2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
34 * Attempt to steal a page from a pipe buffer. This should perhaps go into
35 * a vm helper function, it's already simplified quite a bit by the
36 * addition of remove_mapping(). If success is returned, the caller may
37 * attempt to reuse this page for another destination.
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 struct pipe_buffer *buf)
42 struct page *page = buf->page;
43 struct address_space *mapping;
47 mapping = page_mapping(page);
49 WARN_ON(!PageUptodate(page));
52 * At least for ext2 with nobh option, we need to wait on
53 * writeback completing on this page, since we'll remove it
54 * from the pagecache. Otherwise truncate wont wait on the
55 * page, allowing the disk blocks to be reused by someone else
56 * before we actually wrote our data to them. fs corruption
59 wait_on_page_writeback(page);
61 if (PagePrivate(page))
62 try_to_release_page(page, GFP_KERNEL);
65 * If we succeeded in removing the mapping, set LRU flag
68 if (remove_mapping(mapping, page)) {
69 buf->flags |= PIPE_BUF_FLAG_LRU;
75 * Raced with truncate or failed to remove page from current
76 * address space, unlock and return failure.
82 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
83 struct pipe_buffer *buf)
85 page_cache_release(buf->page);
86 buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 * Check whether the contents of buf is OK to access. Since the content
91 * is a page cache page, IO may be in flight.
93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
94 struct pipe_buffer *buf)
96 struct page *page = buf->page;
99 if (!PageUptodate(page)) {
103 * Page got truncated/unhashed. This will cause a 0-byte
104 * splice, if this is the first page.
106 if (!page->mapping) {
112 * Uh oh, read-error from disk.
114 if (!PageUptodate(page)) {
120 * Page is ok afterall, we are done.
131 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
133 .map = generic_pipe_buf_map,
134 .unmap = generic_pipe_buf_unmap,
135 .confirm = page_cache_pipe_buf_confirm,
136 .release = page_cache_pipe_buf_release,
137 .steal = page_cache_pipe_buf_steal,
138 .get = generic_pipe_buf_get,
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
144 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
147 buf->flags |= PIPE_BUF_FLAG_LRU;
148 return generic_pipe_buf_steal(pipe, buf);
151 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
153 .map = generic_pipe_buf_map,
154 .unmap = generic_pipe_buf_unmap,
155 .confirm = generic_pipe_buf_confirm,
156 .release = page_cache_pipe_buf_release,
157 .steal = user_page_pipe_buf_steal,
158 .get = generic_pipe_buf_get,
162 * splice_to_pipe - fill passed data into a pipe
163 * @pipe: pipe to fill
167 * @spd contains a map of pages and len/offset tuples, along with
168 * the struct pipe_buf_operations associated with these pages. This
169 * function will link that data to the pipe.
172 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
173 struct splice_pipe_desc *spd)
175 unsigned int spd_pages = spd->nr_pages;
176 int ret, do_wakeup, page_nr;
183 mutex_lock(&pipe->inode->i_mutex);
186 if (!pipe->readers) {
187 send_sig(SIGPIPE, current, 0);
193 if (pipe->nrbufs < PIPE_BUFFERS) {
194 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
195 struct pipe_buffer *buf = pipe->bufs + newbuf;
197 buf->page = spd->pages[page_nr];
198 buf->offset = spd->partial[page_nr].offset;
199 buf->len = spd->partial[page_nr].len;
200 buf->private = spd->partial[page_nr].private;
202 if (spd->flags & SPLICE_F_GIFT)
203 buf->flags |= PIPE_BUF_FLAG_GIFT;
212 if (!--spd->nr_pages)
214 if (pipe->nrbufs < PIPE_BUFFERS)
220 if (spd->flags & SPLICE_F_NONBLOCK) {
226 if (signal_pending(current)) {
234 if (waitqueue_active(&pipe->wait))
235 wake_up_interruptible_sync(&pipe->wait);
236 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 pipe->waiting_writers++;
242 pipe->waiting_writers--;
246 mutex_unlock(&pipe->inode->i_mutex);
250 if (waitqueue_active(&pipe->wait))
251 wake_up_interruptible(&pipe->wait);
252 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256 while (page_nr < spd_pages)
257 page_cache_release(spd->pages[page_nr++]);
263 __generic_file_splice_read(struct file *in, loff_t *ppos,
264 struct pipe_inode_info *pipe, size_t len,
267 struct address_space *mapping = in->f_mapping;
268 unsigned int loff, nr_pages, req_pages;
269 struct page *pages[PIPE_BUFFERS];
270 struct partial_page partial[PIPE_BUFFERS];
272 pgoff_t index, end_index;
275 struct splice_pipe_desc spd = {
279 .ops = &page_cache_pipe_buf_ops,
282 index = *ppos >> PAGE_CACHE_SHIFT;
283 loff = *ppos & ~PAGE_CACHE_MASK;
284 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
285 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
288 * Lookup the (hopefully) full range of pages we need.
