i2c: Check for address business before creating clients
[linux-2.6] / fs / binfmt_elf.c
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/fcntl.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/shm.h>
28 #include <linux/personality.h>
29 #include <linux/elfcore.h>
30 #include <linux/init.h>
31 #include <linux/highuid.h>
32 #include <linux/smp.h>
33 #include <linux/compiler.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/security.h>
37 #include <linux/syscalls.h>
38 #include <linux/random.h>
39 #include <linux/elf.h>
40 #include <linux/utsname.h>
41 #include <asm/uaccess.h>
42 #include <asm/param.h>
43 #include <asm/page.h>
44
45 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
46 static int load_elf_library(struct file *);
47 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
48                                 int, int, unsigned long);
49
50 /*
51  * If we don't support core dumping, then supply a NULL so we
52  * don't even try.
53  */
54 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
55 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
56 #else
57 #define elf_core_dump   NULL
58 #endif
59
60 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
61 #define ELF_MIN_ALIGN   ELF_EXEC_PAGESIZE
62 #else
63 #define ELF_MIN_ALIGN   PAGE_SIZE
64 #endif
65
66 #ifndef ELF_CORE_EFLAGS
67 #define ELF_CORE_EFLAGS 0
68 #endif
69
70 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
71 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
72 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
73
74 static struct linux_binfmt elf_format = {
75                 .module         = THIS_MODULE,
76                 .load_binary    = load_elf_binary,
77                 .load_shlib     = load_elf_library,
78                 .core_dump      = elf_core_dump,
79                 .min_coredump   = ELF_EXEC_PAGESIZE,
80                 .hasvdso        = 1
81 };
82
83 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
84
85 static int set_brk(unsigned long start, unsigned long end)
86 {
87         start = ELF_PAGEALIGN(start);
88         end = ELF_PAGEALIGN(end);
89         if (end > start) {
90                 unsigned long addr;
91                 down_write(&current->mm->mmap_sem);
92                 addr = do_brk(start, end - start);
93                 up_write(&current->mm->mmap_sem);
94                 if (BAD_ADDR(addr))
95                         return addr;
96         }
97         current->mm->start_brk = current->mm->brk = end;
98         return 0;
99 }
100
101 /* We need to explicitly zero any fractional pages
102    after the data section (i.e. bss).  This would
103    contain the junk from the file that should not
104    be in memory
105  */
106 static int padzero(unsigned long elf_bss)
107 {
108         unsigned long nbyte;
109
110         nbyte = ELF_PAGEOFFSET(elf_bss);
111         if (nbyte) {
112                 nbyte = ELF_MIN_ALIGN - nbyte;
113                 if (clear_user((void __user *) elf_bss, nbyte))
114                         return -EFAULT;
115         }
116         return 0;
117 }
118
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123         ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125         elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126         old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130         (((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
133
134 #ifndef ELF_BASE_PLATFORM
135 /*
136  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138  * will be copied to the user stack in the same manner as AT_PLATFORM.
139  */
140 #define ELF_BASE_PLATFORM NULL
141 #endif
142
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145                 unsigned long load_addr, unsigned long interp_load_addr)
146 {
147         unsigned long p = bprm->p;
148         int argc = bprm->argc;
149         int envc = bprm->envc;
150         elf_addr_t __user *argv;
151         elf_addr_t __user *envp;
152         elf_addr_t __user *sp;
153         elf_addr_t __user *u_platform;
154         elf_addr_t __user *u_base_platform;
155         const char *k_platform = ELF_PLATFORM;
156         const char *k_base_platform = ELF_BASE_PLATFORM;
157         int items;
158         elf_addr_t *elf_info;
159         int ei_index = 0;
160         struct task_struct *tsk = current;
161         struct vm_area_struct *vma;
162
163         /*
164          * In some cases (e.g. Hyper-Threading), we want to avoid L1
165          * evictions by the processes running on the same package. One
166          * thing we can do is to shuffle the initial stack for them.
167          */
168
169         p = arch_align_stack(p);
170
171         /*
172          * If this architecture has a platform capability string, copy it
173          * to userspace.  In some cases (Sparc), this info is impossible
174          * for userspace to get any other way, in others (i386) it is
175          * merely difficult.
176          */
177         u_platform = NULL;
178         if (k_platform) {
179                 size_t len = strlen(k_platform) + 1;
180
181                 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
182                 if (__copy_to_user(u_platform, k_platform, len))
183                         return -EFAULT;
184         }
185
186         /*
187          * If this architecture has a "base" platform capability
188          * string, copy it to userspace.
189          */
190         u_base_platform = NULL;
191         if (k_base_platform) {
192                 size_t len = strlen(k_base_platform) + 1;
193
194                 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
195                 if (__copy_to_user(u_base_platform, k_base_platform, len))
196                         return -EFAULT;
197         }
198
199         /* Create the ELF interpreter info */
200         elf_info = (elf_addr_t *)current->mm->saved_auxv;
201         /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
202 #define NEW_AUX_ENT(id, val) \
203         do { \
204                 elf_info[ei_index++] = id; \
205                 elf_info[ei_index++] = val; \
206         } while (0)
207
208 #ifdef ARCH_DLINFO
209         /* 
210          * ARCH_DLINFO must come first so PPC can do its special alignment of
211          * AUXV.
212          * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
213          * ARCH_DLINFO changes
214          */
215         ARCH_DLINFO;
216 #endif
217         NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
218         NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
219         NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
220         NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
221         NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
222         NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
223         NEW_AUX_ENT(AT_BASE, interp_load_addr);
224         NEW_AUX_ENT(AT_FLAGS, 0);
225         NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
226         NEW_AUX_ENT(AT_UID, tsk->uid);
227         NEW_AUX_ENT(AT_EUID, tsk->euid);
228         NEW_AUX_ENT(AT_GID, tsk->gid);
229         NEW_AUX_ENT(AT_EGID, tsk->egid);
230         NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
231         NEW_AUX_ENT(AT_EXECFN, bprm->exec);
232         if (k_platform) {
233                 NEW_AUX_ENT(AT_PLATFORM,
234                             (elf_addr_t)(unsigned long)u_platform);
235         }
236         if (k_base_platform) {
237                 NEW_AUX_ENT(AT_BASE_PLATFORM,
238                             (elf_addr_t)(unsigned long)u_base_platform);
239         }
240         if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
241                 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
242         }
243 #undef NEW_AUX_ENT
244         /* AT_NULL is zero; clear the rest too */
245         memset(&elf_info[ei_index], 0,
246                sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
247
248         /* And advance past the AT_NULL entry.  */
249         ei_index += 2;
250
251         sp = STACK_ADD(p, ei_index);
252
253         items = (argc + 1) + (envc + 1) + 1;
254         bprm->p = STACK_ROUND(sp, items);
255
256         /* Point sp at the lowest address on the stack */
257 #ifdef CONFIG_STACK_GROWSUP
258         sp = (elf_addr_t __user *)bprm->p - items - ei_index;
259         bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
260 #else
261         sp = (elf_addr_t __user *)bprm->p;
262 #endif
263
264
265         /*
266          * Grow the stack manually; some architectures have a limit on how
267          * far ahead a user-space access may be in order to grow the stack.
268          */
269         vma = find_extend_vma(current->mm, bprm->p);
270         if (!vma)
271                 return -EFAULT;
272
273         /* Now, let's put argc (and argv, envp if appropriate) on the stack */
274         if (__put_user(argc, sp++))
275                 return -EFAULT;
276         argv = sp;
277         envp = argv + argc + 1;
278
279         /* Populate argv and envp */
280         p = current->mm->arg_end = current->mm->arg_start;
281         while (argc-- > 0) {
282                 size_t len;
283                 if (__put_user((elf_addr_t)p, argv++))
284                         return -EFAULT;
285                 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
286                 if (!len || len > MAX_ARG_STRLEN)
287                         return -EINVAL;
288                 p += len;
289         }
290         if (__put_user(0, argv))
291                 return -EFAULT;
292         current->mm->arg_end = current->mm->env_start = p;
293         while (envc-- > 0) {
294                 size_t len;
295                 if (__put_user((elf_addr_t)p, envp++))
296                         return -EFAULT;
297                 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
298                 if (!len || len > MAX_ARG_STRLEN)
299                         return -EINVAL;
300                 p += len;
301         }
302         if (__put_user(0, envp))
303                 return -EFAULT;
304         current->mm->env_end = p;
305
306         /* Put the elf_info on the stack in the right place.  */
307         sp = (elf_addr_t __user *)envp + 1;
308         if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
309                 return -EFAULT;
310         return 0;
311 }
312
313 #ifndef elf_map
314
315 static unsigned long elf_map(struct file *filep, unsigned long addr,
316                 struct elf_phdr *eppnt, int prot, int type,
317                 unsigned long total_size)
318 {
319         unsigned long map_addr;
320         unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
321         unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
322         addr = ELF_PAGESTART(addr);
323         size = ELF_PAGEALIGN(size);
324
325         /* mmap() will return -EINVAL if given a zero size, but a
326          * segment with zero filesize is perfectly valid */
327         if (!size)
328                 return addr;
329
330         down_write(&current->mm->mmap_sem);
331         /*
332         * total_size is the size of the ELF (interpreter) image.
