p54: implement MRR
[linux-2.6] / drivers / net / wireless / p54 / p54common.c
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on the islsm (softmac prism54) driver, which is:
9  * Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15
16 #include <linux/init.h>
17 #include <linux/firmware.h>
18 #include <linux/etherdevice.h>
19
20 #include <net/mac80211.h>
21
22 #include "p54.h"
23 #include "p54common.h"
24
25 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
26 MODULE_DESCRIPTION("Softmac Prism54 common code");
27 MODULE_LICENSE("GPL");
28 MODULE_ALIAS("prism54common");
29
30 static struct ieee80211_rate p54_bgrates[] = {
31         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
32         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
33         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
34         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
35         { .bitrate = 60, .hw_value = 4, },
36         { .bitrate = 90, .hw_value = 5, },
37         { .bitrate = 120, .hw_value = 6, },
38         { .bitrate = 180, .hw_value = 7, },
39         { .bitrate = 240, .hw_value = 8, },
40         { .bitrate = 360, .hw_value = 9, },
41         { .bitrate = 480, .hw_value = 10, },
42         { .bitrate = 540, .hw_value = 11, },
43 };
44
45 static struct ieee80211_channel p54_bgchannels[] = {
46         { .center_freq = 2412, .hw_value = 1, },
47         { .center_freq = 2417, .hw_value = 2, },
48         { .center_freq = 2422, .hw_value = 3, },
49         { .center_freq = 2427, .hw_value = 4, },
50         { .center_freq = 2432, .hw_value = 5, },
51         { .center_freq = 2437, .hw_value = 6, },
52         { .center_freq = 2442, .hw_value = 7, },
53         { .center_freq = 2447, .hw_value = 8, },
54         { .center_freq = 2452, .hw_value = 9, },
55         { .center_freq = 2457, .hw_value = 10, },
56         { .center_freq = 2462, .hw_value = 11, },
57         { .center_freq = 2467, .hw_value = 12, },
58         { .center_freq = 2472, .hw_value = 13, },
59         { .center_freq = 2484, .hw_value = 14, },
60 };
61
62 static struct ieee80211_supported_band band_2GHz = {
63         .channels = p54_bgchannels,
64         .n_channels = ARRAY_SIZE(p54_bgchannels),
65         .bitrates = p54_bgrates,
66         .n_bitrates = ARRAY_SIZE(p54_bgrates),
67 };
68
69 static struct ieee80211_rate p54_arates[] = {
70         { .bitrate = 60, .hw_value = 4, },
71         { .bitrate = 90, .hw_value = 5, },
72         { .bitrate = 120, .hw_value = 6, },
73         { .bitrate = 180, .hw_value = 7, },
74         { .bitrate = 240, .hw_value = 8, },
75         { .bitrate = 360, .hw_value = 9, },
76         { .bitrate = 480, .hw_value = 10, },
77         { .bitrate = 540, .hw_value = 11, },
78 };
79
80 static struct ieee80211_channel p54_achannels[] = {
81         { .center_freq = 4920 },
82         { .center_freq = 4940 },
83         { .center_freq = 4960 },
84         { .center_freq = 4980 },
85         { .center_freq = 5040 },
86         { .center_freq = 5060 },
87         { .center_freq = 5080 },
88         { .center_freq = 5170 },
89         { .center_freq = 5180 },
90         { .center_freq = 5190 },
91         { .center_freq = 5200 },
92         { .center_freq = 5210 },
93         { .center_freq = 5220 },
94         { .center_freq = 5230 },
95         { .center_freq = 5240 },
96         { .center_freq = 5260 },
97         { .center_freq = 5280 },
98         { .center_freq = 5300 },
99         { .center_freq = 5320 },
100         { .center_freq = 5500 },
101         { .center_freq = 5520 },
102         { .center_freq = 5540 },
103         { .center_freq = 5560 },
104         { .center_freq = 5580 },
105         { .center_freq = 5600 },
106         { .center_freq = 5620 },
107         { .center_freq = 5640 },
108         { .center_freq = 5660 },
109         { .center_freq = 5680 },
110         { .center_freq = 5700 },
111         { .center_freq = 5745 },
112         { .center_freq = 5765 },
113         { .center_freq = 5785 },
114         { .center_freq = 5805 },
115         { .center_freq = 5825 },
116 };
117
118 static struct ieee80211_supported_band band_5GHz = {
119         .channels = p54_achannels,
120         .n_channels = ARRAY_SIZE(p54_achannels),
121         .bitrates = p54_arates,
122         .n_bitrates = ARRAY_SIZE(p54_arates),
123 };
124
125 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
126 {
127         struct p54_common *priv = dev->priv;
128         struct bootrec_exp_if *exp_if;
129         struct bootrec *bootrec;
130         u32 *data = (u32 *)fw->data;
131         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
132         u8 *fw_version = NULL;
133         size_t len;
134         int i;
135
136         if (priv->rx_start)
137                 return 0;
138
139         while (data < end_data && *data)
140                 data++;
141
142         while (data < end_data && !*data)
143                 data++;
144
145         bootrec = (struct bootrec *) data;
146
147         while (bootrec->data <= end_data &&
148                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
149                 u32 code = le32_to_cpu(bootrec->code);
150                 switch (code) {
151                 case BR_CODE_COMPONENT_ID:
152                         priv->fw_interface = be32_to_cpup((__be32 *)
153                                              bootrec->data);
154                         switch (priv->fw_interface) {
155                         case FW_FMAC:
156                                 printk(KERN_INFO "p54: FreeMAC firmware\n");
157                                 break;
158                         case FW_LM20:
159                                 printk(KERN_INFO "p54: LM20 firmware\n");
160                                 break;
161                         case FW_LM86:
162                                 printk(KERN_INFO "p54: LM86 firmware\n");
163                                 break;
164                         case FW_LM87:
165                                 printk(KERN_INFO "p54: LM87 firmware\n");
166                                 break;
167                         default:
168                                 printk(KERN_INFO "p54: unknown firmware\n");
169                                 break;
170                         }
171                         break;
172                 case BR_CODE_COMPONENT_VERSION:
173                         /* 24 bytes should be enough for all firmwares */
174                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
175                                 fw_version = (unsigned char*)bootrec->data;
176                         break;
177                 case BR_CODE_DESCR: {
178                         struct bootrec_desc *desc =
179                                 (struct bootrec_desc *)bootrec->data;
180                         priv->rx_start = le32_to_cpu(desc->rx_start);
181                         /* FIXME add sanity checking */
182                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
183                         priv->headroom = desc->headroom;
184                         priv->tailroom = desc->tailroom;
185                         if (le32_to_cpu(bootrec->len) == 11)
186                                 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
187                         else
188                                 priv->rx_mtu = (size_t)
189                                         0x620 - priv->tx_hdr_len;
190                         break;
191                         }
192                 case BR_CODE_EXPOSED_IF:
193                         exp_if = (struct bootrec_exp_if *) bootrec->data;
194                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
195                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
196                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