290 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
291 index += spd.nr_pages;
294 * If find_get_pages_contig() returned fewer pages than we needed,
295 * readahead/allocate the rest and fill in the holes.
297 if (spd.nr_pages < nr_pages)
298 page_cache_sync_readahead(mapping, &in->f_ra, in,
299 index, req_pages - spd.nr_pages);
302 while (spd.nr_pages < nr_pages) {
304 * Page could be there, find_get_pages_contig() breaks on
307 page = find_get_page(mapping, index);
310 * page didn't exist, allocate one.
312 page = page_cache_alloc_cold(mapping);
316 error = add_to_page_cache_lru(page, mapping, index,
318 if (unlikely(error)) {
319 page_cache_release(page);
320 if (error == -EEXIST)
325 * add_to_page_cache() locks the page, unlock it
326 * to avoid convoluting the logic below even more.
331 pages[spd.nr_pages++] = page;
336 * Now loop over the map and see if we need to start IO on any
337 * pages, fill in the partial map, etc.
339 index = *ppos >> PAGE_CACHE_SHIFT;
340 nr_pages = spd.nr_pages;
342 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
343 unsigned int this_len;
349 * this_len is the max we'll use from this page
351 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
352 page = pages[page_nr];
354 if (PageReadahead(page))
355 page_cache_async_readahead(mapping, &in->f_ra, in,
356 page, index, req_pages - page_nr);
359 * If the page isn't uptodate, we may need to start io on it
361 if (!PageUptodate(page)) {
363 * If in nonblock mode then dont block on waiting
364 * for an in-flight io page
366 if (flags & SPLICE_F_NONBLOCK) {
367 if (TestSetPageLocked(page))
373 * page was truncated, stop here. if this isn't the
374 * first page, we'll just complete what we already
377 if (!page->mapping) {
382 * page was already under io and is now done, great
384 if (PageUptodate(page)) {
390 * need to read in the page
392 error = mapping->a_ops->readpage(in, page);
393 if (unlikely(error)) {
395 * We really should re-lookup the page here,
396 * but it complicates things a lot. Instead
397 * lets just do what we already stored, and
398 * we'll get it the next time we are called.
400 if (error == AOP_TRUNCATED_PAGE)
408 * i_size must be checked after PageUptodate.
410 isize = i_size_read(mapping->host);
411 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
412 if (unlikely(!isize || index > end_index))
416 * if this is the last page, see if we need to shrink
417 * the length and stop
419 if (end_index == index) {
423 * max good bytes in this page
425 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
430 * force quit after adding this page
432 this_len = min(this_len, plen - loff);
436 partial[page_nr].offset = loff;
437 partial[page_nr].len = this_len;
445 * Release any pages at the end, if we quit early. 'page_nr' is how far
446 * we got, 'nr_pages' is how many pages are in the map.
