2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
41 #include <linux/config.h>
42 #include <linux/init.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/smp_lock.h>
47 #include <linux/bootmem.h>
48 #include <linux/thread_info.h>
49 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/mc146818rtc.h>
54 #include <asm/pgalloc.h>
56 #include <asm/kdebug.h>
57 #include <asm/tlbflush.h>
58 #include <asm/proto.h>
61 #include <asm/hw_irq.h>
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 /* Package ID of each logical CPU */
66 u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
67 /* core ID of each logical CPU */
68 u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
70 /* Bitmask of currently online CPUs */
71 cpumask_t cpu_online_map __read_mostly;
73 EXPORT_SYMBOL(cpu_online_map);
76 * Private maps to synchronize booting between AP and BP.
77 * Probably not needed anymore, but it makes for easier debugging. -AK
79 cpumask_t cpu_callin_map;
80 cpumask_t cpu_callout_map;
82 cpumask_t cpu_possible_map;
83 EXPORT_SYMBOL(cpu_possible_map);
85 /* Per CPU bogomips and other parameters */
86 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
88 /* Set when the idlers are all forked */
89 int smp_threads_ready;
91 /* representing HT siblings of each logical CPU */
92 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
94 /* representing HT and core siblings of each logical CPU */
95 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
96 EXPORT_SYMBOL(cpu_core_map);
99 * Trampoline 80x86 program as an array.
102 extern unsigned char trampoline_data[];
103 extern unsigned char trampoline_end[];
105 /* State of each CPU */
106 DEFINE_PER_CPU(int, cpu_state) = { 0 };
109 * Store all idle threads, this can be reused instead of creating
110 * a new thread. Also avoids complicated thread destroy functionality
113 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
115 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
116 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
119 * Currently trivial. Write the real->protected mode
120 * bootstrap into the page concerned. The caller
121 * has made sure it's suitably aligned.
124 static unsigned long __cpuinit setup_trampoline(void)
126 void *tramp = __va(SMP_TRAMPOLINE_BASE);
127 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
128 return virt_to_phys(tramp);
132 * The bootstrap kernel entry code has set these up. Save them for
136 static void __cpuinit smp_store_cpu_info(int id)
138 struct cpuinfo_x86 *c = cpu_data + id;
146 * New Funky TSC sync algorithm borrowed from IA64.
147 * Main advantage is that it doesn't reset the TSCs fully and
148 * in general looks more robust and it works better than my earlier
149 * attempts. I believe it was written by David Mosberger. Some minor
150 * adjustments for x86-64 by me -AK
152 * Original comment reproduced below.
154 * Synchronize TSC of the current (slave) CPU with the TSC of the
155 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
156 * eliminate the possibility of unaccounted-for errors (such as
157 * getting a machine check in the middle of a calibration step). The
158 * basic idea is for the slave to ask the master what itc value it has
159 * and to read its own itc before and after the master responds. Each
160 * iteration gives us three timestamps:
173 * The goal is to adjust the slave's TSC such that tm falls exactly
174 * half-way between t0 and t1. If we achieve this, the clocks are
175 * synchronized provided the interconnect between the slave and the
176 * master is symmetric. Even if the interconnect were asymmetric, we
177 * would still know that the synchronization error is smaller than the
178 * roundtrip latency (t0 - t1).
180 * When the interconnect is quiet and symmetric, this lets us
181 * synchronize the TSC to within one or two cycles. However, we can
182 * only *guarantee* that the synchronization is accurate to within a
183 * round-trip time, which is typically in the range of several hundred
184 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
185 * are usually almost perfectly synchronized, but we shouldn't assume
186 * that the accuracy is much better than half a micro second or so.
188 * [there are other errors like the latency of RDTSC and of the
189 * WRMSR. These can also account to hundreds of cycles. So it's
190 * probably worse. It claims 153 cycles error on a dual Opteron,
191 * but I suspect the numbers are actually somewhat worse -AK]
195 #define SLAVE (SMP_CACHE_BYTES/8)
197 /* Intentionally don't use cpu_relax() while TSC synchronization
198 because we don't want to go into funky power save modi or cause
199 hypervisors to schedule us away. Going to sleep would likely affect
200 latency and low latency is the primary objective here. -AK */
201 #define no_cpu_relax() barrier()
203 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
204 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
205 static int notscsync __cpuinitdata;
207 #undef DEBUG_TSC_SYNC
209 #define NUM_ROUNDS 64 /* magic value */
210 #define NUM_ITERS 5 /* likewise */
212 /* Callback on boot CPU */
213 static __cpuinit void sync_master(void *arg)
215 unsigned long flags, i;
219 local_irq_save(flags);
221 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
228 local_irq_restore(flags);
232 * Return the number of cycles by which our tsc differs from the tsc
233 * on the master (time-keeper) CPU. A positive number indicates our
234 * tsc is ahead of the master, negative that it is behind.
