Merge master.kernel.org:/home/rmk/linux-2.6-i2c manually
[linux-2.6] / drivers / char / epca.c
1 /*
2
3  
4         Copyright (C) 1996  Digi International.
5  
6         For technical support please email digiLinux@dgii.com or
7         call Digi tech support at (612) 912-3456
8
9         ** This driver is no longer supported by Digi **
10
11         Much of this design and code came from epca.c which was 
12         copyright (C) 1994, 1995 Troy De Jongh, and subsquently 
13         modified by David Nugent, Christoph Lameter, Mike McLagan. 
14  
15         This program is free software; you can redistribute it and/or modify
16         it under the terms of the GNU General Public License as published by
17         the Free Software Foundation; either version 2 of the License, or
18         (at your option) any later version.
19
20         This program is distributed in the hope that it will be useful,
21         but WITHOUT ANY WARRANTY; without even the implied warranty of
22         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23         GNU General Public License for more details.
24
25         You should have received a copy of the GNU General Public License
26         along with this program; if not, write to the Free Software
27         Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28
29 --------------------------------------------------------------------------- */
30 /* See README.epca for change history --DAT*/
31
32
33 #include <linux/config.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/init.h>
38 #include <linux/serial.h>
39 #include <linux/delay.h>
40 #include <linux/ctype.h>
41 #include <linux/tty.h>
42 #include <linux/tty_flip.h>
43 #include <linux/slab.h>
44 #include <linux/ioport.h>
45 #include <linux/interrupt.h>
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include "digiPCI.h"
51
52
53 #include "digi1.h"
54 #include "digiFep1.h"
55 #include "epca.h"
56 #include "epcaconfig.h"
57
58 /* ---------------------- Begin defines ------------------------ */
59
60 #define VERSION            "1.3.0.1-LK2.6"
61
62 /* This major needs to be submitted to Linux to join the majors list */
63
64 #define DIGIINFOMAJOR       35  /* For Digi specific ioctl */ 
65
66
67 #define MAXCARDS 7
68 #define epcaassert(x, msg)  if (!(x)) epca_error(__LINE__, msg)
69
70 #define PFX "epca: "
71
72 /* ----------------- Begin global definitions ------------------- */
73
74 static int nbdevs, num_cards, liloconfig;
75 static int digi_poller_inhibited = 1 ;
76
77 static int setup_error_code;
78 static int invalid_lilo_config;
79
80 /* The ISA boards do window flipping into the same spaces so its only sane
81    with a single lock. It's still pretty efficient */
82
83 static spinlock_t epca_lock = SPIN_LOCK_UNLOCKED;
84
85 /* -----------------------------------------------------------------------
86         MAXBOARDS is typically 12, but ISA and EISA cards are restricted to 
87         7 below.
88 --------------------------------------------------------------------------*/
89 static struct board_info boards[MAXBOARDS];
90
91
92 /* ------------- Begin structures used for driver registeration ---------- */
93
94 static struct tty_driver *pc_driver;
95 static struct tty_driver *pc_info;
96
97 /* ------------------ Begin Digi specific structures -------------------- */
98
99 /* ------------------------------------------------------------------------
100         digi_channels represents an array of structures that keep track of
101         each channel of the Digi product.  Information such as transmit and
102         receive pointers, termio data, and signal definitions (DTR, CTS, etc ...)
103         are stored here.  This structure is NOT used to overlay the cards 
104         physical channel structure.
105 -------------------------------------------------------------------------- */
106   
107 static struct channel digi_channels[MAX_ALLOC];
108
109 /* ------------------------------------------------------------------------
110         card_ptr is an array used to hold the address of the
111         first channel structure of each card.  This array will hold
112         the addresses of various channels located in digi_channels.
113 -------------------------------------------------------------------------- */
114 static struct channel *card_ptr[MAXCARDS];
115
116 static struct timer_list epca_timer;
117
118 /* ---------------------- Begin function prototypes --------------------- */
119
120 /* ----------------------------------------------------------------------
121         Begin generic memory functions.  These functions will be alias
122         (point at) more specific functions dependent on the board being
123         configured.
124 ----------------------------------------------------------------------- */
125         
126 static void memwinon(struct board_info *b, unsigned int win);
127 static void memwinoff(struct board_info *b, unsigned int win);
128 static void globalwinon(struct channel *ch);
129 static void rxwinon(struct channel *ch);
130 static void txwinon(struct channel *ch);
131 static void memoff(struct channel *ch);
132 static void assertgwinon(struct channel *ch);
133 static void assertmemoff(struct channel *ch);
134
135 /* ---- Begin more 'specific' memory functions for cx_like products --- */
136
137 static void pcxem_memwinon(struct board_info *b, unsigned int win);
138 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
139 static void pcxem_globalwinon(struct channel *ch);
140 static void pcxem_rxwinon(struct channel *ch);
141 static void pcxem_txwinon(struct channel *ch);
142 static void pcxem_memoff(struct channel *ch);
143
144 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
145
146 static void pcxe_memwinon(struct board_info *b, unsigned int win);
147 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
148 static void pcxe_globalwinon(struct channel *ch);
149 static void pcxe_rxwinon(struct channel *ch);
150 static void pcxe_txwinon(struct channel *ch);
151 static void pcxe_memoff(struct channel *ch);
152
153 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
154 /* Note : pc64xe and pcxi share the same windowing routines */
155
156 static void pcxi_memwinon(struct board_info *b, unsigned int win);
157 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
158 static void pcxi_globalwinon(struct channel *ch);
159 static void pcxi_rxwinon(struct channel *ch);
160 static void pcxi_txwinon(struct channel *ch);
161 static void pcxi_memoff(struct channel *ch);
162
163 /* - Begin 'specific' do nothing memory functions needed for some cards - */
164
165 static void dummy_memwinon(struct board_info *b, unsigned int win);
166 static void dummy_memwinoff(struct board_info *b, unsigned int win);
167 static void dummy_globalwinon(struct channel *ch);
168 static void dummy_rxwinon(struct channel *ch);
169 static void dummy_txwinon(struct channel *ch);
170 static void dummy_memoff(struct channel *ch);
171 static void dummy_assertgwinon(struct channel *ch);
172 static void dummy_assertmemoff(struct channel *ch);
173
174 /* ------------------- Begin declare functions ----------------------- */
175
176 static struct channel *verifyChannel(struct tty_struct *);
177 static void pc_sched_event(struct channel *, int);
178 static void epca_error(int, char *);
179 static void pc_close(struct tty_struct *, struct file *);
180 static void shutdown(struct channel *);
181 static void pc_hangup(struct tty_struct *);
182 static void pc_put_char(struct tty_struct *, unsigned char);
183 static int pc_write_room(struct tty_struct *);
184 static int pc_chars_in_buffer(struct tty_struct *);
185 static void pc_flush_buffer(struct tty_struct *);
186 static void pc_flush_chars(struct tty_struct *);
187 static int block_til_ready(struct tty_struct *, struct file *,
188                            struct channel *);
189 static int pc_open(struct tty_struct *, struct file *);
190 static void post_fep_init(unsigned int crd);
191 static void epcapoll(unsigned long);
192 static void doevent(int);
193 static void fepcmd(struct channel *, int, int, int, int, int);
194 static unsigned termios2digi_h(struct channel *ch, unsigned);
195 static unsigned termios2digi_i(struct channel *ch, unsigned);
196 static unsigned termios2digi_c(struct channel *ch, unsigned);
197 static void epcaparam(struct tty_struct *, struct channel *);
198 static void receive_data(struct channel *);
199 static int pc_ioctl(struct tty_struct *, struct file *,
200                     unsigned int, unsigned long);
201 static int info_ioctl(struct tty_struct *, struct file *,
202                     unsigned int, unsigned long);
203 static void pc_set_termios(struct tty_struct *, struct termios *);
204 static void do_softint(void *);
205 static void pc_stop(struct tty_struct *);
206 static void pc_start(struct tty_struct *);
207 static void pc_throttle(struct tty_struct * tty);
208 static void pc_unthrottle(struct tty_struct *tty);
209 static void digi_send_break(struct channel *ch, int msec);
210 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
211 void epca_setup(char *, int *);
212
213 static int get_termio(struct tty_struct *, struct termio __user *);
214 static int pc_write(struct tty_struct *, const unsigned char *, int);
215 static int pc_init(void);
216 static int init_PCI(void);
217
218
219 /* ------------------------------------------------------------------
220         Table of functions for each board to handle memory.  Mantaining 
221         parallelism is a *very* good idea here.  The idea is for the 
222         runtime code to blindly call these functions, not knowing/caring    
223         about the underlying hardware.  This stuff should contain no
224         conditionals; if more functionality is needed a different entry
225         should be established.  These calls are the interface calls and 
226         are the only functions that should be accessed.  Anyone caught
227         making direct calls deserves what they get.
228 -------------------------------------------------------------------- */
229
230 static void memwinon(struct board_info *b, unsigned int win)
231 {
232         (b->memwinon)(b, win);
233 }
234
235 static void memwinoff(struct board_info *b, unsigned int win)
236 {
237         (b->memwinoff)(b, win);
238 }
239
240 static void globalwinon(struct channel *ch)
241 {
242         (ch->board->globalwinon)(ch);
243 }
244
245 static void rxwinon(struct channel *ch)
246 {
247         (ch->board->rxwinon)(ch);
248 }
249
250 static void txwinon(struct channel *ch)
251 {
252         (ch->board->txwinon)(ch);
253 }
254
255 static void memoff(struct channel *ch)
256 {
257         (ch->board->memoff)(ch);
258 }
259 static void assertgwinon(struct channel *ch)
260 {
261         (ch->board->assertgwinon)(ch);
262 }
263
264 static void assertmemoff(struct channel *ch)
265 {
266         (ch->board->assertmemoff)(ch);
267 }
268
269 /* ---------------------------------------------------------
270         PCXEM windowing is the same as that used in the PCXR 
271         and CX series cards.
272 ------------------------------------------------------------ */
273
274 static void pcxem_memwinon(struct board_info *b, unsigned int win)
275 {
276         outb_p(FEPWIN|win, b->port + 1);
277 }
278
279 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
280 {
281         outb_p(0, b->port + 1);
282 }
283
284 static void pcxem_globalwinon(struct channel *ch)
285 {
286         outb_p( FEPWIN, (int)ch->board->port + 1);
287 }
288
289 static void pcxem_rxwinon(struct channel *ch)
290 {
291         outb_p(ch->rxwin, (int)ch->board->port + 1);
292 }
293
294 static void pcxem_txwinon(struct channel *ch)
295 {
296         outb_p(ch->txwin, (int)ch->board->port + 1);
297 }
298
299 static void pcxem_memoff(struct channel *ch)
300 {
301         outb_p(0, (int)ch->board->port + 1);
302 }
303
304 /* ----------------- Begin pcxe memory window stuff ------------------ */
305
306 static void pcxe_memwinon(struct board_info *b, unsigned int win)
307 {
308                outb_p(FEPWIN | win, b->port + 1);
309 }
310
311 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
312 {
313         outb_p(inb(b->port) & ~FEPMEM,
314                    b->port + 1);
315         outb_p(0, b->port + 1);
316 }
317
318 static void pcxe_globalwinon(struct channel *ch)
319 {
320         outb_p( FEPWIN, (int)ch->board->port + 1);
321 }
322
323 static void pcxe_rxwinon(struct channel *ch)
324 {
325                 outb_p(ch->rxwin, (int)ch->board->port + 1);
326 }
327
328 static void pcxe_txwinon(struct channel *ch)
329 {
330                 outb_p(ch->txwin, (int)ch->board->port + 1);
331 }
332
333 static void pcxe_memoff(struct channel *ch)
334 {
335         outb_p(0, (int)ch->board->port);
336         outb_p(0, (int)ch->board->port + 1);
337 }
338
339 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
340
341 static void pcxi_memwinon(struct board_info *b, unsigned int win)
342 {
343                outb_p(inb(b->port) | FEPMEM, b->port);
344 }
345
346 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
347 {
348         outb_p(inb(b->port) & ~FEPMEM, b->port);
349 }
350
351 static void pcxi_globalwinon(struct channel *ch)
352 {
353         outb_p(FEPMEM, ch->board->port);
354 }
355
356 static void pcxi_rxwinon(struct channel *ch)
357 {
358                 outb_p(FEPMEM, ch->board->port);
359 }
360
361 static void pcxi_txwinon(struct channel *ch)
362 {
363                 outb_p(FEPMEM, ch->board->port);
364 }
365
366 static void pcxi_memoff(struct channel *ch)
367 {
368         outb_p(0, ch->board->port);
369 }
370
371 static void pcxi_assertgwinon(struct channel *ch)
372 {
373         epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
374 }
375
376 static void pcxi_assertmemoff(struct channel *ch)
377 {
378         epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
379 }
380
381
382 /* ----------------------------------------------------------------------
383         Not all of the cards need specific memory windowing routines.  Some
384         cards (Such as PCI) needs no windowing routines at all.  We provide
385         these do nothing routines so that the same code base can be used.
386         The driver will ALWAYS call a windowing routine if it thinks it needs
387         to; regardless of the card.  However, dependent on the card the routine
388         may or may not do anything.
389 ---------------------------------------------------------------------------*/
390
391 static void dummy_memwinon(struct board_info *b, unsigned int win)
392 {
393 }
394
395 static void dummy_memwinoff(struct board_info *b, unsigned int win)
396 {
397 }
398
399 static void dummy_globalwinon(struct channel *ch)
400 {
401 }
402
403 static void dummy_rxwinon(struct channel *ch)
404 {
405 }
406
407 static void dummy_txwinon(struct channel *ch)
408 {
409 }
410
411 static void dummy_memoff(struct channel *ch)
412 {
413 }
414
415 static void dummy_assertgwinon(struct channel *ch)
416 {
417 }
418
419 static void dummy_assertmemoff(struct channel *ch)
420 {
421 }
422
423 /* ----------------- Begin verifyChannel function ----------------------- */
424 static struct channel *verifyChannel(struct tty_struct *tty)
425 { /* Begin verifyChannel */
426         /* --------------------------------------------------------------------
427                 This routine basically provides a sanity check.  It insures that
428                 the channel returned is within the proper range of addresses as
429                 well as properly initialized.  If some bogus info gets passed in
430                 through tty->driver_data this should catch it.