197                         break;
198                 case BR_CODE_DEPENDENT_IF:
199                         break;
200                 case BR_CODE_END_OF_BRA:
201                 case LEGACY_BR_CODE_END_OF_BRA:
202                         end_data = NULL;
203                         break;
204                 default:
205                         break;
206                 }
207                 bootrec = (struct bootrec *)&bootrec->data[len];
208         }
209
210         if (fw_version)
211                 printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
212                         fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
213
214         if (priv->fw_var >= 0x300) {
215                 /* Firmware supports QoS, use it! */
216                 priv->tx_stats[4].limit = 3;
217                 priv->tx_stats[5].limit = 4;
218                 priv->tx_stats[6].limit = 3;
219                 priv->tx_stats[7].limit = 1;
220                 dev->queues = 4;
221         }
222
223         return 0;
224 }
225 EXPORT_SYMBOL_GPL(p54_parse_firmware);
226
227 static int p54_convert_rev0(struct ieee80211_hw *dev,
228                             struct pda_pa_curve_data *curve_data)
229 {
230         struct p54_common *priv = dev->priv;
231         struct p54_pa_curve_data_sample *dst;
232         struct pda_pa_curve_data_sample_rev0 *src;
233         size_t cd_len = sizeof(*curve_data) +
234                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
235                  curve_data->channels;
236         unsigned int i, j;
237         void *source, *target;
238
239         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
240         if (!priv->curve_data)
241                 return -ENOMEM;
242
243         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
244         source = curve_data->data;
245         target = priv->curve_data->data;
246         for (i = 0; i < curve_data->channels; i++) {
247                 __le16 *freq = source;
248                 source += sizeof(__le16);
249                 *((__le16 *)target) = *freq;
250                 target += sizeof(__le16);
251                 for (j = 0; j < curve_data->points_per_channel; j++) {
252                         dst = target;
253                         src = source;
254
255                         dst->rf_power = src->rf_power;
256                         dst->pa_detector = src->pa_detector;
257                         dst->data_64qam = src->pcv;
258                         /* "invent" the points for the other modulations */
259 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
260                         dst->data_16qam = SUB(src->pcv, 12);
261                         dst->data_qpsk = SUB(dst->data_16qam, 12);
262                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
263                         dst->data_barker = SUB(dst->data_bpsk, 14);
264 #undef SUB
265                         target += sizeof(*dst);
266                         source += sizeof(*src);
267                 }
268         }
269
270         return 0;
271 }
272
273 static int p54_convert_rev1(struct ieee80211_hw *dev,
274                             struct pda_pa_curve_data *curve_data)
275 {
276         struct p54_common *priv = dev->priv;
277         struct p54_pa_curve_data_sample *dst;
278         struct pda_pa_curve_data_sample_rev1 *src;
279         size_t cd_len = sizeof(*curve_data) +
280                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
281                  curve_data->channels;
282         unsigned int i, j;
283         void *source, *target;
284
285         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
286         if (!priv->curve_data)
287                 return -ENOMEM;
288
289         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
290         source = curve_data->data;
291         target = priv->curve_data->data;
292         for (i = 0; i < curve_data->channels; i++) {
293                 __le16 *freq = source;
294                 source += sizeof(__le16);
295                 *((__le16 *)target) = *freq;
296                 target += sizeof(__le16);
297                 for (j = 0; j < curve_data->points_per_channel; j++) {
298                         memcpy(target, source, sizeof(*src));
299
300                         target += sizeof(*dst);
301                         source += sizeof(*src);
302                 }
303                 source++;
304         }
305
306         return 0;
307 }
308
309 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
310                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
311 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
312
313 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
314 {
315         struct p54_common *priv = dev->priv;
316         struct eeprom_pda_wrap *wrap = NULL;
317         struct pda_entry *entry;
318         unsigned int data_len, entry_len;
319         void *tmp;
320         int err;
321         u8 *end = (u8 *)eeprom + len;
322         u16 synth = 0;
323
324         wrap = (struct eeprom_pda_wrap *) eeprom;
325         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
326
327         /* verify that at least the entry length/code fits */
328         while ((u8 *)entry <= end - sizeof(*entry)) {
329                 entry_len = le16_to_cpu(entry->len);
330                 data_len = ((entry_len - 1) << 1);
331
332                 /* abort if entry exceeds whole structure */
333                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
334                         break;
335
336                 switch (le16_to_cpu(entry->code)) {
337                 case PDR_MAC_ADDRESS:
338                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
339                         break;
340                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
341                         if (data_len < 2) {
342                                 err = -EINVAL;
343                                 goto err;
344                         }
345
346                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
347                                 err = -EINVAL;
348                                 goto err;
349                         }
350
351                         priv->output_limit = kmalloc(entry->data[1] *
352                                 sizeof(*priv->output_limit), GFP_KERNEL);
353
354                         if (!priv->output_limit) {
355                                 err = -ENOMEM;
356                                 goto err;
357                         }
358
359                         memcpy(priv->output_limit, &entry->data[2],
360                                entry->data[1]*sizeof(*priv->output_limit));
361                         priv->output_limit_len = entry->data[1];
362                         break;
363                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
364                         struct pda_pa_curve_data *curve_data =
365                                 (struct pda_pa_curve_data *)entry->data;
366                         if (data_len < sizeof(*curve_data)) {
367                                 err = -EINVAL;
368                                 goto err;
369                         }
370
371                         switch (curve_data->cal_method_rev) {
372                         case 0:
373                                 err = p54_convert_rev0(dev, curve_data);
374                                 break;
375                         case 1:
376                                 err = p54_convert_rev1(dev, curve_data);
377                                 break;
378                         default:
379                                 printk(KERN_ERR "p54: unknown curve data "
380                                                 "revision %d\n",
381                                                 curve_data->cal_method_rev);