237 get_delta(long *rt, long *master)
239 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
240 unsigned long tcenter, t0, t1, tm;
243 for (i = 0; i < NUM_ITERS; ++i) {
246 while (!(tm = go[SLAVE]))
251 if (t1 - t0 < best_t1 - best_t0)
252 best_t0 = t0, best_t1 = t1, best_tm = tm;
255 *rt = best_t1 - best_t0;
256 *master = best_tm - best_t0;
258 /* average best_t0 and best_t1 without overflow: */
259 tcenter = (best_t0/2 + best_t1/2);
260 if (best_t0 % 2 + best_t1 % 2 == 2)
262 return tcenter - best_tm;
265 static __cpuinit void sync_tsc(unsigned int master)
268 long delta, adj, adjust_latency = 0;
269 unsigned long flags, rt, master_time_stamp, bound;
270 #ifdef DEBUG_TSC_SYNC
271 static struct syncdebug {
272 long rt; /* roundtrip time */
273 long master; /* master's timestamp */
274 long diff; /* difference between midpoint and master's timestamp */
275 long lat; /* estimate of tsc adjustment latency */
276 } t[NUM_ROUNDS] __cpuinitdata;
279 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
280 smp_processor_id(), master);
284 /* It is dangerous to broadcast IPI as cpus are coming up,
285 * as they may not be ready to accept them. So since
286 * we only need to send the ipi to the boot cpu direct
287 * the message, and avoid the race.
289 smp_call_function_single(master, sync_master, NULL, 1, 0);
291 while (go[MASTER]) /* wait for master to be ready */
294 spin_lock_irqsave(&tsc_sync_lock, flags);
296 for (i = 0; i < NUM_ROUNDS; ++i) {
297 delta = get_delta(&rt, &master_time_stamp);
299 done = 1; /* let's lock on to this... */
306 adjust_latency += -delta;
307 adj = -delta + adjust_latency/4;
312 wrmsrl(MSR_IA32_TSC, t + adj);
314 #ifdef DEBUG_TSC_SYNC
316 t[i].master = master_time_stamp;
318 t[i].lat = adjust_latency/4;
322 spin_unlock_irqrestore(&tsc_sync_lock, flags);
324 #ifdef DEBUG_TSC_SYNC
325 for (i = 0; i < NUM_ROUNDS; ++i)
326 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
327 t[i].rt, t[i].master, t[i].diff, t[i].lat);
331 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
332 "maxerr %lu cycles)\n",
333 smp_processor_id(), master, delta, rt);
336 static void __cpuinit tsc_sync_wait(void)
338 if (notscsync || !cpu_has_tsc)
343 static __init int notscsync_setup(char *s)
348 __setup("notscsync", notscsync_setup);
350 static atomic_t init_deasserted __cpuinitdata;
353 * Report back to the Boot Processor.
356 void __cpuinit smp_callin(void)
359 unsigned long timeout;
362 * If waken up by an INIT in an 82489DX configuration
363 * we may get here before an INIT-deassert IPI reaches
364 * our local APIC. We have to wait for the IPI or we'll
365 * lock up on an APIC access.
367 while (!atomic_read(&init_deasserted))
371 * (This works even if the APIC is not enabled.)
373 phys_id = GET_APIC_ID(apic_read(APIC_ID));
374 cpuid = smp_processor_id();
375 if (cpu_isset(cpuid, cpu_callin_map)) {
376 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
379 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
382 * STARTUP IPIs are fragile beasts as they might sometimes
383 * trigger some glue motherboard logic. Complete APIC bus
384 * silence for 1 second, this overestimates the time the
385 * boot CPU is spending to send the up to 2 STARTUP IPIs
386 * by a factor of two. This should be enough.
390 * Waiting 2s total for startup (udelay is not yet working)
392 timeout = jiffies + 2*HZ;
393 while (time_before(jiffies, timeout)) {
395 * Has the boot CPU finished it's STARTUP sequence?
