type < PCIXEM)
1483 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1487 /* --------------------------------------------------------------------
1488 Remember ch is the main drivers channels structure, while bc is
1489 the cards channel structure.
1490 ------------------------------------------------------------------------ */
1492 /* For every port on the card do ..... */
1494 for (i = 0; i < bd->numports; i++, ch++, bc++) { /* Begin for each port */
1495 unsigned long flags;
1499 INIT_WORK(&ch->tqueue, do_softint, ch);
1500 ch->board = &boards[crd];
1502 spin_lock_irqsave(&epca_lock, flags);
1504 /* ----------------------------------------------------------------
1505 Since some of the boards use different bitmaps for their
1506 control signals we cannot hard code these values and retain
1507 portability. We virtualize this data here.
1508 ------------------------------------------------------------------- */
1534 } /* End switch bd->type */
1536 if (boards[crd].altpin) {
1537 ch->dsr = ch->m_dcd;
1538 ch->dcd = ch->m_dsr;
1539 ch->digiext.digi_flags |= DIGI_ALTPIN;
1542 ch->dcd = ch->m_dcd;
1543 ch->dsr = ch->m_dsr;
1548 ch->magic = EPCA_MAGIC;
1552 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1561 /* Cover all the 2MEG cards */
1562 ch->txptr = memaddr + (((bc->tseg) << 4) & 0x1fffff);
1563 ch->rxptr = memaddr + (((bc->rseg) << 4) & 0x1fffff);
1564 ch->txwin = FEPWIN | ((bc->tseg) >> 11);
1565 ch->rxwin = FEPWIN | ((bc->rseg) >> 11);
1570 /* Cover all the 32K windowed cards */
1571 /* Mask equal to window size - 1 */
1572 ch->txptr = memaddr + (((bc->tseg) << 4) & 0x7fff);
1573 ch->rxptr = memaddr + (((bc->rseg) << 4) & 0x7fff);
1574 ch->txwin = FEPWIN | ((bc->tseg) >> 11);
1575 ch->rxwin = FEPWIN | ((bc->rseg) >> 11);
1580 ch->txptr = memaddr + (((bc->tseg - bd->memory_seg) << 4) & 0x1fff);
1581 ch->txwin = FEPWIN | ((bc->tseg - bd->memory_seg) >> 9);
1582 ch->rxptr = memaddr + (((bc->rseg - bd->memory_seg) << 4) & 0x1fff);
1583 ch->rxwin = FEPWIN | ((bc->rseg - bd->memory_seg) >>9 );
1588 ch->txptr = memaddr + ((bc->tseg - bd->memory_seg) << 4);
1589 ch->rxptr = memaddr + ((bc->rseg - bd->memory_seg) << 4);
1590 ch->txwin = ch->rxwin = 0;
1593 } /* End switch bd->type */
1596 ch->txbufsize = bc->tmax + 1;
1599 ch->rxbufsize = bc->rmax + 1;
1601 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1603 /* Set transmitter low water mark */
1604 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1606 /* Set receiver low water mark */
1608 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1610 /* Set receiver high water mark */
1612 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1614 writew(100, &bc->edelay);
1615 writeb(1, &bc->idata);
1617 ch->startc = readb(&bc->startc);
1618 ch->stopc = readb(&bc->stopc);
1619 ch->startca = readb(&bc->startca);
1620 ch->stopca = readb(&bc->stopca);
1630 ch->close_delay = 50;
1632 ch->blocked_open = 0;
1633 init_waitqueue_head(&ch->open_wait);
1634 init_waitqueue_head(&ch->close_wait);
1636 spin_unlock_irqrestore(&epca_lock, flags);
1638 ch->tmp_buf = kmalloc(ch->txbufsize,GFP_KERNEL);
1640 printk(KERN_ERR "POST FEP INIT : kmalloc failed for port 0x%x\n",i);
1641 release_region((int)bd->port, 4);
1643 kfree((ch--)->tmp_buf);
1646 memset((void *)ch->tmp_buf,0,ch->txbufsize);
1647 } /* End for each port */
1650 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1651 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports);
1654 } /* End post_fep_init */
1656 /* --------------------- Begin epcapoll ------------------------ */
1658 static void epcapoll(unsigned long ignored)
1659 { /* Begin epcapoll */
1661 unsigned long flags;
1663 volatile unsigned int head, tail;
1665 struct board_info *bd;
1667 /* -------------------------------------------------------------------
1668 This routine is called upon every timer interrupt. Even though
1669 the Digi series cards are capable of generating interrupts this
1670 method of non-looping polling is more efficient. This routine
1671 checks for card generated events (Such as receive data, are transmit
1672 buffer empty) and acts on those events.
1673 ----------------------------------------------------------------------- */
1675 for (crd = 0; crd < num_cards; crd++)
1676 { /* Begin for each card */
1681 if ((bd->status == DISABLED) || digi_poller_inhibited)
1682 continue; /* Begin loop next interation */
1684 /* -----------------------------------------------------------
1685 assertmemoff is not needed here; indeed it is an empty subroutine.
1686 It is being kept because future boards may need this as well as
1688 ---------------------------------------------------------------- */
1690 spin_lock_irqsave(&epca_lock, flags);
1696 /* ---------------------------------------------------------------
1697 In this case head and tail actually refer to the event queue not
1698 the transmit or receive queue.
