2 * SPU file system -- file contents
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/marker.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
42 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 /* Simple attribute files */
46 int (*get)(void *, u64 *);
47 int (*set)(void *, u64);
48 char get_buf[24]; /* enough to store a u64 and "\n\0" */
51 const char *fmt; /* format for read operation */
52 struct mutex mutex; /* protects access to these buffers */
55 static int spufs_attr_open(struct inode *inode, struct file *file,
56 int (*get)(void *, u64 *), int (*set)(void *, u64),
59 struct spufs_attr *attr;
61 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
67 attr->data = inode->i_private;
69 mutex_init(&attr->mutex);
70 file->private_data = attr;
72 return nonseekable_open(inode, file);
75 static int spufs_attr_release(struct inode *inode, struct file *file)
77 kfree(file->private_data);
81 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
82 size_t len, loff_t *ppos)
84 struct spufs_attr *attr;
88 attr = file->private_data;
92 ret = mutex_lock_interruptible(&attr->mutex);
96 if (*ppos) { /* continued read */
97 size = strlen(attr->get_buf);
98 } else { /* first read */
100 ret = attr->get(attr->data, &val);
104 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
105 attr->fmt, (unsigned long long)val);
108 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 mutex_unlock(&attr->mutex);
114 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
115 size_t len, loff_t *ppos)
117 struct spufs_attr *attr;
122 attr = file->private_data;
126 ret = mutex_lock_interruptible(&attr->mutex);
131 size = min(sizeof(attr->set_buf) - 1, len);
132 if (copy_from_user(attr->set_buf, buf, size))
135 ret = len; /* claim we got the whole input */
136 attr->set_buf[size] = '\0';
137 val = simple_strtol(attr->set_buf, NULL, 0);
138 attr->set(attr->data, val);
140 mutex_unlock(&attr->mutex);
144 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
145 static int __fops ## _open(struct inode *inode, struct file *file) \
147 __simple_attr_check_format(__fmt, 0ull); \
148 return spufs_attr_open(inode, file, __get, __set, __fmt); \
150 static struct file_operations __fops = { \
151 .owner = THIS_MODULE, \
152 .open = __fops ## _open, \
153 .release = spufs_attr_release, \
154 .read = spufs_attr_read, \
155 .write = spufs_attr_write, \
160 spufs_mem_open(struct inode *inode, struct file *file)
162 struct spufs_inode_info *i = SPUFS_I(inode);
163 struct spu_context *ctx = i->i_ctx;
165 mutex_lock(&ctx->mapping_lock);
166 file->private_data = ctx;
168 ctx->local_store = inode->i_mapping;
169 mutex_unlock(&ctx->mapping_lock);
174 spufs_mem_release(struct inode *inode, struct file *file)
176 struct spufs_inode_info *i = SPUFS_I(inode);
177 struct spu_context *ctx = i->i_ctx;
179 mutex_lock(&ctx->mapping_lock);
181 ctx->local_store = NULL;
182 mutex_unlock(&ctx->mapping_lock);
187 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
188 size_t size, loff_t *pos)
190 char *local_store = ctx->ops->get_ls(ctx);
191 return simple_read_from_buffer(buffer, size, pos, local_store,
196 spufs_mem_read(struct file *file, char __user *buffer,
197 size_t size, loff_t *pos)
199 struct spu_context *ctx = file->private_data;
202 ret = spu_acquire(ctx);
205 ret = __spufs_mem_read(ctx, buffer, size, pos);
212 spufs_mem_write(struct file *file, const char __user *buffer,
213 size_t size, loff_t *ppos)
215 struct spu_context *ctx = file->private_data;
224 if (size > LS_SIZE - pos)
225 size = LS_SIZE - pos;
227 ret = spu_acquire(ctx);
231 local_store = ctx->ops->get_ls(ctx);
232 ret = copy_from_user(local_store + pos, buffer, size);
242 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
244 struct spu_context *ctx = vma->vm_file->private_data;
245 unsigned long address = (unsigned long)vmf->virtual_address;
246 unsigned long pfn, offset;
248 #ifdef CONFIG_SPU_FS_64K_LS
249 struct spu_state *csa = &ctx->csa;
252 /* Check what page size we are using */
253 psize = get_slice_psize(vma->vm_mm, address);
255 /* Some sanity checking */
256 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
258 /* Wow, 64K, cool, we need to align the address though */
259 if (csa->use_big_pages) {
260 BUG_ON(vma->vm_start & 0xffff);
261 address &= ~0xfffful;
263 #endif /* CONFIG_SPU_FS_64K_LS */
265 offset = vmf->pgoff << PAGE_SHIFT;
266 if (offset >= LS_SIZE)
267 return VM_FAULT_SIGBUS;
269 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
272 if (spu_acquire(ctx))
273 return VM_FAULT_NOPAGE;
275 if (ctx->state == SPU_STATE_SAVED) {
276 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
278 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
280 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
282 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
284 vm_insert_pfn(vma, address, pfn);
288 return VM_FAULT_NOPAGE;
291 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
292 unsigned long address,
293 void *buf, int len, int write)
295 struct spu_context *ctx = vma->vm_file->private_data;
296 unsigned long offset = address - vma->vm_start;
299 if (write && !(vma->vm_flags & VM_WRITE))
301 if (spu_acquire(ctx))
303 if ((offset + len) > vma->vm_end)
304 len = vma->vm_end - offset;
305 local_store = ctx->ops->get_ls(ctx);
307 memcpy_toio(local_store + offset, buf, len);
309 memcpy_fromio(buf, local_store + offset, len);
314 static struct vm_operations_struct spufs_mem_mmap_vmops = {
315 .fault = spufs_mem_mmap_fault,
316 .access = spufs_mem_mmap_access,
319 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
321 #ifdef CONFIG_SPU_FS_64K_LS
322 struct spu_context *ctx = file->private_data;
323 struct spu_state *csa = &ctx->csa;
325 /* Sanity check VMA alignment */
326 if (csa->use_big_pages) {
327 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
328 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
330 if (vma->vm_start & 0xffff)
332 if (vma->vm_pgoff & 0xf)
335 #endif /* CONFIG_SPU_FS_64K_LS */
337 if (!(vma->vm_flags & VM_SHARED))
340 vma->vm_flags |= VM_IO | VM_PFNMAP;
341 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
344 vma->vm_ops = &spufs_mem_mmap_vmops;
348 #ifdef CONFIG_SPU_FS_64K_LS
349 static unsigned long spufs_get_unmapped_area(struct file *file,
350 unsigned long addr, unsigned long len, unsigned long pgoff,
353 struct spu_context *ctx = file->private_data;
354 struct spu_state *csa = &ctx->csa;
356 /* If not using big pages, fallback to normal MM g_u_a */
357 if (!csa->use_big_pages)
358 return current->mm->get_unmapped_area(file, addr, len,
361 /* Else, try to obtain a 64K pages slice */
362 return slice_get_unmapped_area(addr, len, flags,
365 #endif /* CONFIG_SPU_FS_64K_LS */
367 static const struct file_operations spufs_mem_fops = {
368 .open = spufs_mem_open,
369 .release = spufs_mem_release,
370 .read = spufs_mem_read,
371 .write = spufs_mem_write,
372 .llseek = generic_file_llseek,
373 .mmap = spufs_mem_mmap,
374 #ifdef CONFIG_SPU_FS_64K_LS
375 .get_unmapped_area = spufs_get_unmapped_area,
379 static int spufs_ps_fault(struct vm_area_struct *vma,
380 struct vm_fault *vmf,
381 unsigned long ps_offs,
382 unsigned long ps_size)
384 struct spu_context *ctx = vma->vm_file->private_data;
385 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
388 spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
390 if (offset >= ps_size)
391 return VM_FAULT_SIGBUS;
393 if (fatal_signal_pending(current))
394 return VM_FAULT_SIGBUS;
397 * Because we release the mmap_sem, the context may be destroyed while
398 * we're in spu_wait. Grab an extra reference so it isn't destroyed
401 get_spu_context(ctx);
404 * We have to wait for context to be loaded before we have
405 * pages to hand out to the user, but we don't want to wait
406 * with the mmap_sem held.