382                                 err = -ENODEV;
383                                 break;
384                         }
385                         if (err)
386                                 goto err;
387
388                 }
389                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
390                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
391                         if (!priv->iq_autocal) {
392                                 err = -ENOMEM;
393                                 goto err;
394                         }
395
396                         memcpy(priv->iq_autocal, entry->data, data_len);
397                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
398                         break;
399                 case PDR_INTERFACE_LIST:
400                         tmp = entry->data;
401                         while ((u8 *)tmp < entry->data + data_len) {
402                                 struct bootrec_exp_if *exp_if = tmp;
403                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
404                                         synth = le16_to_cpu(exp_if->variant);
405                                 tmp += sizeof(struct bootrec_exp_if);
406                         }
407                         break;
408                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
409                         priv->version = *(u8 *)(entry->data + 1);
410                         break;
411                 case PDR_END:
412                         /* make it overrun */
413                         entry_len = len;
414                         break;
415                 default:
416                         printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
417                                 le16_to_cpu(entry->code));
418                         break;
419                 }
420
421                 entry = (void *)entry + (entry_len + 1)*2;
422         }
423
424         if (!synth || !priv->iq_autocal || !priv->output_limit ||
425             !priv->curve_data) {
426                 printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
427                 err = -EINVAL;
428                 goto err;
429         }
430
431         priv->rxhw = synth & 0x07;
432         if (priv->rxhw == 4)
433                 p54_init_xbow_synth(dev);
434         if (!(synth & 0x40))
435                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
436         if (!(synth & 0x80))
437                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
438
439         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
440                 u8 perm_addr[ETH_ALEN];
441
442                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
443                         wiphy_name(dev->wiphy));
444                 random_ether_addr(perm_addr);
445                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
446         }
447
448         printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
449                 wiphy_name(dev->wiphy),
450                 dev->wiphy->perm_addr,
451                 priv->version, p54_rf_chips[priv->rxhw]);
452
453         return 0;
454
455   err:
456         if (priv->iq_autocal) {
457                 kfree(priv->iq_autocal);
458                 priv->iq_autocal = NULL;
459         }
460
461         if (priv->output_limit) {
462                 kfree(priv->output_limit);
463                 priv->output_limit = NULL;
464         }
465
466         if (priv->curve_data) {
467                 kfree(priv->curve_data);
468                 priv->curve_data = NULL;
469         }
470
471         printk(KERN_ERR "p54: eeprom parse failed!\n");
472         return err;
473 }
474
475 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
476 {
477         /* TODO: get the rssi_add & rssi_mul data from the eeprom */
478         return ((rssi * 0x83) / 64 - 400) / 4;
479 }
480
481 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
482 {
483         struct p54_common *priv = dev->priv;
484         struct p54_rx_hdr *hdr = (struct p54_rx_hdr *) skb->data;
485         struct ieee80211_rx_status rx_status = {0};
486         u16 freq = le16_to_cpu(hdr->freq);
487         size_t header_len = sizeof(*hdr);
488         u32 tsf32;
489
490         if (!(hdr->magic & cpu_to_le16(0x0001))) {
491                 if (priv->filter_flags & FIF_FCSFAIL)
492                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
493                 else
494                         return 0;
495         }
496
497         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
498         rx_status.noise = priv->noise;
499         /* XX correct? */
500         rx_status.qual = (100 * hdr->rssi) / 127;
501         rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
502                         hdr->rate : (hdr->rate - 4)) & 0xf;
503         rx_status.freq = freq;
504         rx_status.band =  dev->conf.channel->band;
505         rx_status.antenna = hdr->antenna;
506
507         tsf32 = le32_to_cpu(hdr->tsf32);
508         if (tsf32 < priv->tsf_low32)
509                 priv->tsf_high32++;
510         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
511         priv->tsf_low32 = tsf32;
512
513         rx_status.flag |= RX_FLAG_TSFT;
514
515         if (hdr->magic & cpu_to_le16(0x4000))
516                 header_len += hdr->align[0];
517
518         skb_pull(skb, header_len);
519         skb_trim(skb, le16_to_cpu(hdr->len));
520
521         ieee80211_rx_irqsafe(dev, skb, &rx_status);
522
523         return -1;
524 }
525
526 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
527 {
528         struct p54_common *priv = dev->priv;
529         int i;
530
531         for (i = 0; i < dev->queues; i++)
532                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
533                         ieee80211_wake_queue(dev, i);
534 }
535
536 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
537 {
538         struct p54_common *priv = dev->priv;
539         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
540         struct p54_frame_sent_hdr *payload = (struct p54_frame_sent_hdr *) hdr->data;
541         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
542         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
543         struct memrecord *range = NULL;
544         u32 freed = 0;
545         u32 last_addr = priv->rx_start;
546         unsigned long flags;
547         int count, idx;
548
549         spin_lock_irqsave(&priv->tx_queue.lock, flags);
550         while (entry != (struct sk_buff *)&priv->tx_queue) {
551                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
552                 range = (void *)info->rate_driver_data;
553                 if (range->start_addr == addr) {
554                         struct p54_control_hdr *entry_hdr;
555                         struct p54_tx_control_allocdata *entry_data;
556                         int pad = 0;
557
558                         if (entry->next != (struct sk_buff *)&priv->tx_queue) {
559                                 struct ieee80211_tx_info *ni;
560                                 struct memrecord *mr;
561
562                                 ni = IEEE80211_SKB_CB(entry->next);
563                                 mr = (struct memrecord *)ni->rate_driver_data;
564                                 freed = mr->start_addr - last_addr;
565                         } else
566                                 freed = priv->rx_end - last_addr;
567
568                         last_addr = range->end_addr;
569                         __skb_unlink(entry, &priv->tx_queue);
570                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
571
572                         /*
573                          * Clear manually, ieee80211_tx_info_clear_status would
574                          * clear the counts too and we need them.