1699 ------------------------------------------------------------------- */
1701 head = readw(&ch->mailbox->ein);
1702 tail = readw(&ch->mailbox->eout);
1704 /* If head isn't equal to tail we have an event */
1710 spin_unlock_irqrestore(&epca_lock, flags);
1712 } /* End for each card */
1713 mod_timer(&epca_timer, jiffies + (HZ / 25));
1714 } /* End epcapoll */
1716 /* --------------------- Begin doevent ------------------------ */
1718 static void doevent(int crd)
1719 { /* Begin doevent */
1722 struct channel *ch, *chan0;
1723 static struct tty_struct *tty;
1724 struct board_info *bd;
1725 struct board_chan *bc;
1726 unsigned int tail, head;
1730 /* -------------------------------------------------------------------
1731 This subroutine is called by epcapoll when an event is detected
1732 in the event queue. This routine responds to those events.
1733 --------------------------------------------------------------------- */
1736 chan0 = card_ptr[crd];
1737 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1738 assertgwinon(chan0);
1739 while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein)))
1740 { /* Begin while something in event queue */
1741 assertgwinon(chan0);
1742 eventbuf = bd->re_map_membase + tail + ISTART;
1743 /* Get the channel the event occurred on */
1744 channel = readb(eventbuf);
1745 /* Get the actual event code that occurred */
1746 event = readb(eventbuf + 1);
1747 /* ----------------------------------------------------------------
1748 The two assignments below get the current modem status (mstat)
1749 and the previous modem status (lstat). These are useful becuase
1750 an event could signal a change in modem signals itself.
1751 ------------------------------------------------------------------- */
1752 mstat = readb(eventbuf + 2);
1753 lstat = readb(eventbuf + 3);
1755 ch = chan0 + channel;
1756 if ((unsigned)channel >= bd->numports || !ch) {
1757 if (channel >= bd->numports)
1763 if ((bc = ch->brdchan) == NULL)
1766 if (event & DATA_IND) { /* Begin DATA_IND */
1769 } /* End DATA_IND */
1770 /* else *//* Fix for DCD transition missed bug */
1771 if (event & MODEMCHG_IND) { /* Begin MODEMCHG_IND */
1772 /* A modem signal change has been indicated */
1774 if (ch->asyncflags & ASYNC_CHECK_CD) {
1775 if (mstat & ch->dcd) /* We are now receiving dcd */
1776 wake_up_interruptible(&ch->open_wait);
1778 pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */
1780 } /* End MODEMCHG_IND */
1782 if (tty) { /* Begin if valid tty */
1783 if (event & BREAK_IND) { /* Begin if BREAK_IND */
1784 /* A break has been indicated */
1786 *tty->flip.flag_buf_ptr++ = TTY_BREAK;
1787 *tty->flip.char_buf_ptr++ = 0;
1788 tty_schedule_flip(tty);
1789 } else if (event & LOWTX_IND) { /* Begin LOWTX_IND */
1790 if (ch->statusflags & LOWWAIT)
1791 { /* Begin if LOWWAIT */
1792 ch->statusflags &= ~LOWWAIT;
1794 wake_up_interruptible(&tty->write_wait);
1795 } /* End if LOWWAIT */
1796 } else if (event & EMPTYTX_IND) { /* Begin EMPTYTX_IND */
1797 /* This event is generated by setup_empty_event */
1798 ch->statusflags &= ~TXBUSY;
1799 if (ch->statusflags & EMPTYWAIT) { /* Begin if EMPTYWAIT */
1800 ch->statusflags &= ~EMPTYWAIT;
1802 wake_up_interruptible(&tty->write_wait);
1803 } /* End if EMPTYWAIT */
1804 } /* End EMPTYTX_IND */
1805 } /* End if valid tty */
1809 writew(1, &bc->idata);
1810 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1812 } /* End while something in event queue */
1815 /* --------------------- Begin fepcmd ------------------------ */
1817 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1818 int byte2, int ncmds, int bytecmd)
1819 { /* Begin fepcmd */
1821 unsigned int head, cmdTail, cmdStart, cmdMax;
1825 /* This is the routine in which commands may be passed to the card. */
1827 if (ch->board->status == DISABLED)
1830 /* Remember head (As well as max) is just an offset not a base addr */
1831 head = readw(&ch->mailbox->cin);
1832 /* cmdStart is a base address */
1833 cmdStart = readw(&ch->mailbox->cstart);
1834 /* ------------------------------------------------------------------
1835 We do the addition below because we do not want a max pointer
1836 relative to cmdStart. We want a max pointer that points at the
1837 physical end of the command queue.
1838 -------------------------------------------------------------------- */
1839 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1840 memaddr = ch->board->re_map_membase;
1842 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1843 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head);
1844 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart);
1848 writeb(cmd, memaddr + head + cmdStart + 0);
1849 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1850 /* Below word_or_byte is bits to set */
1851 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1852 /* Below byte2 is bits to reset */
1853 writeb(byte2, memaddr + head + cmdStart + 3);
1855 writeb(cmd, memaddr + head + cmdStart + 0);
1856 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1857 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1859 head = (head + 4) & (cmdMax - cmdStart - 4);
1860 writew(head, &ch->mailbox->cin);
1863 for (;;) { /* Begin forever loop */
1866 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1869 head = readw(&ch->mailbox->cin);
1870 cmdTail = readw(&ch->mailbox->cout);
1871 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1872 /* ----------------------------------------------------------
1873 Basically this will break when the FEP acknowledges the
1874 command by incrementing cmdTail (Making it equal to head).
1875 ------------------------------------------------------------- */
1876 if (n <= ncmds * (sizeof(short) * 4))
1877 break; /* Well nearly forever :-) */
1878 } /* End forever loop */
1881 /* ---------------------------------------------------------------------
1882 Digi products use fields in their channels structures that are very
1883 similar to the c_cflag and c_iflag fields typically found in UNIX
1884 termios structures. The below three routines allow mappings
1885 between these hardware "flags" and their respective Linux flags.