431                 --------------------------------------------------------------------- */
432         if (tty) {
433                 struct channel *ch = (struct channel *)tty->driver_data;
434                 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) {
435                         if (ch->magic == EPCA_MAGIC)
436                                 return ch;
437                 }
438         }
439         return NULL;
440
441 } /* End verifyChannel */
442
443 /* ------------------ Begin pc_sched_event ------------------------- */
444
445 static void pc_sched_event(struct channel *ch, int event)
446 {
447         /* ----------------------------------------------------------------------
448                 We call this to schedule interrupt processing on some event.  The 
449                 kernel sees our request and calls the related routine in OUR driver.
450         -------------------------------------------------------------------------*/
451         ch->event |= 1 << event;
452         schedule_work(&ch->tqueue);
453 } /* End pc_sched_event */
454
455 /* ------------------ Begin epca_error ------------------------- */
456
457 static void epca_error(int line, char *msg)
458 {
459         printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg);
460 }
461
462 /* ------------------ Begin pc_close ------------------------- */
463 static void pc_close(struct tty_struct * tty, struct file * filp)
464 {
465         struct channel *ch;
466         unsigned long flags;
467         /* ---------------------------------------------------------
468                 verifyChannel returns the channel from the tty struct
469                 if it is valid.  This serves as a sanity check.
470         ------------------------------------------------------------- */
471         if ((ch = verifyChannel(tty)) != NULL)  { /* Begin if ch != NULL */
472                 spin_lock_irqsave(&epca_lock, flags);
473                 if (tty_hung_up_p(filp)) {
474                         spin_unlock_irqrestore(&epca_lock, flags);
475                         return;
476                 }
477                 /* Check to see if the channel is open more than once */
478                 if (ch->count-- > 1)  {
479                         /* Begin channel is open more than once */
480                         /* -------------------------------------------------------------
481                                 Return without doing anything.  Someone might still be using
482                                 the channel.
483                         ---------------------------------------------------------------- */
484                         spin_unlock_irqrestore(&epca_lock, flags);
485                         return;
486                 } /* End channel is open more than once */
487
488                 /* Port open only once go ahead with shutdown & reset */
489                 if (ch->count < 0)
490                         BUG();
491
492                 /* ---------------------------------------------------------------
493                         Let the rest of the driver know the channel is being closed.
494                         This becomes important if an open is attempted before close 
495                         is finished.
496                 ------------------------------------------------------------------ */
497                 ch->asyncflags |= ASYNC_CLOSING;
498                 tty->closing = 1;
499
500                 spin_unlock_irqrestore(&epca_lock, flags);
501
502                 if (ch->asyncflags & ASYNC_INITIALIZED)  {
503                         /* Setup an event to indicate when the transmit buffer empties */
504                         setup_empty_event(tty, ch);             
505                         tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */
506                 }
507                 if (tty->driver->flush_buffer)
508                         tty->driver->flush_buffer(tty);
509
510                 tty_ldisc_flush(tty);
511                 shutdown(ch);
512
513                 spin_lock_irqsave(&epca_lock, flags);
514                 tty->closing = 0;
515                 ch->event = 0;
516                 ch->tty = NULL;
517                 spin_unlock_irqrestore(&epca_lock, flags);
518
519                 if (ch->blocked_open)  { /* Begin if blocked_open */
520                         if (ch->close_delay) 
521                                 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
522                         wake_up_interruptible(&ch->open_wait);
523                 } /* End if blocked_open */
524                 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED | 
525                                       ASYNC_CLOSING);
526                 wake_up_interruptible(&ch->close_wait);
527         } /* End if ch != NULL */
528 } /* End pc_close */ 
529
530 /* ------------------ Begin shutdown  ------------------------- */
531
532 static void shutdown(struct channel *ch)
533 { /* Begin shutdown */
534
535         unsigned long flags;
536         struct tty_struct *tty;
537         struct board_chan *bc;
538
539         if (!(ch->asyncflags & ASYNC_INITIALIZED)) 
540                 return;
541
542         spin_lock_irqsave(&epca_lock, flags);
543
544         globalwinon(ch);
545         bc = ch->brdchan;
546
547         /* ------------------------------------------------------------------
548                 In order for an event to be generated on the receipt of data the
549                 idata flag must be set. Since we are shutting down, this is not 
550                 necessary clear this flag.
551         --------------------------------------------------------------------- */ 
552
553         if (bc)
554                 writeb(0, &bc->idata);
555         tty = ch->tty;
556
557         /* ----------------------------------------------------------------
558            If we're a modem control device and HUPCL is on, drop RTS & DTR.
559         ------------------------------------------------------------------ */
560
561         if (tty->termios->c_cflag & HUPCL)  {
562                 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
563                 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
564         }
565         memoff(ch);
566
567         /* ------------------------------------------------------------------
568                 The channel has officialy been closed.  The next time it is opened
569                 it will have to reinitialized.  Set a flag to indicate this.
570         ---------------------------------------------------------------------- */
571
572         /* Prevent future Digi programmed interrupts from coming active */
573
574         ch->asyncflags &= ~ASYNC_INITIALIZED;
575         spin_unlock_irqrestore(&epca_lock, flags);
576
577 } /* End shutdown */
578
579 /* ------------------ Begin pc_hangup  ------------------------- */
580
581 static void pc_hangup(struct tty_struct *tty)
582 { /* Begin pc_hangup */
583         struct channel *ch;
584         
585         /* ---------------------------------------------------------
586                 verifyChannel returns the channel from the tty struct
587                 if it is valid.  This serves as a sanity check.
588         ------------------------------------------------------------- */
589
590         if ((ch = verifyChannel(tty)) != NULL)  { /* Begin if ch != NULL */
591                 unsigned long flags;
592
593                 if (tty->driver->flush_buffer)
594                         tty->driver->flush_buffer(tty);
595                 tty_ldisc_flush(tty);
596                 shutdown(ch);
597
598                 spin_lock_irqsave(&epca_lock, flags);
599                 ch->tty   = NULL;
600                 ch->event = 0;
601                 ch->count = 0;
602                 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
603                 spin_unlock_irqrestore(&epca_lock, flags);
604                 wake_up_interruptible(&ch->open_wait);
605         } /* End if ch != NULL */
606
607 } /* End pc_hangup */
608
609 /* ------------------ Begin pc_write  ------------------------- */
610
611 static int pc_write(struct tty_struct * tty,
612                     const unsigned char *buf, int bytesAvailable)
613 { /* Begin pc_write */
614         unsigned int head, tail;
615         int dataLen;
616         int size;
617         int amountCopied;
618         struct channel *ch;
619         unsigned long flags;
620         int remain;
621         struct board_chan *bc;
622
623         /* ----------------------------------------------------------------
624                 pc_write is primarily called directly by the kernel routine
625                 tty_write (Though it can also be called by put_char) found in
626                 tty_io.c.  pc_write is passed a line discipline buffer where 
627                 the data to be written out is stored.  The line discipline 
628                 implementation itself is done at the kernel level and is not 
629                 brought into the driver.  
630         ------------------------------------------------------------------- */
631
632         /* ---------------------------------------------------------
633                 verifyChannel returns the channel from the tty struct
634                 if it is valid.  This serves as a sanity check.
635         ------------------------------------------------------------- */
636
637         if ((ch = verifyChannel(tty)) == NULL)
638                 return 0;
639
640         /* Make a pointer to the channel data structure found on the board. */
641
642         bc   = ch->brdchan;
643         size = ch->txbufsize;
644         amountCopied = 0;
645
646         spin_lock_irqsave(&epca_lock, flags);
647         globalwinon(ch);
648
649         head = readw(&bc->tin) & (size - 1);
650         tail = readw(&bc->tout);
651
652         if (tail != readw(&bc->tout))
653                 tail = readw(&bc->tout);
654         tail &= (size - 1);
655
656         /*      If head >= tail, head has not wrapped around. */ 
657         if (head >= tail)  { /* Begin head has not wrapped */
658                 /* ---------------------------------------------------------------
659                         remain (much like dataLen above) represents the total amount of
660                         space available on the card for data.  Here dataLen represents
661                         the space existing between the head pointer and the end of 
662                         buffer.  This is important because a memcpy cannot be told to
663                         automatically wrap around when it hits the buffer end.
664                 ------------------------------------------------------------------ */ 
665                 dataLen = size - head;
666                 remain = size - (head - tail) - 1;
667         } else { /* Begin head has wrapped around */
668
669                 remain = tail - head - 1;
670                 dataLen = remain;
671
672         } /* End head has wrapped around */
673         /* -------------------------------------------------------------------
674                         Check the space on the card.  If we have more data than 
675                         space; reduce the amount of data to fit the space.
676         ---------------------------------------------------------------------- */
677         bytesAvailable = min(remain, bytesAvailable);
678         txwinon(ch);
679         while (bytesAvailable > 0) 
680         { /* Begin while there is data to copy onto card */
681
682                 /* -----------------------------------------------------------------
683                         If head is not wrapped, the below will make sure the first 
684                         data copy fills to the end of card buffer.
685                 ------------------------------------------------------------------- */
686
687                 dataLen = min(bytesAvailable, dataLen);
688                 memcpy(ch->txptr + head, buf, dataLen);
689                 buf += dataLen;
690                 head += dataLen;
691                 amountCopied += dataLen;
692                 bytesAvailable -= dataLen;
693
694                 if (head >= size) {
695                         head = 0;
696                         dataLen = tail;
697                 }
698         } /* End while there is data to copy onto card */
699         ch->statusflags |= TXBUSY;
700         globalwinon(ch);
701         writew(head, &bc->tin);
702
703         if ((ch->statusflags & LOWWAIT) == 0)  {
704                 ch->statusflags |= LOWWAIT;
705                 writeb(1, &bc->ilow);
706         }
707         memoff(ch);
708         spin_unlock_irqrestore(&epca_lock, flags);
709         return(amountCopied);
710
711 } /* End pc_write */
712
713 /* ------------------ Begin pc_put_char  ------------------------- */
714
715 static void pc_put_char(struct tty_struct *tty, unsigned char c)
716 { /* Begin pc_put_char */
717         pc_write(tty, &c, 1);
718 } /* End pc_put_char */
719
720 /* ------------------ Begin pc_write_room  ------------------------- */
721
722 static int pc_write_room(struct tty_struct *tty)
723 { /* Begin pc_write_room */
724
725         int remain;
726         struct channel *ch;
727         unsigned long flags;
728         unsigned int head, tail;
729         struct board_chan *bc;
730
731         remain = 0;
732
733         /* ---------------------------------------------------------
734                 verifyChannel returns the channel from the tty struct
735                 if it is valid.  This serves as a sanity check.
736         ------------------------------------------------------------- */
737
738         if ((ch = verifyChannel(tty)) != NULL)  {
739                 spin_lock_irqsave(&epca_lock, flags);
740                 globalwinon(ch);
741
742                 bc   = ch->brdchan;
743                 head = readw(&bc->tin) & (ch->txbufsize - 1);
744                 tail = readw(&bc->tout);
745
746                 if (tail != readw(&bc->tout))
747                         tail = readw(&bc->tout);
748                 /* Wrap tail if necessary */
749                 tail &= (ch->txbufsize - 1);
750
751                 if ((remain = tail - head - 1) < 0 )
752                         remain += ch->txbufsize;
753
754                 if (remain && (ch->statusflags & LOWWAIT) == 0) {
755                         ch->statusflags |= LOWWAIT;
756                         writeb(1, &bc->ilow);
757                 }
758                 memoff(ch);
759                 spin_unlock_irqrestore(&epca_lock, flags);
760         }
761         /* Return how much room is left on card */
762         return remain;
763
764 } /* End pc_write_room */
765
766 /* ------------------ Begin pc_chars_in_buffer  ---------------------- */
767
768 static int pc_chars_in_buffer(struct tty_struct *tty)
769 { /* Begin pc_chars_in_buffer */
770
771         int chars;
772         unsigned int ctail, head, tail;
773         int remain;
774         unsigned long flags;
775         struct channel *ch;
776         struct board_chan *bc;
777
778         /* ---------------------------------------------------------
779                 verifyChannel returns the channel from the tty struct
780                 if it is valid.  This serves as a sanity check.
781         ------------------------------------------------------------- */
782
783         if ((ch = verifyChannel(tty)) == NULL)
784                 return(0);
785
786         spin_lock_irqsave(&epca_lock, flags);
787         globalwinon(ch);
788
789         bc = ch->brdchan;
790         tail = readw(&bc->tout);
791         head = readw(&bc->tin);
792         ctail = readw(&ch->mailbox->cout);
793
794         if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0)
795                 chars = 0;
796         else  { /* Begin if some space on the card has been used */
797                 head = readw(&bc->tin) & (ch->txbufsize - 1);
798                 tail &= (ch->txbufsize - 1);
799                 /*  --------------------------------------------------------------
800                         The logic here is basically opposite of the above pc_write_room
801                         here we are finding the amount of bytes in the buffer filled.
802                         Not the amount of bytes empty.
803                 ------------------------------------------------------------------- */
804                 if ((remain = tail - head - 1) < 0 )
805                         remain += ch->txbufsize;
806                 chars = (int)(ch->txbufsize - remain);
807                 /* -------------------------------------------------------------  
808                         Make it possible to wakeup anything waiting for output
809                         in tty_ioctl.c, etc.
810
811                         If not already set.  Setup an event to indicate when the
812                         transmit buffer empties 
813                 ----------------------------------------------------------------- */
814                 if (!(ch->statusflags & EMPTYWAIT))
815                         setup_empty_event(tty,ch);
816
817         } /* End if some space on the card has been used */
818         memoff(ch);
819         spin_unlock_irqrestore(&epca_lock, flags);
820         /* Return number of characters residing on card. */
821         return(chars);
822
823 } /* End pc_chars_in_buffer */
824
825 /* ------------------ Begin pc_flush_buffer  ---------------------- */
826
827 static void pc_flush_buffer(struct tty_struct *tty)
828 { /* Begin pc_flush_buffer */
829
830         unsigned int tail;
831         unsigned long flags;
832         struct channel *ch;
833         struct board_chan *bc;
834         /* ---------------------------------------------------------
835                 verifyChannel returns the channel from the tty struct
836                 if it is valid.  This serves as a sanity check.
837         ------------------------------------------------------------- */
838         if ((ch = verifyChannel(tty)) == NULL)
839                 return;
840
841         spin_lock_irqsave(&epca_lock, flags);
842         globalwinon(ch);
843         bc   = ch->brdchan;
844         tail = readw(&bc->tout);
845         /* Have FEP move tout pointer; effectively flushing transmit buffer */
846         fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
847         memoff(ch);
848         spin_unlock_irqrestore(&epca_lock, flags);
849         wake_up_interruptible(&tty->write_wait);
850         tty_wakeup(tty);
851 } /* End pc_flush_buffer */
852
853 /* ------------------ Begin pc_flush_chars  ---------------------- */
854
855 static void pc_flush_chars(struct tty_struct *tty)
856 { /* Begin pc_flush_chars */
857         struct channel * ch;
858         /* ---------------------------------------------------------
859                 verifyChannel returns the channel from the tty struct
860                 if it is valid.  This serves as a sanity check.