407 * It is possible to drop the mmap_sem here, but then we need
408 * to return VM_FAULT_NOPAGE because the mappings may have
411 if (spu_acquire(ctx))
414 if (ctx->state == SPU_STATE_SAVED) {
415 up_read(¤t->mm->mmap_sem);
416 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
417 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
418 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
419 down_read(¤t->mm->mmap_sem);
421 area = ctx->spu->problem_phys + ps_offs;
422 vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
423 (area + offset) >> PAGE_SHIFT);
424 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
431 put_spu_context(ctx);
432 return VM_FAULT_NOPAGE;
436 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
437 struct vm_fault *vmf)
439 return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
442 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
443 .fault = spufs_cntl_mmap_fault,
447 * mmap support for problem state control area [0x4000 - 0x4fff].
449 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
451 if (!(vma->vm_flags & VM_SHARED))
454 vma->vm_flags |= VM_IO | VM_PFNMAP;
455 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
456 | _PAGE_NO_CACHE | _PAGE_GUARDED);
458 vma->vm_ops = &spufs_cntl_mmap_vmops;
461 #else /* SPUFS_MMAP_4K */
462 #define spufs_cntl_mmap NULL
463 #endif /* !SPUFS_MMAP_4K */
465 static int spufs_cntl_get(void *data, u64 *val)
467 struct spu_context *ctx = data;
470 ret = spu_acquire(ctx);
473 *val = ctx->ops->status_read(ctx);
479 static int spufs_cntl_set(void *data, u64 val)
481 struct spu_context *ctx = data;
484 ret = spu_acquire(ctx);
487 ctx->ops->runcntl_write(ctx, val);
493 static int spufs_cntl_open(struct inode *inode, struct file *file)
495 struct spufs_inode_info *i = SPUFS_I(inode);
496 struct spu_context *ctx = i->i_ctx;
498 mutex_lock(&ctx->mapping_lock);
499 file->private_data = ctx;
501 ctx->cntl = inode->i_mapping;
502 mutex_unlock(&ctx->mapping_lock);
503 return simple_attr_open(inode, file, spufs_cntl_get,
504 spufs_cntl_set, "0x%08lx");
508 spufs_cntl_release(struct inode *inode, struct file *file)
510 struct spufs_inode_info *i = SPUFS_I(inode);
511 struct spu_context *ctx = i->i_ctx;
513 simple_attr_release(inode, file);
515 mutex_lock(&ctx->mapping_lock);
518 mutex_unlock(&ctx->mapping_lock);
522 static const struct file_operations spufs_cntl_fops = {
523 .open = spufs_cntl_open,
524 .release = spufs_cntl_release,
525 .read = simple_attr_read,
526 .write = simple_attr_write,
527 .mmap = spufs_cntl_mmap,
531 spufs_regs_open(struct inode *inode, struct file *file)
533 struct spufs_inode_info *i = SPUFS_I(inode);
534 file->private_data = i->i_ctx;
539 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
540 size_t size, loff_t *pos)
542 struct spu_lscsa *lscsa = ctx->csa.lscsa;
543 return simple_read_from_buffer(buffer, size, pos,
544 lscsa->gprs, sizeof lscsa->gprs);
548 spufs_regs_read(struct file *file, char __user *buffer,
549 size_t size, loff_t *pos)
552 struct spu_context *ctx = file->private_data;
554 /* pre-check for file position: if we'd return EOF, there's no point
555 * causing a deschedule */
556 if (*pos >= sizeof(ctx->csa.lscsa->gprs))
559 ret = spu_acquire_saved(ctx);
562 ret = __spufs_regs_read(ctx, buffer, size, pos);
563 spu_release_saved(ctx);
568 spufs_regs_write(struct file *file, const char __user *buffer,
569 size_t size, loff_t *pos)
571 struct spu_context *ctx = file->private_data;
572 struct spu_lscsa *lscsa = ctx->csa.lscsa;
575 size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
580 ret = spu_acquire_saved(ctx);
584 ret = copy_from_user(lscsa->gprs + *pos - size,
585 buffer, size) ? -EFAULT : size;
587 spu_release_saved(ctx);
591 static const struct file_operations spufs_regs_fops = {
592 .open = spufs_regs_open,
593 .read = spufs_regs_read,
594 .write = spufs_regs_write,
595 .llseek = generic_file_llseek,
599 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
600 size_t size, loff_t * pos)
602 struct spu_lscsa *lscsa = ctx->csa.lscsa;
603 return simple_read_from_buffer(buffer, size, pos,
604 &lscsa->fpcr, sizeof(lscsa->fpcr));
608 spufs_fpcr_read(struct file *file, char __user * buffer,
609 size_t size, loff_t * pos)
612 struct spu_context *ctx = file->private_data;
614 ret = spu_acquire_saved(ctx);
617 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
618 spu_release_saved(ctx);
623 spufs_fpcr_write(struct file *file, const char __user * buffer,
624 size_t size, loff_t * pos)
626 struct spu_context *ctx = file->private_data;
627 struct spu_lscsa *lscsa = ctx->csa.lscsa;
630 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
634 ret = spu_acquire_saved(ctx);
639 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
640 buffer, size) ? -EFAULT : size;
642 spu_release_saved(ctx);
646 static const struct file_operations spufs_fpcr_fops = {
647 .open = spufs_regs_open,
648 .read = spufs_fpcr_read,
649 .write = spufs_fpcr_write,
650 .llseek = generic_file_llseek,
653 /* generic open function for all pipe-like files */
654 static int spufs_pipe_open(struct inode *inode, struct file *file)
656 struct spufs_inode_info *i = SPUFS_I(inode);
657 file->private_data = i->i_ctx;
659 return nonseekable_open(inode, file);
663 * Read as many bytes from the mailbox as possible, until
664 * one of the conditions becomes true:
666 * - no more data available in the mailbox
667 * - end of the user provided buffer
668 * - end of the mapped area
670 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
671 size_t len, loff_t *pos)
673 struct spu_context *ctx = file->private_data;
674 u32 mbox_data, __user *udata;
680 if (!access_ok(VERIFY_WRITE, buf, len))
683 udata = (void __user *)buf;
685 count = spu_acquire(ctx);
689 for (count = 0; (count + 4) <= len; count += 4, udata++) {
691 ret = ctx->ops->mbox_read(ctx, &mbox_data);
696 * at the end of the mapped area, we can fault
697 * but still need to return the data we have
698 * read successfully so far.