1886 ------------------------------------------------------------------------- */
1888 /* --------------------- Begin termios2digi_h -------------------- */
1890 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1891 { /* Begin termios2digi_h */
1894 if (cflag & CRTSCTS) {
1895 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1896 res |= ((ch->m_cts) | (ch->m_rts));
1899 if (ch->digiext.digi_flags & RTSPACE)
1902 if (ch->digiext.digi_flags & DTRPACE)
1905 if (ch->digiext.digi_flags & CTSPACE)
1908 if (ch->digiext.digi_flags & DSRPACE)
1911 if (ch->digiext.digi_flags & DCDPACE)
1914 if (res & (ch->m_rts))
1915 ch->digiext.digi_flags |= RTSPACE;
1917 if (res & (ch->m_cts))
1918 ch->digiext.digi_flags |= CTSPACE;
1922 } /* End termios2digi_h */
1924 /* --------------------- Begin termios2digi_i -------------------- */
1925 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1926 { /* Begin termios2digi_i */
1928 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1929 INPCK | ISTRIP|IXON|IXANY|IXOFF);
1930 if (ch->digiext.digi_flags & DIGI_AIXON)
1934 } /* End termios2digi_i */
1936 /* --------------------- Begin termios2digi_c -------------------- */
1938 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1939 { /* Begin termios2digi_c */
1942 if (cflag & CBAUDEX) { /* Begin detected CBAUDEX */
1943 ch->digiext.digi_flags |= DIGI_FAST;
1944 /* -------------------------------------------------------------
1945 HUPCL bit is used by FEP to indicate fast baud
1946 table is to be used.
1947 ----------------------------------------------------------------- */
1949 } /* End detected CBAUDEX */
1950 else ch->digiext.digi_flags &= ~DIGI_FAST;
1951 /* -------------------------------------------------------------------
1952 CBAUD has bit position 0x1000 set these days to indicate Linux
1953 baud rate remap. Digi hardware can't handle the bit assignment.
1954 (We use a different bit assignment for high speed.). Clear this
1956 ---------------------------------------------------------------------- */
1957 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1958 /* -------------------------------------------------------------
1959 This gets a little confusing. The Digi cards have their own
1960 representation of c_cflags controling baud rate. For the most
1961 part this is identical to the Linux implementation. However;
1962 Digi supports one rate (76800) that Linux doesn't. This means
1963 that the c_cflag entry that would normally mean 76800 for Digi
1964 actually means 115200 under Linux. Without the below mapping,
1965 a stty 115200 would only drive the board at 76800. Since
1966 the rate 230400 is also found after 76800, the same problem afflicts
1967 us when we choose a rate of 230400. Without the below modificiation
1968 stty 230400 would actually give us 115200.
1970 There are two additional differences. The Linux value for CLOCAL
1971 (0x800; 0004000) has no meaning to the Digi hardware. Also in
1972 later releases of Linux; the CBAUD define has CBAUDEX (0x1000;
1973 0010000) ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX
1974 should be checked for a screened out prior to termios2digi_c
1975 returning. Since CLOCAL isn't used by the board this can be
1976 ignored as long as the returned value is used only by Digi hardware.
1977 ----------------------------------------------------------------- */
1978 if (cflag & CBAUDEX) {
1979 /* -------------------------------------------------------------
1980 The below code is trying to guarantee that only baud rates
1981 115200 and 230400 are remapped. We use exclusive or because
1982 the various baud rates share common bit positions and therefore
1983 can't be tested for easily.
1984 ----------------------------------------------------------------- */
1987 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1988 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1993 } /* End termios2digi_c */
1995 /* --------------------- Begin epcaparam ----------------------- */
1997 /* Caller must hold the locks */
1998 static void epcaparam(struct tty_struct *tty, struct channel *ch)
1999 { /* Begin epcaparam */
2001 unsigned int cmdHead;
2003 struct board_chan *bc;
2004 unsigned mval, hflow, cflag, iflag;
2007 epcaassert(bc !=0, "bc out of range");
2011 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
2012 cmdHead = readw(&bc->rin);
2014 cmdHead = readw(&bc->tin);
2015 /* Changing baud in mid-stream transmission can be wonderful */
2016 /* ---------------------------------------------------------------
2017 Flush current transmit buffer by setting cmdTail pointer (tout)
2018 to cmdHead pointer (tin). Hopefully the transmit buffer is empty.
2019 ----------------------------------------------------------------- */
2020 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
2022 } else { /* Begin CBAUD not detected */
2023 /* -------------------------------------------------------------------
2024 c_cflags have changed but that change had nothing to do with BAUD.
2025 Propagate the change to the card.
2026 ---------------------------------------------------------------------- */
2027 cflag = termios2digi_c(ch, ts->c_cflag);
2028 if (cflag != ch->fepcflag) {
2029 ch->fepcflag = cflag;
2030 /* Set baud rate, char size, stop bits, parity */
2031 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
2033 /* ----------------------------------------------------------------
2034 If the user has not forced CLOCAL and if the device is not a
2035 CALLOUT device (Which is always CLOCAL) we set flags such that
2036 the driver will wait on carrier detect.
2037 ------------------------------------------------------------------- */
2038 if (ts->c_cflag & CLOCAL)
2039 ch->asyncflags &= ~ASYNC_CHECK_CD;
2041 ch->asyncflags |= ASYNC_CHECK_CD;
2042 mval = ch->m_dtr | ch->m_rts;
2043 } /* End CBAUD not detected */
2044 iflag = termios2digi_i(ch, ts->c_iflag);
2045 /* Check input mode flags */
2046 if (iflag != ch->fepiflag) {
2047 ch->fepiflag = iflag;
2048 /* ---------------------------------------------------------------
2049 Command sets channels iflag structure on the board. Such things
2050 as input soft flow control, handling of parity errors, and
2051 break handling are all set here.