861         ------------------------------------------------------------- */
862         if ((ch = verifyChannel(tty)) != NULL) {
863                 unsigned long flags;
864                 spin_lock_irqsave(&epca_lock, flags);
865                 /* ----------------------------------------------------------------
866                         If not already set and the transmitter is busy setup an event
867                         to indicate when the transmit empties.
868                 ------------------------------------------------------------------- */
869                 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT))
870                         setup_empty_event(tty,ch);
871                 spin_unlock_irqrestore(&epca_lock, flags);
872         }
873 } /* End pc_flush_chars */
874
875 /* ------------------ Begin block_til_ready  ---------------------- */
876
877 static int block_til_ready(struct tty_struct *tty, 
878                            struct file *filp, struct channel *ch)
879 { /* Begin block_til_ready */
880         DECLARE_WAITQUEUE(wait,current);
881         int     retval, do_clocal = 0;
882         unsigned long flags;
883
884         if (tty_hung_up_p(filp)) {
885                 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
886                         retval = -EAGAIN;
887                 else
888                         retval = -ERESTARTSYS;  
889                 return(retval);
890         }
891
892         /* ----------------------------------------------------------------- 
893                 If the device is in the middle of being closed, then block
894                 until it's done, and then try again.
895         -------------------------------------------------------------------- */
896         if (ch->asyncflags & ASYNC_CLOSING) {
897                 interruptible_sleep_on(&ch->close_wait);
898
899                 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
900                         return -EAGAIN;
901                 else
902                         return -ERESTARTSYS;
903         }
904
905         if (filp->f_flags & O_NONBLOCK)  {
906                 /* ----------------------------------------------------------------- 
907                  If non-blocking mode is set, then make the check up front
908                  and then exit.
909                 -------------------------------------------------------------------- */
910                 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
911                 return 0;
912         }
913         if (tty->termios->c_cflag & CLOCAL)
914                 do_clocal = 1;
915         /* Block waiting for the carrier detect and the line to become free */
916         
917         retval = 0;
918         add_wait_queue(&ch->open_wait, &wait);
919
920         spin_lock_irqsave(&epca_lock, flags);
921         /* We dec count so that pc_close will know when to free things */
922         if (!tty_hung_up_p(filp))
923                 ch->count--;
924         ch->blocked_open++;
925         while(1) 
926         { /* Begin forever while  */
927                 set_current_state(TASK_INTERRUPTIBLE);
928                 if (tty_hung_up_p(filp) ||
929                     !(ch->asyncflags & ASYNC_INITIALIZED)) 
930                 {
931                         if (ch->asyncflags & ASYNC_HUP_NOTIFY)
932                                 retval = -EAGAIN;
933                         else
934                                 retval = -ERESTARTSYS;  
935                         break;
936                 }
937                 if (!(ch->asyncflags & ASYNC_CLOSING) && 
938                           (do_clocal || (ch->imodem & ch->dcd)))
939                         break;
940                 if (signal_pending(current)) {
941                         retval = -ERESTARTSYS;
942                         break;
943                 }
944                 spin_unlock_irqrestore(&epca_lock, flags);
945                 /* ---------------------------------------------------------------
946                         Allow someone else to be scheduled.  We will occasionally go
947                         through this loop until one of the above conditions change.
948                         The below schedule call will allow other processes to enter and
949                         prevent this loop from hogging the cpu.
950                 ------------------------------------------------------------------ */
951                 schedule();
952                 spin_lock_irqsave(&epca_lock, flags);
953
954         } /* End forever while  */
955
956         current->state = TASK_RUNNING;
957         remove_wait_queue(&ch->open_wait, &wait);
958         if (!tty_hung_up_p(filp))
959                 ch->count++;
960         ch->blocked_open--;
961
962         spin_unlock_irqrestore(&epca_lock, flags);
963
964         if (retval)
965                 return retval;
966
967         ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
968         return 0;
969 } /* End block_til_ready */     
970
971 /* ------------------ Begin pc_open  ---------------------- */
972
973 static int pc_open(struct tty_struct *tty, struct file * filp)
974 { /* Begin pc_open */
975
976         struct channel *ch;
977         unsigned long flags;
978         int line, retval, boardnum;
979         struct board_chan *bc;
980         unsigned int head;
981
982         line = tty->index;
983         if (line < 0 || line >= nbdevs)
984                 return -ENODEV;
985
986         ch = &digi_channels[line];
987         boardnum = ch->boardnum;
988
989         /* Check status of board configured in system.  */
990
991         /* -----------------------------------------------------------------
992                 I check to see if the epca_setup routine detected an user error.  
993                 It might be better to put this in pc_init, but for the moment it
994                 goes here.
995         ---------------------------------------------------------------------- */
996
997         if (invalid_lilo_config) {
998                 if (setup_error_code & INVALID_BOARD_TYPE)
999                         printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
1000                 if (setup_error_code & INVALID_NUM_PORTS)
1001                         printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
1002                 if (setup_error_code & INVALID_MEM_BASE)
1003                         printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
1004                 if (setup_error_code & INVALID_PORT_BASE)
1005                         printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
1006                 if (setup_error_code & INVALID_BOARD_STATUS)
1007                         printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
1008                 if (setup_error_code & INVALID_ALTPIN)
1009                         printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
1010                 tty->driver_data = NULL;   /* Mark this device as 'down' */
1011                 return -ENODEV;
1012         }
1013         if (boardnum >= num_cards || boards[boardnum].status == DISABLED)  {
1014                 tty->driver_data = NULL;   /* Mark this device as 'down' */
1015                 return(-ENODEV);
1016         }
1017         
1018         if ((bc = ch->brdchan) == 0) {
1019                 tty->driver_data = NULL;
1020                 return -ENODEV;
1021         }
1022
1023         spin_lock_irqsave(&epca_lock, flags);
1024         /* ------------------------------------------------------------------
1025                 Every time a channel is opened, increment a counter.  This is 
1026                 necessary because we do not wish to flush and shutdown the channel
1027                 until the last app holding the channel open, closes it.         
1028         --------------------------------------------------------------------- */
1029         ch->count++;
1030         /* ----------------------------------------------------------------
1031                 Set a kernel structures pointer to our local channel 
1032                 structure.  This way we can get to it when passed only
1033                 a tty struct.
1034         ------------------------------------------------------------------ */
1035         tty->driver_data = ch;
1036         /* ----------------------------------------------------------------
1037                 If this is the first time the channel has been opened, initialize
1038                 the tty->termios struct otherwise let pc_close handle it.
1039         -------------------------------------------------------------------- */
1040         globalwinon(ch);
1041         ch->statusflags = 0;
1042
1043         /* Save boards current modem status */
1044         ch->imodem = bc->mstat;
1045
1046         /* ----------------------------------------------------------------
1047            Set receive head and tail ptrs to each other.  This indicates
1048            no data available to read.
1049         ----------------------------------------------------------------- */
1050         head = readw(&bc->rin);
1051         writew(head, &bc->rout);
1052
1053         /* Set the channels associated tty structure */
1054         ch->tty = tty;
1055
1056         /* -----------------------------------------------------------------
1057                 The below routine generally sets up parity, baud, flow control 
1058                 issues, etc.... It effect both control flags and input flags.
1059         -------------------------------------------------------------------- */
1060         epcaparam(tty,ch);
1061         ch->asyncflags |= ASYNC_INITIALIZED;
1062         memoff(ch);
1063         spin_unlock_irqrestore(&epca_lock, flags);
1064
1065         retval = block_til_ready(tty, filp, ch);
1066         if (retval)
1067                 return retval;
1068         /* -------------------------------------------------------------
1069                 Set this again in case a hangup set it to zero while this 
1070                 open() was waiting for the line...
1071         --------------------------------------------------------------- */
1072         spin_lock_irqsave(&epca_lock, flags);
1073         ch->tty = tty;
1074         globalwinon(ch);
1075         /* Enable Digi Data events */
1076         writeb(1, &bc->idata);
1077         memoff(ch);
1078         spin_unlock_irqrestore(&epca_lock, flags);
1079         return 0;
1080 } /* End pc_open */
1081
1082 static int __init epca_module_init(void)
1083 { /* Begin init_module */
1084         return pc_init();
1085 }
1086
1087 module_init(epca_module_init);
1088
1089 static struct pci_driver epca_driver;
1090
1091 static void __exit epca_module_exit(void)
1092 {
1093         int               count, crd;
1094         struct board_info *bd;
1095         struct channel    *ch;
1096
1097         del_timer_sync(&epca_timer);
1098
1099         if ((tty_unregister_driver(pc_driver)) ||  
1100             (tty_unregister_driver(pc_info)))
1101         {
1102                 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1103                 return;
1104         }
1105         put_tty_driver(pc_driver);
1106         put_tty_driver(pc_info);
1107
1108         for (crd = 0; crd < num_cards; crd++)  { /* Begin for each card */
1109                 bd = &boards[crd];
1110                 if (!bd)
1111                 { /* Begin sanity check */
1112                         printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1113                         return;
1114                 } /* End sanity check */
1115                 ch = card_ptr[crd];
1116                 for (count = 0; count < bd->numports; count++, ch++) 
1117                 { /* Begin for each port */
1118                         if (ch) {
1119                                 if (ch->tty)
1120                                         tty_hangup(ch->tty);
1121                                 kfree(ch->tmp_buf);
1122                         }
1123                 } /* End for each port */
1124         } /* End for each card */
1125         pci_unregister_driver (&epca_driver);
1126 }
1127
1128 module_exit(epca_module_exit);
1129
1130 static struct tty_operations pc_ops = {
1131         .open = pc_open,
1132         .close = pc_close,
1133         .write = pc_write,
1134         .write_room = pc_write_room,
1135         .flush_buffer = pc_flush_buffer,
1136         .chars_in_buffer = pc_chars_in_buffer,
1137         .flush_chars = pc_flush_chars,
1138         .put_char = pc_put_char,
1139         .ioctl = pc_ioctl,
1140         .set_termios = pc_set_termios,
1141         .stop = pc_stop,
1142         .start = pc_start,
1143         .throttle = pc_throttle,
1144         .unthrottle = pc_unthrottle,
1145         .hangup = pc_hangup,
1146 };
1147
1148 static int info_open(struct tty_struct *tty, struct file * filp)
1149 {
1150         return 0;
1151 }
1152
1153 static struct tty_operations info_ops = {
1154         .open = info_open,
1155         .ioctl = info_ioctl,
1156 };
1157
1158 /* ------------------ Begin pc_init  ---------------------- */
1159
1160 static int __init pc_init(void)
1161 { /* Begin pc_init */
1162         int crd;
1163         struct board_info *bd;
1164         unsigned char board_id = 0;
1165
1166         int pci_boards_found, pci_count;
1167
1168         pci_count = 0;
1169
1170         pc_driver = alloc_tty_driver(MAX_ALLOC);
1171         if (!pc_driver)
1172                 return -ENOMEM;
1173
1174         pc_info = alloc_tty_driver(MAX_ALLOC);
1175         if (!pc_info) {
1176                 put_tty_driver(pc_driver);
1177                 return -ENOMEM;
1178         }
1179
1180         /* -----------------------------------------------------------------------
1181                 If epca_setup has not been ran by LILO set num_cards to defaults; copy
1182                 board structure defined by digiConfig into drivers board structure.
1183                 Note : If LILO has ran epca_setup then epca_setup will handle defining
1184                 num_cards as well as copying the data into the board structure.
1185         -------------------------------------------------------------------------- */
1186         if (!liloconfig) { /* Begin driver has been configured via. epcaconfig */
1187
1188                 nbdevs = NBDEVS;
1189                 num_cards = NUMCARDS;
1190                 memcpy((void *)&boards, (void *)&static_boards,
1191                        (sizeof(struct board_info) * NUMCARDS));
1192         } /* End driver has been configured via. epcaconfig */
1193
1194         /* -----------------------------------------------------------------
1195                 Note : If lilo was used to configure the driver and the 
1196                 ignore epcaconfig option was choosen (digiepca=2) then 
1197                 nbdevs and num_cards will equal 0 at this point.  This is
1198                 okay; PCI cards will still be picked up if detected.
1199         --------------------------------------------------------------------- */
1200
1201         /*  -----------------------------------------------------------
1202                 Set up interrupt, we will worry about memory allocation in
1203                 post_fep_init. 
1204         --------------------------------------------------------------- */
1205
1206
1207         printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION);
1208
1209         /* ------------------------------------------------------------------
1210                 NOTE : This code assumes that the number of ports found in 
1211                        the boards array is correct.  This could be wrong if
1212                        the card in question is PCI (And therefore has no ports 
1213                        entry in the boards structure.)  The rest of the 
1214                        information will be valid for PCI because the beginning
1215                        of pc_init scans for PCI and determines i/o and base
1216                        memory addresses.  I am not sure if it is possible to 
1217                        read the number of ports supported by the card prior to
1218                        it being booted (Since that is the state it is in when 
1219                        pc_init is run).  Because it is not possible to query the
1220                        number of supported ports until after the card has booted;
1221                        we are required to calculate the card_ptrs as the card is         
1222                        is initialized (Inside post_fep_init).  The negative thing
1223                        about this approach is that digiDload's call to GET_INFO
1224                        will have a bad port value.  (Since this is called prior
1225                        to post_fep_init.)
1226
1227         --------------------------------------------------------------------- */
1228   
1229         pci_boards_found = 0;
1230         if(num_cards < MAXBOARDS)
1231                 pci_boards_found += init_PCI();
1232         num_cards += pci_boards_found;
1233
1234         pc_driver->owner = THIS_MODULE;
1235         pc_driver->name = "ttyD"; 
1236         pc_driver->devfs_name = "tts/D";
1237         pc_driver->major = DIGI_MAJOR; 
1238         pc_driver->minor_start = 0;
1239         pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1240         pc_driver->subtype = SERIAL_TYPE_NORMAL;
1241         pc_driver->init_termios = tty_std_termios;
1242         pc_driver->init_termios.c_iflag = 0;
1243         pc_driver->init_termios.c_oflag = 0;
1244         pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1245         pc_driver->init_termios.c_lflag = 0;
1246         pc_driver->flags = TTY_DRIVER_REAL_RAW;
1247         tty_set_operations(pc_driver, &pc_ops);
1248
1249         pc_info->owner = THIS_MODULE;
1250         pc_info->name = "digi_ctl";
1251         pc_info->major = DIGIINFOMAJOR;
1252         pc_info->minor_start = 0;
1253         pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1254         pc_info->subtype = SERIAL_TYPE_INFO;
1255         pc_info->init_termios = tty_std_termios;
1256         pc_info->init_termios.c_iflag = 0;
1257         pc_info->init_termios.c_oflag = 0;
1258         pc_info->init_termios.c_lflag = 0;
1259         pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1260         pc_info->flags = TTY_DRIVER_REAL_RAW;
1261         tty_set_operations(pc_info, &info_ops);
1262
1263
1264         for (crd = 0; crd < num_cards; crd++) 
1265         { /* Begin for each card */
1266
1267                 /*  ------------------------------------------------------------------
1268                         This is where the appropriate memory handlers for the hardware is
1269                         set.  Everything at runtime blindly jumps through these vectors.