333         * The _first_ mmap needs to know the full size, otherwise
334         * randomization might put this image into an overlapping
335         * position with the ELF binary image. (since size < total_size)
336         * So we first map the 'big' image - and unmap the remainder at
337         * the end. (which unmap is needed for ELF images with holes.)
338         */
339         if (total_size) {
340                 total_size = ELF_PAGEALIGN(total_size);
341                 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
342                 if (!BAD_ADDR(map_addr))
343                         do_munmap(current->mm, map_addr+size, total_size-size);
344         } else
345                 map_addr = do_mmap(filep, addr, size, prot, type, off);
346
347         up_write(&current->mm->mmap_sem);
348         return(map_addr);
349 }
350
351 #endif /* !elf_map */
352
353 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
354 {
355         int i, first_idx = -1, last_idx = -1;
356
357         for (i = 0; i < nr; i++) {
358                 if (cmds[i].p_type == PT_LOAD) {
359                         last_idx = i;
360                         if (first_idx == -1)
361                                 first_idx = i;
362                 }
363         }
364         if (first_idx == -1)
365                 return 0;
366
367         return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
368                                 ELF_PAGESTART(cmds[first_idx].p_vaddr);
369 }
370
371
372 /* This is much more generalized than the library routine read function,
373    so we keep this separate.  Technically the library read function
374    is only provided so that we can read a.out libraries that have
375    an ELF header */
376
377 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
378                 struct file *interpreter, unsigned long *interp_map_addr,
379                 unsigned long no_base)
380 {
381         struct elf_phdr *elf_phdata;
382         struct elf_phdr *eppnt;
383         unsigned long load_addr = 0;
384         int load_addr_set = 0;
385         unsigned long last_bss = 0, elf_bss = 0;
386         unsigned long error = ~0UL;
387         unsigned long total_size;
388         int retval, i, size;
389
390         /* First of all, some simple consistency checks */
391         if (interp_elf_ex->e_type != ET_EXEC &&
392             interp_elf_ex->e_type != ET_DYN)
393                 goto out;
394         if (!elf_check_arch(interp_elf_ex))
395                 goto out;
396         if (!interpreter->f_op || !interpreter->f_op->mmap)
397                 goto out;
398
399         /*
400          * If the size of this structure has changed, then punt, since
401          * we will be doing the wrong thing.
402          */
403         if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
404                 goto out;
405         if (interp_elf_ex->e_phnum < 1 ||
406                 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
407                 goto out;
408
409         /* Now read in all of the header information */
410         size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
411         if (size > ELF_MIN_ALIGN)
412                 goto out;
413         elf_phdata = kmalloc(size, GFP_KERNEL);
414         if (!elf_phdata)
415                 goto out;
416
417         retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
418                              (char *)elf_phdata,size);
419         error = -EIO;
420         if (retval != size) {
421                 if (retval < 0)
422                         error = retval; 
423                 goto out_close;
424         }
425
426         total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
427         if (!total_size) {
428                 error = -EINVAL;
429                 goto out_close;
430         }
431
432         eppnt = elf_phdata;
433         for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
434                 if (eppnt->p_type == PT_LOAD) {
435                         int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
436                         int elf_prot = 0;
437                         unsigned long vaddr = 0;
438                         unsigned long k, map_addr;
439
440                         if (eppnt->p_flags & PF_R)
441                                 elf_prot = PROT_READ;
442                         if (eppnt->p_flags & PF_W)
443                                 elf_prot |= PROT_WRITE;
444                         if (eppnt->p_flags & PF_X)
445                                 elf_prot |= PROT_EXEC;
446                         vaddr = eppnt->p_vaddr;
447                         if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
448                                 elf_type |= MAP_FIXED;
449                         else if (no_base && interp_elf_ex->e_type == ET_DYN)
450                                 load_addr = -vaddr;
451
452                         map_addr = elf_map(interpreter, load_addr + vaddr,
453                                         eppnt, elf_prot, elf_type, total_size);
454                         total_size = 0;
455                         if (!*interp_map_addr)
456                                 *interp_map_addr = map_addr;
457                         error = map_addr;
458                         if (BAD_ADDR(map_addr))
459                                 goto out_close;
460
461                         if (!load_addr_set &&
462                             interp_elf_ex->e_type == ET_DYN) {
463                                 load_addr = map_addr - ELF_PAGESTART(vaddr);
464                                 load_addr_set = 1;
465                         }
466
467                         /*
468                          * Check to see if the section's size will overflow the
469                          * allowed task size. Note that p_filesz must always be
470                          * <= p_memsize so it's only necessary to check p_memsz.
471                          */
472                         k = load_addr + eppnt->p_vaddr;
473                         if (BAD_ADDR(k) ||
474                             eppnt->p_filesz > eppnt->p_memsz ||
475                             eppnt->p_memsz > TASK_SIZE ||
476                             TASK_SIZE - eppnt->p_memsz < k) {
477                                 error = -ENOMEM;
478                                 goto out_close;
479                         }
480
481                         /*
482                          * Find the end of the file mapping for this phdr, and
483                          * keep track of the largest address we see for this.
484                          */
485                         k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
486                         if (k > elf_bss)
487                                 elf_bss = k;
488
489                         /*
490                          * Do the same thing for the memory mapping - between
491                          * elf_bss and last_bss is the bss section.
492                          */
493                         k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
494                         if (k > last_bss)
495                                 last_bss = k;
496                 }
497         }
498
499         /*
500          * Now fill out the bss section.  First pad the last page up
501          * to the page boundary, and then perform a mmap to make sure
502          * that there are zero-mapped pages up to and including the 
503          * last bss page.
504          */
505         if (padzero(elf_bss)) {
506                 error = -EFAULT;
507                 goto out_close;
508         }
509
510         /* What we have mapped so far */
511         elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
512
513         /* Map the last of the bss segment */
514         if (last_bss > elf_bss) {
515                 down_write(&current->mm->mmap_sem);
516                 error = do_brk(elf_bss, last_bss - elf_bss);
517                 up_write(&current->mm->mmap_sem);
518                 if (BAD_ADDR(error))
519                         goto out_close;
520         }
521
522         error = load_addr;
523
524 out_close:
525         kfree(elf_phdata);
526 out:
527         return error;
528 }
529
530 /*
531  * These are the functions used to load ELF style executables and shared
532  * libraries.  There is no binary dependent code anywhere else.