2052 ------------------------------------------------------------------- */
2053 /* break handling, parity handling, input stripping, flow control chars */
2054 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
2056 /* ---------------------------------------------------------------
2057 Set the board mint value for this channel. This will cause hardware
2058 events to be generated each time the DCD signal (Described in mint)
2060 ------------------------------------------------------------------- */
2061 writeb(ch->dcd, &bc->mint);
2062 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
2063 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
2064 writeb(0, &bc->mint);
2065 ch->imodem = readb(&bc->mstat);
2066 hflow = termios2digi_h(ch, ts->c_cflag);
2067 if (hflow != ch->hflow) {
2069 /* --------------------------------------------------------------
2070 Hard flow control has been selected but the board is not
2071 using it. Activate hard flow control now.
2072 ----------------------------------------------------------------- */
2073 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
2075 mval ^= ch->modemfake & (mval ^ ch->modem);
2077 if (ch->omodem ^ mval) {
2079 /* --------------------------------------------------------------
2080 The below command sets the DTR and RTS mstat structure. If
2081 hard flow control is NOT active these changes will drive the
2082 output of the actual DTR and RTS lines. If hard flow control
2083 is active, the changes will be saved in the mstat structure and
2084 only asserted when hard flow control is turned off.
2085 ----------------------------------------------------------------- */
2087 /* First reset DTR & RTS; then set them */
2088 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
2089 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
2091 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
2092 ch->fepstartc = ch->startc;
2093 ch->fepstopc = ch->stopc;
2094 /* ------------------------------------------------------------
2095 The XON / XOFF characters have changed; propagate these
2096 changes to the card.
2097 --------------------------------------------------------------- */
2098 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2100 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
2101 ch->fepstartca = ch->startca;
2102 ch->fepstopca = ch->stopca;
2103 /* ---------------------------------------------------------------
2104 Similar to the above, this time the auxilarly XON / XOFF
2105 characters have changed; propagate these changes to the card.
2106 ------------------------------------------------------------------ */
2107 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2109 } /* End epcaparam */
2111 /* --------------------- Begin receive_data ----------------------- */
2112 /* Caller holds lock */
2113 static void receive_data(struct channel *ch)
2114 { /* Begin receive_data */
2117 struct termios *ts = NULL;
2118 struct tty_struct *tty;
2119 struct board_chan *bc;
2120 int dataToRead, wrapgap, bytesAvailable;
2121 unsigned int tail, head;
2122 unsigned int wrapmask;
2125 /* ---------------------------------------------------------------
2126 This routine is called by doint when a receive data event
2128 ------------------------------------------------------------------- */
2131 if (ch->statusflags & RXSTOPPED)
2138 wrapmask = ch->rxbufsize - 1;
2140 /* ---------------------------------------------------------------------
2141 Get the head and tail pointers to the receiver queue. Wrap the
2142 head pointer if it has reached the end of the buffer.
2143 ------------------------------------------------------------------------ */
2144 head = readw(&bc->rin);
2146 tail = readw(&bc->rout) & wrapmask;
2148 bytesAvailable = (head - tail) & wrapmask;
2149 if (bytesAvailable == 0)
2152 /* ------------------------------------------------------------------
2153 If CREAD bit is off or device not open, set TX tail to head
2154 --------------------------------------------------------------------- */
2156 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
2161 if (tty->flip.count == TTY_FLIPBUF_SIZE)
2164 if (readb(&bc->orun)) {
2165 writeb(0, &bc->orun);
2166 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name);
2169 rptr = tty->flip.char_buf_ptr;
2170 rc = tty->flip.count;
2171 while (bytesAvailable > 0) { /* Begin while there is data on the card */
2172 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2173 /* ---------------------------------------------------------------
2174 Even if head has wrapped around only report the amount of
2175 data to be equal to the size - tail. Remember memcpy can't
2176 automaticly wrap around the receive buffer.
2177 ----------------------------------------------------------------- */
2178 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable;
2179 /* --------------------------------------------------------------
2180 Make sure we don't overflow the buffer
2181 ----------------------------------------------------------------- */
2182 if ((rc + dataToRead) > TTY_FLIPBUF_SIZE)
2183 dataToRead = TTY_FLIPBUF_SIZE - rc;
2184 if (dataToRead == 0)
2186 /* ---------------------------------------------------------------
2187 Move data read from our card into the line disciplines buffer
2188 for translation if necessary.
2189 ------------------------------------------------------------------ */
2190 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2193 tail = (tail + dataToRead) & wrapmask;
2194 bytesAvailable -= dataToRead;
2195 } /* End while there is data on the card */
2196 tty->flip.count = rc;
2197 tty->flip.char_buf_ptr = rptr;
2199 writew(tail, &bc->rout);
2200 /* Must be called with global data */
2201 tty_schedule_flip(ch->tty);
2203 } /* End receive_data */
2205 static int info_ioctl(struct tty_struct *tty, struct file * file,
2206 unsigned int cmd, unsigned long arg)
2209 { /* Begin switch cmd */
2211 { /* Begin case DIGI_GETINFO */
2212 struct digi_info di ;
2215 if(get_user(brd, (unsigned int __user *)arg))
2217 if (brd < 0 || brd >= num_cards || num_cards == 0)
2220 memset(&di, 0, sizeof(di));
2223 di.status = boards[brd].status;
2224 di.type = boards[brd].type ;
2225 di.numports = boards[brd].numports ;
2226 /* Legacy fixups - just move along nothing to see */
2227 di.port = (unsigned char *)boards[brd].port ;
2228 di.membase = (unsigned char *)boards[brd].membase ;
2230 if (copy_to_user((void __user *)arg, &di, sizeof (di)))
2234 } /* End case DIGI_GETINFO */
2237 { /* Begin case DIGI_POLLER */
2239 int brd = arg & 0xff000000 >> 16 ;
2240 unsigned char state = arg & 0xff ;
2242 if (brd < 0 || brd >= num_cards) {
2243 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2246 digi_poller_inhibited = state ;
2248 } /* End case DIGI_POLLER */
2251 { /* Begin case DIGI_INIT */
2252 /* ------------------------------------------------------------
2253 This call is made by the apps to complete the initilization
2254 of the board(s). This routine is responsible for setting
2255 the card to its initial state and setting the drivers control
2256 fields to the sutianle settings for the card in question.