700 ret = __put_user(mbox_data, udata);
715 static const struct file_operations spufs_mbox_fops = {
716 .open = spufs_pipe_open,
717 .read = spufs_mbox_read,
720 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
721 size_t len, loff_t *pos)
723 struct spu_context *ctx = file->private_data;
730 ret = spu_acquire(ctx);
734 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
738 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
744 static const struct file_operations spufs_mbox_stat_fops = {
745 .open = spufs_pipe_open,
746 .read = spufs_mbox_stat_read,
749 /* low-level ibox access function */
750 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
752 return ctx->ops->ibox_read(ctx, data);
755 static int spufs_ibox_fasync(int fd, struct file *file, int on)
757 struct spu_context *ctx = file->private_data;
759 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
762 /* interrupt-level ibox callback function. */
763 void spufs_ibox_callback(struct spu *spu)
765 struct spu_context *ctx = spu->ctx;
770 wake_up_all(&ctx->ibox_wq);
771 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
775 * Read as many bytes from the interrupt mailbox as possible, until
776 * one of the conditions becomes true:
778 * - no more data available in the mailbox
779 * - end of the user provided buffer
780 * - end of the mapped area
782 * If the file is opened without O_NONBLOCK, we wait here until
783 * any data is available, but return when we have been able to
786 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
787 size_t len, loff_t *pos)
789 struct spu_context *ctx = file->private_data;
790 u32 ibox_data, __user *udata;
796 if (!access_ok(VERIFY_WRITE, buf, len))
799 udata = (void __user *)buf;
801 count = spu_acquire(ctx);
805 /* wait only for the first element */
807 if (file->f_flags & O_NONBLOCK) {
808 if (!spu_ibox_read(ctx, &ibox_data)) {
813 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
818 /* if we can't write at all, return -EFAULT */
819 count = __put_user(ibox_data, udata);
823 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
825 ret = ctx->ops->ibox_read(ctx, &ibox_data);
829 * at the end of the mapped area, we can fault
830 * but still need to return the data we have
831 * read successfully so far.
833 ret = __put_user(ibox_data, udata);
844 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
846 struct spu_context *ctx = file->private_data;
849 poll_wait(file, &ctx->ibox_wq, wait);
852 * For now keep this uninterruptible and also ignore the rule
853 * that poll should not sleep. Will be fixed later.
855 mutex_lock(&ctx->state_mutex);
856 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
862 static const struct file_operations spufs_ibox_fops = {
863 .open = spufs_pipe_open,
864 .read = spufs_ibox_read,
865 .poll = spufs_ibox_poll,
866 .fasync = spufs_ibox_fasync,
869 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
870 size_t len, loff_t *pos)
872 struct spu_context *ctx = file->private_data;
879 ret = spu_acquire(ctx);
882 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
885 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
891 static const struct file_operations spufs_ibox_stat_fops = {
892 .open = spufs_pipe_open,
893 .read = spufs_ibox_stat_read,
896 /* low-level mailbox write */
897 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
899 return ctx->ops->wbox_write(ctx, data);
902 static int spufs_wbox_fasync(int fd, struct file *file, int on)
904 struct spu_context *ctx = file->private_data;
907 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
912 /* interrupt-level wbox callback function. */
913 void spufs_wbox_callback(struct spu *spu)
915 struct spu_context *ctx = spu->ctx;
920 wake_up_all(&ctx->wbox_wq);
921 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
925 * Write as many bytes to the interrupt mailbox as possible, until
926 * one of the conditions becomes true:
928 * - the mailbox is full
929 * - end of the user provided buffer
930 * - end of the mapped area
932 * If the file is opened without O_NONBLOCK, we wait here until
933 * space is availabyl, but return when we have been able to
936 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
937 size_t len, loff_t *pos)
939 struct spu_context *ctx = file->private_data;
940 u32 wbox_data, __user *udata;
946 udata = (void __user *)buf;
947 if (!access_ok(VERIFY_READ, buf, len))
950 if (__get_user(wbox_data, udata))
953 count = spu_acquire(ctx);
958 * make sure we can at least write one element, by waiting
959 * in case of !O_NONBLOCK
962 if (file->f_flags & O_NONBLOCK) {
963 if (!spu_wbox_write(ctx, wbox_data)) {
968 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
974 /* write as much as possible */
975 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
977 ret = __get_user(wbox_data, udata);
981 ret = spu_wbox_write(ctx, wbox_data);
992 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
994 struct spu_context *ctx = file->private_data;
997 poll_wait(file, &ctx->wbox_wq, wait);
1000 * For now keep this uninterruptible and also ignore the rule
1001 * that poll should not sleep. Will be fixed later.