533  */
534
535 #define INTERPRETER_NONE 0
536 #define INTERPRETER_ELF 2
537
538 #ifndef STACK_RND_MASK
539 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
540 #endif
541
542 static unsigned long randomize_stack_top(unsigned long stack_top)
543 {
544         unsigned int random_variable = 0;
545
546         if ((current->flags & PF_RANDOMIZE) &&
547                 !(current->personality & ADDR_NO_RANDOMIZE)) {
548                 random_variable = get_random_int() & STACK_RND_MASK;
549                 random_variable <<= PAGE_SHIFT;
550         }
551 #ifdef CONFIG_STACK_GROWSUP
552         return PAGE_ALIGN(stack_top) + random_variable;
553 #else
554         return PAGE_ALIGN(stack_top) - random_variable;
555 #endif
556 }
557
558 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
559 {
560         struct file *interpreter = NULL; /* to shut gcc up */
561         unsigned long load_addr = 0, load_bias = 0;
562         int load_addr_set = 0;
563         char * elf_interpreter = NULL;
564         unsigned long error;
565         struct elf_phdr *elf_ppnt, *elf_phdata;
566         unsigned long elf_bss, elf_brk;
567         int elf_exec_fileno;
568         int retval, i;
569         unsigned int size;
570         unsigned long elf_entry;
571         unsigned long interp_load_addr = 0;
572         unsigned long start_code, end_code, start_data, end_data;
573         unsigned long reloc_func_desc = 0;
574         int executable_stack = EXSTACK_DEFAULT;
575         unsigned long def_flags = 0;
576         struct {
577                 struct elfhdr elf_ex;
578                 struct elfhdr interp_elf_ex;
579         } *loc;
580
581         loc = kmalloc(sizeof(*loc), GFP_KERNEL);
582         if (!loc) {
583                 retval = -ENOMEM;
584                 goto out_ret;
585         }
586         
587         /* Get the exec-header */
588         loc->elf_ex = *((struct elfhdr *)bprm->buf);
589
590         retval = -ENOEXEC;
591         /* First of all, some simple consistency checks */
592         if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
593                 goto out;
594
595         if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
596                 goto out;
597         if (!elf_check_arch(&loc->elf_ex))
598                 goto out;
599         if (!bprm->file->f_op||!bprm->file->f_op->mmap)
600                 goto out;
601
602         /* Now read in all of the header information */
603         if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
604                 goto out;
605         if (loc->elf_ex.e_phnum < 1 ||
606                 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
607                 goto out;
608         size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
609         retval = -ENOMEM;
610         elf_phdata = kmalloc(size, GFP_KERNEL);
611         if (!elf_phdata)
612                 goto out;
613
614         retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
615                              (char *)elf_phdata, size);
616         if (retval != size) {
617                 if (retval >= 0)
618                         retval = -EIO;
619                 goto out_free_ph;
620         }
621
622         retval = get_unused_fd();
623         if (retval < 0)
624                 goto out_free_ph;
625         get_file(bprm->file);
626         fd_install(elf_exec_fileno = retval, bprm->file);
627
628         elf_ppnt = elf_phdata;
629         elf_bss = 0;
630         elf_brk = 0;
631
632         start_code = ~0UL;
633         end_code = 0;
634         start_data = 0;
635         end_data = 0;
636
637         for (i = 0; i < loc->elf_ex.e_phnum; i++) {
638                 if (elf_ppnt->p_type == PT_INTERP) {
639                         /* This is the program interpreter used for
640                          * shared libraries - for now assume that this
641                          * is an a.out format binary
642                          */
643                         retval = -ENOEXEC;
644                         if (elf_ppnt->p_filesz > PATH_MAX || 
645                             elf_ppnt->p_filesz < 2)
646                                 goto out_free_file;
647
648                         retval = -ENOMEM;
649                         elf_interpreter = kmalloc(elf_ppnt->p_filesz,
650                                                   GFP_KERNEL);
651                         if (!elf_interpreter)
652                                 goto out_free_file;
653
654                         retval = kernel_read(bprm->file, elf_ppnt->p_offset,
655                                              elf_interpreter,
656                                              elf_ppnt->p_filesz);
657                         if (retval != elf_ppnt->p_filesz) {
658                                 if (retval >= 0)
659                                         retval = -EIO;
660                                 goto out_free_interp;
661                         }
662                         /* make sure path is NULL terminated */
663                         retval = -ENOEXEC;
664                         if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
665                                 goto out_free_interp;
666
667                         /*
668                          * The early SET_PERSONALITY here is so that the lookup
669                          * for the interpreter happens in the namespace of the 
670                          * to-be-execed image.  SET_PERSONALITY can select an
671                          * alternate root.
672                          *
673                          * However, SET_PERSONALITY is NOT allowed to switch
674                          * this task into the new images's memory mapping
675                          * policy - that is, TASK_SIZE must still evaluate to
676                          * that which is appropriate to the execing application.
677                          * This is because exit_mmap() needs to have TASK_SIZE
678                          * evaluate to the size of the old image.
679                          *
680                          * So if (say) a 64-bit application is execing a 32-bit
681                          * application it is the architecture's responsibility
682                          * to defer changing the value of TASK_SIZE until the
683                          * switch really is going to happen - do this in
684                          * flush_thread().      - akpm
685                          */
686                         SET_PERSONALITY(loc->elf_ex, 0);
687
688                         interpreter = open_exec(elf_interpreter);
689                         retval = PTR_ERR(interpreter);
690                         if (IS_ERR(interpreter))
691                                 goto out_free_interp;
692
693                         /*
694                          * If the binary is not readable then enforce
695                          * mm->dumpable = 0 regardless of the interpreter's
696                          * permissions.
697                          */
698                         if (file_permission(interpreter, MAY_READ) < 0)
699                                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
700
701                         retval = kernel_read(interpreter, 0, bprm->buf,
702                                              BINPRM_BUF_SIZE);
703                         if (retval != BINPRM_BUF_SIZE) {
704                                 if (retval >= 0)
705                                         retval = -EIO;
706                                 goto out_free_dentry;
707                         }
708
709                         /* Get the exec headers */
710                         loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
711                         break;
712                 }
713                 elf_ppnt++;
714         }
715
716         elf_ppnt = elf_phdata;
717         for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
718                 if (elf_ppnt->p_type == PT_GNU_STACK) {
719                         if (elf_ppnt->p_flags & PF_X)
720                                 executable_stack = EXSTACK_ENABLE_X;
721                         else
722                                 executable_stack = EXSTACK_DISABLE_X;
723                         break;
724                 }
725
726         /* Some simple consistency checks for the interpreter */
727         if (elf_interpreter) {
728                 retval = -ELIBBAD;
729                 /* Not an ELF interpreter */
730                 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
731                         goto out_free_dentry;
732                 /* Verify the interpreter has a valid arch */
733                 if (!elf_check_arch(&loc->interp_elf_ex))
734                         goto out_free_dentry;
735         } else {
736                 /* Executables without an interpreter also need a personality  */
737                 SET_PERSONALITY(loc->elf_ex, 0);
738         }
739
740         /* Flush all traces of the currently running executable */
741         retval = flush_old_exec(bprm);
742         if (retval)
743                 goto out_free_dentry;
744
745         /* OK, This is the point of no return */
746         current->flags &= ~PF_FORKNOEXEC;
747         current->mm->def_flags = def_flags;
748
749         /* Do this immediately, since STACK_TOP as used in setup_arg_pages
750            may depend on the personality.  */
751         SET_PERSONALITY(loc->elf_ex, 0);
752         if (elf_read_implies_exec(loc->elf_ex, executable_stack))
753                 current->personality |= READ_IMPLIES_EXEC;
754
755         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
756                 current->flags |= PF_RANDOMIZE;
757         arch_pick_mmap_layout(current->mm);
758
759         /* Do this so that we can load the interpreter, if need be.  We will
760            change some of these later */
761         current->mm->free_area_cache = current->mm->mmap_base;
762         current->mm->cached_hole_size = 0;
763         retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
764                                  executable_stack);
765         if (retval < 0) {
766                 send_sig(SIGKILL, current, 0);
767                 goto out_free_dentry;
768         }
769         
770         current->mm->start_stack = bprm->p;
771
772         /* Now we do a little grungy work by mmaping the ELF image into
773            the correct location in memory. */
774         for(i = 0, elf_ppnt = elf_phdata;
775             i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
776                 int elf_prot = 0, elf_flags;
777                 unsigned long k, vaddr;
778
779                 if (elf_ppnt->p_type != PT_LOAD)
780                         continue;
781
782                 if (unlikely (elf_brk > elf_bss)) {
783                         unsigned long nbyte;
784                     
785                         /* There was a PT_LOAD segment with p_memsz > p_filesz
786                            before this one. Map anonymous pages, if needed,
787                            and clear the area.  */
788                         retval = set_brk (elf_bss + load_bias,
789                                           elf_brk + load_bias);
790                         if (retval) {
791                                 send_sig(SIGKILL, current, 0);
792                                 goto out_free_dentry;
793                         }
794                         nbyte = ELF_PAGEOFFSET(elf_bss);
795                         if (nbyte) {
796                                 nbyte = ELF_MIN_ALIGN - nbyte;
797                                 if (nbyte > elf_brk - elf_bss)
798                                         nbyte = elf_brk - elf_bss;
799                                 if (clear_user((void __user *)elf_bss +
800                                                         load_bias, nbyte)) {
801                                         /*
802                                          * This bss-zeroing can fail if the ELF
803                                          * file specifies odd protections. So
804                                          * we don't check the return value
805                                          */
806                                 }
807                         }
808                 }
809
810                 if (elf_ppnt->p_flags & PF_R)
811                         elf_prot |= PROT_READ;
812                 if (elf_ppnt->p_flags & PF_W)
813                         elf_prot |= PROT_WRITE;
814                 if (elf_ppnt->p_flags & PF_X)
815                         elf_prot |= PROT_EXEC;
816
817                 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
818
819                 vaddr = elf_ppnt->p_vaddr;
820                 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
821                         elf_flags |= MAP_FIXED;
822                 } else if (loc->elf_ex.e_type == ET_DYN) {
823                         /* Try and get dynamic programs out of the way of the
824                          * default mmap base, as well as whatever program they
825                          * might try to exec.  This is because the brk will
826                          * follow the loader, and is not movable.  */
827 #ifdef CONFIG_X86
828                         load_bias = 0;
829 #else
830                         load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
831 #endif
832                 }
833
834                 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
835                                 elf_prot, elf_flags, 0);
836                 if (BAD_ADDR(error)) {
837                         send_sig(SIGKILL, current, 0);
838                         retval = IS_ERR((void *)error) ?