2257 ---------------------------------------------------------------- */
2259 for (crd = 0; crd < num_cards; crd++)
2260 post_fep_init (crd);
2262 } /* End case DIGI_INIT */
2265 } /* End switch cmd */
2268 /* --------------------- Begin pc_ioctl ----------------------- */
2270 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2272 struct channel *ch = (struct channel *) tty->driver_data;
2273 struct board_chan *bc;
2274 unsigned int mstat, mflag = 0;
2275 unsigned long flags;
2282 spin_lock_irqsave(&epca_lock, flags);
2284 mstat = readb(&bc->mstat);
2286 spin_unlock_irqrestore(&epca_lock, flags);
2288 if (mstat & ch->m_dtr)
2290 if (mstat & ch->m_rts)
2292 if (mstat & ch->m_cts)
2294 if (mstat & ch->dsr)
2296 if (mstat & ch->m_ri)
2298 if (mstat & ch->dcd)
2303 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2304 unsigned int set, unsigned int clear)
2306 struct channel *ch = (struct channel *) tty->driver_data;
2307 unsigned long flags;
2312 spin_lock_irqsave(&epca_lock, flags);
2314 * I think this modemfake stuff is broken. It doesn't
2315 * correctly reflect the behaviour desired by the TIOCM*
2316 * ioctls. Therefore this is probably broken.
2318 if (set & TIOCM_RTS) {
2319 ch->modemfake |= ch->m_rts;
2320 ch->modem |= ch->m_rts;
2322 if (set & TIOCM_DTR) {
2323 ch->modemfake |= ch->m_dtr;
2324 ch->modem |= ch->m_dtr;
2326 if (clear & TIOCM_RTS) {
2327 ch->modemfake |= ch->m_rts;
2328 ch->modem &= ~ch->m_rts;
2330 if (clear & TIOCM_DTR) {
2331 ch->modemfake |= ch->m_dtr;
2332 ch->modem &= ~ch->m_dtr;
2335 /* --------------------------------------------------------------
2336 The below routine generally sets up parity, baud, flow control
2337 issues, etc.... It effect both control flags and input flags.
2338 ------------------------------------------------------------------ */
2341 spin_unlock_irqrestore(&epca_lock, flags);
2345 static int pc_ioctl(struct tty_struct *tty, struct file * file,
2346 unsigned int cmd, unsigned long arg)
2347 { /* Begin pc_ioctl */
2351 unsigned long flags;
2352 unsigned int mflag, mstat;
2353 unsigned char startc, stopc;
2354 struct board_chan *bc;
2355 struct channel *ch = (struct channel *) tty->driver_data;
2356 void __user *argp = (void __user *)arg;
2363 /* -------------------------------------------------------------------
2364 For POSIX compliance we need to add more ioctls. See tty_ioctl.c
2365 in /usr/src/linux/drivers/char for a good example. In particular
2366 think about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2367 ---------------------------------------------------------------------- */
2370 { /* Begin switch cmd */
2373 if (copy_to_user(argp, tty->termios, sizeof(struct termios)))
2377 return get_termio(tty, argp);
2378 case TCSBRK: /* SVID version: non-zero arg --> no break */
2379 retval = tty_check_change(tty);
2382 /* Setup an event to indicate when the transmit buffer empties */
2383 spin_lock_irqsave(&epca_lock, flags);
2384 setup_empty_event(tty,ch);
2385 spin_unlock_irqrestore(&epca_lock, flags);
2386 tty_wait_until_sent(tty, 0);
2388 digi_send_break(ch, HZ/4); /* 1/4 second */
2390 case TCSBRKP: /* support for POSIX tcsendbreak() */
2391 retval = tty_check_change(tty);
2395 /* Setup an event to indicate when the transmit buffer empties */
2396 spin_lock_irqsave(&epca_lock, flags);
2397 setup_empty_event(tty,ch);
2398 spin_unlock_irqrestore(&epca_lock, flags);
2399 tty_wait_until_sent(tty, 0);
2400 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2403 if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg))
2410 if (get_user(value, (unsigned __user *)argp))
2412 tty->termios->c_cflag =
2413 ((tty->termios->c_cflag & ~CLOCAL) |
2414 (value ? CLOCAL : 0));
2418 mflag = pc_tiocmget(tty, file);
2419 if (put_user(mflag, (unsigned long __user *)argp))
2423 if (get_user(mstat, (unsigned __user *)argp))
2425 return pc_tiocmset(tty, file, mstat, ~mstat);
2427 spin_lock_irqsave(&epca_lock, flags);
2428 ch->omodem |= ch->m_dtr;
2430 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2432 spin_unlock_irqrestore(&epca_lock, flags);
2436 spin_lock_irqsave(&epca_lock, flags);
2437 ch->omodem &= ~ch->m_dtr;
2439 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2441 spin_unlock_irqrestore(&epca_lock, flags);
2444 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2449 if (cmd == DIGI_SETAW) {
2450 /* Setup an event to indicate when the transmit buffer empties */
2451 spin_lock_irqsave(&epca_lock, flags);
2452 setup_empty_event(tty,ch);
2453 spin_unlock_irqrestore(&epca_lock, flags);
2454 tty_wait_until_sent(tty, 0);
2456 /* ldisc lock already held in ioctl */
2457 if (tty->ldisc.flush_buffer)
2458 tty->ldisc.flush_buffer(tty);
2462 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2465 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2466 ch->dcd = ch->m_dsr;
2467 ch->dsr = ch->m_dcd;
2469 ch->dcd = ch->m_dcd;
2470 ch->dsr = ch->m_dsr;
2473 spin_lock_irqsave(&epca_lock, flags);
2476 /* -----------------------------------------------------------------
2477 The below routine generally sets up parity, baud, flow control
2478 issues, etc.... It effect both control flags and input flags.