1003 mutex_lock(&ctx->state_mutex);
1004 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
1010 static const struct file_operations spufs_wbox_fops = {
1011 .open = spufs_pipe_open,
1012 .write = spufs_wbox_write,
1013 .poll = spufs_wbox_poll,
1014 .fasync = spufs_wbox_fasync,
1017 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1018 size_t len, loff_t *pos)
1020 struct spu_context *ctx = file->private_data;
1027 ret = spu_acquire(ctx);
1030 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1033 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1039 static const struct file_operations spufs_wbox_stat_fops = {
1040 .open = spufs_pipe_open,
1041 .read = spufs_wbox_stat_read,
1044 static int spufs_signal1_open(struct inode *inode, struct file *file)
1046 struct spufs_inode_info *i = SPUFS_I(inode);
1047 struct spu_context *ctx = i->i_ctx;
1049 mutex_lock(&ctx->mapping_lock);
1050 file->private_data = ctx;
1051 if (!i->i_openers++)
1052 ctx->signal1 = inode->i_mapping;
1053 mutex_unlock(&ctx->mapping_lock);
1054 return nonseekable_open(inode, file);
1058 spufs_signal1_release(struct inode *inode, struct file *file)
1060 struct spufs_inode_info *i = SPUFS_I(inode);
1061 struct spu_context *ctx = i->i_ctx;
1063 mutex_lock(&ctx->mapping_lock);
1064 if (!--i->i_openers)
1065 ctx->signal1 = NULL;
1066 mutex_unlock(&ctx->mapping_lock);
1070 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1071 size_t len, loff_t *pos)
1079 if (ctx->csa.spu_chnlcnt_RW[3]) {
1080 data = ctx->csa.spu_chnldata_RW[3];
1087 if (copy_to_user(buf, &data, 4))
1094 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1095 size_t len, loff_t *pos)
1098 struct spu_context *ctx = file->private_data;
1100 ret = spu_acquire_saved(ctx);
1103 ret = __spufs_signal1_read(ctx, buf, len, pos);
1104 spu_release_saved(ctx);
1109 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1110 size_t len, loff_t *pos)
1112 struct spu_context *ctx;
1116 ctx = file->private_data;
1121 if (copy_from_user(&data, buf, 4))
1124 ret = spu_acquire(ctx);
1127 ctx->ops->signal1_write(ctx, data);
1134 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1136 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1137 return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1138 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1139 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1140 * signal 1 and 2 area
1142 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1144 #error unsupported page size
1148 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
1149 .fault = spufs_signal1_mmap_fault,
1152 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1154 if (!(vma->vm_flags & VM_SHARED))
1157 vma->vm_flags |= VM_IO | VM_PFNMAP;
1158 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1159 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1161 vma->vm_ops = &spufs_signal1_mmap_vmops;
1165 static const struct file_operations spufs_signal1_fops = {
1166 .open = spufs_signal1_open,
1167 .release = spufs_signal1_release,
1168 .read = spufs_signal1_read,
1169 .write = spufs_signal1_write,
1170 .mmap = spufs_signal1_mmap,
1173 static const struct file_operations spufs_signal1_nosched_fops = {
1174 .open = spufs_signal1_open,
1175 .release = spufs_signal1_release,
1176 .write = spufs_signal1_write,
1177 .mmap = spufs_signal1_mmap,
1180 static int spufs_signal2_open(struct inode *inode, struct file *file)
1182 struct spufs_inode_info *i = SPUFS_I(inode);
1183 struct spu_context *ctx = i->i_ctx;
1185 mutex_lock(&ctx->mapping_lock);
1186 file->private_data = ctx;
1187 if (!i->i_openers++)
1188 ctx->signal2 = inode->i_mapping;
1189 mutex_unlock(&ctx->mapping_lock);
1190 return nonseekable_open(inode, file);
1194 spufs_signal2_release(struct inode *inode, struct file *file)
1196 struct spufs_inode_info *i = SPUFS_I(inode);
1197 struct spu_context *ctx = i->i_ctx;
1199 mutex_lock(&ctx->mapping_lock);
1200 if (!--i->i_openers)
1201 ctx->signal2 = NULL;
1202 mutex_unlock(&ctx->mapping_lock);
1206 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1207 size_t len, loff_t *pos)
1215 if (ctx->csa.spu_chnlcnt_RW[4]) {
1216 data = ctx->csa.spu_chnldata_RW[4];
1223 if (copy_to_user(buf, &data, 4))
1230 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1231 size_t len, loff_t *pos)
1233 struct spu_context *ctx = file->private_data;
1236 ret = spu_acquire_saved(ctx);
1239 ret = __spufs_signal2_read(ctx, buf, len, pos);
1240 spu_release_saved(ctx);
1245 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1246 size_t len, loff_t *pos)
1248 struct spu_context *ctx;
1252 ctx = file->private_data;
1257 if (copy_from_user(&data, buf, 4))
1260 ret = spu_acquire(ctx);
1263 ctx->ops->signal2_write(ctx, data);
1271 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1273 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1274 return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1275 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1276 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1277 * signal 1 and 2 area
1279 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1281 #error unsupported page size
1285 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1286 .fault = spufs_signal2_mmap_fault,
1289 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1291 if (!(vma->vm_flags & VM_SHARED))
1294 vma->vm_flags |= VM_IO | VM_PFNMAP;
1295 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1296 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1298 vma->vm_ops = &spufs_signal2_mmap_vmops;
1301 #else /* SPUFS_MMAP_4K */
1302 #define spufs_signal2_mmap NULL
1303 #endif /* !SPUFS_MMAP_4K */
1305 static const struct file_operations spufs_signal2_fops = {
1306 .open = spufs_signal2_open,
1307 .release = spufs_signal2_release,
1308 .read = spufs_signal2_read,
1309 .write = spufs_signal2_write,
1310 .mmap = spufs_signal2_mmap,
1313 static const struct file_operations spufs_signal2_nosched_fops = {
1314 .open = spufs_signal2_open,
1315 .release = spufs_signal2_release,
1316 .write = spufs_signal2_write,
1317 .mmap = spufs_signal2_mmap,
1321 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1322 * work of acquiring (or not) the SPU context before calling through
1323 * to the actual get routine. The set routine is called directly.
1325 #define SPU_ATTR_NOACQUIRE 0
1326 #define SPU_ATTR_ACQUIRE 1
1327 #define SPU_ATTR_ACQUIRE_SAVED 2
1329 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1330 static int __##__get(void *data, u64 *val) \
1332 struct spu_context *ctx = data; \
1335 if (__acquire == SPU_ATTR_ACQUIRE) { \
1336 ret = spu_acquire(ctx); \
1339 *val = __get(ctx); \
1341 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1342 ret = spu_acquire_saved(ctx); \
1345 *val = __get(ctx); \
1346 spu_release_saved(ctx); \
1348 *val = __get(ctx); \
1352 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1354 static int spufs_signal1_type_set(void *data, u64 val)
1356 struct spu_context *ctx = data;
1359 ret = spu_acquire(ctx);
1362 ctx->ops->signal1_type_set(ctx, val);
1368 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1370 return ctx->ops->signal1_type_get(ctx);
1372 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1373 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1376 static int spufs_signal2_type_set(void *data, u64 val)
1378 struct spu_context *ctx = data;
1381 ret = spu_acquire(ctx);
1384 ctx->ops->signal2_type_set(ctx, val);
1390 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1392 return ctx->ops->signal2_type_get(ctx);
1394 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1395 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1399 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1401 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1404 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1405 .fault = spufs_mss_mmap_fault,
1409 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1411 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1413 if (!(vma->vm_flags & VM_SHARED))
1416 vma->vm_flags |= VM_IO | VM_PFNMAP;
1417 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1418 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1420 vma->vm_ops = &spufs_mss_mmap_vmops;
1423 #else /* SPUFS_MMAP_4K */
1424 #define spufs_mss_mmap NULL
1425 #endif /* !SPUFS_MMAP_4K */
1427 static int spufs_mss_open(struct inode *inode, struct file *file)
1429 struct spufs_inode_info *i = SPUFS_I(inode);
1430 struct spu_context *ctx = i->i_ctx;
1432 file->private_data = i->i_ctx;
1434 mutex_lock(&ctx->mapping_lock);
1435 if (!i->i_openers++)
1436 ctx->mss = inode->i_mapping;
1437 mutex_unlock(&ctx->mapping_lock);
1438 return nonseekable_open(inode, file);
1442 spufs_mss_release(struct inode *inode, struct file *file)
1444 struct spufs_inode_info *i = SPUFS_I(inode);
1445 struct spu_context *ctx = i->i_ctx;
1447 mutex_lock(&ctx->mapping_lock);
1448 if (!--i->i_openers)
1450 mutex_unlock(&ctx->mapping_lock);
1454 static const struct file_operations spufs_mss_fops = {
1455 .open = spufs_mss_open,
1456 .release = spufs_mss_release,
1457 .mmap = spufs_mss_mmap,
1461 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1463 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1466 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1467 .fault = spufs_psmap_mmap_fault,
1471 * mmap support for full problem state area [0x00000 - 0x1ffff].