448 while (page_nr < nr_pages)
449 page_cache_release(pages[page_nr++]);
450 in->f_ra.prev_index = index;
453 return splice_to_pipe(pipe, &spd);
459 * generic_file_splice_read - splice data from file to a pipe
460 * @in: file to splice from
461 * @ppos: position in @in
462 * @pipe: pipe to splice to
463 * @len: number of bytes to splice
464 * @flags: splice modifier flags
467 * Will read pages from given file and fill them into a pipe. Can be
468 * used as long as the address_space operations for the source implements
472 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
473 struct pipe_inode_info *pipe, size_t len,
480 isize = i_size_read(in->f_mapping->host);
481 if (unlikely(*ppos >= isize))
484 left = isize - *ppos;
485 if (unlikely(left < len))
490 while (len && !spliced) {
491 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
498 if (flags & SPLICE_F_NONBLOCK) {
515 EXPORT_SYMBOL(generic_file_splice_read);
518 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
519 * using sendpage(). Return the number of bytes sent.
521 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
522 struct pipe_buffer *buf, struct splice_desc *sd)
524 struct file *file = sd->u.file;
525 loff_t pos = sd->pos;
528 ret = buf->ops->confirm(pipe, buf);
530 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
532 ret = file->f_op->sendpage(file, buf->page, buf->offset,
533 sd->len, &pos, more);
540 * This is a little more tricky than the file -> pipe splicing. There are
541 * basically three cases:
543 * - Destination page already exists in the address space and there
544 * are users of it. For that case we have no other option that
545 * copying the data. Tough luck.
546 * - Destination page already exists in the address space, but there
547 * are no users of it. Make sure it's uptodate, then drop it. Fall
548 * through to last case.
549 * - Destination page does not exist, we can add the pipe page to
550 * the page cache and avoid the copy.
552 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
553 * sd->flags), we attempt to migrate pages from the pipe to the output
554 * file address space page cache. This is possible if no one else has
555 * the pipe page referenced outside of the pipe and page cache. If
556 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
557 * a new page in the output file page cache and fill/dirty that.
559 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
560 struct splice_desc *sd)
562 struct file *file = sd->u.file;
563 struct address_space *mapping = file->f_mapping;
564 unsigned int offset, this_len;
570 * make sure the data in this buffer is uptodate
572 ret = buf->ops->confirm(pipe, buf);
576 index = sd->pos >> PAGE_CACHE_SHIFT;
577 offset = sd->pos & ~PAGE_CACHE_MASK;
580 if (this_len + offset > PAGE_CACHE_SIZE)
581 this_len = PAGE_CACHE_SIZE - offset;
584 page = find_lock_page(mapping, index);
587 page = page_cache_alloc_cold(mapping);
592 * This will also lock the page
594 ret = add_to_page_cache_lru(page, mapping, index,
600 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
602 loff_t isize = i_size_read(mapping->host);
604 if (ret != AOP_TRUNCATED_PAGE)
606 page_cache_release(page);
607 if (ret == AOP_TRUNCATED_PAGE)
611 * prepare_write() may have instantiated a few blocks
612 * outside i_size. Trim these off again.
614 if (sd->pos + this_len > isize)
615 vmtruncate(mapping->host, isize);
620 if (buf->page != page) {
622 * Careful, ->map() uses KM_USER0!
624 char *src = buf->ops->map(pipe, buf, 1);
625 char *dst = kmap_atomic(page, KM_USER1);
627 memcpy(dst + offset, src + buf->offset, this_len);
628 flush_dcache_page(page);
629 kunmap_atomic(dst, KM_USER1);
630 buf->ops->unmap(pipe, buf, src);
633 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
635 if (ret == AOP_TRUNCATED_PAGE) {
636 page_cache_release(page);
642 * Partial write has happened, so 'ret' already initialized by
643 * number of bytes written, Where is nothing we have to do here.
648 * Return the number of bytes written and mark page as
649 * accessed, we are now done!