2479 ------------------------------------------------------------------- */
2483 spin_unlock_irqrestore(&epca_lock, flags);
2488 spin_lock_irqsave(&epca_lock, flags);
2490 if (cmd == DIGI_GETFLOW) {
2491 dflow.startc = readb(&bc->startc);
2492 dflow.stopc = readb(&bc->stopc);
2494 dflow.startc = readb(&bc->startca);
2495 dflow.stopc = readb(&bc->stopca);
2498 spin_unlock_irqrestore(&epca_lock, flags);
2500 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2506 if (cmd == DIGI_SETFLOW) {
2507 startc = ch->startc;
2510 startc = ch->startca;
2514 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2517 if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */
2518 spin_lock_irqsave(&epca_lock, flags);
2521 if (cmd == DIGI_SETFLOW) {
2522 ch->fepstartc = ch->startc = dflow.startc;
2523 ch->fepstopc = ch->stopc = dflow.stopc;
2524 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2526 ch->fepstartca = ch->startca = dflow.startc;
2527 ch->fepstopca = ch->stopca = dflow.stopc;
2528 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2531 if (ch->statusflags & TXSTOPPED)
2535 spin_unlock_irqrestore(&epca_lock, flags);
2536 } /* End if setflow toggled */
2539 return -ENOIOCTLCMD;
2540 } /* End switch cmd */
2542 } /* End pc_ioctl */
2544 /* --------------------- Begin pc_set_termios ----------------------- */
2546 static void pc_set_termios(struct tty_struct *tty, struct termios *old_termios)
2547 { /* Begin pc_set_termios */
2550 unsigned long flags;
2551 /* ---------------------------------------------------------
2552 verifyChannel returns the channel from the tty struct
2553 if it is valid. This serves as a sanity check.
2554 ------------------------------------------------------------- */
2555 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2556 spin_lock_irqsave(&epca_lock, flags);
2560 spin_unlock_irqrestore(&epca_lock, flags);
2562 if ((old_termios->c_cflag & CRTSCTS) &&
2563 ((tty->termios->c_cflag & CRTSCTS) == 0))
2564 tty->hw_stopped = 0;
2566 if (!(old_termios->c_cflag & CLOCAL) &&
2567 (tty->termios->c_cflag & CLOCAL))
2568 wake_up_interruptible(&ch->open_wait);
2570 } /* End if channel valid */
2572 } /* End pc_set_termios */
2574 /* --------------------- Begin do_softint ----------------------- */
2576 static void do_softint(void *private_)
2577 { /* Begin do_softint */
2578 struct channel *ch = (struct channel *) private_;
2579 /* Called in response to a modem change event */
2580 if (ch && ch->magic == EPCA_MAGIC) { /* Begin EPCA_MAGIC */
2581 struct tty_struct *tty = ch->tty;
2583 if (tty && tty->driver_data) {
2584 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { /* Begin if clear_bit */
2585 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2586 wake_up_interruptible(&ch->open_wait);
2587 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2588 } /* End if clear_bit */
2590 } /* End EPCA_MAGIC */
2591 } /* End do_softint */
2593 /* ------------------------------------------------------------
2594 pc_stop and pc_start provide software flow control to the
2595 routine and the pc_ioctl routine.
2596 ---------------------------------------------------------------- */
2598 /* --------------------- Begin pc_stop ----------------------- */
2600 static void pc_stop(struct tty_struct *tty)
2601 { /* Begin pc_stop */
2604 unsigned long flags;
2605 /* ---------------------------------------------------------
2606 verifyChannel returns the channel from the tty struct
2607 if it is valid. This serves as a sanity check.
2608 ------------------------------------------------------------- */
2609 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if valid channel */
2610 spin_lock_irqsave(&epca_lock, flags);
2611 if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */
2613 /* STOP transmitting now !! */
2614 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2615 ch->statusflags |= TXSTOPPED;
2617 } /* End if transmit stop requested */
2618 spin_unlock_irqrestore(&epca_lock, flags);
2619 } /* End if valid channel */
2622 /* --------------------- Begin pc_start ----------------------- */
2624 static void pc_start(struct tty_struct *tty)
2625 { /* Begin pc_start */
2627 /* ---------------------------------------------------------
2628 verifyChannel returns the channel from the tty struct
2629 if it is valid. This serves as a sanity check.
2630 ------------------------------------------------------------- */
2631 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2632 unsigned long flags;
2633 spin_lock_irqsave(&epca_lock, flags);
2634 /* Just in case output was resumed because of a change in Digi-flow */
2635 if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */
2636 struct board_chan *bc;
2639 if (ch->statusflags & LOWWAIT)
2640 writeb(1, &bc->ilow);
2641 /* Okay, you can start transmitting again... */
2642 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2643 ch->statusflags &= ~TXSTOPPED;
2645 } /* End transmit resume requested */
2646 spin_unlock_irqrestore(&epca_lock, flags);
2647 } /* End if channel valid */
2648 } /* End pc_start */
2650 /* ------------------------------------------------------------------
2651 The below routines pc_throttle and pc_unthrottle are used
2652 to slow (And resume) the receipt of data into the kernels
2653 receive buffers. The exact occurrence of this depends on the
2654 size of the kernels receive buffer and what the 'watermarks'
2655 are set to for that buffer. See the n_ttys.c file for more
2657 ______________________________________________________________________ */
2658 /* --------------------- Begin throttle ----------------------- */
2660 static void pc_throttle(struct tty_struct * tty)
2661 { /* Begin pc_throttle */
2663 unsigned long flags;
2664 /* ---------------------------------------------------------
2665 verifyChannel returns the channel from the tty struct
2666 if it is valid. This serves as a sanity check.