1473 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1475 if (!(vma->vm_flags & VM_SHARED))
1478 vma->vm_flags |= VM_IO | VM_PFNMAP;
1479 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1480 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1482 vma->vm_ops = &spufs_psmap_mmap_vmops;
1486 static int spufs_psmap_open(struct inode *inode, struct file *file)
1488 struct spufs_inode_info *i = SPUFS_I(inode);
1489 struct spu_context *ctx = i->i_ctx;
1491 mutex_lock(&ctx->mapping_lock);
1492 file->private_data = i->i_ctx;
1493 if (!i->i_openers++)
1494 ctx->psmap = inode->i_mapping;
1495 mutex_unlock(&ctx->mapping_lock);
1496 return nonseekable_open(inode, file);
1500 spufs_psmap_release(struct inode *inode, struct file *file)
1502 struct spufs_inode_info *i = SPUFS_I(inode);
1503 struct spu_context *ctx = i->i_ctx;
1505 mutex_lock(&ctx->mapping_lock);
1506 if (!--i->i_openers)
1508 mutex_unlock(&ctx->mapping_lock);
1512 static const struct file_operations spufs_psmap_fops = {
1513 .open = spufs_psmap_open,
1514 .release = spufs_psmap_release,
1515 .mmap = spufs_psmap_mmap,
1521 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1523 return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1526 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1527 .fault = spufs_mfc_mmap_fault,
1531 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1533 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1535 if (!(vma->vm_flags & VM_SHARED))
1538 vma->vm_flags |= VM_IO | VM_PFNMAP;
1539 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1540 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1542 vma->vm_ops = &spufs_mfc_mmap_vmops;
1545 #else /* SPUFS_MMAP_4K */
1546 #define spufs_mfc_mmap NULL
1547 #endif /* !SPUFS_MMAP_4K */
1549 static int spufs_mfc_open(struct inode *inode, struct file *file)
1551 struct spufs_inode_info *i = SPUFS_I(inode);
1552 struct spu_context *ctx = i->i_ctx;
1554 /* we don't want to deal with DMA into other processes */
1555 if (ctx->owner != current->mm)
1558 if (atomic_read(&inode->i_count) != 1)
1561 mutex_lock(&ctx->mapping_lock);
1562 file->private_data = ctx;
1563 if (!i->i_openers++)
1564 ctx->mfc = inode->i_mapping;
1565 mutex_unlock(&ctx->mapping_lock);
1566 return nonseekable_open(inode, file);
1570 spufs_mfc_release(struct inode *inode, struct file *file)
1572 struct spufs_inode_info *i = SPUFS_I(inode);
1573 struct spu_context *ctx = i->i_ctx;
1575 mutex_lock(&ctx->mapping_lock);
1576 if (!--i->i_openers)
1578 mutex_unlock(&ctx->mapping_lock);
1582 /* interrupt-level mfc callback function. */
1583 void spufs_mfc_callback(struct spu *spu)
1585 struct spu_context *ctx = spu->ctx;
1590 wake_up_all(&ctx->mfc_wq);
1592 pr_debug("%s %s\n", __func__, spu->name);
1593 if (ctx->mfc_fasync) {
1594 u32 free_elements, tagstatus;
1597 /* no need for spu_acquire in interrupt context */
1598 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1599 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1602 if (free_elements & 0xffff)
1604 if (tagstatus & ctx->tagwait)
1607 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1611 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1613 /* See if there is one tag group is complete */
1614 /* FIXME we need locking around tagwait */
1615 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1616 ctx->tagwait &= ~*status;
1620 /* enable interrupt waiting for any tag group,
1621 may silently fail if interrupts are already enabled */
1622 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1626 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1627 size_t size, loff_t *pos)
1629 struct spu_context *ctx = file->private_data;
1636 ret = spu_acquire(ctx);
1641 if (file->f_flags & O_NONBLOCK) {
1642 status = ctx->ops->read_mfc_tagstatus(ctx);
1643 if (!(status & ctx->tagwait))
1646 /* XXX(hch): shouldn't we clear ret here? */
1647 ctx->tagwait &= ~status;
1649 ret = spufs_wait(ctx->mfc_wq,
1650 spufs_read_mfc_tagstatus(ctx, &status));
1657 if (copy_to_user(buffer, &status, 4))
1664 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1666 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1667 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1678 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1682 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1683 pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1688 switch (cmd->size & 0xf) {
1709 pr_debug("invalid DMA alignment %x for size %x\n",
1710 cmd->lsa & 0xf, cmd->size);
1714 if (cmd->size > 16 * 1024) {
1715 pr_debug("invalid DMA size %x\n", cmd->size);
1719 if (cmd->tag & 0xfff0) {
1720 /* we reserve the higher tag numbers for kernel use */
1721 pr_debug("invalid DMA tag\n");
1726 /* not supported in this version */
1727 pr_debug("invalid DMA class\n");
1734 static int spu_send_mfc_command(struct spu_context *ctx,
1735 struct mfc_dma_command cmd,
1738 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1739 if (*error == -EAGAIN) {
1740 /* wait for any tag group to complete
1741 so we have space for the new command */
1742 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1743 /* try again, because the queue might be
1745 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1746 if (*error == -EAGAIN)
1752 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1753 size_t size, loff_t *pos)
1755 struct spu_context *ctx = file->private_data;
1756 struct mfc_dma_command cmd;
1759 if (size != sizeof cmd)
1763 if (copy_from_user(&cmd, buffer, sizeof cmd))
1766 ret = spufs_check_valid_dma(&cmd);
1770 ret = spu_acquire(ctx);
1774 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1778 if (file->f_flags & O_NONBLOCK) {
1779 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1782 ret = spufs_wait(ctx->mfc_wq,
1783 spu_send_mfc_command(ctx, cmd, &status));
1793 ctx->tagwait |= 1 << cmd.tag;
1802 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1804 struct spu_context *ctx = file->private_data;
1805 u32 free_elements, tagstatus;
1808 poll_wait(file, &ctx->mfc_wq, wait);
1811 * For now keep this uninterruptible and also ignore the rule
1812 * that poll should not sleep. Will be fixed later.
