2 * 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
32 #include <linux/kvm_host.h>
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
40 #define mod_64(x, y) ((x) % (y))
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
60 rl = (u64)u.l.low * (u64)b;
61 rh = (u64)u.l.high * (u64)b;
63 res.l.high = div64_u64(rh, c);
64 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
70 struct kvm_kpit_channel_state *c =
71 &kvm->arch.vpit->pit_state.channels[channel];
73 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
79 /* XXX: just disable/enable counting */
85 /* Restart counting on rising edge. */
87 c->count_load_time = ktime_get();
94 int pit_get_gate(struct kvm *kvm, int channel)
96 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
98 return kvm->arch.vpit->pit_state.channels[channel].gate;
101 static int pit_get_count(struct kvm *kvm, int channel)
103 struct kvm_kpit_channel_state *c =
104 &kvm->arch.vpit->pit_state.channels[channel];
108 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
110 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
111 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
118 counter = (c->count - d) & 0xffff;
121 /* XXX: may be incorrect for odd counts */
122 counter = c->count - (mod_64((2 * d), c->count));
125 counter = c->count - mod_64(d, c->count);
131 static int pit_get_out(struct kvm *kvm, int channel)
133 struct kvm_kpit_channel_state *c =
134 &kvm->arch.vpit->pit_state.channels[channel];
138 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
140 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
141 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
146 out = (d >= c->count);
149 out = (d < c->count);
152 out = ((mod_64(d, c->count) == 0) && (d != 0));
155 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
159 out = (d == c->count);
166 static void pit_latch_count(struct kvm *kvm, int channel)
168 struct kvm_kpit_channel_state *c =
169 &kvm->arch.vpit->pit_state.channels[channel];
171 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
173 if (!c->count_latched) {
174 c->latched_count = pit_get_count(kvm, channel);
175 c->count_latched = c->rw_mode;
179 static void pit_latch_status(struct kvm *kvm, int channel)
181 struct kvm_kpit_channel_state *c =
182 &kvm->arch.vpit->pit_state.channels[channel];
184 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
186 if (!c->status_latched) {
187 /* TODO: Return NULL COUNT (bit 6). */
188 c->status = ((pit_get_out(kvm, channel) << 7) |
192 c->status_latched = 1;
196 int __pit_timer_fn(struct kvm_kpit_state *ps)
198 struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
199 struct kvm_kpit_timer *pt = &ps->pit_timer;
201 atomic_inc(&pt->pending);
202 smp_mb__after_atomic_inc();
203 /* FIXME: handle case where the guest is in guest mode */
204 if (vcpu0 && waitqueue_active(&vcpu0->wq)) {
205 vcpu0->arch.mp_state = KVM_MP_STATE_RUNNABLE;
206 wake_up_interruptible(&vcpu0->wq);
209 pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period);
210 pt->scheduled = ktime_to_ns(pt->timer.expires);
212 return (pt->period == 0 ? 0 : 1);
215 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
217 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
219 if (pit && vcpu->vcpu_id == 0)
220 return atomic_read(&pit->pit_state.pit_timer.pending);
225 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
227 struct kvm_kpit_state *ps;
228 int restart_timer = 0;
230 ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
232 restart_timer = __pit_timer_fn(ps);
235 return HRTIMER_RESTART;
237 return HRTIMER_NORESTART;
240 static void destroy_pit_timer(struct kvm_kpit_timer *pt)
242 pr_debug("pit: execute del timer!\n");
243 hrtimer_cancel(&pt->timer);
246 static void create_pit_timer(struct kvm_kpit_timer *pt, u32 val, int is_period)
250 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
252 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
254 /* TODO The new value only affected after the retriggered */
255 hrtimer_cancel(&pt->timer);
256 pt->period = (is_period == 0) ? 0 : interval;