397 if (cpu_isset(cpuid, cpu_callout_map))
402 if (!time_before(jiffies, timeout)) {
403 panic("smp_callin: CPU%d started up but did not get a callout!\n",
408 * the boot CPU has finished the init stage and is spinning
409 * on callin_map until we finish. We are free to set up this
410 * CPU, first the APIC. (this is probably redundant on most
414 Dprintk("CALLIN, before setup_local_APIC().\n");
420 * Need to enable IRQs because it can take longer and then
421 * the NMI watchdog might kill us.
426 Dprintk("Stack at about %p\n",&cpuid);
428 disable_APIC_timer();
431 * Save our processor parameters
433 smp_store_cpu_info(cpuid);
436 * Allow the master to continue.
438 cpu_set(cpuid, cpu_callin_map);
441 /* representing cpus for which sibling maps can be computed */
442 static cpumask_t cpu_sibling_setup_map;
444 static inline void set_cpu_sibling_map(int cpu)
447 struct cpuinfo_x86 *c = cpu_data;
449 cpu_set(cpu, cpu_sibling_setup_map);
451 if (smp_num_siblings > 1) {
452 for_each_cpu_mask(i, cpu_sibling_setup_map) {
453 if (phys_proc_id[cpu] == phys_proc_id[i] &&
454 cpu_core_id[cpu] == cpu_core_id[i]) {
455 cpu_set(i, cpu_sibling_map[cpu]);
456 cpu_set(cpu, cpu_sibling_map[i]);
457 cpu_set(i, cpu_core_map[cpu]);
458 cpu_set(cpu, cpu_core_map[i]);
462 cpu_set(cpu, cpu_sibling_map[cpu]);
465 if (current_cpu_data.x86_max_cores == 1) {
466 cpu_core_map[cpu] = cpu_sibling_map[cpu];
467 c[cpu].booted_cores = 1;
471 for_each_cpu_mask(i, cpu_sibling_setup_map) {
472 if (phys_proc_id[cpu] == phys_proc_id[i]) {
473 cpu_set(i, cpu_core_map[cpu]);
474 cpu_set(cpu, cpu_core_map[i]);
476 * Does this new cpu bringup a new core?
478 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
480 * for each core in package, increment
481 * the booted_cores for this new cpu
483 if (first_cpu(cpu_sibling_map[i]) == i)
484 c[cpu].booted_cores++;
486 * increment the core count for all
487 * the other cpus in this package
491 } else if (i != cpu && !c[cpu].booted_cores)
492 c[cpu].booted_cores = c[i].booted_cores;
498 * Setup code on secondary processor (after comming out of the trampoline)
500 void __cpuinit start_secondary(void)
503 * Dont put anything before smp_callin(), SMP
504 * booting is too fragile that we want to limit the
505 * things done here to the most necessary things.
511 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
514 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
515 setup_secondary_APIC_clock();
517 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
519 if (nmi_watchdog == NMI_IO_APIC) {
520 disable_8259A_irq(0);
521 enable_NMI_through_LVT0(NULL);
528 * The sibling maps must be set before turing the online map on for
531 set_cpu_sibling_map(smp_processor_id());
534 * Wait for TSC sync to not schedule things before.
535 * We still process interrupts, which could see an inconsistent
536 * time in that window unfortunately.
537 * Do this here because TSC sync has global unprotected state.
542 * We need to hold call_lock, so there is no inconsistency
543 * between the time smp_call_function() determines number of
544 * IPI receipients, and the time when the determination is made
545 * for which cpus receive the IPI in genapic_flat.c. Holding this
546 * lock helps us to not include this cpu in a currently in progress
547 * smp_call_function().
549 lock_ipi_call_lock();
552 * Allow the master to continue.
554 cpu_set(smp_processor_id(), cpu_online_map);
555 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
556 unlock_ipi_call_lock();
561 extern volatile unsigned long init_rsp;
562 extern void (*initial_code)(void);
565 static void inquire_remote_apic(int apicid)
567 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
568 char *names[] = { "ID", "VERSION", "SPIV" };
571 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
573 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
574 printk("... APIC #%d %s: ", apicid, names[i]);
579 apic_wait_icr_idle();
581 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
582 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
587 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
588 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
591 case APIC_ICR_RR_VALID:
592 status = apic_read(APIC_RRR);
593 printk("%08x\n", status);
603 * Kick the secondary to wake up.