651 mark_page_accessed(page);
655 page_cache_release(page);
661 * __splice_from_pipe - splice data from a pipe to given actor
662 * @pipe: pipe to splice from
663 * @sd: information to @actor
664 * @actor: handler that splices the data
667 * This function does little more than loop over the pipe and call
668 * @actor to do the actual moving of a single struct pipe_buffer to
669 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
673 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
676 int ret, do_wakeup, err;
683 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
684 const struct pipe_buf_operations *ops = buf->ops;
687 if (sd->len > sd->total_len)
688 sd->len = sd->total_len;
690 err = actor(pipe, buf, sd);
692 if (!ret && err != -ENODATA)
704 sd->total_len -= err;
710 ops->release(pipe, buf);
711 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
725 if (!pipe->waiting_writers) {
730 if (sd->flags & SPLICE_F_NONBLOCK) {
736 if (signal_pending(current)) {
744 if (waitqueue_active(&pipe->wait))
745 wake_up_interruptible_sync(&pipe->wait);
746 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
755 if (waitqueue_active(&pipe->wait))
756 wake_up_interruptible(&pipe->wait);
757 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
762 EXPORT_SYMBOL(__splice_from_pipe);
765 * splice_from_pipe - splice data from a pipe to a file
766 * @pipe: pipe to splice from
767 * @out: file to splice to
768 * @ppos: position in @out
769 * @len: how many bytes to splice
770 * @flags: splice modifier flags
771 * @actor: handler that splices the data
774 * See __splice_from_pipe. This function locks the input and output inodes,
775 * otherwise it's identical to __splice_from_pipe().
778 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
779 loff_t *ppos, size_t len, unsigned int flags,
783 struct inode *inode = out->f_mapping->host;
784 struct splice_desc sd = {
792 * The actor worker might be calling ->prepare_write and
793 * ->commit_write. Most of the time, these expect i_mutex to
794 * be held. Since this may result in an ABBA deadlock with
795 * pipe->inode, we have to order lock acquiry here.
797 inode_double_lock(inode, pipe->inode);
798 ret = __splice_from_pipe(pipe, &sd, actor);
799 inode_double_unlock(inode, pipe->inode);
805 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
807 * @out: file to write to
808 * @ppos: position in @out
809 * @len: number of bytes to splice
810 * @flags: splice modifier flags
813 * Will either move or copy pages (determined by @flags options) from
814 * the given pipe inode to the given file. The caller is responsible
815 * for acquiring i_mutex on both inodes.
819 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
820 loff_t *ppos, size_t len, unsigned int flags)
822 struct address_space *mapping = out->f_mapping;
823 struct inode *inode = mapping->host;
824 struct splice_desc sd = {
833 err = remove_suid(out->f_path.dentry);
837 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
839 unsigned long nr_pages;
842 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
845 * If file or inode is SYNC and we actually wrote some data,
848 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
849 err = generic_osync_inode(inode, mapping,
850 OSYNC_METADATA|OSYNC_DATA);
855 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
861 EXPORT_SYMBOL(generic_file_splice_write_nolock);
864 * generic_file_splice_write - splice data from a pipe to a file
866 * @out: file to write to
867 * @ppos: position in @out
868 * @len: number of bytes to splice
869 * @flags: splice modifier flags
872 * Will either move or copy pages (determined by @flags options) from
873 * the given pipe inode to the given file.
877 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
878 loff_t *ppos, size_t len, unsigned int flags)
880 struct address_space *mapping = out->f_mapping;
881 struct inode *inode = mapping->host;
885 err = should_remove_suid(out->f_path.dentry);
887 mutex_lock(&inode->i_mutex);
888 err = __remove_suid(out->f_path.dentry, err);
889 mutex_unlock(&inode->i_mutex);
894 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
896 unsigned long nr_pages;
899 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
902 * If file or inode is SYNC and we actually wrote some data,
905 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
906 mutex_lock(&inode->i_mutex);
907 err = generic_osync_inode(inode, mapping,
908 OSYNC_METADATA|OSYNC_DATA);
909 mutex_unlock(&inode->i_mutex);
914 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
920 EXPORT_SYMBOL(generic_file_splice_write);
923 * generic_splice_sendpage - splice data from a pipe to a socket
924 * @pipe: pipe to splice from
925 * @out: socket to write to
926 * @ppos: position in @out
927 * @len: number of bytes to splice
928 * @flags: splice modifier flags
931 * Will send @len bytes from the pipe to a network socket. No data copying
935 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
936 loff_t *ppos, size_t len, unsigned int flags)
938 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
941 EXPORT_SYMBOL(generic_splice_sendpage);
944 * Attempt to initiate a splice from pipe to file.