575                          */
576                         memset(&info->status.ampdu_ack_len, 0,
577                                sizeof(struct ieee80211_tx_info) -
578                                offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
579                         BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
580                                               status.ampdu_ack_len) != 23);
581
582                         entry_hdr = (struct p54_control_hdr *) entry->data;
583                         entry_data = (struct p54_tx_control_allocdata *) entry_hdr->data;
584                         if ((entry_hdr->magic1 & cpu_to_le16(0x4000)) != 0)
585                                 pad = entry_data->align[0];
586
587                         /* walk through the rates array and adjust the counts */
588                         count = payload->retries;
589                         for (idx = 0; idx < 4; idx++) {
590                                 if (count >= info->status.rates[idx].count) {
591                                         count -= info->status.rates[idx].count;
592                                 } else if (count > 0) {
593                                         info->status.rates[idx].count = count;
594                                         count = 0;
595                                 } else {
596                                         info->status.rates[idx].idx = -1;
597                                         info->status.rates[idx].count = 0;
598                                 }
599                         }
600
601                         priv->tx_stats[entry_data->hw_queue].len--;
602                         if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
603                             !(payload->status & 0x01))
604                                 info->flags |= IEEE80211_TX_STAT_ACK;
605                         info->status.ack_signal = p54_rssi_to_dbm(dev,
606                                         le16_to_cpu(payload->ack_rssi));
607                         skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
608                         ieee80211_tx_status_irqsafe(dev, entry);
609                         goto out;
610                 } else
611                         last_addr = range->end_addr;
612                 entry = entry->next;
613         }
614         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
615
616 out:
617         if (freed >= IEEE80211_MAX_RTS_THRESHOLD + 0x170 +
618             sizeof(struct p54_control_hdr))
619                 p54_wake_free_queues(dev);
620 }
621
622 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
623                                    struct sk_buff *skb)
624 {
625         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
626         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
627         struct p54_common *priv = dev->priv;
628
629         if (!priv->eeprom)
630                 return ;
631
632         memcpy(priv->eeprom, eeprom->data, le16_to_cpu(eeprom->len));
633
634         complete(&priv->eeprom_comp);
635 }
636
637 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
638 {
639         struct p54_common *priv = dev->priv;
640         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
641         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
642         u32 tsf32 = le32_to_cpu(stats->tsf32);
643
644         if (tsf32 < priv->tsf_low32)
645                 priv->tsf_high32++;
646         priv->tsf_low32 = tsf32;
647
648         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
649         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
650         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
651
652         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
653         complete(&priv->stats_comp);
654
655         mod_timer(&priv->stats_timer, jiffies + 5 * HZ);
656 }
657
658 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
659 {
660         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
661
662         switch (le16_to_cpu(hdr->type)) {
663         case P54_CONTROL_TYPE_TXDONE:
664                 p54_rx_frame_sent(dev, skb);
665                 break;
666         case P54_CONTROL_TYPE_BBP:
667                 break;
668         case P54_CONTROL_TYPE_STAT_READBACK:
669                 p54_rx_stats(dev, skb);
670                 break;
671         case P54_CONTROL_TYPE_EEPROM_READBACK:
672                 p54_rx_eeprom_readback(dev, skb);
673                 break;
674         default:
675                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
676                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
677                 break;
678         }
679
680         return 0;
681 }
682
683 /* returns zero if skb can be reused */
684 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
685 {
686         u8 type = le16_to_cpu(*((__le16 *)skb->data)) >> 8;
687
688         if (type == 0x80)
689                 return p54_rx_control(dev, skb);
690         else
691                 return p54_rx_data(dev, skb);
692 }
693 EXPORT_SYMBOL_GPL(p54_rx);
694
695 /*
696  * So, the firmware is somewhat stupid and doesn't know what places in its
697  * memory incoming data should go to. By poking around in the firmware, we
698  * can find some unused memory to upload our packets to. However, data that we
699  * want the card to TX needs to stay intact until the card has told us that
700  * it is done with it. This function finds empty places we can upload to and
701  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
702  * allocated areas.
703  */
704 static void p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
705                                struct p54_control_hdr *data, u32 len)
706 {
707         struct p54_common *priv = dev->priv;
708         struct sk_buff *entry = priv->tx_queue.next;
709         struct sk_buff *target_skb = NULL;
710         u32 last_addr = priv->rx_start;
711         u32 largest_hole = 0;
712         u32 target_addr = priv->rx_start;
713         unsigned long flags;
714         unsigned int left;
715         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
716
717         spin_lock_irqsave(&priv->tx_queue.lock, flags);
718         left = skb_queue_len(&priv->tx_queue);
719         while (left--) {
720                 u32 hole_size;
721                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
722                 struct memrecord *range = (void *)info->rate_driver_data;
723                 hole_size = range->start_addr - last_addr;
724                 if (!target_skb && hole_size >= len) {
725                         target_skb = entry->prev;
726                         hole_size -= len;
727                         target_addr = last_addr;
728                 }
729                 largest_hole = max(largest_hole, hole_size);
730                 last_addr = range->end_addr;
731                 entry = entry->next;
732         }
733         if (!target_skb && priv->rx_end - last_addr >= len) {
734                 target_skb = priv->tx_queue.prev;
735                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
736                 if (!skb_queue_empty(&priv->tx_queue)) {
737                         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(target_skb);
738                         struct memrecord *range = (void *)info->rate_driver_data;
739                         target_addr = range->end_addr;
740                 }
741         } else
742                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
743
744         if (skb) {