605 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
607 unsigned long send_status = 0, accept_status = 0;
608 int maxlvt, timeout, num_starts, j;
610 Dprintk("Asserting INIT.\n");
613 * Turn INIT on target chip
615 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
620 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
623 Dprintk("Waiting for send to finish...\n");
628 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
629 } while (send_status && (timeout++ < 1000));
633 Dprintk("Deasserting INIT.\n");
636 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
639 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
641 Dprintk("Waiting for send to finish...\n");
646 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
647 } while (send_status && (timeout++ < 1000));
650 atomic_set(&init_deasserted, 1);
655 * Run STARTUP IPI loop.
657 Dprintk("#startup loops: %d.\n", num_starts);
659 maxlvt = get_maxlvt();
661 for (j = 1; j <= num_starts; j++) {
662 Dprintk("Sending STARTUP #%d.\n",j);
663 apic_read_around(APIC_SPIV);
664 apic_write(APIC_ESR, 0);
666 Dprintk("After apic_write.\n");
673 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
675 /* Boot on the stack */
676 /* Kick the second */
677 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
680 * Give the other CPU some time to accept the IPI.
684 Dprintk("Startup point 1.\n");
686 Dprintk("Waiting for send to finish...\n");
691 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
692 } while (send_status && (timeout++ < 1000));
695 * Give the other CPU some time to accept the IPI.
699 * Due to the Pentium erratum 3AP.
702 apic_read_around(APIC_SPIV);
703 apic_write(APIC_ESR, 0);
705 accept_status = (apic_read(APIC_ESR) & 0xEF);
706 if (send_status || accept_status)
709 Dprintk("After Startup.\n");
712 printk(KERN_ERR "APIC never delivered???\n");
714 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
716 return (send_status | accept_status);
720 struct task_struct *idle;
721 struct completion done;
725 void do_fork_idle(void *_c_idle)
727 struct create_idle *c_idle = _c_idle;
729 c_idle->idle = fork_idle(c_idle->cpu);
730 complete(&c_idle->done);
736 static int __cpuinit do_boot_cpu(int cpu, int apicid)
738 unsigned long boot_error;
740 unsigned long start_rip;
741 struct create_idle c_idle = {
743 .done = COMPLETION_INITIALIZER(c_idle.done),
745 DECLARE_WORK(work, do_fork_idle, &c_idle);
747 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
748 if (!cpu_gdt_descr[cpu].address &&
749 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
750 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
754 c_idle.idle = get_idle_for_cpu(cpu);
757 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
758 (THREAD_SIZE + (unsigned long) c_idle.idle->thread_info)) - 1);
759 init_idle(c_idle.idle, cpu);
764 * During cold boot process, keventd thread is not spun up yet.
765 * When we do cpu hot-add, we create idle threads on the fly, we should
766 * not acquire any attributes from the calling context. Hence the clean
767 * way to create kernel_threads() is to do that from keventd().
768 * We do the current_is_keventd() due to the fact that ACPI notifier
769 * was also queuing to keventd() and when the caller is already running
770 * in context of keventd(), we would end up with locking up the keventd
773 if (!keventd_up() || current_is_keventd())
774 work.func(work.data);
776 schedule_work(&work);
777 wait_for_completion(&c_idle.done);
780 if (IS_ERR(c_idle.idle)) {
781 printk("failed fork for CPU %d\n", cpu);
782 return PTR_ERR(c_idle.idle);
785 set_idle_for_cpu(cpu, c_idle.idle);
789 cpu_pda[cpu].pcurrent = c_idle.idle;
791 start_rip = setup_trampoline();
793 init_rsp = c_idle.idle->thread.rsp;
794 per_cpu(init_tss,cpu).rsp0 = init_rsp;
795 initial_code = start_secondary;
796 clear_ti_thread_flag(c_idle.idle->thread_info, TIF_FORK);
798 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
799 cpus_weight(cpu_present_map),
803 * This grunge runs the startup process for
804 * the targeted processor.
807 atomic_set(&init_deasserted, 0);
809 Dprintk("Setting warm reset code and vector.\n");
811 CMOS_WRITE(0xa, 0xf);
814 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
816 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
820 * Be paranoid about clearing APIC errors.
822 if (APIC_INTEGRATED(apic_version[apicid])) {
823 apic_read_around(APIC_SPIV);
824 apic_write(APIC_ESR, 0);
829 * Status is now clean
834 * Starting actual IPI sequence...