1270                 ---------------------------------------------------------------------- */
1271
1272                 /* defined in epcaconfig.h */
1273                 bd = &boards[crd];
1274
1275                 switch (bd->type)
1276                 { /* Begin switch on bd->type {board type} */
1277                         case PCXEM:
1278                         case EISAXEM:
1279                                 bd->memwinon     = pcxem_memwinon ;
1280                                 bd->memwinoff    = pcxem_memwinoff ;
1281                                 bd->globalwinon  = pcxem_globalwinon ;
1282                                 bd->txwinon      = pcxem_txwinon ;
1283                                 bd->rxwinon      = pcxem_rxwinon ;
1284                                 bd->memoff       = pcxem_memoff ;
1285                                 bd->assertgwinon = dummy_assertgwinon;
1286                                 bd->assertmemoff = dummy_assertmemoff;
1287                                 break;
1288
1289                         case PCIXEM:
1290                         case PCIXRJ:
1291                         case PCIXR:
1292                                 bd->memwinon     = dummy_memwinon;
1293                                 bd->memwinoff    = dummy_memwinoff;
1294                                 bd->globalwinon  = dummy_globalwinon;
1295                                 bd->txwinon      = dummy_txwinon;
1296                                 bd->rxwinon      = dummy_rxwinon;
1297                                 bd->memoff       = dummy_memoff;
1298                                 bd->assertgwinon = dummy_assertgwinon;
1299                                 bd->assertmemoff = dummy_assertmemoff;
1300                                 break;
1301
1302                         case PCXE:
1303                         case PCXEVE:
1304
1305                                 bd->memwinon     = pcxe_memwinon;
1306                                 bd->memwinoff    = pcxe_memwinoff;
1307                                 bd->globalwinon  = pcxe_globalwinon;
1308                                 bd->txwinon      = pcxe_txwinon;
1309                                 bd->rxwinon      = pcxe_rxwinon;
1310                                 bd->memoff       = pcxe_memoff;
1311                                 bd->assertgwinon = dummy_assertgwinon;
1312                                 bd->assertmemoff = dummy_assertmemoff;
1313                                 break;
1314
1315                         case PCXI:
1316                         case PC64XE:
1317
1318                                 bd->memwinon     = pcxi_memwinon;
1319                                 bd->memwinoff    = pcxi_memwinoff;
1320                                 bd->globalwinon  = pcxi_globalwinon;
1321                                 bd->txwinon      = pcxi_txwinon;
1322                                 bd->rxwinon      = pcxi_rxwinon;
1323                                 bd->memoff       = pcxi_memoff;
1324                                 bd->assertgwinon = pcxi_assertgwinon;
1325                                 bd->assertmemoff = pcxi_assertmemoff;
1326                                 break;
1327
1328                         default:
1329                                 break;
1330
1331                 } /* End switch on bd->type */
1332
1333                 /* ---------------------------------------------------------------
1334                         Some cards need a memory segment to be defined for use in 
1335                         transmit and receive windowing operations.  These boards
1336                         are listed in the below switch.  In the case of the XI the
1337                         amount of memory on the board is variable so the memory_seg
1338                         is also variable.  This code determines what they segment 
1339                         should be.
1340                 ----------------------------------------------------------------- */
1341
1342                 switch (bd->type)
1343                 { /* Begin switch on bd->type {board type} */
1344
1345                         case PCXE:
1346                         case PCXEVE:
1347                         case PC64XE:
1348                                 bd->memory_seg = 0xf000;
1349                         break;
1350
1351                         case PCXI:
1352                                 board_id = inb((int)bd->port);
1353                                 if ((board_id & 0x1) == 0x1) 
1354                                 { /* Begin it's an XI card */ 
1355
1356                                         /* Is it a 64K board */
1357                                         if ((board_id & 0x30) == 0) 
1358                                                 bd->memory_seg = 0xf000;
1359
1360                                         /* Is it a 128K board */
1361                                         if ((board_id & 0x30) == 0x10) 
1362                                                 bd->memory_seg = 0xe000;
1363
1364                                         /* Is is a 256K board */        
1365                                         if ((board_id & 0x30) == 0x20) 
1366                                                 bd->memory_seg = 0xc000;
1367
1368                                         /* Is it a 512K board */
1369                                         if ((board_id & 0x30) == 0x30) 
1370                                                 bd->memory_seg = 0x8000;
1371
1372                                 } else printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port);
1373                         break;
1374
1375                 } /* End switch on bd->type */
1376
1377         } /* End for each card */
1378
1379         if (tty_register_driver(pc_driver))
1380                 panic("Couldn't register Digi PC/ driver");
1381
1382         if (tty_register_driver(pc_info))
1383                 panic("Couldn't register Digi PC/ info ");
1384
1385         /* -------------------------------------------------------------------
1386            Start up the poller to check for events on all enabled boards
1387         ---------------------------------------------------------------------- */
1388
1389         init_timer(&epca_timer);
1390         epca_timer.function = epcapoll;
1391         mod_timer(&epca_timer, jiffies + HZ/25);
1392         return 0;
1393
1394 } /* End pc_init */
1395
1396 /* ------------------ Begin post_fep_init  ---------------------- */
1397
1398 static void post_fep_init(unsigned int crd)
1399 { /* Begin post_fep_init */
1400
1401         int i;
1402         unsigned char *memaddr;
1403         struct global_data *gd;
1404         struct board_info *bd;
1405         struct board_chan *bc;
1406         struct channel *ch; 
1407         int shrinkmem = 0, lowwater ; 
1408  
1409         /*  -------------------------------------------------------------
1410                 This call is made by the user via. the ioctl call DIGI_INIT.
1411                 It is responsible for setting up all the card specific stuff.
1412         ---------------------------------------------------------------- */
1413         bd = &boards[crd];
1414
1415         /* -----------------------------------------------------------------
1416                 If this is a PCI board, get the port info.  Remember PCI cards
1417                 do not have entries into the epcaconfig.h file, so we can't get 
1418                 the number of ports from it.  Unfortunetly, this means that anyone
1419                 doing a DIGI_GETINFO before the board has booted will get an invalid
1420                 number of ports returned (It should return 0).  Calls to DIGI_GETINFO
1421                 after DIGI_INIT has been called will return the proper values. 
1422         ------------------------------------------------------------------- */
1423
1424         if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1425                 /* --------------------------------------------------------------------
1426                         Below we use XEMPORTS as a memory offset regardless of which PCI
1427                         card it is.  This is because all of the supported PCI cards have
1428                         the same memory offset for the channel data.  This will have to be
1429                         changed if we ever develop a PCI/XE card.  NOTE : The FEP manual
1430                         states that the port offset is 0xC22 as opposed to 0xC02.  This is
1431                         only true for PC/XE, and PC/XI cards; not for the XEM, or CX series.
1432                         On the PCI cards the number of ports is determined by reading a 
1433                         ID PROM located in the box attached to the card.  The card can then
1434                         determine the index the id to determine the number of ports available.
1435                         (FYI - The id should be located at 0x1ac (And may use up to 4 bytes
1436                         if the box in question is a XEM or CX)).  
1437                 ------------------------------------------------------------------------ */ 
1438                 /* PCI cards are already remapped at this point ISA are not */
1439                 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1440                 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports");
1441                 nbdevs += (bd->numports);
1442         } else {
1443                 /* Fix up the mappings for ISA/EISA etc */
1444                 /* FIXME: 64K - can we be smarter ? */
1445                 bd->re_map_membase = ioremap(bd->membase, 0x10000);
1446         }
1447
1448         if (crd != 0)
1449                 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1450         else
1451                 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1452
1453         ch = card_ptr[crd];
1454         epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1455
1456         memaddr = bd->re_map_membase;
1457
1458         /* -----------------------------------------------------------------
1459                 The below assignment will set bc to point at the BEGINING of
1460                 the cards channel structures.  For 1 card there will be between
1461                 8 and 64 of these structures.
1462         -------------------------------------------------------------------- */
1463
1464         bc = (struct board_chan *)(memaddr + CHANSTRUCT);
1465
1466         /* -------------------------------------------------------------------
1467                 The below assignment will set gd to point at the BEGINING of
1468                 global memory address 0xc00.  The first data in that global
1469                 memory actually starts at address 0xc1a.  The command in 
1470                 pointer begins at 0xd10.
1471         ---------------------------------------------------------------------- */
1472
1473         gd = (struct global_data *)(memaddr + GLOBAL);
1474
1475         /* --------------------------------------------------------------------
1476                 XEPORTS (address 0xc22) points at the number of channels the
1477                 card supports. (For 64XE, XI, XEM, and XR use 0xc02)
1478         ----------------------------------------------------------------------- */
1479
1480         if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3))
1481                 shrinkmem = 1;
1482         if (bd->type < PCIXEM)
1483                 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1484                         return;         
1485         memwinon(bd, 0);
1486
1487         /*  --------------------------------------------------------------------
1488                 Remember ch is the main drivers channels structure, while bc is 
1489            the cards channel structure.
1490         ------------------------------------------------------------------------ */
1491
1492         /* For every port on the card do ..... */
1493
1494         for (i = 0; i < bd->numports; i++, ch++, bc++)  { /* Begin for each port */
1495                 unsigned long flags;
1496
1497                 ch->brdchan        = bc;
1498                 ch->mailbox        = gd; 
1499                 INIT_WORK(&ch->tqueue, do_softint, ch);
1500                 ch->board          = &boards[crd];
1501
1502                 spin_lock_irqsave(&epca_lock, flags);
1503                 switch (bd->type) {
1504                         /* ----------------------------------------------------------------
1505                                 Since some of the boards use different bitmaps for their
1506                                 control signals we cannot hard code these values and retain
1507                                 portability.  We virtualize this data here.
1508                         ------------------------------------------------------------------- */
1509                         case EISAXEM:
1510                         case PCXEM:
1511                         case PCIXEM:
1512                         case PCIXRJ:
1513                         case PCIXR:
1514                                 ch->m_rts = 0x02 ;
1515                                 ch->m_dcd = 0x80 ; 
1516                                 ch->m_dsr = 0x20 ;
1517                                 ch->m_cts = 0x10 ;
1518                                 ch->m_ri  = 0x40 ;
1519                                 ch->m_dtr = 0x01 ;
1520                                 break;
1521
1522                         case PCXE:
1523                         case PCXEVE:
1524                         case PCXI:
1525                         case PC64XE:
1526                                 ch->m_rts = 0x02 ;
1527                                 ch->m_dcd = 0x08 ; 
1528                                 ch->m_dsr = 0x10 ;
1529                                 ch->m_cts = 0x20 ;
1530                                 ch->m_ri  = 0x40 ;
1531                                 ch->m_dtr = 0x80 ;
1532                                 break;
1533         
1534                 } /* End switch bd->type */
1535
1536                 if (boards[crd].altpin) {
1537                         ch->dsr = ch->m_dcd;
1538                         ch->dcd = ch->m_dsr;
1539                         ch->digiext.digi_flags |= DIGI_ALTPIN;
1540                 }
1541                 else {
1542                         ch->dcd = ch->m_dcd;
1543                         ch->dsr = ch->m_dsr;
1544                 }
1545         
1546                 ch->boardnum   = crd;
1547                 ch->channelnum = i;
1548                 ch->magic      = EPCA_MAGIC;
1549                 ch->tty        = NULL;
1550
1551                 if (shrinkmem) {
1552                         fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1553                         shrinkmem = 0;
1554                 }
1555
1556                 switch (bd->type) {
1557
1558                         case PCIXEM:
1559                         case PCIXRJ:
1560                         case PCIXR:
1561                                 /* Cover all the 2MEG cards */
1562                                 ch->txptr = memaddr + (((bc->tseg) << 4) & 0x1fffff);
1563                                 ch->rxptr = memaddr + (((bc->rseg) << 4) & 0x1fffff);
1564                                 ch->txwin = FEPWIN | ((bc->tseg) >> 11);
1565                                 ch->rxwin = FEPWIN | ((bc->rseg) >> 11);
1566                                 break;
1567
1568                         case PCXEM:
1569                         case EISAXEM:
1570                                 /* Cover all the 32K windowed cards */
1571                                 /* Mask equal to window size - 1 */
1572                                 ch->txptr = memaddr + (((bc->tseg) << 4) & 0x7fff);
1573                                 ch->rxptr = memaddr + (((bc->rseg) << 4) & 0x7fff);
1574                                 ch->txwin = FEPWIN | ((bc->tseg) >> 11);
1575                                 ch->rxwin = FEPWIN | ((bc->rseg) >> 11);
1576                                 break;
1577
1578                         case PCXEVE:
1579                         case PCXE:
1580                                 ch->txptr = memaddr + (((bc->tseg - bd->memory_seg) << 4) & 0x1fff);
1581                                 ch->txwin = FEPWIN | ((bc->tseg - bd->memory_seg) >> 9);
1582                                 ch->rxptr = memaddr + (((bc->rseg - bd->memory_seg) << 4) & 0x1fff);
1583                                 ch->rxwin = FEPWIN | ((bc->rseg - bd->memory_seg) >>9 );
1584                                 break;
1585
1586                         case PCXI:
1587                         case PC64XE:
1588                                 ch->txptr = memaddr + ((bc->tseg - bd->memory_seg) << 4);
1589                                 ch->rxptr = memaddr + ((bc->rseg - bd->memory_seg) << 4);
1590                                 ch->txwin = ch->rxwin = 0;
1591                                 break;
1592
1593                 } /* End switch bd->type */
1594
1595                 ch->txbufhead = 0;
1596                 ch->txbufsize = bc->tmax + 1;
1597         
1598                 ch->rxbufhead = 0;
1599                 ch->rxbufsize = bc->rmax + 1;
1600         
1601                 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1602
1603                 /* Set transmitter low water mark */
1604                 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1605
1606                 /* Set receiver low water mark */
1607
1608                 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1609
1610                 /* Set receiver high water mark */
1611
1612                 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1613
1614                 writew(100, &bc->edelay);
1615                 writeb(1, &bc->idata);
1616         
1617                 ch->startc  = readb(&bc->startc);
1618                 ch->stopc   = readb(&bc->stopc);
1619                 ch->startca = readb(&bc->startca);
1620                 ch->stopca  = readb(&bc->stopca);
1621         
1622                 ch->fepcflag = 0;
1623                 ch->fepiflag = 0;
1624                 ch->fepoflag = 0;
1625                 ch->fepstartc = 0;
1626                 ch->fepstopc = 0;
1627                 ch->fepstartca = 0;
1628                 ch->fepstopca = 0;
1629         
1630                 ch->close_delay = 50;
1631                 ch->count = 0;
1632                 ch->blocked_open = 0;
1633                 init_waitqueue_head(&ch->open_wait);
1634                 init_waitqueue_head(&ch->close_wait);
1635
1636                 spin_unlock_irqrestore(&epca_lock, flags);
1637
1638                 ch->tmp_buf = kmalloc(ch->txbufsize,GFP_KERNEL);
1639                 if (!ch->tmp_buf) {
1640                         printk(KERN_ERR "POST FEP INIT : kmalloc failed for port 0x%x\n",i);
1641                         release_region((int)bd->port, 4);
1642                         while(i-- > 0)
1643                                 kfree((ch--)->tmp_buf);
1644                         return;
1645                 } else
1646                         memset((void *)ch->tmp_buf,0,ch->txbufsize);
1647         } /* End for each port */
1648
1649         printk(KERN_INFO 
1650                 "Digi PC/Xx Driver V%s:  %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n", 
1651                 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports);
1652         memwinoff(bd, 0);
1653
1654 } /* End post_fep_init */
1655
1656 /* --------------------- Begin epcapoll  ------------------------ */
1657
1658 static void epcapoll(unsigned long ignored)
1659 { /* Begin epcapoll */
1660
1661         unsigned long flags;
1662         int crd;
1663         volatile unsigned int head, tail;
1664         struct channel *ch;
1665         struct board_info *bd;
1666
1667         /* -------------------------------------------------------------------
1668                 This routine is called upon every timer interrupt.  Even though
1669                 the Digi series cards are capable of generating interrupts this 
1670                 method of non-looping polling is more efficient.  This routine
1671                 checks for card generated events (Such as receive data, are transmit
1672                 buffer empty) and acts on those events.