839                                 PTR_ERR((void*)error) : -EINVAL;
840                         goto out_free_dentry;
841                 }
842
843                 if (!load_addr_set) {
844                         load_addr_set = 1;
845                         load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
846                         if (loc->elf_ex.e_type == ET_DYN) {
847                                 load_bias += error -
848                                              ELF_PAGESTART(load_bias + vaddr);
849                                 load_addr += load_bias;
850                                 reloc_func_desc = load_bias;
851                         }
852                 }
853                 k = elf_ppnt->p_vaddr;
854                 if (k < start_code)
855                         start_code = k;
856                 if (start_data < k)
857                         start_data = k;
858
859                 /*
860                  * Check to see if the section's size will overflow the
861                  * allowed task size. Note that p_filesz must always be
862                  * <= p_memsz so it is only necessary to check p_memsz.
863                  */
864                 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
865                     elf_ppnt->p_memsz > TASK_SIZE ||
866                     TASK_SIZE - elf_ppnt->p_memsz < k) {
867                         /* set_brk can never work. Avoid overflows. */
868                         send_sig(SIGKILL, current, 0);
869                         retval = -EINVAL;
870                         goto out_free_dentry;
871                 }
872
873                 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
874
875                 if (k > elf_bss)
876                         elf_bss = k;
877                 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
878                         end_code = k;
879                 if (end_data < k)
880                         end_data = k;
881                 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
882                 if (k > elf_brk)
883                         elf_brk = k;
884         }
885
886         loc->elf_ex.e_entry += load_bias;
887         elf_bss += load_bias;
888         elf_brk += load_bias;
889         start_code += load_bias;
890         end_code += load_bias;
891         start_data += load_bias;
892         end_data += load_bias;
893
894         /* Calling set_brk effectively mmaps the pages that we need
895          * for the bss and break sections.  We must do this before
896          * mapping in the interpreter, to make sure it doesn't wind
897          * up getting placed where the bss needs to go.
898          */
899         retval = set_brk(elf_bss, elf_brk);
900         if (retval) {
901                 send_sig(SIGKILL, current, 0);
902                 goto out_free_dentry;
903         }
904         if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
905                 send_sig(SIGSEGV, current, 0);
906                 retval = -EFAULT; /* Nobody gets to see this, but.. */
907                 goto out_free_dentry;
908         }
909
910         if (elf_interpreter) {
911                 unsigned long uninitialized_var(interp_map_addr);
912
913                 elf_entry = load_elf_interp(&loc->interp_elf_ex,
914                                             interpreter,
915                                             &interp_map_addr,
916                                             load_bias);
917                 if (!IS_ERR((void *)elf_entry)) {
918                         /*
919                          * load_elf_interp() returns relocation
920                          * adjustment
921                          */
922                         interp_load_addr = elf_entry;
923                         elf_entry += loc->interp_elf_ex.e_entry;
924                 }
925                 if (BAD_ADDR(elf_entry)) {
926                         force_sig(SIGSEGV, current);
927                         retval = IS_ERR((void *)elf_entry) ?
928                                         (int)elf_entry : -EINVAL;
929                         goto out_free_dentry;
930                 }
931                 reloc_func_desc = interp_load_addr;
932
933                 allow_write_access(interpreter);
934                 fput(interpreter);
935                 kfree(elf_interpreter);
936         } else {
937                 elf_entry = loc->elf_ex.e_entry;
938                 if (BAD_ADDR(elf_entry)) {
939                         force_sig(SIGSEGV, current);
940                         retval = -EINVAL;
941                         goto out_free_dentry;
942                 }
943         }
944
945         kfree(elf_phdata);
946
947         sys_close(elf_exec_fileno);
948
949         set_binfmt(&elf_format);
950
951 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
952         retval = arch_setup_additional_pages(bprm, executable_stack);
953         if (retval < 0) {
954                 send_sig(SIGKILL, current, 0);
955                 goto out;
956         }
957 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
958
959         compute_creds(bprm);
960         current->flags &= ~PF_FORKNOEXEC;
961         retval = create_elf_tables(bprm, &loc->elf_ex,
962                           load_addr, interp_load_addr);
963         if (retval < 0) {
964                 send_sig(SIGKILL, current, 0);
965                 goto out;
966         }
967         /* N.B. passed_fileno might not be initialized? */
968         current->mm->end_code = end_code;
969         current->mm->start_code = start_code;
970         current->mm->start_data = start_data;
971         current->mm->end_data = end_data;
972         current->mm->start_stack = bprm->p;
973
974 #ifdef arch_randomize_brk
975         if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
976                 current->mm->brk = current->mm->start_brk =
977                         arch_randomize_brk(current->mm);
978 #endif
979
980         if (current->personality & MMAP_PAGE_ZERO) {
981                 /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
982                    and some applications "depend" upon this behavior.
983                    Since we do not have the power to recompile these, we
984                    emulate the SVr4 behavior. Sigh. */
985                 down_write(&current->mm->mmap_sem);
986                 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
987                                 MAP_FIXED | MAP_PRIVATE, 0);
988                 up_write(&current->mm->mmap_sem);
989         }
990
991 #ifdef ELF_PLAT_INIT
992         /*
993          * The ABI may specify that certain registers be set up in special
994          * ways (on i386 %edx is the address of a DT_FINI function, for
995          * example.  In addition, it may also specify (eg, PowerPC64 ELF)
996          * that the e_entry field is the address of the function descriptor
997          * for the startup routine, rather than the address of the startup
998          * routine itself.  This macro performs whatever initialization to
999          * the regs structure is required as well as any relocations to the
1000          * function descriptor entries when executing dynamically links apps.