745                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
746                 struct memrecord *range = (void *)info->rate_driver_data;
747                 range->start_addr = target_addr;
748                 range->end_addr = target_addr + len;
749                 __skb_queue_after(&priv->tx_queue, target_skb, skb);
750                 if (largest_hole < priv->rx_mtu + priv->headroom +
751                                    priv->tailroom +
752                                    sizeof(struct p54_control_hdr))
753                         ieee80211_stop_queues(dev);
754         }
755         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
756
757         data->req_id = cpu_to_le32(target_addr + priv->headroom);
758 }
759
760 int p54_read_eeprom(struct ieee80211_hw *dev)
761 {
762         struct p54_common *priv = dev->priv;
763         struct p54_control_hdr *hdr = NULL;
764         struct p54_eeprom_lm86 *eeprom_hdr;
765         size_t eeprom_size = 0x2020, offset = 0, blocksize;
766         int ret = -ENOMEM;
767         void *eeprom = NULL;
768
769         hdr = (struct p54_control_hdr *)kzalloc(sizeof(*hdr) +
770                 sizeof(*eeprom_hdr) + EEPROM_READBACK_LEN, GFP_KERNEL);
771         if (!hdr)
772                 goto free;
773
774         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
775         if (!priv->eeprom)
776                 goto free;
777
778         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
779         if (!eeprom)
780                 goto free;
781
782         hdr->magic1 = cpu_to_le16(0x8000);
783         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_EEPROM_READBACK);
784         hdr->retry1 = hdr->retry2 = 0;
785         eeprom_hdr = (struct p54_eeprom_lm86 *) hdr->data;
786
787         while (eeprom_size) {
788                 blocksize = min(eeprom_size, (size_t)EEPROM_READBACK_LEN);
789                 hdr->len = cpu_to_le16(blocksize + sizeof(*eeprom_hdr));
790                 eeprom_hdr->offset = cpu_to_le16(offset);
791                 eeprom_hdr->len = cpu_to_le16(blocksize);
792                 p54_assign_address(dev, NULL, hdr, le16_to_cpu(hdr->len) +
793                                    sizeof(*hdr));
794                 priv->tx(dev, hdr, le16_to_cpu(hdr->len) + sizeof(*hdr), 0);
795
796                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
797                         printk(KERN_ERR "%s: device does not respond!\n",
798                                 wiphy_name(dev->wiphy));
799                         ret = -EBUSY;
800                         goto free;
801                 }
802
803                 memcpy(eeprom + offset, priv->eeprom, blocksize);
804                 offset += blocksize;
805                 eeprom_size -= blocksize;
806         }
807
808         ret = p54_parse_eeprom(dev, eeprom, offset);
809 free:
810         kfree(priv->eeprom);
811         priv->eeprom = NULL;
812         kfree(hdr);
813         kfree(eeprom);
814
815         return ret;
816 }
817 EXPORT_SYMBOL_GPL(p54_read_eeprom);
818
819 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
820 {
821         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
822         struct ieee80211_tx_queue_stats *current_queue;
823         struct p54_common *priv = dev->priv;
824         struct p54_control_hdr *hdr;
825         struct p54_tx_control_allocdata *txhdr;
826         size_t padding, len;
827         int i, j, ridx;
828         u8 rate;
829         u8 cts_rate = 0x20;
830         u8 rc_flags;
831         u8 calculated_tries[4];
832         u8 nrates = 0, nremaining = 8;
833
834         current_queue = &priv->tx_stats[skb_get_queue_mapping(skb) + 4];
835         if (unlikely(current_queue->len > current_queue->limit))
836                 return NETDEV_TX_BUSY;
837         current_queue->len++;
838         current_queue->count++;
839         if (current_queue->len == current_queue->limit)
840                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
841
842         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
843         len = skb->len;
844
845         txhdr = (struct p54_tx_control_allocdata *)
846                         skb_push(skb, sizeof(*txhdr) + padding);
847         hdr = (struct p54_control_hdr *) skb_push(skb, sizeof(*hdr));
848
849         if (padding)
850                 hdr->magic1 = cpu_to_le16(0x4010);
851         else
852                 hdr->magic1 = cpu_to_le16(0x0010);
853         hdr->len = cpu_to_le16(len);
854         hdr->type = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 0 : cpu_to_le16(1);
855         hdr->retry1 = info->control.rates[0].count;
856
857         /*
858          * we register the rates in perfect order, and
859          * RTS/CTS won't happen on 5 GHz
860          */
861         cts_rate = info->control.rts_cts_rate_idx;
862
863         memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
864
865         /* see how many rates got used */
866         for (i = 0; i < 4; i++) {
867                 if (info->control.rates[i].idx < 0)
868                         break;
869                 nrates++;
870         }
871
872         /* limit tries to 8/nrates per rate */
873         for (i = 0; i < nrates; i++) {
874                 /*
875                  * The magic expression here is equivalent to 8/nrates for
876                  * all values that matter, but avoids division and jumps.
877                  * Note that nrates can only take the values 1 through 4.
878                  */
879                 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
880                                                  info->control.rates[i].count);
881                 nremaining -= calculated_tries[i];
882         }
883
884         /* if there are tries left, distribute from back to front */
885         for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
886                 int tmp = info->control.rates[i].count - calculated_tries[i];
887
888                 if (tmp <= 0)
889                         continue;
890                 /* RC requested more tries at this rate */
891
892                 tmp = min_t(int, tmp, nremaining);
893                 calculated_tries[i] += tmp;
894                 nremaining -= tmp;
895         }
896
897         ridx = 0;
898         for (i = 0; i < nrates && ridx < 8; i++) {
899                 /* we register the rates in perfect order */
900                 rate = info->control.rates[i].idx;
901                 if (info->band == IEEE80211_BAND_5GHZ)
902                         rate += 4;
903
904                 /* store the count we actually calculated for TX status */
905                 info->control.rates[i].count = calculated_tries[i];
906
907                 rc_flags = info->control.rates[i].flags;
908                 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
909                         rate |= 0x10;
910                         cts_rate |= 0x10;
911                 }
912                 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
913                         rate |= 0x40;
914                 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
915                         rate |= 0x20;
916                 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
917                         txhdr->rateset[ridx] = rate;
918                         ridx++;
919                 }
920         }
921         hdr->retry2 = ridx;
922
923         txhdr->key_type = 0;
924         txhdr->key_len = 0;
925         txhdr->hw_queue = skb_get_queue_mapping(skb) + 4;
926         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