1673         ----------------------------------------------------------------------- */
1674         
1675         for (crd = 0; crd < num_cards; crd++) 
1676         { /* Begin for each card */
1677
1678                 bd = &boards[crd];
1679                 ch = card_ptr[crd];
1680
1681                 if ((bd->status == DISABLED) || digi_poller_inhibited)
1682                         continue; /* Begin loop next interation */
1683
1684                 /* -----------------------------------------------------------
1685                         assertmemoff is not needed here; indeed it is an empty subroutine.
1686                         It is being kept because future boards may need this as well as
1687                         some legacy boards.
1688                 ---------------------------------------------------------------- */
1689
1690                 spin_lock_irqsave(&epca_lock, flags);
1691
1692                 assertmemoff(ch);
1693
1694                 globalwinon(ch);
1695
1696                 /* ---------------------------------------------------------------
1697                         In this case head and tail actually refer to the event queue not
1698                         the transmit or receive queue.
1699                 ------------------------------------------------------------------- */
1700
1701                 head = readw(&ch->mailbox->ein);
1702                 tail = readw(&ch->mailbox->eout);
1703                 
1704                 /* If head isn't equal to tail we have an event */
1705
1706                 if (head != tail)
1707                         doevent(crd);
1708                 memoff(ch);
1709
1710                 spin_unlock_irqrestore(&epca_lock, flags);
1711
1712         } /* End for each card */
1713         mod_timer(&epca_timer, jiffies + (HZ / 25));
1714 } /* End epcapoll */
1715
1716 /* --------------------- Begin doevent  ------------------------ */
1717
1718 static void doevent(int crd)
1719 { /* Begin doevent */
1720
1721         void *eventbuf;
1722         struct channel *ch, *chan0;
1723         static struct tty_struct *tty;
1724         struct board_info *bd;
1725         struct board_chan *bc;
1726         unsigned int tail, head;
1727         int event, channel;
1728         int mstat, lstat;
1729
1730         /* -------------------------------------------------------------------
1731                 This subroutine is called by epcapoll when an event is detected 
1732                 in the event queue.  This routine responds to those events.
1733         --------------------------------------------------------------------- */
1734         bd = &boards[crd];
1735
1736         chan0 = card_ptr[crd];
1737         epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1738         assertgwinon(chan0);
1739         while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein)))
1740         { /* Begin while something in event queue */
1741                 assertgwinon(chan0);
1742                 eventbuf = bd->re_map_membase + tail + ISTART;
1743                 /* Get the channel the event occurred on */
1744                 channel = readb(eventbuf);
1745                 /* Get the actual event code that occurred */
1746                 event = readb(eventbuf + 1);
1747                 /*  ----------------------------------------------------------------
1748                         The two assignments below get the current modem status (mstat)
1749                         and the previous modem status (lstat).  These are useful becuase
1750                         an event could signal a change in modem signals itself.
1751                 ------------------------------------------------------------------- */
1752                 mstat = readb(eventbuf + 2);
1753                 lstat = readb(eventbuf + 3);
1754
1755                 ch = chan0 + channel;
1756                 if ((unsigned)channel >= bd->numports || !ch)  {
1757                         if (channel >= bd->numports)
1758                                 ch = chan0;
1759                         bc = ch->brdchan;
1760                         goto next;
1761                 }
1762
1763                 if ((bc = ch->brdchan) == NULL)
1764                         goto next;
1765
1766                 if (event & DATA_IND)  { /* Begin DATA_IND */
1767                         receive_data(ch);
1768                         assertgwinon(ch);
1769                 } /* End DATA_IND */
1770                 /* else *//* Fix for DCD transition missed bug */
1771                 if (event & MODEMCHG_IND)  { /* Begin MODEMCHG_IND */
1772                         /* A modem signal change has been indicated */
1773                         ch->imodem = mstat;
1774                         if (ch->asyncflags & ASYNC_CHECK_CD)  {
1775                                 if (mstat & ch->dcd)  /* We are now receiving dcd */
1776                                         wake_up_interruptible(&ch->open_wait);
1777                                 else
1778                                         pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */
1779                         }
1780                 } /* End MODEMCHG_IND */
1781                 tty = ch->tty;
1782                 if (tty)  { /* Begin if valid tty */
1783                         if (event & BREAK_IND)  { /* Begin if BREAK_IND */
1784                                 /* A break has been indicated */
1785                                 tty->flip.count++;
1786                                 *tty->flip.flag_buf_ptr++ = TTY_BREAK;
1787                                 *tty->flip.char_buf_ptr++ = 0;
1788                                 tty_schedule_flip(tty); 
1789                         } else if (event & LOWTX_IND)  { /* Begin LOWTX_IND */
1790                                 if (ch->statusflags & LOWWAIT) 
1791                                 { /* Begin if LOWWAIT */
1792                                         ch->statusflags &= ~LOWWAIT;
1793                                         tty_wakeup(tty);
1794                                         wake_up_interruptible(&tty->write_wait);
1795                                 } /* End if LOWWAIT */
1796                         } else if (event & EMPTYTX_IND)  { /* Begin EMPTYTX_IND */
1797                                 /* This event is generated by setup_empty_event */
1798                                 ch->statusflags &= ~TXBUSY;
1799                                 if (ch->statusflags & EMPTYWAIT)  { /* Begin if EMPTYWAIT */
1800                                         ch->statusflags &= ~EMPTYWAIT;
1801                                         tty_wakeup(tty);
1802                                         wake_up_interruptible(&tty->write_wait);
1803                                 } /* End if EMPTYWAIT */
1804                         } /* End EMPTYTX_IND */
1805                 } /* End if valid tty */
1806         next:
1807                 globalwinon(ch);
1808                 BUG_ON(!bc);
1809                 writew(1, &bc->idata);
1810                 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1811                 globalwinon(chan0);
1812         } /* End while something in event queue */
1813 } /* End doevent */
1814
1815 /* --------------------- Begin fepcmd  ------------------------ */
1816
1817 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1818                    int byte2, int ncmds, int bytecmd)
1819 { /* Begin fepcmd */
1820         unchar *memaddr;
1821         unsigned int head, cmdTail, cmdStart, cmdMax;
1822         long count;
1823         int n;
1824
1825         /* This is the routine in which commands may be passed to the card. */
1826
1827         if (ch->board->status == DISABLED)
1828                 return;
1829         assertgwinon(ch);
1830         /* Remember head (As well as max) is just an offset not a base addr */
1831         head = readw(&ch->mailbox->cin);
1832         /* cmdStart is a base address */
1833         cmdStart = readw(&ch->mailbox->cstart);
1834         /* ------------------------------------------------------------------
1835                 We do the addition below because we do not want a max pointer 
1836                 relative to cmdStart.  We want a max pointer that points at the 
1837                 physical end of the command queue.
1838         -------------------------------------------------------------------- */
1839         cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1840         memaddr = ch->board->re_map_membase;
1841
1842         if (head >= (cmdMax - cmdStart) || (head & 03))  {
1843                 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__,  cmd, head);
1844                 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__,  cmdMax, cmdStart);
1845                 return;
1846         }
1847         if (bytecmd)  {
1848                 writeb(cmd, memaddr + head + cmdStart + 0);
1849                 writeb(ch->channelnum,  memaddr + head + cmdStart + 1);
1850                 /* Below word_or_byte is bits to set */
1851                 writeb(word_or_byte,  memaddr + head + cmdStart + 2);
1852                 /* Below byte2 is bits to reset */
1853                 writeb(byte2, memaddr + head + cmdStart + 3);
1854         }  else {
1855                 writeb(cmd, memaddr + head + cmdStart + 0);
1856                 writeb(ch->channelnum,  memaddr + head + cmdStart + 1);
1857                 writeb(word_or_byte,  memaddr + head + cmdStart + 2);
1858         }
1859         head = (head + 4) & (cmdMax - cmdStart - 4);
1860         writew(head, &ch->mailbox->cin);
1861         count = FEPTIMEOUT;
1862
1863         for (;;)  { /* Begin forever loop */
1864                 count--;
1865                 if (count == 0)  {
1866                         printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1867                         return;
1868                 }
1869                 head = readw(&ch->mailbox->cin);
1870                 cmdTail = readw(&ch->mailbox->cout);
1871                 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1872                 /* ----------------------------------------------------------
1873                         Basically this will break when the FEP acknowledges the 
1874                         command by incrementing cmdTail (Making it equal to head).
1875                 ------------------------------------------------------------- */
1876                 if (n <= ncmds * (sizeof(short) * 4))
1877                         break; /* Well nearly forever :-) */
1878         } /* End forever loop */
1879 } /* End fepcmd */
1880
1881 /* ---------------------------------------------------------------------
1882         Digi products use fields in their channels structures that are very
1883         similar to the c_cflag and c_iflag fields typically found in UNIX
1884         termios structures.  The below three routines allow mappings 
1885         between these hardware "flags" and their respective Linux flags.
1886 ------------------------------------------------------------------------- */
1887  
1888 /* --------------------- Begin termios2digi_h -------------------- */
1889
1890 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1891 { /* Begin termios2digi_h */
1892         unsigned res = 0;
1893
1894         if (cflag & CRTSCTS) {
1895                 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1896                 res |= ((ch->m_cts) | (ch->m_rts));
1897         }
1898
1899         if (ch->digiext.digi_flags & RTSPACE)
1900                 res |= ch->m_rts;
1901
1902         if (ch->digiext.digi_flags & DTRPACE)
1903                 res |= ch->m_dtr;
1904
1905         if (ch->digiext.digi_flags & CTSPACE)
1906                 res |= ch->m_cts;
1907
1908         if (ch->digiext.digi_flags & DSRPACE)
1909                 res |= ch->dsr;
1910
1911         if (ch->digiext.digi_flags & DCDPACE)
1912                 res |= ch->dcd;
1913
1914         if (res & (ch->m_rts))
1915                 ch->digiext.digi_flags |= RTSPACE;
1916
1917         if (res & (ch->m_cts))
1918                 ch->digiext.digi_flags |= CTSPACE;
1919
1920         return res;
1921
1922 } /* End termios2digi_h */
1923
1924 /* --------------------- Begin termios2digi_i -------------------- */
1925 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1926 { /* Begin termios2digi_i */
1927
1928         unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK | 
1929                                 INPCK | ISTRIP|IXON|IXANY|IXOFF);
1930         if (ch->digiext.digi_flags & DIGI_AIXON)
1931                 res |= IAIXON;
1932         return res;
1933
1934 } /* End termios2digi_i */
1935
1936 /* --------------------- Begin termios2digi_c -------------------- */
1937
1938 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1939 { /* Begin termios2digi_c */
1940
1941         unsigned res = 0;
1942         if (cflag & CBAUDEX) { /* Begin detected CBAUDEX */
1943                 ch->digiext.digi_flags |= DIGI_FAST;
1944                 /* -------------------------------------------------------------
1945                    HUPCL bit is used by FEP to indicate fast baud
1946                    table is to be used.
1947                 ----------------------------------------------------------------- */
1948                 res |= FEP_HUPCL;
1949         } /* End detected CBAUDEX */
1950         else ch->digiext.digi_flags &= ~DIGI_FAST; 
1951         /* -------------------------------------------------------------------
1952                 CBAUD has bit position 0x1000 set these days to indicate Linux
1953                 baud rate remap.  Digi hardware can't handle the bit assignment.
1954                 (We use a different bit assignment for high speed.).  Clear this
1955                 bit out.
1956         ---------------------------------------------------------------------- */
1957         res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1958         /* -------------------------------------------------------------
1959                 This gets a little confusing.  The Digi cards have their own
1960                 representation of c_cflags controling baud rate.  For the most
1961                 part this is identical to the Linux implementation.  However;
1962                 Digi supports one rate (76800) that Linux doesn't.  This means 
1963                 that the c_cflag entry that would normally mean 76800 for Digi
1964                 actually means 115200 under Linux.  Without the below mapping,
1965                 a stty 115200 would only drive the board at 76800.  Since 
1966                 the rate 230400 is also found after 76800, the same problem afflicts    
1967                 us when we choose a rate of 230400.  Without the below modificiation
1968                 stty 230400 would actually give us 115200.