1001          */
1002         ELF_PLAT_INIT(regs, reloc_func_desc);
1003 #endif
1004
1005         start_thread(regs, elf_entry, bprm->p);
1006         retval = 0;
1007 out:
1008         kfree(loc);
1009 out_ret:
1010         return retval;
1011
1012         /* error cleanup */
1013 out_free_dentry:
1014         allow_write_access(interpreter);
1015         if (interpreter)
1016                 fput(interpreter);
1017 out_free_interp:
1018         kfree(elf_interpreter);
1019 out_free_file:
1020         sys_close(elf_exec_fileno);
1021 out_free_ph:
1022         kfree(elf_phdata);
1023         goto out;
1024 }
1025
1026 /* This is really simpleminded and specialized - we are loading an
1027    a.out library that is given an ELF header. */
1028 static int load_elf_library(struct file *file)
1029 {
1030         struct elf_phdr *elf_phdata;
1031         struct elf_phdr *eppnt;
1032         unsigned long elf_bss, bss, len;
1033         int retval, error, i, j;
1034         struct elfhdr elf_ex;
1035
1036         error = -ENOEXEC;
1037         retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1038         if (retval != sizeof(elf_ex))
1039                 goto out;
1040
1041         if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1042                 goto out;
1043
1044         /* First of all, some simple consistency checks */
1045         if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1046             !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1047                 goto out;
1048
1049         /* Now read in all of the header information */
1050
1051         j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1052         /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1053
1054         error = -ENOMEM;
1055         elf_phdata = kmalloc(j, GFP_KERNEL);
1056         if (!elf_phdata)
1057                 goto out;
1058
1059         eppnt = elf_phdata;
1060         error = -ENOEXEC;
1061         retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1062         if (retval != j)
1063                 goto out_free_ph;
1064
1065         for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1066                 if ((eppnt + i)->p_type == PT_LOAD)
1067                         j++;
1068         if (j != 1)
1069                 goto out_free_ph;
1070
1071         while (eppnt->p_type != PT_LOAD)
1072                 eppnt++;
1073
1074         /* Now use mmap to map the library into memory. */
1075         down_write(&current->mm->mmap_sem);
1076         error = do_mmap(file,
1077                         ELF_PAGESTART(eppnt->p_vaddr),
1078                         (eppnt->p_filesz +
1079                          ELF_PAGEOFFSET(eppnt->p_vaddr)),
1080                         PROT_READ | PROT_WRITE | PROT_EXEC,
1081                         MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1082                         (eppnt->p_offset -
1083                          ELF_PAGEOFFSET(eppnt->p_vaddr)));
1084         up_write(&current->mm->mmap_sem);
1085         if (error != ELF_PAGESTART(eppnt->p_vaddr))
1086                 goto out_free_ph;
1087
1088         elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1089         if (padzero(elf_bss)) {
1090                 error = -EFAULT;
1091                 goto out_free_ph;
1092         }
1093
1094         len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1095                             ELF_MIN_ALIGN - 1);
1096         bss = eppnt->p_memsz + eppnt->p_vaddr;
1097         if (bss > len) {
1098                 down_write(&current->mm->mmap_sem);
1099                 do_brk(len, bss - len);
1100                 up_write(&current->mm->mmap_sem);
1101         }
1102         error = 0;
1103
1104 out_free_ph:
1105         kfree(elf_phdata);
1106 out:
1107         return error;
1108 }
1109
1110 /*
1111  * Note that some platforms still use traditional core dumps and not
1112  * the ELF core dump.  Each platform can select it as appropriate.
1113  */
1114 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1115
1116 /*
1117  * ELF core dumper
1118  *
1119  * Modelled on fs/exec.c:aout_core_dump()
1120  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1121  */
1122 /*
1123  * These are the only things you should do on a core-file: use only these
1124  * functions to write out all the necessary info.
1125  */
1126 static int dump_write(struct file *file, const void *addr, int nr)
1127 {
1128         return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1129 }
1130
1131 static int dump_seek(struct file *file, loff_t off)
1132 {
1133         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1134                 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1135                         return 0;
1136         } else {
1137                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1138                 if (!buf)
1139                         return 0;
1140                 while (off > 0) {
1141                         unsigned long n = off;
1142                         if (n > PAGE_SIZE)
1143                                 n = PAGE_SIZE;
1144                         if (!dump_write(file, buf, n))
1145                                 return 0;
1146                         off -= n;
1147                 }
1148                 free_page((unsigned long)buf);
1149         }
1150         return 1;
1151 }
1152
1153 /*
1154  * Decide what to dump of a segment, part, all or none.
1155  */
1156 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1157                                    unsigned long mm_flags)
1158 {
1159         /* The vma can be set up to tell us the answer directly.  */
1160         if (vma->vm_flags & VM_ALWAYSDUMP)
1161                 goto whole;
1162
1163         /* Do not dump I/O mapped devices or special mappings */
1164         if (vma->vm_flags & (VM_IO | VM_RESERVED))
1165                 return 0;
1166
1167 #define FILTER(type)    (mm_flags & (1UL << MMF_DUMP_##type))
1168
1169         /* By default, dump shared memory if mapped from an anonymous file. */
1170         if (vma->vm_flags & VM_SHARED) {
1171                 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1172                     FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1173                         goto whole;
1174                 return 0;
1175         }
1176
1177         /* Dump segments that have been written to.  */
1178         if (vma->anon_vma && FILTER(ANON_PRIVATE))
1179                 goto whole;
1180         if (vma->vm_file == NULL)
1181                 return 0;
1182
1183         if (FILTER(MAPPED_PRIVATE))
1184                 goto whole;
1185
1186         /*
1187          * If this looks like the beginning of a DSO or executable mapping,
1188          * check for an ELF header.  If we find one, dump the first page to
1189          * aid in determining what was mapped here.
1190          */
1191         if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1192                 u32 __user *header = (u32 __user *) vma->vm_start;
1193                 u32 word;
1194                 /*
1195                  * Doing it this way gets the constant folded by GCC.
1196                  */
1197                 union {
1198                         u32 cmp;
1199                         char elfmag[SELFMAG];
1200                 } magic;
1201                 BUILD_BUG_ON(SELFMAG != sizeof word);
1202                 magic.elfmag[EI_MAG0] = ELFMAG0;
1203                 magic.elfmag[EI_MAG1] = ELFMAG1;
1204                 magic.elfmag[EI_MAG2] = ELFMAG2;
1205                 magic.elfmag[EI_MAG3] = ELFMAG3;
1206                 if (get_user(word, header) == 0 && word == magic.cmp)
1207                         return PAGE_SIZE;
1208         }
1209
1210 #undef  FILTER
1211
1212         return 0;
1213
1214 whole:
1215         return vma->vm_end - vma->vm_start;
1216 }
1217
1218 /* An ELF note in memory */
1219 struct memelfnote
1220 {
1221         const char *name;
1222         int type;
1223         unsigned int datasz;
1224         void *data;
1225 };
1226
1227 static int notesize(struct memelfnote *en)
1228 {
1229         int sz;
1230
1231         sz = sizeof(struct elf_note);
1232         sz += roundup(strlen(en->name) + 1, 4);
1233         sz += roundup(en->datasz, 4);
1234
1235         return sz;
1236 }
1237
1238 #define DUMP_WRITE(addr, nr, foffset)   \
1239         do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1240
1241 static int alignfile(struct file *file, loff_t *foffset)
1242 {
1243         static const char buf[4] = { 0, };
1244         DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1245         return 1;
1246 }
1247
1248 static int writenote(struct memelfnote *men, struct file *file,
1249                         loff_t *foffset)
1250 {
1251         struct elf_note en;
1252         en.n_namesz = strlen(men->name) + 1;
1253         en.n_descsz = men->datasz;
1254         en.n_type = men->type;
1255
1256         DUMP_WRITE(&en, sizeof(en), foffset);
1257         DUMP_WRITE(men->name, en.n_namesz, foffset);
1258         if (!alignfile(file, foffset))
1259                 return 0;
1260         DUMP_WRITE(men->data, men->datasz, foffset);
1261         if (!alignfile(file, foffset))
1262                 return 0;
1263
1264         return 1;
1265 }
1266 #undef DUMP_WRITE
1267
1268 #define DUMP_WRITE(addr, nr)    \
1269         if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1270                 goto end_coredump;
1271 #define DUMP_SEEK(off)  \
1272         if (!dump_seek(file, (off))) \
1273                 goto end_coredump;
1274
1275 static void fill_elf_header(struct elfhdr *elf, int segs,
1276                             u16 machine, u32 flags, u8 osabi)
1277 {
1278         memset(elf, 0, sizeof(*elf));
1279
1280         memcpy(elf->e_ident, ELFMAG, SELFMAG);
1281         elf->e_ident[EI_CLASS] = ELF_CLASS;
1282         elf->e_ident[EI_DATA] = ELF_DATA;
1283         elf->e_ident[EI_VERSION] = EV_CURRENT;
1284         elf->e_ident[EI_OSABI] = ELF_OSABI;
1285
1286         elf->e_type = ET_CORE;
1287         elf->e_machine = machine;
1288         elf->e_version = EV_CURRENT;
1289         elf->e_phoff = sizeof(struct elfhdr);
1290         elf->e_flags = flags;
1291         elf->e_ehsize = sizeof(struct elfhdr);
1292         elf->e_phentsize = sizeof(struct elf_phdr);
1293         elf->e_phnum = segs;
1294
1295         return;
1296 }
1297
1298 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1299 {
1300         phdr->p_type = PT_NOTE;
1301         phdr->p_offset = offset;
1302         phdr->p_vaddr = 0;
1303         phdr->p_paddr = 0;
1304         phdr->p_filesz = sz;
1305         phdr->p_memsz = 0;
1306         phdr->p_flags = 0;
1307         phdr->p_align = 0;
1308         return;
1309 }
1310
1311 static void fill_note(struct memelfnote *note, const char *name, int type, 
1312                 unsigned int sz, void *data)
1313 {
1314         note->name = name;
1315         note->type = type;
1316         note->datasz = sz;
1317         note->data = data;
1318         return;
1319 }
1320
1321 /*
1322  * fill up all the fields in prstatus from the given task struct, except
1323  * registers which need to be filled up separately.