946 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
947 loff_t *ppos, size_t len, unsigned int flags)
951 if (unlikely(!out->f_op || !out->f_op->splice_write))
954 if (unlikely(!(out->f_mode & FMODE_WRITE)))
957 ret = rw_verify_area(WRITE, out, ppos, len);
958 if (unlikely(ret < 0))
961 ret = security_file_permission(out, MAY_WRITE);
962 if (unlikely(ret < 0))
965 return out->f_op->splice_write(pipe, out, ppos, len, flags);
969 * Attempt to initiate a splice from a file to a pipe.
971 static long do_splice_to(struct file *in, loff_t *ppos,
972 struct pipe_inode_info *pipe, size_t len,
977 if (unlikely(!in->f_op || !in->f_op->splice_read))
980 if (unlikely(!(in->f_mode & FMODE_READ)))
983 ret = rw_verify_area(READ, in, ppos, len);
984 if (unlikely(ret < 0))
987 ret = security_file_permission(in, MAY_READ);
988 if (unlikely(ret < 0))
991 return in->f_op->splice_read(in, ppos, pipe, len, flags);
995 * splice_direct_to_actor - splices data directly between two non-pipes
996 * @in: file to splice from
997 * @sd: actor information on where to splice to
998 * @actor: handles the data splicing
1001 * This is a special case helper to splice directly between two
1002 * points, without requiring an explicit pipe. Internally an allocated
1003 * pipe is cached in the process, and reused during the lifetime of
1007 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1008 splice_direct_actor *actor)
1010 struct pipe_inode_info *pipe;
1017 * We require the input being a regular file, as we don't want to
1018 * randomly drop data for eg socket -> socket splicing. Use the
1019 * piped splicing for that!
1021 i_mode = in->f_path.dentry->d_inode->i_mode;
1022 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1026 * neither in nor out is a pipe, setup an internal pipe attached to
1027 * 'out' and transfer the wanted data from 'in' to 'out' through that
1029 pipe = current->splice_pipe;
1030 if (unlikely(!pipe)) {
1031 pipe = alloc_pipe_info(NULL);
1036 * We don't have an immediate reader, but we'll read the stuff
1037 * out of the pipe right after the splice_to_pipe(). So set
1038 * PIPE_READERS appropriately.
1042 current->splice_pipe = pipe;
1050 len = sd->total_len;
1054 * Don't block on output, we have to drain the direct pipe.
1056 sd->flags &= ~SPLICE_F_NONBLOCK;
1060 loff_t pos = sd->pos;
1062 ret = do_splice_to(in, &pos, pipe, len, flags);
1063 if (unlikely(ret <= 0))
1067 sd->total_len = read_len;
1070 * NOTE: nonblocking mode only applies to the input. We
1071 * must not do the output in nonblocking mode as then we
1072 * could get stuck data in the internal pipe:
1074 ret = actor(pipe, sd);
1075 if (unlikely(ret <= 0))
1086 pipe->nrbufs = pipe->curbuf = 0;
1091 * If we did an incomplete transfer we must release
1092 * the pipe buffers in question:
1094 for (i = 0; i < PIPE_BUFFERS; i++) {
1095 struct pipe_buffer *buf = pipe->bufs + i;
1098 buf->ops->release(pipe, buf);
1102 pipe->nrbufs = pipe->curbuf = 0;
1105 * If we transferred some data, return the number of bytes:
1113 EXPORT_SYMBOL(splice_direct_to_actor);
1115 static int direct_splice_actor(struct pipe_inode_info *pipe,
1116 struct splice_desc *sd)
1118 struct file *file = sd->u.file;
1120 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1124 * do_splice_direct - splices data directly between two files
1125 * @in: file to splice from
1126 * @ppos: input file offset
1127 * @out: file to splice to
1128 * @len: number of bytes to splice
1129 * @flags: splice modifier flags
1132 * For use by do_sendfile(). splice can easily emulate sendfile, but
1133 * doing it in the application would incur an extra system call
1134 * (splice in + splice out, as compared to just sendfile()). So this helper
1135 * can splice directly through a process-private pipe.