1969
1970                 There are two additional differences.  The Linux value for CLOCAL
1971                 (0x800; 0004000) has no meaning to the Digi hardware.  Also in 
1972                 later releases of Linux; the CBAUD define has CBAUDEX (0x1000;
1973                 0010000) ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX
1974                 should be checked for a screened out prior to termios2digi_c 
1975                 returning.  Since CLOCAL isn't used by the board this can be
1976                 ignored as long as the returned value is used only by Digi hardware. 
1977                 ----------------------------------------------------------------- */
1978         if (cflag & CBAUDEX) {
1979                 /* -------------------------------------------------------------
1980                         The below code is trying to guarantee that only baud rates
1981                         115200 and 230400 are remapped.  We use exclusive or because
1982                         the various baud rates share common bit positions and therefore
1983                         can't be tested for easily.
1984                 ----------------------------------------------------------------- */
1985
1986                                 
1987                 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) || 
1988                     (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1989                         res += 1;
1990         }
1991         return res;
1992
1993 } /* End termios2digi_c */
1994
1995 /* --------------------- Begin epcaparam  ----------------------- */
1996
1997 /* Caller must hold the locks */
1998 static void epcaparam(struct tty_struct *tty, struct channel *ch)
1999 { /* Begin epcaparam */
2000
2001         unsigned int cmdHead;
2002         struct termios *ts;
2003         struct board_chan *bc;
2004         unsigned mval, hflow, cflag, iflag;
2005
2006         bc = ch->brdchan;
2007         epcaassert(bc !=0, "bc out of range");
2008
2009         assertgwinon(ch);
2010         ts = tty->termios;
2011         if ((ts->c_cflag & CBAUD) == 0)  { /* Begin CBAUD detected */
2012                 cmdHead = readw(&bc->rin);
2013                 bc->rout = cmdHead;
2014                 cmdHead = readw(&bc->tin);
2015                 /* Changing baud in mid-stream transmission can be wonderful */
2016                 /* ---------------------------------------------------------------
2017                         Flush current transmit buffer by setting cmdTail pointer (tout)
2018                         to cmdHead pointer (tin).  Hopefully the transmit buffer is empty.
2019                 ----------------------------------------------------------------- */
2020                 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
2021                 mval = 0;
2022         } else  { /* Begin CBAUD not detected */
2023                 /* -------------------------------------------------------------------
2024                         c_cflags have changed but that change had nothing to do with BAUD.
2025                         Propagate the change to the card.
2026                 ---------------------------------------------------------------------- */ 
2027                 cflag = termios2digi_c(ch, ts->c_cflag);
2028                 if (cflag != ch->fepcflag)  {
2029                         ch->fepcflag = cflag;
2030                         /* Set baud rate, char size, stop bits, parity */
2031                         fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
2032                 }
2033                 /* ----------------------------------------------------------------
2034                         If the user has not forced CLOCAL and if the device is not a 
2035                         CALLOUT device (Which is always CLOCAL) we set flags such that
2036                         the driver will wait on carrier detect.
2037                 ------------------------------------------------------------------- */
2038                 if (ts->c_cflag & CLOCAL)
2039                         ch->asyncflags &= ~ASYNC_CHECK_CD;
2040                 else
2041                         ch->asyncflags |= ASYNC_CHECK_CD;
2042                 mval = ch->m_dtr | ch->m_rts;
2043         } /* End CBAUD not detected */
2044         iflag = termios2digi_i(ch, ts->c_iflag);
2045         /* Check input mode flags */
2046         if (iflag != ch->fepiflag)  {
2047                 ch->fepiflag = iflag;
2048                 /* ---------------------------------------------------------------
2049                         Command sets channels iflag structure on the board. Such things 
2050                         as input soft flow control, handling of parity errors, and
2051                         break handling are all set here.
2052                 ------------------------------------------------------------------- */
2053                 /* break handling, parity handling, input stripping, flow control chars */
2054                 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
2055         }
2056         /* ---------------------------------------------------------------
2057                 Set the board mint value for this channel.  This will cause hardware
2058                 events to be generated each time the DCD signal (Described in mint) 
2059                 changes.        
2060         ------------------------------------------------------------------- */
2061         writeb(ch->dcd, &bc->mint);
2062         if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
2063                 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
2064                         writeb(0, &bc->mint);
2065         ch->imodem = readb(&bc->mstat);
2066         hflow = termios2digi_h(ch, ts->c_cflag);
2067         if (hflow != ch->hflow)  {
2068                 ch->hflow = hflow;
2069                 /* --------------------------------------------------------------
2070                         Hard flow control has been selected but the board is not
2071                         using it.  Activate hard flow control now.
2072                 ----------------------------------------------------------------- */
2073                 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
2074         }
2075         mval ^= ch->modemfake & (mval ^ ch->modem);
2076
2077         if (ch->omodem ^ mval)  {
2078                 ch->omodem = mval;
2079                 /* --------------------------------------------------------------
2080                         The below command sets the DTR and RTS mstat structure.  If
2081                         hard flow control is NOT active these changes will drive the
2082                         output of the actual DTR and RTS lines.  If hard flow control 
2083                         is active, the changes will be saved in the mstat structure and
2084                         only asserted when hard flow control is turned off. 
2085                 ----------------------------------------------------------------- */
2086
2087                 /* First reset DTR & RTS; then set them */
2088                 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
2089                 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
2090         }
2091         if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc)  {
2092                 ch->fepstartc = ch->startc;
2093                 ch->fepstopc = ch->stopc;
2094                 /* ------------------------------------------------------------
2095                         The XON / XOFF characters have changed; propagate these
2096                         changes to the card.    
2097                 --------------------------------------------------------------- */
2098                 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2099         }
2100         if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca)  {
2101                 ch->fepstartca = ch->startca;
2102                 ch->fepstopca = ch->stopca;
2103                 /* ---------------------------------------------------------------
2104                         Similar to the above, this time the auxilarly XON / XOFF 
2105                         characters have changed; propagate these changes to the card.
2106                 ------------------------------------------------------------------ */
2107                 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2108         }
2109 } /* End epcaparam */
2110
2111 /* --------------------- Begin receive_data  ----------------------- */
2112 /* Caller holds lock */
2113 static void receive_data(struct channel *ch)
2114 { /* Begin receive_data */
2115
2116         unchar *rptr;
2117         struct termios *ts = NULL;
2118         struct tty_struct *tty;
2119         struct board_chan *bc;
2120         int dataToRead, wrapgap, bytesAvailable;
2121         unsigned int tail, head;
2122         unsigned int wrapmask;
2123         int rc;
2124
2125         /* ---------------------------------------------------------------
2126                 This routine is called by doint when a receive data event 
2127                 has taken place.
2128         ------------------------------------------------------------------- */
2129
2130         globalwinon(ch);
2131         if (ch->statusflags & RXSTOPPED)
2132                 return;
2133         tty = ch->tty;
2134         if (tty)
2135                 ts = tty->termios;
2136         bc = ch->brdchan;
2137         BUG_ON(!bc);
2138         wrapmask = ch->rxbufsize - 1;
2139
2140         /* --------------------------------------------------------------------- 
2141                 Get the head and tail pointers to the receiver queue.  Wrap the 
2142                 head pointer if it has reached the end of the buffer.
2143         ------------------------------------------------------------------------ */
2144         head = readw(&bc->rin);
2145         head &= wrapmask;
2146         tail = readw(&bc->rout) & wrapmask;
2147
2148         bytesAvailable = (head - tail) & wrapmask;
2149         if (bytesAvailable == 0)
2150                 return;
2151
2152         /* ------------------------------------------------------------------
2153            If CREAD bit is off or device not open, set TX tail to head
2154         --------------------------------------------------------------------- */
2155
2156         if (!tty || !ts || !(ts->c_cflag & CREAD))  {
2157                 bc->rout = head;
2158                 return;
2159         }
2160
2161         if (tty->flip.count == TTY_FLIPBUF_SIZE) 
2162                 return;
2163
2164         if (readb(&bc->orun)) {
2165                 writeb(0, &bc->orun);
2166                 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name);
2167         }
2168         rxwinon(ch);
2169         rptr = tty->flip.char_buf_ptr;
2170         rc = tty->flip.count;
2171         while (bytesAvailable > 0)  { /* Begin while there is data on the card */
2172                 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2173                 /* ---------------------------------------------------------------
2174                         Even if head has wrapped around only report the amount of
2175                         data to be equal to the size - tail.  Remember memcpy can't
2176                         automaticly wrap around the receive buffer.
2177                 ----------------------------------------------------------------- */
2178                 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable;
2179                 /* --------------------------------------------------------------
2180                    Make sure we don't overflow the buffer
2181                 ----------------------------------------------------------------- */
2182                 if ((rc + dataToRead) > TTY_FLIPBUF_SIZE)
2183                         dataToRead = TTY_FLIPBUF_SIZE - rc;
2184                 if (dataToRead == 0)
2185                         break;
2186                 /* ---------------------------------------------------------------
2187                         Move data read from our card into the line disciplines buffer
2188                         for translation if necessary.
2189                 ------------------------------------------------------------------ */
2190                 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2191                 rc   += dataToRead;
2192                 rptr += dataToRead;
2193                 tail = (tail + dataToRead) & wrapmask;
2194                 bytesAvailable -= dataToRead;
2195         } /* End while there is data on the card */
2196         tty->flip.count = rc;
2197         tty->flip.char_buf_ptr = rptr;
2198         globalwinon(ch);
2199         writew(tail, &bc->rout);
2200         /* Must be called with global data */
2201         tty_schedule_flip(ch->tty); 
2202         return;
2203 } /* End receive_data */
2204
2205 static int info_ioctl(struct tty_struct *tty, struct file * file,
2206                     unsigned int cmd, unsigned long arg)
2207 {
2208         switch (cmd) 
2209         { /* Begin switch cmd */
2210                 case DIGI_GETINFO:
2211                 { /* Begin case DIGI_GETINFO */
2212                         struct digi_info di ;
2213                         int brd;
2214
2215                         if(get_user(brd, (unsigned int __user *)arg))
2216                                 return -EFAULT;
2217                         if (brd < 0 || brd >= num_cards || num_cards == 0)
2218                                 return -ENODEV;
2219
2220                         memset(&di, 0, sizeof(di));
2221
2222                         di.board = brd ; 
2223                         di.status = boards[brd].status;
2224                         di.type = boards[brd].type ;
2225                         di.numports = boards[brd].numports ;
2226                         /* Legacy fixups - just move along nothing to see */
2227                         di.port = (unsigned char *)boards[brd].port ;
2228                         di.membase = (unsigned char *)boards[brd].membase ;
2229
2230                         if (copy_to_user((void __user *)arg, &di, sizeof (di)))
2231                                 return -EFAULT;
2232                         break;
2233
2234                 } /* End case DIGI_GETINFO */
2235
2236                 case DIGI_POLLER:
2237                 { /* Begin case DIGI_POLLER */
2238
2239                         int brd = arg & 0xff000000 >> 16 ; 
2240                         unsigned char state = arg & 0xff ; 
2241
2242                         if (brd < 0 || brd >= num_cards) {
2243                                 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2244                                 return (-ENODEV);
2245                         }
2246                         digi_poller_inhibited = state ;
2247                         break ; 
2248                 } /* End case DIGI_POLLER */
2249
2250                 case DIGI_INIT:
2251                 { /* Begin case DIGI_INIT */
2252                         /* ------------------------------------------------------------
2253                                 This call is made by the apps to complete the initilization
2254                                 of the board(s).  This routine is responsible for setting
2255                                 the card to its initial state and setting the drivers control
2256                                 fields to the sutianle settings for the card in question.
2257                         ---------------------------------------------------------------- */
2258                         int crd ; 
2259                         for (crd = 0; crd < num_cards; crd++) 
2260                                 post_fep_init (crd);
2261                         break ; 
2262                 } /* End case DIGI_INIT */
2263                 default:
2264                         return -ENOTTY;
2265         } /* End switch cmd */
2266         return (0) ;
2267 }
2268 /* --------------------- Begin pc_ioctl  ----------------------- */
2269
2270 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2271 {
2272         struct channel *ch = (struct channel *) tty->driver_data;
2273         struct board_chan *bc;
2274         unsigned int mstat, mflag = 0;
2275         unsigned long flags;
2276
2277         if (ch)
2278                 bc = ch->brdchan;
2279         else
2280                 return -EINVAL;
2281
2282         spin_lock_irqsave(&epca_lock, flags);
2283         globalwinon(ch);
2284         mstat = readb(&bc->mstat);
2285         memoff(ch);
2286         spin_unlock_irqrestore(&epca_lock, flags);
2287
2288         if (mstat & ch->m_dtr)
2289                 mflag |= TIOCM_DTR;
2290         if (mstat & ch->m_rts)
2291                 mflag |= TIOCM_RTS;
2292         if (mstat & ch->m_cts)
2293                 mflag |= TIOCM_CTS;
2294         if (mstat & ch->dsr)
2295                 mflag |= TIOCM_DSR;
2296         if (mstat & ch->m_ri)
2297                 mflag |= TIOCM_RI;
2298         if (mstat & ch->dcd)
2299                 mflag |= TIOCM_CD;
2300         return mflag;
2301 }
2302
2303 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2304                        unsigned int set, unsigned int clear)
2305 {
2306         struct channel *ch = (struct channel *) tty->driver_data;
2307         unsigned long flags;
2308
2309         if (!ch)
2310                 return -EINVAL;
2311
2312         spin_lock_irqsave(&epca_lock, flags);
2313         /*
2314          * I think this modemfake stuff is broken.  It doesn't
2315          * correctly reflect the behaviour desired by the TIOCM*
2316          * ioctls.  Therefore this is probably broken.
2317          */
2318         if (set & TIOCM_RTS) {
2319                 ch->modemfake |= ch->m_rts;
2320                 ch->modem |= ch->m_rts;
2321         }
2322         if (set & TIOCM_DTR) {
2323                 ch->modemfake |= ch->m_dtr;
2324                 ch->modem |= ch->m_dtr;
2325         }
2326         if (clear & TIOCM_RTS) {
2327                 ch->modemfake |= ch->m_rts;
2328                 ch->modem &= ~ch->m_rts;
2329         }
2330         if (clear & TIOCM_DTR) {
2331                 ch->modemfake |= ch->m_dtr;
2332                 ch->modem &= ~ch->m_dtr;
2333         }
2334         globalwinon(ch);
2335         /*  --------------------------------------------------------------
2336                 The below routine generally sets up parity, baud, flow control
2337                 issues, etc.... It effect both control flags and input flags.