927                 2 : info->antenna_sel_tx - 1;
928         txhdr->output_power = priv->output_power;
929         txhdr->cts_rate = (info->flags & IEEE80211_TX_CTL_NO_ACK) ?
930                           0 : cts_rate;
931         if (padding)
932                 txhdr->align[0] = padding;
933
934         /* modifies skb->cb and with it info, so must be last! */
935         p54_assign_address(dev, skb, hdr, skb->len);
936
937         priv->tx(dev, hdr, skb->len, 0);
938         return 0;
939 }
940
941 static int p54_set_filter(struct ieee80211_hw *dev, u16 filter_type,
942                           const u8 *bssid)
943 {
944         struct p54_common *priv = dev->priv;
945         struct p54_control_hdr *hdr;
946         struct p54_tx_control_filter *filter;
947         size_t data_len;
948
949         hdr = kzalloc(sizeof(*hdr) + sizeof(*filter) +
950                       priv->tx_hdr_len, GFP_ATOMIC);
951         if (!hdr)
952                 return -ENOMEM;
953
954         hdr = (void *)hdr + priv->tx_hdr_len;
955
956         filter = (struct p54_tx_control_filter *) hdr->data;
957         hdr->magic1 = cpu_to_le16(0x8001);
958         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_FILTER_SET);
959
960         priv->filter_type = filter->filter_type = cpu_to_le16(filter_type);
961         memcpy(filter->mac_addr, priv->mac_addr, ETH_ALEN);
962         if (!bssid)
963                 memset(filter->bssid, ~0, ETH_ALEN);
964         else
965                 memcpy(filter->bssid, bssid, ETH_ALEN);
966         filter->rx_antenna = priv->rx_antenna;
967         if (priv->fw_var < 0x500) {
968                 data_len = P54_TX_CONTROL_FILTER_V1_LEN;
969                 filter->v1.basic_rate_mask = cpu_to_le32(0x15f);
970                 filter->v1.rx_addr = cpu_to_le32(priv->rx_end);
971                 filter->v1.max_rx = cpu_to_le16(priv->rx_mtu);
972                 filter->v1.rxhw = cpu_to_le16(priv->rxhw);
973                 filter->v1.wakeup_timer = cpu_to_le16(500);
974         } else {
975                 data_len = P54_TX_CONTROL_FILTER_V2_LEN;
976                 filter->v2.rx_addr = cpu_to_le32(priv->rx_end);
977                 filter->v2.max_rx = cpu_to_le16(priv->rx_mtu);
978                 filter->v2.rxhw = cpu_to_le16(priv->rxhw);
979                 filter->v2.timer = cpu_to_le16(1000);
980         }
981         hdr->len = cpu_to_le16(data_len);
982         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + data_len);
983         priv->tx(dev, hdr, sizeof(*hdr) + data_len, 1);
984         return 0;
985 }
986
987 static int p54_set_freq(struct ieee80211_hw *dev, __le16 freq)
988 {
989         struct p54_common *priv = dev->priv;
990         struct p54_control_hdr *hdr;
991         struct p54_tx_control_channel *chan;
992         unsigned int i;
993         size_t data_len;
994         void *entry;
995
996         hdr = kzalloc(sizeof(*hdr) + sizeof(*chan) +
997                       priv->tx_hdr_len, GFP_KERNEL);
998         if (!hdr)
999                 return -ENOMEM;
1000
1001         hdr = (void *)hdr + priv->tx_hdr_len;
1002
1003         chan = (struct p54_tx_control_channel *) hdr->data;
1004
1005         hdr->magic1 = cpu_to_le16(0x8001);
1006
1007         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_CHANNEL_CHANGE);
1008
1009         chan->flags = cpu_to_le16(0x1);
1010         chan->dwell = cpu_to_le16(0x0);
1011
1012         for (i = 0; i < priv->iq_autocal_len; i++) {
1013                 if (priv->iq_autocal[i].freq != freq)
1014                         continue;
1015
1016                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1017                        sizeof(*priv->iq_autocal));
1018                 break;
1019         }
1020         if (i == priv->iq_autocal_len)
1021                 goto err;
1022
1023         for (i = 0; i < priv->output_limit_len; i++) {
1024                 if (priv->output_limit[i].freq != freq)
1025                         continue;
1026
1027                 chan->val_barker = 0x38;
1028                 chan->val_bpsk = chan->dup_bpsk =
1029                         priv->output_limit[i].val_bpsk;
1030                 chan->val_qpsk = chan->dup_qpsk =
1031                         priv->output_limit[i].val_qpsk;
1032                 chan->val_16qam = chan->dup_16qam =
1033                         priv->output_limit[i].val_16qam;
1034                 chan->val_64qam = chan->dup_64qam =
1035                         priv->output_limit[i].val_64qam;
1036                 break;
1037         }
1038         if (i == priv->output_limit_len)
1039                 goto err;
1040
1041         entry = priv->curve_data->data;
1042         for (i = 0; i < priv->curve_data->channels; i++) {
1043                 if (*((__le16 *)entry) != freq) {
1044                         entry += sizeof(__le16);
1045                         entry += sizeof(struct p54_pa_curve_data_sample) *
1046                                  priv->curve_data->points_per_channel;
1047                         continue;
1048                 }
1049
1050                 entry += sizeof(__le16);
1051                 chan->pa_points_per_curve =
1052                         min(priv->curve_data->points_per_channel, (u8) 8);
1053
1054                 memcpy(chan->curve_data, entry, sizeof(*chan->curve_data) *
1055                        chan->pa_points_per_curve);
1056                 break;
1057         }
1058
1059         if (priv->fw_var < 0x500) {
1060                 data_len = P54_TX_CONTROL_CHANNEL_V1_LEN;
1061                 chan->v1.rssical_mul = cpu_to_le16(130);
1062                 chan->v1.rssical_add = cpu_to_le16(0xfe70);
1063         } else {
1064                 data_len = P54_TX_CONTROL_CHANNEL_V2_LEN;
1065                 chan->v2.rssical_mul = cpu_to_le16(130);
1066                 chan->v2.rssical_add = cpu_to_le16(0xfe70);
1067                 chan->v2.basic_rate_mask = cpu_to_le32(0x15f);
1068         }
1069
1070         hdr->len = cpu_to_le16(data_len);
1071         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + data_len);
1072         priv->tx(dev, hdr, sizeof(*hdr) + data_len, 1);
1073         return 0;
1074
1075  err:
1076         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1077         kfree(hdr);
1078         return -EINVAL;
1079 }
1080
1081 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1082 {
1083         struct p54_common *priv = dev->priv;
1084         struct p54_control_hdr *hdr;
1085         struct p54_tx_control_led *led;
1086
1087         hdr = kzalloc(sizeof(*hdr) + sizeof(*led) +
1088                       priv->tx_hdr_len, GFP_KERNEL);
1089         if (!hdr)
1090                 return -ENOMEM;
1091
1092         hdr = (void *)hdr + priv->tx_hdr_len;
1093         hdr->magic1 = cpu_to_le16(0x8001);
1094         hdr->len = cpu_to_le16(sizeof(*led));
1095         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_LED);
1096         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*led));
1097
1098         led = (struct p54_tx_control_led *) hdr->data;
1099         led->mode = cpu_to_le16(mode);
1100         led->led_permanent = cpu_to_le16(link);
1101         led->led_temporary = cpu_to_le16(act);
1102         led->duration = cpu_to_le16(1000);
1103
1104         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*led), 1);
1105
1106         return 0;
1107 }
1108
1109 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1110 do {                                                            \
1111         queue.aifs = cpu_to_le16(ai_fs);                        \