1138 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1139 size_t len, unsigned int flags)
1141 struct splice_desc sd = {
1150 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1158 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1159 * location, so checking ->i_pipe is not enough to verify that this is a
1162 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1164 if (S_ISFIFO(inode->i_mode))
1165 return inode->i_pipe;
1171 * Determine where to splice to/from.
1173 static long do_splice(struct file *in, loff_t __user *off_in,
1174 struct file *out, loff_t __user *off_out,
1175 size_t len, unsigned int flags)
1177 struct pipe_inode_info *pipe;
1178 loff_t offset, *off;
1181 pipe = pipe_info(in->f_path.dentry->d_inode);
1186 if (out->f_op->llseek == no_llseek)
1188 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1194 ret = do_splice_from(pipe, out, off, len, flags);
1196 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1202 pipe = pipe_info(out->f_path.dentry->d_inode);
1207 if (in->f_op->llseek == no_llseek)
1209 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1215 ret = do_splice_to(in, off, pipe, len, flags);
1217 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1227 * Do a copy-from-user while holding the mmap_semaphore for reading, in a
1228 * manner safe from deadlocking with simultaneous mmap() (grabbing mmap_sem
1229 * for writing) and page faulting on the user memory pointed to by src.
1230 * This assumes that we will very rarely hit the partial != 0 path, or this
1231 * will not be a win.
1233 static int copy_from_user_mmap_sem(void *dst, const void __user *src, size_t n)
1237 pagefault_disable();
1238 partial = __copy_from_user_inatomic(dst, src, n);
1242 * Didn't copy everything, drop the mmap_sem and do a faulting copy
1244 if (unlikely(partial)) {
1245 up_read(¤t->mm->mmap_sem);
1246 partial = copy_from_user(dst, src, n);
1247 down_read(¤t->mm->mmap_sem);
1254 * Map an iov into an array of pages and offset/length tupples. With the
1255 * partial_page structure, we can map several non-contiguous ranges into
1256 * our ones pages[] map instead of splitting that operation into pieces.
1257 * Could easily be exported as a generic helper for other users, in which
1258 * case one would probably want to add a 'max_nr_pages' parameter as well.
1260 static int get_iovec_page_array(const struct iovec __user *iov,
1261 unsigned int nr_vecs, struct page **pages,
1262 struct partial_page *partial, int aligned)
1264 int buffers = 0, error = 0;
1266 down_read(¤t->mm->mmap_sem);
1269 unsigned long off, npages;
1276 if (copy_from_user_mmap_sem(&entry, iov, sizeof(entry)))
1279 base = entry.iov_base;
1280 len = entry.iov_len;
1283 * Sanity check this iovec. 0 read succeeds.
1289 if (unlikely(!base))
1293 * Get this base offset and number of pages, then map
1294 * in the user pages.
1296 off = (unsigned long) base & ~PAGE_MASK;
1299 * If asked for alignment, the offset must be zero and the
1300 * length a multiple of the PAGE_SIZE.
1303 if (aligned && (off || len & ~PAGE_MASK))
1306 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1307 if (npages > PIPE_BUFFERS - buffers)
1308 npages = PIPE_BUFFERS - buffers;
1310 error = get_user_pages(current, current->mm,
1311 (unsigned long) base, npages, 0, 0,
1312 &pages[buffers], NULL);
1314 if (unlikely(error <= 0))
1318 * Fill this contiguous range into the partial page map.
1320 for (i = 0; i < error; i++) {
1321 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1323 partial[buffers].offset = off;
1324 partial[buffers].len = plen;
1332 * We didn't complete this iov, stop here since it probably
1333 * means we have to move some of this into a pipe to
1334 * be able to continue.