2338         ------------------------------------------------------------------ */
2339         epcaparam(tty,ch);
2340         memoff(ch);
2341         spin_unlock_irqrestore(&epca_lock, flags);
2342         return 0;
2343 }
2344
2345 static int pc_ioctl(struct tty_struct *tty, struct file * file,
2346                     unsigned int cmd, unsigned long arg)
2347 { /* Begin pc_ioctl */
2348
2349         digiflow_t dflow;
2350         int retval;
2351         unsigned long flags;
2352         unsigned int mflag, mstat;
2353         unsigned char startc, stopc;
2354         struct board_chan *bc;
2355         struct channel *ch = (struct channel *) tty->driver_data;
2356         void __user *argp = (void __user *)arg;
2357         
2358         if (ch)
2359                 bc = ch->brdchan;
2360         else 
2361                 return -EINVAL;
2362
2363         /* -------------------------------------------------------------------
2364                 For POSIX compliance we need to add more ioctls.  See tty_ioctl.c
2365                 in /usr/src/linux/drivers/char for a good example.  In particular 
2366                 think about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2367         ---------------------------------------------------------------------- */
2368
2369         switch (cmd) 
2370         { /* Begin switch cmd */
2371
2372                 case TCGETS:
2373                         if (copy_to_user(argp, tty->termios, sizeof(struct termios)))
2374                                 return -EFAULT;
2375                         return 0;
2376                 case TCGETA:
2377                         return get_termio(tty, argp);
2378                 case TCSBRK:    /* SVID version: non-zero arg --> no break */
2379                         retval = tty_check_change(tty);
2380                         if (retval)
2381                                 return retval;
2382                         /* Setup an event to indicate when the transmit buffer empties */
2383                         spin_lock_irqsave(&epca_lock, flags);
2384                         setup_empty_event(tty,ch);              
2385                         spin_unlock_irqrestore(&epca_lock, flags);
2386                         tty_wait_until_sent(tty, 0);
2387                         if (!arg)
2388                                 digi_send_break(ch, HZ/4);    /* 1/4 second */
2389                         return 0;
2390                 case TCSBRKP:   /* support for POSIX tcsendbreak() */
2391                         retval = tty_check_change(tty);
2392                         if (retval)
2393                                 return retval;
2394
2395                         /* Setup an event to indicate when the transmit buffer empties */
2396                         spin_lock_irqsave(&epca_lock, flags);
2397                         setup_empty_event(tty,ch);              
2398                         spin_unlock_irqrestore(&epca_lock, flags);
2399                         tty_wait_until_sent(tty, 0);
2400                         digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2401                         return 0;
2402                 case TIOCGSOFTCAR:
2403                         if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg))
2404                                 return -EFAULT;
2405                         return 0;
2406                 case TIOCSSOFTCAR:
2407                 {
2408                         unsigned int value;
2409
2410                         if (get_user(value, (unsigned __user *)argp))
2411                                 return -EFAULT;
2412                         tty->termios->c_cflag =
2413                                 ((tty->termios->c_cflag & ~CLOCAL) |
2414                                  (value ? CLOCAL : 0));
2415                         return 0;
2416                 }
2417                 case TIOCMODG:
2418                         mflag = pc_tiocmget(tty, file);
2419                         if (put_user(mflag, (unsigned long __user *)argp))
2420                                 return -EFAULT;
2421                         break;
2422                 case TIOCMODS:
2423                         if (get_user(mstat, (unsigned __user *)argp))
2424                                 return -EFAULT;
2425                         return pc_tiocmset(tty, file, mstat, ~mstat);
2426                 case TIOCSDTR:
2427                         spin_lock_irqsave(&epca_lock, flags);
2428                         ch->omodem |= ch->m_dtr;
2429                         globalwinon(ch);
2430                         fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2431                         memoff(ch);
2432                         spin_unlock_irqrestore(&epca_lock, flags);
2433                         break;
2434
2435                 case TIOCCDTR:
2436                         spin_lock_irqsave(&epca_lock, flags);
2437                         ch->omodem &= ~ch->m_dtr;
2438                         globalwinon(ch);
2439                         fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2440                         memoff(ch);
2441                         spin_unlock_irqrestore(&epca_lock, flags);
2442                         break;
2443                 case DIGI_GETA:
2444                         if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2445                                 return -EFAULT;
2446                         break;
2447                 case DIGI_SETAW:
2448                 case DIGI_SETAF:
2449                         if (cmd == DIGI_SETAW) {
2450                                 /* Setup an event to indicate when the transmit buffer empties */
2451                                 spin_lock_irqsave(&epca_lock, flags);
2452                                 setup_empty_event(tty,ch);              
2453                                 spin_unlock_irqrestore(&epca_lock, flags);
2454                                 tty_wait_until_sent(tty, 0);
2455                         } else  {
2456                                 /* ldisc lock already held in ioctl */
2457                                 if (tty->ldisc.flush_buffer)
2458                                         tty->ldisc.flush_buffer(tty);
2459                         }
2460                         /* Fall Thru */
2461                 case DIGI_SETA:
2462                         if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2463                                 return -EFAULT;
2464                         
2465                         if (ch->digiext.digi_flags & DIGI_ALTPIN)  {
2466                                 ch->dcd = ch->m_dsr;
2467                                 ch->dsr = ch->m_dcd;
2468                         } else {
2469                                 ch->dcd = ch->m_dcd;
2470                                 ch->dsr = ch->m_dsr;
2471                         }
2472                 
2473                         spin_lock_irqsave(&epca_lock, flags);
2474                         globalwinon(ch);
2475
2476                         /* -----------------------------------------------------------------
2477                                 The below routine generally sets up parity, baud, flow control 
2478                                 issues, etc.... It effect both control flags and input flags.
2479                         ------------------------------------------------------------------- */
2480
2481                         epcaparam(tty,ch);
2482                         memoff(ch);
2483                         spin_unlock_irqrestore(&epca_lock, flags);
2484                         break;
2485
2486                 case DIGI_GETFLOW:
2487                 case DIGI_GETAFLOW:
2488                         spin_lock_irqsave(&epca_lock, flags);
2489                         globalwinon(ch);
2490                         if (cmd == DIGI_GETFLOW) {
2491                                 dflow.startc = readb(&bc->startc);
2492                                 dflow.stopc = readb(&bc->stopc);
2493                         } else {
2494                                 dflow.startc = readb(&bc->startca);
2495                                 dflow.stopc = readb(&bc->stopca);
2496                         }
2497                         memoff(ch);
2498                         spin_unlock_irqrestore(&epca_lock, flags);
2499
2500                         if (copy_to_user(argp, &dflow, sizeof(dflow)))
2501                                 return -EFAULT;
2502                         break;
2503
2504                 case DIGI_SETAFLOW:
2505                 case DIGI_SETFLOW:
2506                         if (cmd == DIGI_SETFLOW) {
2507                                 startc = ch->startc;
2508                                 stopc = ch->stopc;
2509                         } else {
2510                                 startc = ch->startca;
2511                                 stopc = ch->stopca;
2512                         }
2513
2514                         if (copy_from_user(&dflow, argp, sizeof(dflow)))
2515                                 return -EFAULT;
2516
2517                         if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin  if setflow toggled */
2518                                 spin_lock_irqsave(&epca_lock, flags);
2519                                 globalwinon(ch);
2520
2521                                 if (cmd == DIGI_SETFLOW) {
2522                                         ch->fepstartc = ch->startc = dflow.startc;
2523                                         ch->fepstopc = ch->stopc = dflow.stopc;
2524                                         fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2525                                 } else {
2526                                         ch->fepstartca = ch->startca = dflow.startc;
2527                                         ch->fepstopca  = ch->stopca = dflow.stopc;
2528                                         fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2529                                 }
2530
2531                                 if (ch->statusflags & TXSTOPPED)
2532                                         pc_start(tty);
2533
2534                                 memoff(ch);
2535                                 spin_unlock_irqrestore(&epca_lock, flags);
2536                         } /* End if setflow toggled */
2537                         break;
2538                 default:
2539                         return -ENOIOCTLCMD;
2540         } /* End switch cmd */
2541         return 0;
2542 } /* End pc_ioctl */
2543
2544 /* --------------------- Begin pc_set_termios  ----------------------- */
2545
2546 static void pc_set_termios(struct tty_struct *tty, struct termios *old_termios)
2547 { /* Begin pc_set_termios */
2548
2549         struct channel *ch;
2550         unsigned long flags;
2551         /* ---------------------------------------------------------
2552                 verifyChannel returns the channel from the tty struct
2553                 if it is valid.  This serves as a sanity check.
2554         ------------------------------------------------------------- */
2555         if ((ch = verifyChannel(tty)) != NULL)  { /* Begin if channel valid */
2556                 spin_lock_irqsave(&epca_lock, flags);
2557                 globalwinon(ch);
2558                 epcaparam(tty, ch);
2559                 memoff(ch);
2560                 spin_unlock_irqrestore(&epca_lock, flags);
2561
2562                 if ((old_termios->c_cflag & CRTSCTS) &&
2563                          ((tty->termios->c_cflag & CRTSCTS) == 0))
2564                         tty->hw_stopped = 0;
2565
2566                 if (!(old_termios->c_cflag & CLOCAL) &&
2567                          (tty->termios->c_cflag & CLOCAL))
2568                         wake_up_interruptible(&ch->open_wait);
2569
2570         } /* End if channel valid */
2571
2572 } /* End pc_set_termios */
2573
2574 /* --------------------- Begin do_softint  ----------------------- */
2575
2576 static void do_softint(void *private_)
2577 { /* Begin do_softint */
2578         struct channel *ch = (struct channel *) private_;
2579         /* Called in response to a modem change event */
2580         if (ch && ch->magic == EPCA_MAGIC)  { /* Begin EPCA_MAGIC */
2581                 struct tty_struct *tty = ch->tty;
2582
2583                 if (tty && tty->driver_data) {
2584                         if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { /* Begin if clear_bit */
2585                                 tty_hangup(tty);        /* FIXME: module removal race here - AKPM */
2586                                 wake_up_interruptible(&ch->open_wait);
2587                                 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2588                         } /* End if clear_bit */
2589                 }
2590         } /* End EPCA_MAGIC */
2591 } /* End do_softint */
2592
2593 /* ------------------------------------------------------------
2594         pc_stop and pc_start provide software flow control to the 
2595         routine and the pc_ioctl routine.
2596 ---------------------------------------------------------------- */
2597
2598 /* --------------------- Begin pc_stop  ----------------------- */
2599
2600 static void pc_stop(struct tty_struct *tty)
2601 { /* Begin pc_stop */
2602
2603         struct channel *ch;
2604         unsigned long flags;
2605         /* ---------------------------------------------------------
2606                 verifyChannel returns the channel from the tty struct
2607                 if it is valid.  This serves as a sanity check.
2608         ------------------------------------------------------------- */
2609         if ((ch = verifyChannel(tty)) != NULL)  { /* Begin if valid channel */
2610                 spin_lock_irqsave(&epca_lock, flags);
2611                 if ((ch->statusflags & TXSTOPPED) == 0)  { /* Begin if transmit stop requested */
2612                         globalwinon(ch);
2613                         /* STOP transmitting now !! */
2614                         fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2615                         ch->statusflags |= TXSTOPPED;
2616                         memoff(ch);
2617                 } /* End if transmit stop requested */
2618                 spin_unlock_irqrestore(&epca_lock, flags);
2619         } /* End if valid channel */
2620 } /* End pc_stop */
2621
2622 /* --------------------- Begin pc_start  ----------------------- */
2623
2624 static void pc_start(struct tty_struct *tty)
2625 { /* Begin pc_start */
2626         struct channel *ch;
2627         /* ---------------------------------------------------------
2628                 verifyChannel returns the channel from the tty struct
2629                 if it is valid.  This serves as a sanity check.
2630         ------------------------------------------------------------- */
2631         if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2632                 unsigned long flags;
2633                 spin_lock_irqsave(&epca_lock, flags);
2634                 /* Just in case output was resumed because of a change in Digi-flow */
2635                 if (ch->statusflags & TXSTOPPED)  { /* Begin transmit resume requested */
2636                         struct board_chan *bc;
2637                         globalwinon(ch);
2638                         bc = ch->brdchan;
2639                         if (ch->statusflags & LOWWAIT)
2640                                 writeb(1, &bc->ilow);
2641                         /* Okay, you can start transmitting again... */
2642                         fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2643                         ch->statusflags &= ~TXSTOPPED;
2644                         memoff(ch);
2645                 } /* End transmit resume requested */
2646                 spin_unlock_irqrestore(&epca_lock, flags);
2647         } /* End if channel valid */
2648 } /* End pc_start */
2649
2650 /* ------------------------------------------------------------------
2651         The below routines pc_throttle and pc_unthrottle are used 
2652         to slow (And resume) the receipt of data into the kernels
2653         receive buffers.  The exact occurrence of this depends on the
2654         size of the kernels receive buffer and what the 'watermarks'
2655         are set to for that buffer.  See the n_ttys.c file for more
2656         details. 
2657 ______________________________________________________________________ */
2658 /* --------------------- Begin throttle  ----------------------- */
2659
2660 static void pc_throttle(struct tty_struct * tty)
2661 { /* Begin pc_throttle */
2662         struct channel *ch;
2663         unsigned long flags;
2664         /* ---------------------------------------------------------
2665                 verifyChannel returns the channel from the tty struct
2666                 if it is valid.  This serves as a sanity check.
2667         ------------------------------------------------------------- */
2668         if ((ch = verifyChannel(tty)) != NULL)  { /* Begin if channel valid */
2669                 spin_lock_irqsave(&epca_lock, flags);
2670                 if ((ch->statusflags & RXSTOPPED) == 0) {
2671                         globalwinon(ch);
2672                         fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2673                         ch->statusflags |= RXSTOPPED;
2674                         memoff(ch);
2675                 }
2676                 spin_unlock_irqrestore(&epca_lock, flags);
2677         } /* End if channel valid */
2678 } /* End pc_throttle */
2679
2680 /* --------------------- Begin unthrottle  ----------------------- */
2681
2682 static void pc_unthrottle(struct tty_struct *tty)
2683 { /* Begin pc_unthrottle */
2684         struct channel *ch;
2685         unsigned long flags;
2686         /* ---------------------------------------------------------
2687                 verifyChannel returns the channel from the tty struct
2688                 if it is valid.  This serves as a sanity check.