1112         queue.cwmin = cpu_to_le16(cw_min);                      \
1113         queue.cwmax = cpu_to_le16(cw_max);                      \
1114         queue.txop = cpu_to_le16(_txop);                        \
1115 } while(0)
1116
1117 static void p54_init_vdcf(struct ieee80211_hw *dev)
1118 {
1119         struct p54_common *priv = dev->priv;
1120         struct p54_control_hdr *hdr;
1121         struct p54_tx_control_vdcf *vdcf;
1122
1123         /* all USB V1 adapters need a extra headroom */
1124         hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
1125         hdr->magic1 = cpu_to_le16(0x8001);
1126         hdr->len = cpu_to_le16(sizeof(*vdcf));
1127         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_DCFINIT);
1128         hdr->req_id = cpu_to_le32(priv->rx_start);
1129
1130         vdcf = (struct p54_tx_control_vdcf *) hdr->data;
1131
1132         P54_SET_QUEUE(vdcf->queue[0], 0x0002, 0x0003, 0x0007, 47);
1133         P54_SET_QUEUE(vdcf->queue[1], 0x0002, 0x0007, 0x000f, 94);
1134         P54_SET_QUEUE(vdcf->queue[2], 0x0003, 0x000f, 0x03ff, 0);
1135         P54_SET_QUEUE(vdcf->queue[3], 0x0007, 0x000f, 0x03ff, 0);
1136 }
1137
1138 static void p54_set_vdcf(struct ieee80211_hw *dev)
1139 {
1140         struct p54_common *priv = dev->priv;
1141         struct p54_control_hdr *hdr;
1142         struct p54_tx_control_vdcf *vdcf;
1143
1144         hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
1145
1146         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*vdcf));
1147
1148         vdcf = (struct p54_tx_control_vdcf *) hdr->data;
1149
1150         if (priv->use_short_slot) {
1151                 vdcf->slottime = 9;
1152                 vdcf->magic1 = 0x10;
1153                 vdcf->magic2 = 0x00;
1154         } else {
1155                 vdcf->slottime = 20;
1156                 vdcf->magic1 = 0x0a;
1157                 vdcf->magic2 = 0x06;
1158         }
1159
1160         /* (see prism54/isl_oid.h for further details) */
1161         vdcf->frameburst = cpu_to_le16(0);
1162
1163         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*vdcf), 0);
1164 }
1165
1166 static int p54_start(struct ieee80211_hw *dev)
1167 {
1168         struct p54_common *priv = dev->priv;
1169         int err;
1170
1171         if (!priv->cached_vdcf) {
1172                 priv->cached_vdcf = kzalloc(sizeof(struct p54_tx_control_vdcf)+
1173                         priv->tx_hdr_len + sizeof(struct p54_control_hdr),
1174                         GFP_KERNEL);
1175
1176                 if (!priv->cached_vdcf)
1177                         return -ENOMEM;
1178         }
1179
1180         if (!priv->cached_stats) {
1181                 priv->cached_stats = kzalloc(sizeof(struct p54_statistics) +
1182                         priv->tx_hdr_len + sizeof(struct p54_control_hdr),
1183                         GFP_KERNEL);
1184
1185                 if (!priv->cached_stats) {
1186                         kfree(priv->cached_vdcf);
1187                         priv->cached_vdcf = NULL;
1188                         return -ENOMEM;
1189                 }
1190         }
1191
1192         err = priv->open(dev);
1193         if (!err)
1194                 priv->mode = NL80211_IFTYPE_MONITOR;
1195
1196         p54_init_vdcf(dev);
1197         mod_timer(&priv->stats_timer, jiffies + HZ);
1198         return err;
1199 }
1200
1201 static void p54_stop(struct ieee80211_hw *dev)
1202 {
1203         struct p54_common *priv = dev->priv;
1204         struct sk_buff *skb;
1205
1206         del_timer(&priv->stats_timer);
1207         while ((skb = skb_dequeue(&priv->tx_queue)))
1208                 kfree_skb(skb);
1209         priv->stop(dev);
1210         priv->tsf_high32 = priv->tsf_low32 = 0;
1211         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1212 }
1213
1214 static int p54_add_interface(struct ieee80211_hw *dev,
1215                              struct ieee80211_if_init_conf *conf)
1216 {
1217         struct p54_common *priv = dev->priv;
1218
1219         if (priv->mode != NL80211_IFTYPE_MONITOR)
1220                 return -EOPNOTSUPP;
1221
1222         switch (conf->type) {
1223         case NL80211_IFTYPE_STATION:
1224                 priv->mode = conf->type;
1225                 break;
1226         default:
1227                 return -EOPNOTSUPP;
1228         }
1229
1230         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1231
1232         p54_set_filter(dev, 0, NULL);
1233
1234         switch (conf->type) {
1235         case NL80211_IFTYPE_STATION:
1236                 p54_set_filter(dev, 1, NULL);
1237                 break;
1238         default:
1239                 BUG();  /* impossible */
1240                 break;
1241         }
1242
1243         p54_set_leds(dev, 1, 0, 0);
1244
1245         return 0;
1246 }
1247
1248 static void p54_remove_interface(struct ieee80211_hw *dev,
1249                                  struct ieee80211_if_init_conf *conf)
1250 {
1251         struct p54_common *priv = dev->priv;
1252         priv->mode = NL80211_IFTYPE_MONITOR;
1253         memset(priv->mac_addr, 0, ETH_ALEN);
1254         p54_set_filter(dev, 0, NULL);
1255 }
1256
1257 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1258 {
1259         int ret;
1260         struct p54_common *priv = dev->priv;
1261         struct ieee80211_conf *conf = &dev->conf;
1262
1263         mutex_lock(&priv->conf_mutex);
1264         priv->rx_antenna = 2; /* automatic */
1265         priv->output_power = conf->power_level << 2;
1266         ret = p54_set_freq(dev, cpu_to_le16(conf->channel->center_freq));
1267         p54_set_vdcf(dev);
1268         mutex_unlock(&priv->conf_mutex);
1269         return ret;
1270 }
1271
1272 static int p54_config_interface(struct ieee80211_hw *dev,
1273                                 struct ieee80211_vif *vif,
1274                                 struct ieee80211_if_conf *conf)
1275 {
1276         struct p54_common *priv = dev->priv;
1277
1278         mutex_lock(&priv->conf_mutex);
1279         p54_set_filter(dev, 0, conf->bssid);
1280         p54_set_leds(dev, 1, !is_multicast_ether_addr(conf->bssid), 0);
1281         memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1282         mutex_unlock(&priv->conf_mutex);
1283         return 0;
1284 }
1285
1286 static void p54_configure_filter(struct ieee80211_hw *dev,
1287                                  unsigned int changed_flags,
1288                                  unsigned int *total_flags,
1289                                  int mc_count, struct dev_mc_list *mclist)
1290 {
1291         struct p54_common *priv = dev->priv;
1292
1293         *total_flags &= FIF_BCN_PRBRESP_PROMISC |
1294                         FIF_PROMISC_IN_BSS |
1295                         FIF_FCSFAIL;
1296
1297         priv->filter_flags = *total_flags;
1298
1299         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
1300                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
1301                         p54_set_filter(dev, le16_to_cpu(priv->filter_type),
1302                                  NULL);
1303                 else
1304                         p54_set_filter(dev, le16_to_cpu(priv->filter_type),
1305                                  priv->bssid);
1306         }
1307
1308         if (changed_flags & FIF_PROMISC_IN_BSS) {
1309                 if (*total_flags & FIF_PROMISC_IN_BSS)
1310                         p54_set_filter(dev, le16_to_cpu(priv->filter_type) |
1311                                 0x8, NULL);
1312                 else
1313                         p54_set_filter(dev, le16_to_cpu(priv->filter_type) &