1340 * Don't continue if we mapped fewer pages than we asked for,
1341 * or if we mapped the max number of pages that we have
1344 if (error < npages || buffers == PIPE_BUFFERS)
1351 up_read(¤t->mm->mmap_sem);
1359 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1360 struct splice_desc *sd)
1365 ret = buf->ops->confirm(pipe, buf);
1370 * See if we can use the atomic maps, by prefaulting in the
1371 * pages and doing an atomic copy
1373 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1374 src = buf->ops->map(pipe, buf, 1);
1375 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1377 buf->ops->unmap(pipe, buf, src);
1385 * No dice, use slow non-atomic map and copy
1387 src = buf->ops->map(pipe, buf, 0);
1390 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1395 sd->u.userptr += ret;
1396 buf->ops->unmap(pipe, buf, src);
1401 * For lack of a better implementation, implement vmsplice() to userspace
1402 * as a simple copy of the pipes pages to the user iov.
1404 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1405 unsigned long nr_segs, unsigned int flags)
1407 struct pipe_inode_info *pipe;
1408 struct splice_desc sd;
1413 pipe = pipe_info(file->f_path.dentry->d_inode);
1418 mutex_lock(&pipe->inode->i_mutex);
1426 * Get user address base and length for this iovec.
1428 error = get_user(base, &iov->iov_base);
1429 if (unlikely(error))
1431 error = get_user(len, &iov->iov_len);
1432 if (unlikely(error))
1436 * Sanity check this iovec. 0 read succeeds.
1440 if (unlikely(!base)) {
1448 sd.u.userptr = base;
1451 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1469 mutex_unlock(&pipe->inode->i_mutex);
1478 * vmsplice splices a user address range into a pipe. It can be thought of
1479 * as splice-from-memory, where the regular splice is splice-from-file (or
1480 * to file). In both cases the output is a pipe, naturally.
1482 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1483 unsigned long nr_segs, unsigned int flags)
1485 struct pipe_inode_info *pipe;
1486 struct page *pages[PIPE_BUFFERS];
1487 struct partial_page partial[PIPE_BUFFERS];
1488 struct splice_pipe_desc spd = {
1492 .ops = &user_page_pipe_buf_ops,
1495 pipe = pipe_info(file->f_path.dentry->d_inode);
1499 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1500 flags & SPLICE_F_GIFT);
1501 if (spd.nr_pages <= 0)
1502 return spd.nr_pages;
1504 return splice_to_pipe(pipe, &spd);
1508 * Note that vmsplice only really supports true splicing _from_ user memory
1509 * to a pipe, not the other way around. Splicing from user memory is a simple
1510 * operation that can be supported without any funky alignment restrictions
1511 * or nasty vm tricks. We simply map in the user memory and fill them into
1512 * a pipe. The reverse isn't quite as easy, though. There are two possible
1513 * solutions for that:
1515 * - memcpy() the data internally, at which point we might as well just
1516 * do a regular read() on the buffer anyway.
1517 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1518 * has restriction limitations on both ends of the pipe).
1520 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1523 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1524 unsigned long nr_segs, unsigned int flags)
1530 if (unlikely(nr_segs > UIO_MAXIOV))
1532 else if (unlikely(!nr_segs))
1536 file = fget_light(fd, &fput);
1538 if (file->f_mode & FMODE_WRITE)
1539 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1540 else if (file->f_mode & FMODE_READ)
1541 error = vmsplice_to_user(file, iov, nr_segs, flags);
1543 fput_light(file, fput);
1549 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1550 int fd_out, loff_t __user *off_out,
1551 size_t len, unsigned int flags)
1554 struct file *in, *out;
1555 int fput_in, fput_out;
1561 in = fget_light(fd_in, &fput_in);
1563 if (in->f_mode & FMODE_READ) {
1564 out = fget_light(fd_out, &fput_out);
1566 if (out->f_mode & FMODE_WRITE)
1567 error = do_splice(in, off_in,
1570 fput_light(out, fput_out);
1574 fput_light(in, fput_in);
1581 * Make sure there's data to read. Wait for input if we can, otherwise
1582 * return an appropriate error.