1814 mutex_lock(&ctx->state_mutex);
1815 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1816 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1817 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1821 if (free_elements & 0xffff)
1822 mask |= POLLOUT | POLLWRNORM;
1823 if (tagstatus & ctx->tagwait)
1824 mask |= POLLIN | POLLRDNORM;
1826 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1827 free_elements, tagstatus, ctx->tagwait);
1832 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1834 struct spu_context *ctx = file->private_data;
1837 ret = spu_acquire(ctx);
1841 /* this currently hangs */
1842 ret = spufs_wait(ctx->mfc_wq,
1843 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1846 ret = spufs_wait(ctx->mfc_wq,
1847 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1858 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1861 return spufs_mfc_flush(file, NULL);
1864 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1866 struct spu_context *ctx = file->private_data;
1868 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1871 static const struct file_operations spufs_mfc_fops = {
1872 .open = spufs_mfc_open,
1873 .release = spufs_mfc_release,
1874 .read = spufs_mfc_read,
1875 .write = spufs_mfc_write,
1876 .poll = spufs_mfc_poll,
1877 .flush = spufs_mfc_flush,
1878 .fsync = spufs_mfc_fsync,
1879 .fasync = spufs_mfc_fasync,
1880 .mmap = spufs_mfc_mmap,
1883 static int spufs_npc_set(void *data, u64 val)
1885 struct spu_context *ctx = data;
1888 ret = spu_acquire(ctx);
1891 ctx->ops->npc_write(ctx, val);
1897 static u64 spufs_npc_get(struct spu_context *ctx)
1899 return ctx->ops->npc_read(ctx);
1901 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1902 "0x%llx\n", SPU_ATTR_ACQUIRE);
1904 static int spufs_decr_set(void *data, u64 val)
1906 struct spu_context *ctx = data;
1907 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1910 ret = spu_acquire_saved(ctx);
1913 lscsa->decr.slot[0] = (u32) val;
1914 spu_release_saved(ctx);
1919 static u64 spufs_decr_get(struct spu_context *ctx)
1921 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1922 return lscsa->decr.slot[0];
1924 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1925 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1927 static int spufs_decr_status_set(void *data, u64 val)
1929 struct spu_context *ctx = data;
1932 ret = spu_acquire_saved(ctx);
1936 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1938 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1939 spu_release_saved(ctx);
1944 static u64 spufs_decr_status_get(struct spu_context *ctx)
1946 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1947 return SPU_DECR_STATUS_RUNNING;
1951 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1952 spufs_decr_status_set, "0x%llx\n",
1953 SPU_ATTR_ACQUIRE_SAVED);
1955 static int spufs_event_mask_set(void *data, u64 val)
1957 struct spu_context *ctx = data;
1958 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1961 ret = spu_acquire_saved(ctx);
1964 lscsa->event_mask.slot[0] = (u32) val;
1965 spu_release_saved(ctx);
1970 static u64 spufs_event_mask_get(struct spu_context *ctx)
1972 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1973 return lscsa->event_mask.slot[0];
1976 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1977 spufs_event_mask_set, "0x%llx\n",
1978 SPU_ATTR_ACQUIRE_SAVED);
1980 static u64 spufs_event_status_get(struct spu_context *ctx)
1982 struct spu_state *state = &ctx->csa;
1984 stat = state->spu_chnlcnt_RW[0];
1986 return state->spu_chnldata_RW[0];
1989 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1990 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1992 static int spufs_srr0_set(void *data, u64 val)
1994 struct spu_context *ctx = data;
1995 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1998 ret = spu_acquire_saved(ctx);
2001 lscsa->srr0.slot[0] = (u32) val;
2002 spu_release_saved(ctx);
2007 static u64 spufs_srr0_get(struct spu_context *ctx)
2009 struct spu_lscsa *lscsa = ctx->csa.lscsa;
2010 return lscsa->srr0.slot[0];
2012 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2013 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2015 static u64 spufs_id_get(struct spu_context *ctx)
2019 if (ctx->state == SPU_STATE_RUNNABLE)
2020 num = ctx->spu->number;
2022 num = (unsigned int)-1;
2026 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2029 static u64 spufs_object_id_get(struct spu_context *ctx)
2031 /* FIXME: Should there really be no locking here? */
2032 return ctx->object_id;
2035 static int spufs_object_id_set(void *data, u64 id)
2037 struct spu_context *ctx = data;
2038 ctx->object_id = id;
2043 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2044 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2046 static u64 spufs_lslr_get(struct spu_context *ctx)
2048 return ctx->csa.priv2.spu_lslr_RW;
2050 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2051 SPU_ATTR_ACQUIRE_SAVED);
2053 static int spufs_info_open(struct inode *inode, struct file *file)
2055 struct spufs_inode_info *i = SPUFS_I(inode);
2056 struct spu_context *ctx = i->i_ctx;
2057 file->private_data = ctx;
2061 static int spufs_caps_show(struct seq_file *s, void *private)
2063 struct spu_context *ctx = s->private;
2065 if (!(ctx->flags & SPU_CREATE_NOSCHED))
2066 seq_puts(s, "sched\n");
2067 if (!(ctx->flags & SPU_CREATE_ISOLATE))
2068 seq_puts(s, "step\n");
2072 static int spufs_caps_open(struct inode *inode, struct file *file)
2074 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2077 static const struct file_operations spufs_caps_fops = {
2078 .open = spufs_caps_open,
2080 .llseek = seq_lseek,
2081 .release = single_release,
2084 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2085 char __user *buf, size_t len, loff_t *pos)
2089 /* EOF if there's no entry in the mbox */
2090 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2093 data = ctx->csa.prob.pu_mb_R;
2095 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2098 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2099 size_t len, loff_t *pos)
2102 struct spu_context *ctx = file->private_data;
2104 if (!access_ok(VERIFY_WRITE, buf, len))
2107 ret = spu_acquire_saved(ctx);
2110 spin_lock(&ctx->csa.register_lock);
2111 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2112 spin_unlock(&ctx->csa.register_lock);
2113 spu_release_saved(ctx);
2118 static const struct file_operations spufs_mbox_info_fops = {
2119 .open = spufs_info_open,
2120 .read = spufs_mbox_info_read,
2121 .llseek = generic_file_llseek,
2124 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2125 char __user *buf, size_t len, loff_t *pos)
2129 /* EOF if there's no entry in the ibox */
2130 if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2133 data = ctx->csa.priv2.puint_mb_R;
2135 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2138 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2139 size_t len, loff_t *pos)
2141 struct spu_context *ctx = file->private_data;
2144 if (!access_ok(VERIFY_WRITE, buf, len))
2147 ret = spu_acquire_saved(ctx);
2150 spin_lock(&ctx->csa.register_lock);
2151 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2152 spin_unlock(&ctx->csa.register_lock);
2153 spu_release_saved(ctx);
2158 static const struct file_operations spufs_ibox_info_fops = {
2159 .open = spufs_info_open,
2160 .read = spufs_ibox_info_read,
2161 .llseek = generic_file_llseek,
2164 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2165 char __user *buf, size_t len, loff_t *pos)
2171 wbox_stat = ctx->csa.prob.mb_stat_R;
2172 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2173 for (i = 0; i < cnt; i++) {
2174 data[i] = ctx->csa.spu_mailbox_data[i];
2177 return simple_read_from_buffer(buf, len, pos, &data,
2181 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2182 size_t len, loff_t *pos)