1314                                 ~0x8, priv->bssid);
1315         }
1316 }
1317
1318 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1319                        const struct ieee80211_tx_queue_params *params)
1320 {
1321         struct p54_common *priv = dev->priv;
1322         struct p54_tx_control_vdcf *vdcf;
1323
1324         vdcf = (struct p54_tx_control_vdcf *)(((struct p54_control_hdr *)
1325                 ((void *)priv->cached_vdcf + priv->tx_hdr_len))->data);
1326
1327         if ((params) && !(queue > 4)) {
1328                 P54_SET_QUEUE(vdcf->queue[queue], params->aifs,
1329                         params->cw_min, params->cw_max, params->txop);
1330         } else
1331                 return -EINVAL;
1332
1333         p54_set_vdcf(dev);
1334
1335         return 0;
1336 }
1337
1338 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1339 {
1340         struct p54_common *priv = dev->priv;
1341         struct p54_control_hdr *hdr;
1342         struct p54_tx_control_xbow_synth *xbow;
1343
1344         hdr = kzalloc(sizeof(*hdr) + sizeof(*xbow) +
1345                       priv->tx_hdr_len, GFP_KERNEL);
1346         if (!hdr)
1347                 return -ENOMEM;
1348
1349         hdr = (void *)hdr + priv->tx_hdr_len;
1350         hdr->magic1 = cpu_to_le16(0x8001);
1351         hdr->len = cpu_to_le16(sizeof(*xbow));
1352         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_XBOW_SYNTH_CFG);
1353         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*xbow));
1354
1355         xbow = (struct p54_tx_control_xbow_synth *) hdr->data;
1356         xbow->magic1 = cpu_to_le16(0x1);
1357         xbow->magic2 = cpu_to_le16(0x2);
1358         xbow->freq = cpu_to_le16(5390);
1359
1360         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*xbow), 1);
1361
1362         return 0;
1363 }
1364
1365 static void p54_statistics_timer(unsigned long data)
1366 {
1367         struct ieee80211_hw *dev = (struct ieee80211_hw *) data;
1368         struct p54_common *priv = dev->priv;
1369         struct p54_control_hdr *hdr;
1370         struct p54_statistics *stats;
1371
1372         BUG_ON(!priv->cached_stats);
1373
1374         hdr = (void *)priv->cached_stats + priv->tx_hdr_len;
1375         hdr->magic1 = cpu_to_le16(0x8000);
1376         hdr->len = cpu_to_le16(sizeof(*stats));
1377         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_STAT_READBACK);
1378         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*stats));
1379
1380         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*stats), 0);
1381 }
1382
1383 static int p54_get_stats(struct ieee80211_hw *dev,
1384                          struct ieee80211_low_level_stats *stats)
1385 {
1386         struct p54_common *priv = dev->priv;
1387
1388         del_timer(&priv->stats_timer);
1389         p54_statistics_timer((unsigned long)dev);
1390
1391         if (!wait_for_completion_interruptible_timeout(&priv->stats_comp, HZ)) {
1392                 printk(KERN_ERR "%s: device does not respond!\n",
1393                         wiphy_name(dev->wiphy));
1394                 return -EBUSY;
1395         }
1396
1397         memcpy(stats, &priv->stats, sizeof(*stats));
1398
1399         return 0;
1400 }
1401
1402 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1403                             struct ieee80211_tx_queue_stats *stats)
1404 {
1405         struct p54_common *priv = dev->priv;
1406
1407         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1408
1409         return 0;
1410 }
1411
1412 static void p54_bss_info_changed(struct ieee80211_hw *dev,
1413                                  struct ieee80211_vif *vif,
1414                                  struct ieee80211_bss_conf *info,
1415                                  u32 changed)
1416 {
1417         struct p54_common *priv = dev->priv;
1418
1419         if (changed & BSS_CHANGED_ERP_SLOT) {
1420                 priv->use_short_slot = info->use_short_slot;
1421                 p54_set_vdcf(dev);
1422         }
1423 }
1424
1425 static const struct ieee80211_ops p54_ops = {
1426         .tx                     = p54_tx,
1427         .start                  = p54_start,
1428         .stop                   = p54_stop,
1429         .add_interface          = p54_add_interface,
1430         .remove_interface       = p54_remove_interface,
1431         .config                 = p54_config,
1432         .config_interface       = p54_config_interface,
1433         .bss_info_changed       = p54_bss_info_changed,
1434         .configure_filter       = p54_configure_filter,
1435         .conf_tx                = p54_conf_tx,
1436         .get_stats              = p54_get_stats,
1437         .get_tx_stats           = p54_get_tx_stats
1438 };
1439
1440 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
1441 {
1442         struct ieee80211_hw *dev;
1443         struct p54_common *priv;
1444
1445         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
1446         if (!dev)
1447                 return NULL;
1448
1449         priv = dev->priv;
1450         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1451         skb_queue_head_init(&priv->tx_queue);
1452         dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | /* not sure */
1453                      IEEE80211_HW_RX_INCLUDES_FCS |
1454                      IEEE80211_HW_SIGNAL_DBM |
1455                      IEEE80211_HW_NOISE_DBM;
1456
1457         /*
1458          * XXX: when this driver gets support for any mode that
1459          *      requires beacons (AP, MESH, IBSS) then it must
1460          *      implement IEEE80211_TX_CTL_ASSIGN_SEQ.
1461          */
1462         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1463
1464         dev->channel_change_time = 1000;        /* TODO: find actual value */
1465         priv->tx_stats[0].limit = 1;
1466         priv->tx_stats[1].limit = 1;
1467         priv->tx_stats[2].limit = 1;
1468         priv->tx_stats[3].limit = 1;
1469         priv->tx_stats[4].limit = 5;
1470         dev->queues = 1;
1471         priv->noise = -94;
1472         /*
1473          * We support at most 8 tries no matter which rate they're at,
1474          * we cannot support max_rates * max_rate_tries as we set it
1475          * here, but setting it correctly to 4/2 or so would limit us
1476          * artificially if the RC algorithm wants just two rates, so
1477          * let's say 4/7, we'll redistribute it at TX time, see the
1478          * comments there.
1479          */
1480         dev->max_rates = 4;
1481         dev->max_rate_tries = 7;
1482         dev->extra_tx_headroom = sizeof(struct p54_control_hdr) + 4 +
1483                                  sizeof(struct p54_tx_control_allocdata);
1484
1485         mutex_init(&priv->conf_mutex);
1486         init_completion(&priv->eeprom_comp);
1487         init_completion(&priv->stats_comp);
1488         setup_timer(&priv->stats_timer, p54_statistics_timer,
1489                 (unsigned long)dev);
1490
1491         return dev;
1492 }
1493 EXPORT_SYMBOL_GPL(p54_init_common);
1494
1495 void p54_free_common(struct ieee80211_hw *dev)
1496 {
1497         struct p54_common *priv = dev->priv;
1498         kfree(priv->cached_stats);
1499         kfree(priv->iq_autocal);
1500         kfree(priv->output_limit);
1501         kfree(priv->curve_data);
1502         kfree(priv->cached_vdcf);
1503 }
1504 EXPORT_SYMBOL_GPL(p54_free_common);
1505
1506 static int __init p54_init(void)
1507 {
1508         return 0;
1509 }
1510
1511 static void __exit p54_exit(void)
1512 {
1513 }
1514
1515 module_init(p54_init);
1516 module_exit(p54_exit);