2667 ------------------------------------------------------------- */
2668 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2669 spin_lock_irqsave(&epca_lock, flags);
2670 if ((ch->statusflags & RXSTOPPED) == 0) {
2672 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2673 ch->statusflags |= RXSTOPPED;
2676 spin_unlock_irqrestore(&epca_lock, flags);
2677 } /* End if channel valid */
2678 } /* End pc_throttle */
2680 /* --------------------- Begin unthrottle ----------------------- */
2682 static void pc_unthrottle(struct tty_struct *tty)
2683 { /* Begin pc_unthrottle */
2685 unsigned long flags;
2686 /* ---------------------------------------------------------
2687 verifyChannel returns the channel from the tty struct
2688 if it is valid. This serves as a sanity check.
2689 ------------------------------------------------------------- */
2690 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2691 /* Just in case output was resumed because of a change in Digi-flow */
2692 spin_lock_irqsave(&epca_lock, flags);
2693 if (ch->statusflags & RXSTOPPED) {
2695 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2696 ch->statusflags &= ~RXSTOPPED;
2699 spin_unlock_irqrestore(&epca_lock, flags);
2700 } /* End if channel valid */
2701 } /* End pc_unthrottle */
2703 /* --------------------- Begin digi_send_break ----------------------- */
2705 void digi_send_break(struct channel *ch, int msec)
2706 { /* Begin digi_send_break */
2707 unsigned long flags;
2709 spin_lock_irqsave(&epca_lock, flags);
2711 /* --------------------------------------------------------------------
2712 Maybe I should send an infinite break here, schedule() for
2713 msec amount of time, and then stop the break. This way,
2714 the user can't screw up the FEP by causing digi_send_break()
2715 to be called (i.e. via an ioctl()) more than once in msec amount
2716 of time. Try this for now...
2717 ------------------------------------------------------------------------ */
2718 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2720 spin_unlock_irqrestore(&epca_lock, flags);
2721 } /* End digi_send_break */
2723 /* --------------------- Begin setup_empty_event ----------------------- */
2725 /* Caller MUST hold the lock */
2727 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2728 { /* Begin setup_empty_event */
2730 struct board_chan *bc = ch->brdchan;
2733 ch->statusflags |= EMPTYWAIT;
2734 /* ------------------------------------------------------------------
2735 When set the iempty flag request a event to be generated when the
2736 transmit buffer is empty (If there is no BREAK in progress).
2737 --------------------------------------------------------------------- */
2738 writeb(1, &bc->iempty);
2740 } /* End setup_empty_event */
2742 /* --------------------- Begin get_termio ----------------------- */
2744 static int get_termio(struct tty_struct * tty, struct termio __user * termio)
2745 { /* Begin get_termio */
2746 return kernel_termios_to_user_termio(termio, tty->termios);
2747 } /* End get_termio */
2749 /* ---------------------- Begin epca_setup -------------------------- */
2750 void epca_setup(char *str, int *ints)
2751 { /* Begin epca_setup */
2752 struct board_info board;
2753 int index, loop, last;
2757 /* ----------------------------------------------------------------------
2758 If this routine looks a little strange it is because it is only called
2759 if a LILO append command is given to boot the kernel with parameters.
2760 In this way, we can provide the user a method of changing his board
2761 configuration without rebuilding the kernel.
2762 ----------------------------------------------------------------------- */
2766 memset(&board, 0, sizeof(board));
2768 /* Assume the data is int first, later we can change it */
2769 /* I think that array position 0 of ints holds the number of args */
2770 for (last = 0, index = 1; index <= ints[0]; index++)
2772 { /* Begin parse switch */
2774 board.status = ints[index];
2775 /* ---------------------------------------------------------
2776 We check for 2 (As opposed to 1; because 2 is a flag
2777 instructing the driver to ignore epcaconfig.) For this
2778 reason we check for 2.