2689         ------------------------------------------------------------- */
2690         if ((ch = verifyChannel(tty)) != NULL)  { /* Begin if channel valid */
2691                 /* Just in case output was resumed because of a change in Digi-flow */
2692                 spin_lock_irqsave(&epca_lock, flags);
2693                 if (ch->statusflags & RXSTOPPED) {
2694                         globalwinon(ch);
2695                         fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2696                         ch->statusflags &= ~RXSTOPPED;
2697                         memoff(ch);
2698                 }
2699                 spin_unlock_irqrestore(&epca_lock, flags);
2700         } /* End if channel valid */
2701 } /* End pc_unthrottle */
2702
2703 /* --------------------- Begin digi_send_break  ----------------------- */
2704
2705 void digi_send_break(struct channel *ch, int msec)
2706 { /* Begin digi_send_break */
2707         unsigned long flags;
2708
2709         spin_lock_irqsave(&epca_lock, flags);
2710         globalwinon(ch);
2711         /* -------------------------------------------------------------------- 
2712            Maybe I should send an infinite break here, schedule() for
2713            msec amount of time, and then stop the break.  This way,
2714            the user can't screw up the FEP by causing digi_send_break()
2715            to be called (i.e. via an ioctl()) more than once in msec amount 
2716            of time.  Try this for now...
2717         ------------------------------------------------------------------------ */
2718         fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2719         memoff(ch);
2720         spin_unlock_irqrestore(&epca_lock, flags);
2721 } /* End digi_send_break */
2722
2723 /* --------------------- Begin setup_empty_event  ----------------------- */
2724
2725 /* Caller MUST hold the lock */
2726
2727 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2728 { /* Begin setup_empty_event */
2729
2730         struct board_chan *bc = ch->brdchan;
2731
2732         globalwinon(ch);
2733         ch->statusflags |= EMPTYWAIT;
2734         /* ------------------------------------------------------------------
2735                 When set the iempty flag request a event to be generated when the 
2736                 transmit buffer is empty (If there is no BREAK in progress).
2737         --------------------------------------------------------------------- */
2738         writeb(1, &bc->iempty);
2739         memoff(ch);
2740 } /* End setup_empty_event */
2741
2742 /* --------------------- Begin get_termio ----------------------- */
2743
2744 static int get_termio(struct tty_struct * tty, struct termio __user * termio)
2745 { /* Begin get_termio */
2746         return kernel_termios_to_user_termio(termio, tty->termios);
2747 } /* End get_termio */
2748
2749 /* ---------------------- Begin epca_setup  -------------------------- */
2750 void epca_setup(char *str, int *ints)
2751 { /* Begin epca_setup */
2752         struct board_info board;
2753         int               index, loop, last;
2754         char              *temp, *t2;
2755         unsigned          len;
2756
2757         /* ----------------------------------------------------------------------
2758                 If this routine looks a little strange it is because it is only called
2759                 if a LILO append command is given to boot the kernel with parameters.  
2760                 In this way, we can provide the user a method of changing his board
2761                 configuration without rebuilding the kernel.
2762         ----------------------------------------------------------------------- */
2763         if (!liloconfig) 
2764                 liloconfig = 1; 
2765
2766         memset(&board, 0, sizeof(board));
2767
2768         /* Assume the data is int first, later we can change it */
2769         /* I think that array position 0 of ints holds the number of args */
2770         for (last = 0, index = 1; index <= ints[0]; index++)
2771                 switch(index)
2772                 { /* Begin parse switch */
2773                         case 1:
2774                                 board.status = ints[index];
2775                                 /* ---------------------------------------------------------
2776                                         We check for 2 (As opposed to 1; because 2 is a flag
2777                                         instructing the driver to ignore epcaconfig.)  For this
2778                                         reason we check for 2.
2779                                 ------------------------------------------------------------ */ 
2780                                 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */
2781                                         nbdevs = 0;
2782                                         num_cards = 0;
2783                                         return;
2784                                 } /* End ignore epcaconfig as well as lilo cmd line */
2785         
2786                                 if (board.status > 2) {
2787                                         printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status);
2788                                         invalid_lilo_config = 1;
2789                                         setup_error_code |= INVALID_BOARD_STATUS;
2790                                         return;
2791                                 }
2792                                 last = index;
2793                                 break;
2794                         case 2:
2795                                 board.type = ints[index];
2796                                 if (board.type >= PCIXEM)  {
2797                                         printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2798                                         invalid_lilo_config = 1;
2799                                         setup_error_code |= INVALID_BOARD_TYPE;
2800                                         return;
2801                                 }
2802                                 last = index;
2803                                 break;
2804                         case 3:
2805                                 board.altpin = ints[index];
2806                                 if (board.altpin > 1) {
2807                                         printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2808                                         invalid_lilo_config = 1;
2809                                         setup_error_code |= INVALID_ALTPIN;
2810                                         return;
2811                                 }
2812                                 last = index;
2813                                 break;
2814
2815                         case 4:
2816                                 board.numports = ints[index];
2817                                 if (board.numports < 2 || board.numports > 256) {
2818                                         printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2819                                         invalid_lilo_config = 1;
2820                                         setup_error_code |= INVALID_NUM_PORTS;
2821                                         return;
2822                                 }
2823                                 nbdevs += board.numports;
2824                                 last = index;
2825                                 break;
2826
2827                         case 5:
2828                                 board.port = ints[index];
2829                                 if (ints[index] <= 0) {
2830                                         printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2831                                         invalid_lilo_config = 1;
2832                                         setup_error_code |= INVALID_PORT_BASE;
2833                                         return;
2834                                 }
2835                                 last = index;
2836                                 break;
2837
2838                         case 6:
2839                                 board.membase = ints[index];
2840                                 if (ints[index] <= 0) {
2841                                         printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase);
2842                                         invalid_lilo_config = 1;
2843                                         setup_error_code |= INVALID_MEM_BASE;
2844                                         return;
2845                                 }
2846                                 last = index;
2847                                 break;
2848
2849                         default:
2850                                 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2851                                 return;
2852
2853                 } /* End parse switch */
2854
2855         while (str && *str)  { /* Begin while there is a string arg */
2856                 /* find the next comma or terminator */
2857                 temp = str;
2858                 /* While string is not null, and a comma hasn't been found */
2859                 while (*temp && (*temp != ','))
2860                         temp++;
2861                 if (!*temp)
2862                         temp = NULL;
2863                 else
2864                         *temp++ = 0;
2865                 /* Set index to the number of args + 1 */
2866                 index = last + 1;
2867
2868                 switch(index)
2869                 {
2870                         case 1:
2871                                 len = strlen(str);
2872                                 if (strncmp("Disable", str, len) == 0) 
2873                                         board.status = 0;
2874                                 else if (strncmp("Enable", str, len) == 0)
2875                                         board.status = 1;
2876                                 else {
2877                                         printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2878                                         invalid_lilo_config = 1;
2879                                         setup_error_code |= INVALID_BOARD_STATUS;
2880                                         return;
2881                                 }
2882                                 last = index;
2883                                 break;
2884
2885                         case 2:
2886                                 for(loop = 0; loop < EPCA_NUM_TYPES; loop++)
2887                                         if (strcmp(board_desc[loop], str) == 0)
2888                                                 break;
2889                                 /* ---------------------------------------------------------------
2890                                         If the index incremented above refers to a legitamate board 
2891                                         type set it here. 
2892                                 ------------------------------------------------------------------*/
2893                                 if (index < EPCA_NUM_TYPES) 
2894                                         board.type = loop;
2895                                 else {
2896                                         printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2897                                         invalid_lilo_config = 1;
2898                                         setup_error_code |= INVALID_BOARD_TYPE;
2899                                         return;
2900                                 }
2901                                 last = index;
2902                                 break;
2903
2904                         case 3:
2905                                 len = strlen(str);
2906                                 if (strncmp("Disable", str, len) == 0) 
2907                                         board.altpin = 0;
2908                                 else if (strncmp("Enable", str, len) == 0)
2909                                         board.altpin = 1;
2910                                 else {
2911                                         printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2912                                         invalid_lilo_config = 1;
2913                                         setup_error_code |= INVALID_ALTPIN;
2914                                         return;
2915                                 }
2916                                 last = index;
2917                                 break;
2918
2919                         case 4:
2920                                 t2 = str;
2921                                 while (isdigit(*t2))
2922                                         t2++;
2923
2924                                 if (*t2) {
2925                                         printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2926                                         invalid_lilo_config = 1;
2927                                         setup_error_code |= INVALID_NUM_PORTS;
2928                                         return;
2929                                 }
2930
2931                                 /* ------------------------------------------------------------
2932                                         There is not a man page for simple_strtoul but the code can be 
2933                                         found in vsprintf.c.  The first argument is the string to 
2934                                         translate (To an unsigned long obviously),  the second argument
2935                                         can be the address of any character variable or a NULL.  If a
2936                                         variable is given, the end pointer of the string will be stored 
2937                                         in that variable; if a NULL is given the end pointer will 
2938                                         not be returned.  The last argument is the base to use.  If 
2939                                         a 0 is indicated, the routine will attempt to determine the 
2940                                         proper base by looking at the values prefix (A '0' for octal,
2941                                         a 'x' for hex, etc ...  If a value is given it will use that 
2942                                         value as the base. 
2943                                 ---------------------------------------------------------------- */ 
2944                                 board.numports = simple_strtoul(str, NULL, 0);
2945                                 nbdevs += board.numports;
2946                                 last = index;
2947                                 break;
2948
2949                         case 5:
2950                                 t2 = str;
2951                                 while (isxdigit(*t2))
2952                                         t2++;
2953
2954                                 if (*t2) {
2955                                         printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2956                                         invalid_lilo_config = 1;
2957                                         setup_error_code |= INVALID_PORT_BASE;
2958                                         return;
2959                                 }
2960
2961                                 board.port = simple_strtoul(str, NULL, 16);
2962                                 last = index;
2963                                 break;
2964
2965                         case 6:
2966                                 t2 = str;
2967                                 while (isxdigit(*t2))
2968                                         t2++;
2969
2970                                 if (*t2) {
2971                                         printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str);
2972                                         invalid_lilo_config = 1;
2973                                         setup_error_code |= INVALID_MEM_BASE;
2974                                         return;
2975                                 }
2976                                 board.membase = simple_strtoul(str, NULL, 16);
2977                                 last = index;
2978                                 break;
2979                         default:
2980                                 printk(KERN_ERR "epca: Too many string parms\n");
2981                                 return;
2982                 }
2983                 str = temp;
2984         } /* End while there is a string arg */
2985
2986         if (last < 6) {
2987                 printk(KERN_ERR "epca: Insufficient parms specified\n");
2988                 return;
2989         }
2990  
2991         /* I should REALLY validate the stuff here */
2992         /* Copies our local copy of board into boards */
2993         memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board));
2994         /* Does this get called once per lilo arg are what ? */
2995         printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n", 
2996                 num_cards, board_desc[board.type], 
2997                 board.numports, (int)board.port, (unsigned int) board.membase);
2998         num_cards++;
2999 } /* End epca_setup */
3000
3001
3002 /* ------------------------ Begin init_PCI  --------------------------- */
3003
3004 enum epic_board_types {
3005         brd_xr = 0,
3006         brd_xem,
3007         brd_cx,
3008         brd_xrj,
3009 };
3010
3011
3012 /* indexed directly by epic_board_types enum */
3013 static struct {
3014         unsigned char board_type;
3015         unsigned bar_idx;               /* PCI base address region */
3016 } epca_info_tbl[] = {
3017         { PCIXR, 0, },
3018         { PCIXEM, 0, },
3019         { PCICX, 0, },
3020         { PCIXRJ, 2, },
3021 };
3022
3023 static int __devinit epca_init_one (struct pci_dev *pdev,
3024                                  const struct pci_device_id *ent)
3025 {
3026         static int board_num = -1;
3027         int board_idx, info_idx = ent->driver_data;
3028         unsigned long addr;
3029
3030         if (pci_enable_device(pdev))
3031                 return -EIO;
3032
3033         board_num++;
3034         board_idx = board_num + num_cards;
3035         if (board_idx >= MAXBOARDS)
3036                 goto err_out;
3037         
3038         addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx);
3039         if (!addr) {
3040                 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n",
3041                         epca_info_tbl[info_idx].bar_idx);
3042                 goto err_out;
3043         }
3044
3045         boards[board_idx].status = ENABLED;
3046         boards[board_idx].type = epca_info_tbl[info_idx].board_type;
3047         boards[board_idx].numports = 0x0;
3048         boards[board_idx].port = addr + PCI_IO_OFFSET;
3049         boards[board_idx].membase = addr;
3050
3051         if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) {
3052                 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3053                         0x200000, addr + PCI_IO_OFFSET);
3054                 goto err_out;
3055         }
3056
3057         boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000);
3058         if (!boards[board_idx].re_map_port) {
3059                 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3060                         0x200000, addr + PCI_IO_OFFSET);
3061                 goto err_out_free_pciio;
3062         }
3063
3064         if (!request_mem_region (addr, 0x200000, "epca")) {
3065                 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3066                         0x200000, addr);
3067                 goto err_out_free_iounmap;
3068         }
3069
3070         boards[board_idx].re_map_membase = ioremap(addr, 0x200000);
3071         if (!boards[board_idx].re_map_membase) {
3072                 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3073                         0x200000, addr + PCI_IO_OFFSET);
3074                 goto err_out_free_memregion;
3075         }
3076
3077         /* --------------------------------------------------------------
3078                 I don't know what the below does, but the hardware guys say
3079                 its required on everything except PLX (In this case XRJ).
3080         ---------------------------------------------------------------- */
3081         if (info_idx != brd_xrj) {
3082                 pci_write_config_byte(pdev, 0x40, 0);  
3083                 pci_write_config_byte(pdev, 0x46, 0);
3084         }
3085         
3086         return 0;
3087
3088 err_out_free_memregion:
3089         release_mem_region (addr, 0x200000);
3090 err_out_free_iounmap:
3091         iounmap (boards[board_idx].re_map_port);
3092 err_out_free_pciio:
3093         release_mem_region (addr + PCI_IO_OFFSET, 0x200000);
3094 err_out:
3095         return -ENODEV;
3096 }
3097
3098
3099 static struct pci_device_id epca_pci_tbl[] = {
3100         { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
3101         { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
3102         { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
3103         { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
3104         { 0, }
3105 };
3106
3107 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
3108
3109 int __init init_PCI (void)
3110 {       /* Begin init_PCI */
3111         memset (&epca_driver, 0, sizeof (epca_driver));
3112         epca_driver.name = "epca";
3113         epca_driver.id_table = epca_pci_tbl;
3114         epca_driver.probe = epca_init_one;
3115
3116         return pci_register_driver(&epca_driver);
3117 }
3118
3119 MODULE_LICENSE("GPL");