1324  */
1325 static void fill_prstatus(struct elf_prstatus *prstatus,
1326                 struct task_struct *p, long signr)
1327 {
1328         prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1329         prstatus->pr_sigpend = p->pending.signal.sig[0];
1330         prstatus->pr_sighold = p->blocked.sig[0];
1331         prstatus->pr_pid = task_pid_vnr(p);
1332         prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1333         prstatus->pr_pgrp = task_pgrp_vnr(p);
1334         prstatus->pr_sid = task_session_vnr(p);
1335         if (thread_group_leader(p)) {
1336                 /*
1337                  * This is the record for the group leader.  Add in the
1338                  * cumulative times of previous dead threads.  This total
1339                  * won't include the time of each live thread whose state
1340                  * is included in the core dump.  The final total reported
1341                  * to our parent process when it calls wait4 will include
1342                  * those sums as well as the little bit more time it takes
1343                  * this and each other thread to finish dying after the
1344                  * core dump synchronization phase.
1345                  */
1346                 cputime_to_timeval(cputime_add(p->utime, p->signal->utime),
1347                                    &prstatus->pr_utime);
1348                 cputime_to_timeval(cputime_add(p->stime, p->signal->stime),
1349                                    &prstatus->pr_stime);
1350         } else {
1351                 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1352                 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1353         }
1354         cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1355         cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1356 }
1357
1358 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1359                        struct mm_struct *mm)
1360 {
1361         unsigned int i, len;
1362         
1363         /* first copy the parameters from user space */
1364         memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1365
1366         len = mm->arg_end - mm->arg_start;
1367         if (len >= ELF_PRARGSZ)
1368                 len = ELF_PRARGSZ-1;
1369         if (copy_from_user(&psinfo->pr_psargs,
1370                            (const char __user *)mm->arg_start, len))
1371                 return -EFAULT;
1372         for(i = 0; i < len; i++)
1373                 if (psinfo->pr_psargs[i] == 0)
1374                         psinfo->pr_psargs[i] = ' ';
1375         psinfo->pr_psargs[len] = 0;
1376
1377         psinfo->pr_pid = task_pid_vnr(p);
1378         psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1379         psinfo->pr_pgrp = task_pgrp_vnr(p);
1380         psinfo->pr_sid = task_session_vnr(p);
1381
1382         i = p->state ? ffz(~p->state) + 1 : 0;
1383         psinfo->pr_state = i;
1384         psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1385         psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1386         psinfo->pr_nice = task_nice(p);
1387         psinfo->pr_flag = p->flags;
1388         SET_UID(psinfo->pr_uid, p->uid);
1389         SET_GID(psinfo->pr_gid, p->gid);
1390         strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1391         
1392         return 0;
1393 }
1394
1395 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1396 {
1397         elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1398         int i = 0;
1399         do
1400                 i += 2;
1401         while (auxv[i - 2] != AT_NULL);
1402         fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1403 }
1404
1405 #ifdef CORE_DUMP_USE_REGSET
1406 #include <linux/regset.h>
1407
1408 struct elf_thread_core_info {
1409         struct elf_thread_core_info *next;
1410         struct task_struct *task;
1411         struct elf_prstatus prstatus;
1412         struct memelfnote notes[0];
1413 };
1414
1415 struct elf_note_info {
1416         struct elf_thread_core_info *thread;
1417         struct memelfnote psinfo;
1418         struct memelfnote auxv;
1419         size_t size;
1420         int thread_notes;
1421 };
1422
1423 /*
1424  * When a regset has a writeback hook, we call it on each thread before
1425  * dumping user memory.  On register window machines, this makes sure the
1426  * user memory backing the register data is up to date before we read it.
1427  */
1428 static void do_thread_regset_writeback(struct task_struct *task,
1429                                        const struct user_regset *regset)
1430 {
1431         if (regset->writeback)
1432                 regset->writeback(task, regset, 1);
1433 }
1434
1435 static int fill_thread_core_info(struct elf_thread_core_info *t,
1436                                  const struct user_regset_view *view,
1437                                  long signr, size_t *total)
1438 {
1439         unsigned int i;
1440
1441         /*
1442          * NT_PRSTATUS is the one special case, because the regset data
1443          * goes into the pr_reg field inside the note contents, rather
1444          * than being the whole note contents.  We fill the reset in here.
1445          * We assume that regset 0 is NT_PRSTATUS.
1446          */
1447         fill_prstatus(&t->prstatus, t->task, signr);
1448         (void) view->regsets[0].get(t->task, &view->regsets[0],
1449                                     0, sizeof(t->prstatus.pr_reg),
1450                                     &t->prstatus.pr_reg, NULL);
1451
1452         fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1453                   sizeof(t->prstatus), &t->prstatus);
1454         *total += notesize(&t->notes[0]);
1455
1456         do_thread_regset_writeback(t->task, &view->regsets[0]);
1457
1458         /*
1459          * Each other regset might generate a note too.  For each regset
1460          * that has no core_note_type or is inactive, we leave t->notes[i]
1461          * all zero and we'll know to skip writing it later.
1462          */
1463         for (i = 1; i < view->n; ++i) {
1464                 const struct user_regset *regset = &view->regsets[i];
1465                 do_thread_regset_writeback(t->task, regset);
1466                 if (regset->core_note_type &&
1467                     (!regset->active || regset->active(t->task, regset))) {
1468                         int ret;
1469                         size_t size = regset->n * regset->size;
1470                         void *data = kmalloc(size, GFP_KERNEL);
1471                         if (unlikely(!data))
1472                                 return 0;
1473                         ret = regset->get(t->task, regset,
1474                                           0, size, data, NULL);
1475                         if (unlikely(ret))
1476                                 kfree(data);
1477                         else {
1478                                 if (regset->core_note_type != NT_PRFPREG)
1479                                         fill_note(&t->notes[i], "LINUX",
1480                                                   regset->core_note_type,
1481                                                   size, data);
1482                                 else {
1483                                         t->prstatus.pr_fpvalid = 1;
1484                                         fill_note(&t->notes[i], "CORE",
1485                                                   NT_PRFPREG, size, data);
1486                                 }
1487                                 *total += notesize(&t->notes[i]);
1488                         }
1489                 }
1490         }
1491
1492         return 1;
1493 }
1494
1495 static int fill_note_info(struct elfhdr *elf, int phdrs,
1496                           struct elf_note_info *info,
1497                           long signr, struct pt_regs *regs)
1498 {
1499         struct task_struct *dump_task = current;
1500         const struct user_regset_view *view = task_user_regset_view(dump_task);
1501         struct elf_thread_core_info *t;
1502         struct elf_prpsinfo *psinfo;
1503         struct core_thread *ct;
1504         unsigned int i;
1505
1506         info->size = 0;
1507         info->thread = NULL;
1508
1509         psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1510         fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1511
1512         if (psinfo == NULL)
1513                 return 0;
1514
1515         /*
1516          * Figure out how many notes we're going to need for each thread.
1517          */
1518         info->thread_notes = 0;
1519         for (i = 0; i < view->n; ++i)
1520                 if (view->regsets[i].core_note_type != 0)
1521                         ++info->thread_notes;
1522
1523         /*
1524          * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1525          * since it is our one special case.
1526          */
1527         if (unlikely(info->thread_notes == 0) ||
1528             unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1529                 WARN_ON(1);
1530                 return 0;
1531         }
1532
1533         /*
1534          * Initialize the ELF file header.
1535          */
1536         fill_elf_header(elf, phdrs,
1537                         view->e_machine, view->e_flags, view->ei_osabi);
1538
1539         /*
1540          * Allocate a structure for each thread.