2779 ------------------------------------------------------------ */
2780 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */
2784 } /* End ignore epcaconfig as well as lilo cmd line */
2786 if (board.status > 2) {
2787 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status);
2788 invalid_lilo_config = 1;
2789 setup_error_code |= INVALID_BOARD_STATUS;
2795 board.type = ints[index];
2796 if (board.type >= PCIXEM) {
2797 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2798 invalid_lilo_config = 1;
2799 setup_error_code |= INVALID_BOARD_TYPE;
2805 board.altpin = ints[index];
2806 if (board.altpin > 1) {
2807 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2808 invalid_lilo_config = 1;
2809 setup_error_code |= INVALID_ALTPIN;
2816 board.numports = ints[index];
2817 if (board.numports < 2 || board.numports > 256) {
2818 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2819 invalid_lilo_config = 1;
2820 setup_error_code |= INVALID_NUM_PORTS;
2823 nbdevs += board.numports;
2828 board.port = ints[index];
2829 if (ints[index] <= 0) {
2830 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2831 invalid_lilo_config = 1;
2832 setup_error_code |= INVALID_PORT_BASE;
2839 board.membase = ints[index];
2840 if (ints[index] <= 0) {
2841 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase);
2842 invalid_lilo_config = 1;
2843 setup_error_code |= INVALID_MEM_BASE;
2850 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2853 } /* End parse switch */
2855 while (str && *str) { /* Begin while there is a string arg */
2856 /* find the next comma or terminator */
2858 /* While string is not null, and a comma hasn't been found */
2859 while (*temp && (*temp != ','))
2865 /* Set index to the number of args + 1 */
2872 if (strncmp("Disable", str, len) == 0)
2874 else if (strncmp("Enable", str, len) == 0)
2877 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2878 invalid_lilo_config = 1;
2879 setup_error_code |= INVALID_BOARD_STATUS;
2886 for(loop = 0; loop < EPCA_NUM_TYPES; loop++)
2887 if (strcmp(board_desc[loop], str) == 0)
2889 /* ---------------------------------------------------------------
2890 If the index incremented above refers to a legitamate board
2892 ------------------------------------------------------------------*/
2893 if (index < EPCA_NUM_TYPES)
2896 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2897 invalid_lilo_config = 1;
2898 setup_error_code |= INVALID_BOARD_TYPE;
2906 if (strncmp("Disable", str, len) == 0)
2908 else if (strncmp("Enable", str, len) == 0)
2911 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2912 invalid_lilo_config = 1;
2913 setup_error_code |= INVALID_ALTPIN;
2921 while (isdigit(*t2))
2925 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2926 invalid_lilo_config = 1;
2927 setup_error_code |= INVALID_NUM_PORTS;
2931 /* ------------------------------------------------------------
2932 There is not a man page for simple_strtoul but the code can be
2933 found in vsprintf.c. The first argument is the string to
2934 translate (To an unsigned long obviously), the second argument
2935 can be the address of any character variable or a NULL. If a
2936 variable is given, the end pointer of the string will be stored
2937 in that variable; if a NULL is given the end pointer will
2938 not be returned. The last argument is the base to use. If
2939 a 0 is indicated, the routine will attempt to determine the
2940 proper base by looking at the values prefix (A '0' for octal,
2941 a 'x' for hex, etc ... If a value is given it will use that
2943 ---------------------------------------------------------------- */
2944 board.numports = simple_strtoul(str, NULL, 0);
2945 nbdevs += board.numports;
2951 while (isxdigit(*t2))
2955 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2956 invalid_lilo_config = 1;
2957 setup_error_code |= INVALID_PORT_BASE;
2961 board.port = simple_strtoul(str, NULL, 16);
2967 while (isxdigit(*t2))
2971 printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str);
2972 invalid_lilo_config = 1;
2973 setup_error_code |= INVALID_MEM_BASE;
2976 board.membase = simple_strtoul(str, NULL, 16);
2980 printk(KERN_ERR "epca: Too many string parms\n");
2984 } /* End while there is a string arg */
2987 printk(KERN_ERR "epca: Insufficient parms specified\n");
2991 /* I should REALLY validate the stuff here */
2992 /* Copies our local copy of board into boards */
2993 memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board));
2994 /* Does this get called once per lilo arg are what ? */
2995 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
2996 num_cards, board_desc[board.type],
2997 board.numports, (int)board.port, (unsigned int) board.membase);
2999 } /* End epca_setup */
3002 /* ------------------------ Begin init_PCI --------------------------- */
3004 enum epic_board_types {
3012 /* indexed directly by epic_board_types enum */
3014 unsigned char board_type;
3015 unsigned bar_idx; /* PCI base address region */
3016 } epca_info_tbl[] = {
3023 static int __devinit epca_init_one (struct pci_dev *pdev,
3024 const struct pci_device_id *ent)
3026 static int board_num = -1;
3027 int board_idx, info_idx = ent->driver_data;
3030 if (pci_enable_device(pdev))
3034 board_idx = board_num + num_cards;
3035 if (board_idx >= MAXBOARDS)
3038 addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx);
3040 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n",
3041 epca_info_tbl[info_idx].bar_idx);
3045 boards[board_idx].status = ENABLED;
3046 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
3047 boards[board_idx].numports = 0x0;
3048 boards[board_idx].port = addr + PCI_IO_OFFSET;
3049 boards[board_idx].membase = addr;
3051 if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) {
3052 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3053 0x200000, addr + PCI_IO_OFFSET);
3057 boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000);
3058 if (!boards[board_idx].re_map_port) {
3059 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3060 0x200000, addr + PCI_IO_OFFSET);
3061 goto err_out_free_pciio;
3064 if (!request_mem_region (addr, 0x200000, "epca")) {
3065 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3067 goto err_out_free_iounmap;
3070 boards[board_idx].re_map_membase = ioremap(addr, 0x200000);
3071 if (!boards[board_idx].re_map_membase) {
3072 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3073 0x200000, addr + PCI_IO_OFFSET);
3074 goto err_out_free_memregion;
3077 /* --------------------------------------------------------------
3078 I don't know what the below does, but the hardware guys say
3079 its required on everything except PLX (In this case XRJ).
3080 ---------------------------------------------------------------- */
3081 if (info_idx != brd_xrj) {
3082 pci_write_config_byte(pdev, 0x40, 0);
3083 pci_write_config_byte(pdev, 0x46, 0);
3088 err_out_free_memregion:
3089 release_mem_region (addr, 0x200000);
3090 err_out_free_iounmap:
3091 iounmap (boards[board_idx].re_map_port);
3093 release_mem_region (addr + PCI_IO_OFFSET, 0x200000);
3099 static struct pci_device_id epca_pci_tbl[] = {
3100 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
3101 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
3102 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
3103 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
3107 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
3109 int __init init_PCI (void)
3110 { /* Begin init_PCI */
3111 memset (&epca_driver, 0, sizeof (epca_driver));
3112 epca_driver.name = "epca";
3113 epca_driver.id_table = epca_pci_tbl;
3114 epca_driver.probe = epca_init_one;
3116 return pci_register_driver(&epca_driver);
3119 MODULE_LICENSE("GPL");