836 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
840 * allow APs to start initializing.
842 Dprintk("Before Callout %d.\n", cpu);
843 cpu_set(cpu, cpu_callout_map);
844 Dprintk("After Callout %d.\n", cpu);
847 * Wait 5s total for a response
849 for (timeout = 0; timeout < 50000; timeout++) {
850 if (cpu_isset(cpu, cpu_callin_map))
851 break; /* It has booted */
855 if (cpu_isset(cpu, cpu_callin_map)) {
856 /* number CPUs logically, starting from 1 (BSP is 0) */
857 Dprintk("CPU has booted.\n");
860 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
862 /* trampoline started but...? */
863 printk("Stuck ??\n");
865 /* trampoline code not run */
866 printk("Not responding.\n");
868 inquire_remote_apic(apicid);
873 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
874 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
875 cpu_clear(cpu, cpu_present_map);
876 cpu_clear(cpu, cpu_possible_map);
877 x86_cpu_to_apicid[cpu] = BAD_APICID;
878 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
885 cycles_t cacheflush_time;
886 unsigned long cache_decay_ticks;
889 * Cleanup possible dangling ends...
891 static __cpuinit void smp_cleanup_boot(void)
894 * Paranoid: Set warm reset code and vector here back
900 * Reset trampoline flag
902 *((volatile int *) phys_to_virt(0x467)) = 0;
906 * Fall back to non SMP mode after errors.
908 * RED-PEN audit/test this more. I bet there is more state messed up here.
910 static __init void disable_smp(void)
912 cpu_present_map = cpumask_of_cpu(0);
913 cpu_possible_map = cpumask_of_cpu(0);
914 if (smp_found_config)
915 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
917 phys_cpu_present_map = physid_mask_of_physid(0);
918 cpu_set(0, cpu_sibling_map[0]);
919 cpu_set(0, cpu_core_map[0]);
922 #ifdef CONFIG_HOTPLUG_CPU
924 int additional_cpus __initdata = -1;
927 * cpu_possible_map should be static, it cannot change as cpu's
928 * are onlined, or offlined. The reason is per-cpu data-structures
929 * are allocated by some modules at init time, and dont expect to
930 * do this dynamically on cpu arrival/departure.
931 * cpu_present_map on the other hand can change dynamically.
932 * In case when cpu_hotplug is not compiled, then we resort to current
933 * behaviour, which is cpu_possible == cpu_present.
936 * Three ways to find out the number of additional hotplug CPUs:
937 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
938 * - The user can overwrite it with additional_cpus=NUM
939 * - Otherwise don't reserve additional CPUs.
940 * We do this because additional CPUs waste a lot of memory.
943 __init void prefill_possible_map(void)
948 if (additional_cpus == -1) {
949 if (disabled_cpus > 0)
950 additional_cpus = disabled_cpus;
954 possible = num_processors + additional_cpus;
955 if (possible > NR_CPUS)
958 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
960 max_t(int, possible - num_processors, 0));
962 for (i = 0; i < possible; i++)
963 cpu_set(i, cpu_possible_map);
968 * Various sanity checks.
970 static int __init smp_sanity_check(unsigned max_cpus)
972 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
973 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
974 hard_smp_processor_id());
975 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
979 * If we couldn't find an SMP configuration at boot time,
980 * get out of here now!
982 if (!smp_found_config) {
983 printk(KERN_NOTICE "SMP motherboard not detected.\n");
985 if (APIC_init_uniprocessor())
986 printk(KERN_NOTICE "Local APIC not detected."
987 " Using dummy APIC emulation.\n");
992 * Should not be necessary because the MP table should list the boot
993 * CPU too, but we do it for the sake of robustness anyway.
995 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
996 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
998 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1002 * If we couldn't find a local APIC, then get out of here now!
1004 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
1005 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1007 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1013 * If SMP should be disabled, then really disable it!
1016 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1025 * Prepare for SMP bootup. The MP table or ACPI has been read
1026 * earlier. Just do some sanity checking here and enable APIC mode.
1028 void __init smp_prepare_cpus(unsigned int max_cpus)
1030 nmi_watchdog_default();
1031 current_cpu_data = boot_cpu_data;
1032 current_thread_info()->cpu = 0; /* needed? */
1033 set_cpu_sibling_map(0);
1035 if (smp_sanity_check(max_cpus) < 0) {
1036 printk(KERN_INFO "SMP disabled\n");
1043 * Switch from PIC to APIC mode.