1541          */
1542         for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1543                 t = kzalloc(offsetof(struct elf_thread_core_info,
1544                                      notes[info->thread_notes]),
1545                             GFP_KERNEL);
1546                 if (unlikely(!t))
1547                         return 0;
1548
1549                 t->task = ct->task;
1550                 if (ct->task == dump_task || !info->thread) {
1551                         t->next = info->thread;
1552                         info->thread = t;
1553                 } else {
1554                         /*
1555                          * Make sure to keep the original task at
1556                          * the head of the list.
1557                          */
1558                         t->next = info->thread->next;
1559                         info->thread->next = t;
1560                 }
1561         }
1562
1563         /*
1564          * Now fill in each thread's information.
1565          */
1566         for (t = info->thread; t != NULL; t = t->next)
1567                 if (!fill_thread_core_info(t, view, signr, &info->size))
1568                         return 0;
1569
1570         /*
1571          * Fill in the two process-wide notes.
1572          */
1573         fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1574         info->size += notesize(&info->psinfo);
1575
1576         fill_auxv_note(&info->auxv, current->mm);
1577         info->size += notesize(&info->auxv);
1578
1579         return 1;
1580 }
1581
1582 static size_t get_note_info_size(struct elf_note_info *info)
1583 {
1584         return info->size;
1585 }
1586
1587 /*
1588  * Write all the notes for each thread.  When writing the first thread, the
1589  * process-wide notes are interleaved after the first thread-specific note.
1590  */
1591 static int write_note_info(struct elf_note_info *info,
1592                            struct file *file, loff_t *foffset)
1593 {
1594         bool first = 1;
1595         struct elf_thread_core_info *t = info->thread;
1596
1597         do {
1598                 int i;
1599
1600                 if (!writenote(&t->notes[0], file, foffset))
1601                         return 0;
1602
1603                 if (first && !writenote(&info->psinfo, file, foffset))
1604                         return 0;
1605                 if (first && !writenote(&info->auxv, file, foffset))
1606                         return 0;
1607
1608                 for (i = 1; i < info->thread_notes; ++i)
1609                         if (t->notes[i].data &&
1610                             !writenote(&t->notes[i], file, foffset))
1611                                 return 0;
1612
1613                 first = 0;
1614                 t = t->next;
1615         } while (t);
1616
1617         return 1;
1618 }
1619
1620 static void free_note_info(struct elf_note_info *info)
1621 {
1622         struct elf_thread_core_info *threads = info->thread;
1623         while (threads) {
1624                 unsigned int i;
1625                 struct elf_thread_core_info *t = threads;
1626                 threads = t->next;
1627                 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1628                 for (i = 1; i < info->thread_notes; ++i)
1629                         kfree(t->notes[i].data);
1630                 kfree(t);
1631         }
1632         kfree(info->psinfo.data);
1633 }
1634
1635 #else
1636
1637 /* Here is the structure in which status of each thread is captured. */
1638 struct elf_thread_status
1639 {
1640         struct list_head list;
1641         struct elf_prstatus prstatus;   /* NT_PRSTATUS */
1642         elf_fpregset_t fpu;             /* NT_PRFPREG */
1643         struct task_struct *thread;
1644 #ifdef ELF_CORE_COPY_XFPREGS
1645         elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
1646 #endif
1647         struct memelfnote notes[3];
1648         int num_notes;
1649 };
1650
1651 /*
1652  * In order to add the specific thread information for the elf file format,
1653  * we need to keep a linked list of every threads pr_status and then create
1654  * a single section for them in the final core file.
1655  */
1656 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1657 {
1658         int sz = 0;
1659         struct task_struct *p = t->thread;
1660         t->num_notes = 0;
1661
1662         fill_prstatus(&t->prstatus, p, signr);
1663         elf_core_copy_task_regs(p, &t->prstatus.pr_reg);        
1664         
1665         fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1666                   &(t->prstatus));
1667         t->num_notes++;
1668         sz += notesize(&t->notes[0]);
1669
1670         if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1671                                                                 &t->fpu))) {
1672                 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1673                           &(t->fpu));
1674                 t->num_notes++;
1675                 sz += notesize(&t->notes[1]);
1676         }
1677
1678 #ifdef ELF_CORE_COPY_XFPREGS
1679         if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1680                 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1681                           sizeof(t->xfpu), &t->xfpu);
1682                 t->num_notes++;
1683                 sz += notesize(&t->notes[2]);
1684         }
1685 #endif  
1686         return sz;
1687 }
1688
1689 struct elf_note_info {
1690         struct memelfnote *notes;
1691         struct elf_prstatus *prstatus;  /* NT_PRSTATUS */
1692         struct elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
1693         struct list_head thread_list;
1694         elf_fpregset_t *fpu;
1695 #ifdef ELF_CORE_COPY_XFPREGS
1696         elf_fpxregset_t *xfpu;
1697 #endif
1698         int thread_status_size;
1699         int numnote;
1700 };
1701
1702 static int fill_note_info(struct elfhdr *elf, int phdrs,
1703                           struct elf_note_info *info,
1704                           long signr, struct pt_regs *regs)
1705 {
1706 #define NUM_NOTES       6
1707         struct list_head *t;
1708
1709         info->notes = NULL;
1710         info->prstatus = NULL;
1711         info->psinfo = NULL;
1712         info->fpu = NULL;
1713 #ifdef ELF_CORE_COPY_XFPREGS
1714         info->xfpu = NULL;
1715 #endif
1716         INIT_LIST_HEAD(&info->thread_list);
1717
1718         info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1719                               GFP_KERNEL);
1720         if (!info->notes)
1721                 return 0;
1722         info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1723         if (!info->psinfo)
1724                 return 0;
1725         info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1726         if (!info->prstatus)
1727                 return 0;
1728         info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1729         if (!info->fpu)
1730                 return 0;
1731 #ifdef ELF_CORE_COPY_XFPREGS
1732         info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1733         if (!info->xfpu)
1734                 return 0;
1735 #endif
1736
1737         info->thread_status_size = 0;
1738         if (signr) {
1739                 struct core_thread *ct;
1740                 struct elf_thread_status *ets;
1741
1742                 for (ct = current->mm->core_state->dumper.next;
1743                                                 ct; ct = ct->next) {
1744                         ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1745                         if (!ets)
1746                                 return 0;
1747
1748                         ets->thread = ct->task;
1749                         list_add(&ets->list, &info->thread_list);
1750                 }
1751
1752                 list_for_each(t, &info->thread_list) {
1753                         int sz;
1754
1755                         ets = list_entry(t, struct elf_thread_status, list);
1756                         sz = elf_dump_thread_status(signr, ets);
1757                         info->thread_status_size += sz;
1758                 }
1759         }
1760         /* now collect the dump for the current */
1761         memset(info->prstatus, 0, sizeof(*info->prstatus));
1762         fill_prstatus(info->prstatus, current, signr);
1763         elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1764
1765         /* Set up header */
1766         fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1767
1768         /*
1769          * Set up the notes in similar form to SVR4 core dumps made
1770          * with info from their /proc.