2184 struct spu_context *ctx = file->private_data;
2187 if (!access_ok(VERIFY_WRITE, buf, len))
2190 ret = spu_acquire_saved(ctx);
2193 spin_lock(&ctx->csa.register_lock);
2194 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2195 spin_unlock(&ctx->csa.register_lock);
2196 spu_release_saved(ctx);
2201 static const struct file_operations spufs_wbox_info_fops = {
2202 .open = spufs_info_open,
2203 .read = spufs_wbox_info_read,
2204 .llseek = generic_file_llseek,
2207 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2208 char __user *buf, size_t len, loff_t *pos)
2210 struct spu_dma_info info;
2211 struct mfc_cq_sr *qp, *spuqp;
2214 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2215 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2216 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2217 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2218 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2219 for (i = 0; i < 16; i++) {
2220 qp = &info.dma_info_command_data[i];
2221 spuqp = &ctx->csa.priv2.spuq[i];
2223 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2224 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2225 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2226 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2229 return simple_read_from_buffer(buf, len, pos, &info,
2233 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2234 size_t len, loff_t *pos)
2236 struct spu_context *ctx = file->private_data;
2239 if (!access_ok(VERIFY_WRITE, buf, len))
2242 ret = spu_acquire_saved(ctx);
2245 spin_lock(&ctx->csa.register_lock);
2246 ret = __spufs_dma_info_read(ctx, buf, len, pos);
2247 spin_unlock(&ctx->csa.register_lock);
2248 spu_release_saved(ctx);
2253 static const struct file_operations spufs_dma_info_fops = {
2254 .open = spufs_info_open,
2255 .read = spufs_dma_info_read,
2258 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2259 char __user *buf, size_t len, loff_t *pos)
2261 struct spu_proxydma_info info;
2262 struct mfc_cq_sr *qp, *puqp;
2263 int ret = sizeof info;
2269 if (!access_ok(VERIFY_WRITE, buf, len))
2272 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2273 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2274 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2275 for (i = 0; i < 8; i++) {
2276 qp = &info.proxydma_info_command_data[i];
2277 puqp = &ctx->csa.priv2.puq[i];
2279 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2280 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2281 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2282 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2285 return simple_read_from_buffer(buf, len, pos, &info,
2289 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2290 size_t len, loff_t *pos)
2292 struct spu_context *ctx = file->private_data;
2295 ret = spu_acquire_saved(ctx);
2298 spin_lock(&ctx->csa.register_lock);
2299 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2300 spin_unlock(&ctx->csa.register_lock);
2301 spu_release_saved(ctx);
2306 static const struct file_operations spufs_proxydma_info_fops = {
2307 .open = spufs_info_open,
2308 .read = spufs_proxydma_info_read,
2311 static int spufs_show_tid(struct seq_file *s, void *private)
2313 struct spu_context *ctx = s->private;
2315 seq_printf(s, "%d\n", ctx->tid);
2319 static int spufs_tid_open(struct inode *inode, struct file *file)
2321 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2324 static const struct file_operations spufs_tid_fops = {
2325 .open = spufs_tid_open,
2327 .llseek = seq_lseek,
2328 .release = single_release,
2331 static const char *ctx_state_names[] = {
2332 "user", "system", "iowait", "loaded"
2335 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2336 enum spu_utilization_state state)
2339 unsigned long long time = ctx->stats.times[state];
2342 * In general, utilization statistics are updated by the controlling
2343 * thread as the spu context moves through various well defined
2344 * state transitions, but if the context is lazily loaded its
2345 * utilization statistics are not updated as the controlling thread
2346 * is not tightly coupled with the execution of the spu context. We
2347 * calculate and apply the time delta from the last recorded state
2348 * of the spu context.
2350 if (ctx->spu && ctx->stats.util_state == state) {
2352 time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2355 return time / NSEC_PER_MSEC;
2358 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2360 unsigned long long slb_flts = ctx->stats.slb_flt;
2362 if (ctx->state == SPU_STATE_RUNNABLE) {
2363 slb_flts += (ctx->spu->stats.slb_flt -
2364 ctx->stats.slb_flt_base);
2370 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2372 unsigned long long class2_intrs = ctx->stats.class2_intr;
2374 if (ctx->state == SPU_STATE_RUNNABLE) {
2375 class2_intrs += (ctx->spu->stats.class2_intr -
2376 ctx->stats.class2_intr_base);
2379 return class2_intrs;
2383 static int spufs_show_stat(struct seq_file *s, void *private)
2385 struct spu_context *ctx = s->private;
2388 ret = spu_acquire(ctx);
2392 seq_printf(s, "%s %llu %llu %llu %llu "
2393 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2394 ctx_state_names[ctx->stats.util_state],
2395 spufs_acct_time(ctx, SPU_UTIL_USER),
2396 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2397 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2398 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2399 ctx->stats.vol_ctx_switch,
2400 ctx->stats.invol_ctx_switch,
2401 spufs_slb_flts(ctx),
2402 ctx->stats.hash_flt,
2405 spufs_class2_intrs(ctx),
2406 ctx->stats.libassist);
2411 static int spufs_stat_open(struct inode *inode, struct file *file)
2413 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2416 static const struct file_operations spufs_stat_fops = {
2417 .open = spufs_stat_open,
2419 .llseek = seq_lseek,
2420 .release = single_release,
2423 static inline int spufs_switch_log_used(struct spu_context *ctx)
2425 return (ctx->switch_log->head - ctx->switch_log->tail) %
2429 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2431 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2434 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2436 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2439 rc = spu_acquire(ctx);
2443 if (ctx->switch_log) {
2448 ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2449 SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2452 if (!ctx->switch_log) {
2457 ctx->switch_log->head = ctx->switch_log->tail = 0;
2458 init_waitqueue_head(&ctx->switch_log->wait);
2466 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2468 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2471 rc = spu_acquire(ctx);
2475 kfree(ctx->switch_log);
2476 ctx->switch_log = NULL;
2482 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2484 struct switch_log_entry *p;
2486 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2488 return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2489 (unsigned int) p->tstamp.tv_sec,
2490 (unsigned int) p->tstamp.tv_nsec,
2492 (unsigned int) p->type,
2493 (unsigned int) p->val,
2494 (unsigned long long) p->timebase);
2497 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2498 size_t len, loff_t *ppos)
2500 struct inode *inode = file->f_path.dentry->d_inode;
2501 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2502 int error = 0, cnt = 0;
2504 if (!buf || len < 0)
2507 error = spu_acquire(ctx);
2515 if (spufs_switch_log_used(ctx) == 0) {
2517 /* If there's data ready to go, we can
2518 * just return straight away */
2521 } else if (file->f_flags & O_NONBLOCK) {
2526 /* spufs_wait will drop the mutex and
2527 * re-acquire, but since we're in read(), the
2528 * file cannot be _released (and so
2529 * ctx->switch_log is stable).