1048 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1049 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1050 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1051 /* Or can we switch back to PIC here? */
1055 * Now start the IO-APICs
1057 if (!skip_ioapic_setup && nr_ioapics)
1063 * Set up local APIC timer on boot CPU.
1066 setup_boot_APIC_clock();
1070 * Early setup to make printk work.
1072 void __init smp_prepare_boot_cpu(void)
1074 int me = smp_processor_id();
1075 cpu_set(me, cpu_online_map);
1076 cpu_set(me, cpu_callout_map);
1077 per_cpu(cpu_state, me) = CPU_ONLINE;
1081 * Entry point to boot a CPU.
1083 int __cpuinit __cpu_up(unsigned int cpu)
1086 int apicid = cpu_present_to_apicid(cpu);
1088 WARN_ON(irqs_disabled());
1090 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1092 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1093 !physid_isset(apicid, phys_cpu_present_map)) {
1094 printk("__cpu_up: bad cpu %d\n", cpu);
1099 * Already booted CPU?
1101 if (cpu_isset(cpu, cpu_callin_map)) {
1102 Dprintk("do_boot_cpu %d Already started\n", cpu);
1106 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1108 err = do_boot_cpu(cpu, apicid);
1110 Dprintk("do_boot_cpu failed %d\n", err);
1114 /* Unleash the CPU! */
1115 Dprintk("waiting for cpu %d\n", cpu);
1117 while (!cpu_isset(cpu, cpu_online_map))
1125 * Finish the SMP boot.
1127 void __init smp_cpus_done(unsigned int max_cpus)
1131 #ifdef CONFIG_X86_IO_APIC
1132 setup_ioapic_dest();
1137 check_nmi_watchdog();
1140 #ifdef CONFIG_HOTPLUG_CPU
1142 static void remove_siblinginfo(int cpu)
1145 struct cpuinfo_x86 *c = cpu_data;
1147 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1148 cpu_clear(cpu, cpu_core_map[sibling]);
1150 * last thread sibling in this cpu core going down
1152 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1153 c[sibling].booted_cores--;
1156 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1157 cpu_clear(cpu, cpu_sibling_map[sibling]);
1158 cpus_clear(cpu_sibling_map[cpu]);
1159 cpus_clear(cpu_core_map[cpu]);
1160 phys_proc_id[cpu] = BAD_APICID;
1161 cpu_core_id[cpu] = BAD_APICID;
1162 cpu_clear(cpu, cpu_sibling_setup_map);
1165 void remove_cpu_from_maps(void)
1167 int cpu = smp_processor_id();
1169 cpu_clear(cpu, cpu_callout_map);
1170 cpu_clear(cpu, cpu_callin_map);
1171 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1174 int __cpu_disable(void)
1176 int cpu = smp_processor_id();
1179 * Perhaps use cpufreq to drop frequency, but that could go
1180 * into generic code.
1182 * We won't take down the boot processor on i386 due to some
1183 * interrupts only being able to be serviced by the BSP.
1184 * Especially so if we're not using an IOAPIC -zwane
1193 * Allow any queued timer interrupts to get serviced
1194 * This is only a temporary solution until we cleanup
1195 * fixup_irqs as we do for IA64.
1200 local_irq_disable();
1201 remove_siblinginfo(cpu);
1203 /* It's now safe to remove this processor from the online map */
1204 cpu_clear(cpu, cpu_online_map);
1205 remove_cpu_from_maps();
1206 fixup_irqs(cpu_online_map);
1210 void __cpu_die(unsigned int cpu)
1212 /* We don't do anything here: idle task is faking death itself. */
1215 for (i = 0; i < 10; i++) {
1216 /* They ack this in play_dead by setting CPU_DEAD */
1217 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1218 printk ("CPU %d is now offline\n", cpu);
1223 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1226 static __init int setup_additional_cpus(char *s)
1228 return get_option(&s, &additional_cpus);
1230 __setup("additional_cpus=", setup_additional_cpus);
1232 #else /* ... !CONFIG_HOTPLUG_CPU */
1234 int __cpu_disable(void)
1239 void __cpu_die(unsigned int cpu)
1241 /* We said "no" in __cpu_disable */
1244 #endif /* CONFIG_HOTPLUG_CPU */