1771          */
1772
1773         fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1774                   sizeof(*info->prstatus), info->prstatus);
1775         fill_psinfo(info->psinfo, current->group_leader, current->mm);
1776         fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1777                   sizeof(*info->psinfo), info->psinfo);
1778
1779         info->numnote = 2;
1780
1781         fill_auxv_note(&info->notes[info->numnote++], current->mm);
1782
1783         /* Try to dump the FPU. */
1784         info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1785                                                                info->fpu);
1786         if (info->prstatus->pr_fpvalid)
1787                 fill_note(info->notes + info->numnote++,
1788                           "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1789 #ifdef ELF_CORE_COPY_XFPREGS
1790         if (elf_core_copy_task_xfpregs(current, info->xfpu))
1791                 fill_note(info->notes + info->numnote++,
1792                           "LINUX", ELF_CORE_XFPREG_TYPE,
1793                           sizeof(*info->xfpu), info->xfpu);
1794 #endif
1795
1796         return 1;
1797
1798 #undef NUM_NOTES
1799 }
1800
1801 static size_t get_note_info_size(struct elf_note_info *info)
1802 {
1803         int sz = 0;
1804         int i;
1805
1806         for (i = 0; i < info->numnote; i++)
1807                 sz += notesize(info->notes + i);
1808
1809         sz += info->thread_status_size;
1810
1811         return sz;
1812 }
1813
1814 static int write_note_info(struct elf_note_info *info,
1815                            struct file *file, loff_t *foffset)
1816 {
1817         int i;
1818         struct list_head *t;
1819
1820         for (i = 0; i < info->numnote; i++)
1821                 if (!writenote(info->notes + i, file, foffset))
1822                         return 0;
1823
1824         /* write out the thread status notes section */
1825         list_for_each(t, &info->thread_list) {
1826                 struct elf_thread_status *tmp =
1827                                 list_entry(t, struct elf_thread_status, list);
1828
1829                 for (i = 0; i < tmp->num_notes; i++)
1830                         if (!writenote(&tmp->notes[i], file, foffset))
1831                                 return 0;
1832         }
1833
1834         return 1;
1835 }
1836
1837 static void free_note_info(struct elf_note_info *info)
1838 {
1839         while (!list_empty(&info->thread_list)) {
1840                 struct list_head *tmp = info->thread_list.next;
1841                 list_del(tmp);
1842                 kfree(list_entry(tmp, struct elf_thread_status, list));
1843         }
1844
1845         kfree(info->prstatus);
1846         kfree(info->psinfo);
1847         kfree(info->notes);
1848         kfree(info->fpu);
1849 #ifdef ELF_CORE_COPY_XFPREGS
1850         kfree(info->xfpu);
1851 #endif
1852 }
1853
1854 #endif
1855
1856 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1857                                         struct vm_area_struct *gate_vma)
1858 {
1859         struct vm_area_struct *ret = tsk->mm->mmap;
1860
1861         if (ret)
1862                 return ret;
1863         return gate_vma;
1864 }
1865 /*
1866  * Helper function for iterating across a vma list.  It ensures that the caller
1867  * will visit `gate_vma' prior to terminating the search.
1868  */
1869 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1870                                         struct vm_area_struct *gate_vma)
1871 {
1872         struct vm_area_struct *ret;
1873
1874         ret = this_vma->vm_next;
1875         if (ret)
1876                 return ret;
1877         if (this_vma == gate_vma)
1878                 return NULL;
1879         return gate_vma;
1880 }
1881
1882 /*
1883  * Actual dumper
1884  *
1885  * This is a two-pass process; first we find the offsets of the bits,
1886  * and then they are actually written out.  If we run out of core limit
1887  * we just truncate.
1888  */
1889 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
1890 {
1891         int has_dumped = 0;
1892         mm_segment_t fs;
1893         int segs;
1894         size_t size = 0;
1895         struct vm_area_struct *vma, *gate_vma;
1896         struct elfhdr *elf = NULL;
1897         loff_t offset = 0, dataoff, foffset;
1898         unsigned long mm_flags;
1899         struct elf_note_info info;
1900
1901         /*
1902          * We no longer stop all VM operations.
1903          * 
1904          * This is because those proceses that could possibly change map_count
1905          * or the mmap / vma pages are now blocked in do_exit on current
1906          * finishing this core dump.
1907          *
1908          * Only ptrace can touch these memory addresses, but it doesn't change
1909          * the map_count or the pages allocated. So no possibility of crashing
1910          * exists while dumping the mm->vm_next areas to the core file.
1911          */
1912   
1913         /* alloc memory for large data structures: too large to be on stack */
1914         elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1915         if (!elf)
1916                 goto out;
1917         
1918         segs = current->mm->map_count;
1919 #ifdef ELF_CORE_EXTRA_PHDRS
1920         segs += ELF_CORE_EXTRA_PHDRS;
1921 #endif
1922
1923         gate_vma = get_gate_vma(current);
1924         if (gate_vma != NULL)
1925                 segs++;
1926
1927         /*
1928          * Collect all the non-memory information about the process for the
1929          * notes.  This also sets up the file header.
1930          */
1931         if (!fill_note_info(elf, segs + 1, /* including notes section */
1932                             &info, signr, regs))
1933                 goto cleanup;
1934
1935         has_dumped = 1;
1936         current->flags |= PF_DUMPCORE;
1937   
1938         fs = get_fs();
1939         set_fs(KERNEL_DS);
1940
1941         DUMP_WRITE(elf, sizeof(*elf));
1942         offset += sizeof(*elf);                         /* Elf header */
1943         offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1944         foffset = offset;
1945
1946         /* Write notes phdr entry */
1947         {
1948                 struct elf_phdr phdr;
1949                 size_t sz = get_note_info_size(&info);
1950
1951                 sz += elf_coredump_extra_notes_size();
1952
1953                 fill_elf_note_phdr(&phdr, sz, offset);
1954                 offset += sz;
1955                 DUMP_WRITE(&phdr, sizeof(phdr));
1956         }
1957
1958         dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1959
1960         /*
1961          * We must use the same mm->flags while dumping core to avoid
1962          * inconsistency between the program headers and bodies, otherwise an
1963          * unusable core file can be generated.
1964          */
1965         mm_flags = current->mm->flags;
1966
1967         /* Write program headers for segments dump */
1968         for (vma = first_vma(current, gate_vma); vma != NULL;
1969                         vma = next_vma(vma, gate_vma)) {
1970                 struct elf_phdr phdr;
1971
1972                 phdr.p_type = PT_LOAD;
1973                 phdr.p_offset = offset;
1974                 phdr.p_vaddr = vma->vm_start;
1975                 phdr.p_paddr = 0;
1976                 phdr.p_filesz = vma_dump_size(vma, mm_flags);
1977                 phdr.p_memsz = vma->vm_end - vma->vm_start;
1978                 offset += phdr.p_filesz;
1979                 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1980                 if (vma->vm_flags & VM_WRITE)
1981                         phdr.p_flags |= PF_W;
1982                 if (vma->vm_flags & VM_EXEC)
1983                         phdr.p_flags |= PF_X;
1984                 phdr.p_align = ELF_EXEC_PAGESIZE;
1985
1986                 DUMP_WRITE(&phdr, sizeof(phdr));
1987         }
1988
1989 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
1990         ELF_CORE_WRITE_EXTRA_PHDRS;
1991 #endif
1992
1993         /* write out the notes section */
1994         if (!write_note_info(&info, file, &foffset))
1995                 goto end_coredump;
1996
1997         if (elf_coredump_extra_notes_write(file, &foffset))
1998                 goto end_coredump;
1999
2000         /* Align to page */
2001         DUMP_SEEK(dataoff - foffset);
2002
2003         for (vma = first_vma(current, gate_vma); vma != NULL;
2004                         vma = next_vma(vma, gate_vma)) {
2005                 unsigned long addr;
2006                 unsigned long end;
2007
2008                 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2009
2010                 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2011                         struct page *page;
2012                         struct vm_area_struct *tmp_vma;
2013
2014                         if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2015                                                 &page, &tmp_vma) <= 0) {
2016                                 DUMP_SEEK(PAGE_SIZE);
2017                         } else {
2018                                 if (page == ZERO_PAGE(0)) {
2019                                         if (!dump_seek(file, PAGE_SIZE)) {
2020                                                 page_cache_release(page);
2021                                                 goto end_coredump;
2022                                         }
2023                                 } else {
2024                                         void *kaddr;
2025                                         flush_cache_page(tmp_vma, addr,
2026                                                          page_to_pfn(page));
2027                                         kaddr = kmap(page);
2028                                         if ((size += PAGE_SIZE) > limit ||
2029                                             !dump_write(file, kaddr,
2030                                             PAGE_SIZE)) {
2031                                                 kunmap(page);
2032                                                 page_cache_release(page);
2033                                                 goto end_coredump;
2034                                         }
2035                                         kunmap(page);
2036                                 }
2037                                 page_cache_release(page);
2038                         }
2039                 }
2040         }
2041
2042 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2043         ELF_CORE_WRITE_EXTRA_DATA;
2044 #endif
2045
2046 end_coredump:
2047         set_fs(fs);
2048
2049 cleanup:
2050         free_note_info(&info);
2051         kfree(elf);
2052 out:
2053         return has_dumped;
2054 }
2055
2056 #endif          /* USE_ELF_CORE_DUMP */
2057
2058 static int __init init_elf_binfmt(void)
2059 {
2060         return register_binfmt(&elf_format);
2061 }
2062
2063 static void __exit exit_elf_binfmt(void)
2064 {
2065         /* Remove the COFF and ELF loaders. */
2066         unregister_binfmt(&elf_format);
2067 }
2068
2069 core_initcall(init_elf_binfmt);
2070 module_exit(exit_elf_binfmt);
2071 MODULE_LICENSE("GPL");