1584 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1589 * Check ->nrbufs without the inode lock first. This function
1590 * is speculative anyways, so missing one is ok.
1596 mutex_lock(&pipe->inode->i_mutex);
1598 while (!pipe->nrbufs) {
1599 if (signal_pending(current)) {
1605 if (!pipe->waiting_writers) {
1606 if (flags & SPLICE_F_NONBLOCK) {
1614 mutex_unlock(&pipe->inode->i_mutex);
1619 * Make sure there's writeable room. Wait for room if we can, otherwise
1620 * return an appropriate error.
1622 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1627 * Check ->nrbufs without the inode lock first. This function
1628 * is speculative anyways, so missing one is ok.
1630 if (pipe->nrbufs < PIPE_BUFFERS)
1634 mutex_lock(&pipe->inode->i_mutex);
1636 while (pipe->nrbufs >= PIPE_BUFFERS) {
1637 if (!pipe->readers) {
1638 send_sig(SIGPIPE, current, 0);
1642 if (flags & SPLICE_F_NONBLOCK) {
1646 if (signal_pending(current)) {
1650 pipe->waiting_writers++;
1652 pipe->waiting_writers--;
1655 mutex_unlock(&pipe->inode->i_mutex);
1660 * Link contents of ipipe to opipe.
1662 static int link_pipe(struct pipe_inode_info *ipipe,
1663 struct pipe_inode_info *opipe,
1664 size_t len, unsigned int flags)
1666 struct pipe_buffer *ibuf, *obuf;
1667 int ret = 0, i = 0, nbuf;
1670 * Potential ABBA deadlock, work around it by ordering lock
1671 * grabbing by inode address. Otherwise two different processes
1672 * could deadlock (one doing tee from A -> B, the other from B -> A).
1674 inode_double_lock(ipipe->inode, opipe->inode);
1677 if (!opipe->readers) {
1678 send_sig(SIGPIPE, current, 0);
1685 * If we have iterated all input buffers or ran out of
1686 * output room, break.
1688 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1691 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1692 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1695 * Get a reference to this pipe buffer,
1696 * so we can copy the contents over.
1698 ibuf->ops->get(ipipe, ibuf);
1700 obuf = opipe->bufs + nbuf;
1704 * Don't inherit the gift flag, we need to
1705 * prevent multiple steals of this page.
1707 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1709 if (obuf->len > len)
1718 inode_double_unlock(ipipe->inode, opipe->inode);
1721 * If we put data in the output pipe, wakeup any potential readers.
1725 if (waitqueue_active(&opipe->wait))
1726 wake_up_interruptible(&opipe->wait);
1727 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1734 * This is a tee(1) implementation that works on pipes. It doesn't copy
1735 * any data, it simply references the 'in' pages on the 'out' pipe.
1736 * The 'flags' used are the SPLICE_F_* variants, currently the only
1737 * applicable one is SPLICE_F_NONBLOCK.
1739 static long do_tee(struct file *in, struct file *out, size_t len,
1742 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1743 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1747 * Duplicate the contents of ipipe to opipe without actually
1750 if (ipipe && opipe && ipipe != opipe) {
1752 * Keep going, unless we encounter an error. The ipipe/opipe
1753 * ordering doesn't really matter.
1755 ret = link_ipipe_prep(ipipe, flags);
1757 ret = link_opipe_prep(opipe, flags);
1759 ret = link_pipe(ipipe, opipe, len, flags);
1760 if (!ret && (flags & SPLICE_F_NONBLOCK))
1769 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1778 in = fget_light(fdin, &fput_in);
1780 if (in->f_mode & FMODE_READ) {
1782 struct file *out = fget_light(fdout, &fput_out);
1785 if (out->f_mode & FMODE_WRITE)
1786 error = do_tee(in, out, len, flags);
1787 fput_light(out, fput_out);
1790 fput_light(in, fput_in);