2531 error = spufs_wait(ctx->switch_log->wait,
2532 spufs_switch_log_used(ctx) > 0);
2534 /* On error, spufs_wait returns without the
2535 * state mutex held */
2539 /* We may have had entries read from underneath
2540 * us while we dropped the mutex in spufs_wait,
2542 if (spufs_switch_log_used(ctx) == 0)
2547 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2549 ctx->switch_log->tail =
2550 (ctx->switch_log->tail + 1) %
2553 /* If the record is greater than space available return
2554 * partial buffer (so far) */
2557 error = copy_to_user(buf + cnt, tbuf, width);
2565 return cnt == 0 ? error : cnt;
2568 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2570 struct inode *inode = file->f_path.dentry->d_inode;
2571 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2572 unsigned int mask = 0;
2575 poll_wait(file, &ctx->switch_log->wait, wait);
2577 rc = spu_acquire(ctx);
2581 if (spufs_switch_log_used(ctx) > 0)
2589 static const struct file_operations spufs_switch_log_fops = {
2590 .owner = THIS_MODULE,
2591 .open = spufs_switch_log_open,
2592 .read = spufs_switch_log_read,
2593 .poll = spufs_switch_log_poll,
2594 .release = spufs_switch_log_release,
2598 * Log a context switch event to a switch log reader.
2600 * Must be called with ctx->state_mutex held.
2602 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2605 if (!ctx->switch_log)
2608 if (spufs_switch_log_avail(ctx) > 1) {
2609 struct switch_log_entry *p;
2611 p = ctx->switch_log->log + ctx->switch_log->head;
2612 ktime_get_ts(&p->tstamp);
2613 p->timebase = get_tb();
2614 p->spu_id = spu ? spu->number : -1;
2618 ctx->switch_log->head =
2619 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2622 wake_up(&ctx->switch_log->wait);
2625 static int spufs_show_ctx(struct seq_file *s, void *private)
2627 struct spu_context *ctx = s->private;
2630 mutex_lock(&ctx->state_mutex);
2632 struct spu *spu = ctx->spu;
2633 struct spu_priv2 __iomem *priv2 = spu->priv2;
2635 spin_lock_irq(&spu->register_lock);
2636 mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2637 spin_unlock_irq(&spu->register_lock);
2639 struct spu_state *csa = &ctx->csa;
2641 mfc_control_RW = csa->priv2.mfc_control_RW;
2644 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2645 " %c %lx %lx %lx %lx %x %x\n",
2646 ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2651 ctx->spu ? ctx->spu->number : -1,
2652 !list_empty(&ctx->rq) ? 'q' : ' ',
2653 ctx->csa.class_0_pending,
2654 ctx->csa.class_0_dar,
2655 ctx->csa.class_1_dsisr,
2657 ctx->ops->runcntl_read(ctx),
2658 ctx->ops->status_read(ctx));
2660 mutex_unlock(&ctx->state_mutex);
2665 static int spufs_ctx_open(struct inode *inode, struct file *file)
2667 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2670 static const struct file_operations spufs_ctx_fops = {
2671 .open = spufs_ctx_open,
2673 .llseek = seq_lseek,
2674 .release = single_release,
2677 struct spufs_tree_descr spufs_dir_contents[] = {
2678 { "capabilities", &spufs_caps_fops, 0444, },
2679 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2680 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), },
2681 { "mbox", &spufs_mbox_fops, 0444, },
2682 { "ibox", &spufs_ibox_fops, 0444, },
2683 { "wbox", &spufs_wbox_fops, 0222, },
2684 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2685 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2686 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2687 { "signal1", &spufs_signal1_fops, 0666, },
2688 { "signal2", &spufs_signal2_fops, 0666, },
2689 { "signal1_type", &spufs_signal1_type, 0666, },
2690 { "signal2_type", &spufs_signal2_type, 0666, },
2691 { "cntl", &spufs_cntl_fops, 0666, },
2692 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2693 { "lslr", &spufs_lslr_ops, 0444, },
2694 { "mfc", &spufs_mfc_fops, 0666, },
2695 { "mss", &spufs_mss_fops, 0666, },
2696 { "npc", &spufs_npc_ops, 0666, },
2697 { "srr0", &spufs_srr0_ops, 0666, },
2698 { "decr", &spufs_decr_ops, 0666, },
2699 { "decr_status", &spufs_decr_status_ops, 0666, },
2700 { "event_mask", &spufs_event_mask_ops, 0666, },
2701 { "event_status", &spufs_event_status_ops, 0444, },
2702 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2703 { "phys-id", &spufs_id_ops, 0666, },
2704 { "object-id", &spufs_object_id_ops, 0666, },
2705 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2706 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2707 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2708 { "dma_info", &spufs_dma_info_fops, 0444,
2709 sizeof(struct spu_dma_info), },
2710 { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2711 sizeof(struct spu_proxydma_info)},
2712 { "tid", &spufs_tid_fops, 0444, },
2713 { "stat", &spufs_stat_fops, 0444, },
2714 { "switch_log", &spufs_switch_log_fops, 0444 },
2718 struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2719 { "capabilities", &spufs_caps_fops, 0444, },
2720 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2721 { "mbox", &spufs_mbox_fops, 0444, },
2722 { "ibox", &spufs_ibox_fops, 0444, },
2723 { "wbox", &spufs_wbox_fops, 0222, },
2724 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2725 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2726 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2727 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2728 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2729 { "signal1_type", &spufs_signal1_type, 0666, },
2730 { "signal2_type", &spufs_signal2_type, 0666, },
2731 { "mss", &spufs_mss_fops, 0666, },
2732 { "mfc", &spufs_mfc_fops, 0666, },
2733 { "cntl", &spufs_cntl_fops, 0666, },
2734 { "npc", &spufs_npc_ops, 0666, },
2735 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2736 { "phys-id", &spufs_id_ops, 0666, },
2737 { "object-id", &spufs_object_id_ops, 0666, },
2738 { "tid", &spufs_tid_fops, 0444, },
2739 { "stat", &spufs_stat_fops, 0444, },
2743 struct spufs_tree_descr spufs_dir_debug_contents[] = {
2744 { ".ctx", &spufs_ctx_fops, 0444, },
2748 struct spufs_coredump_reader spufs_coredump_read[] = {
2749 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2750 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2751 { "lslr", NULL, spufs_lslr_get, 19 },
2752 { "decr", NULL, spufs_decr_get, 19 },
2753 { "decr_status", NULL, spufs_decr_status_get, 19 },
2754 { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2755 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2756 { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2757 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2758 { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2759 { "event_mask", NULL, spufs_event_mask_get, 19 },
2760 { "event_status", NULL, spufs_event_status_get, 19 },
2761 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2762 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2763 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2764 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2765 { "proxydma_info", __spufs_proxydma_info_read,
2766 NULL, sizeof(struct spu_proxydma_info)},
2767 { "object-id", NULL, spufs_object_id_get, 19 },
2768 { "npc", NULL, spufs_npc_get, 19 },