257 pt->timer.function = pit_timer_fn;
258 atomic_set(&pt->pending, 0);
260 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
264 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
266 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
268 WARN_ON(!mutex_is_locked(&ps->lock));
270 pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
273 * Though spec said the state of 8254 is undefined after power-up,
274 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
276 * So here setting initialize rate for it, and not a specific number
281 ps->channels[channel].count_load_time = ktime_get();
282 ps->channels[channel].count = val;
287 /* Two types of timer
288 * mode 1 is one shot, mode 2 is period, otherwise del timer */
289 switch (ps->channels[0].mode) {
291 /* FIXME: enhance mode 4 precision */
293 create_pit_timer(&ps->pit_timer, val, 0);
296 create_pit_timer(&ps->pit_timer, val, 1);
299 destroy_pit_timer(&ps->pit_timer);
303 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
305 mutex_lock(&kvm->arch.vpit->pit_state.lock);
306 pit_load_count(kvm, channel, val);
307 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
310 static void pit_ioport_write(struct kvm_io_device *this,
311 gpa_t addr, int len, const void *data)
313 struct kvm_pit *pit = (struct kvm_pit *)this->private;
314 struct kvm_kpit_state *pit_state = &pit->pit_state;
315 struct kvm *kvm = pit->kvm;
317 struct kvm_kpit_channel_state *s;
318 u32 val = *(u32 *) data;
321 addr &= KVM_PIT_CHANNEL_MASK;
323 mutex_lock(&pit_state->lock);
326 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
327 (unsigned int)addr, len, val);
332 /* Read-Back Command. */
333 for (channel = 0; channel < 3; channel++) {
334 s = &pit_state->channels[channel];
335 if (val & (2 << channel)) {
337 pit_latch_count(kvm, channel);
339 pit_latch_status(kvm, channel);
343 /* Select Counter <channel>. */
344 s = &pit_state->channels[channel];
345 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
347 pit_latch_count(kvm, channel);
350 s->read_state = access;
351 s->write_state = access;
352 s->mode = (val >> 1) & 7;
360 s = &pit_state->channels[addr];
361 switch (s->write_state) {
364 pit_load_count(kvm, addr, val);
367 pit_load_count(kvm, addr, val << 8);
370 s->write_latch = val;
371 s->write_state = RW_STATE_WORD1;
374 pit_load_count(kvm, addr, s->write_latch | (val << 8));
375 s->write_state = RW_STATE_WORD0;
380 mutex_unlock(&pit_state->lock);
383 static void pit_ioport_read(struct kvm_io_device *this,
384 gpa_t addr, int len, void *data)
386 struct kvm_pit *pit = (struct kvm_pit *)this->private;
387 struct kvm_kpit_state *pit_state = &pit->pit_state;
388 struct kvm *kvm = pit->kvm;
390 struct kvm_kpit_channel_state *s;
392 addr &= KVM_PIT_CHANNEL_MASK;
393 s = &pit_state->channels[addr];
395 mutex_lock(&pit_state->lock);
397 if (s->status_latched) {
398 s->status_latched = 0;
400 } else if (s->count_latched) {
401 switch (s->count_latched) {
404 ret = s->latched_count & 0xff;
405 s->count_latched = 0;
408 ret = s->latched_count >> 8;
409 s->count_latched = 0;
412 ret = s->latched_count & 0xff;
413 s->count_latched = RW_STATE_MSB;
417 switch (s->read_state) {
420 count = pit_get_count(kvm, addr);
424 count = pit_get_count(kvm, addr);
425 ret = (count >> 8) & 0xff;
428 count = pit_get_count(kvm, addr);
430 s->read_state = RW_STATE_WORD1;
433 count = pit_get_count(kvm, addr);
434 ret = (count >> 8) & 0xff;
435 s->read_state = RW_STATE_WORD0;
440 if (len > sizeof(ret))
442 memcpy(data, (char *)&ret, len);
444 mutex_unlock(&pit_state->lock);
447 static int pit_in_range(struct kvm_io_device *this, gpa_t addr)
449 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
450 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
453 static void speaker_ioport_write(struct kvm_io_device *this,
454 gpa_t addr, int len, const void *data)
456 struct kvm_pit *pit = (struct kvm_pit *)this->private;
457 struct kvm_kpit_state *pit_state = &pit->pit_state;
458 struct kvm *kvm = pit->kvm;
459 u32 val = *(u32 *) data;
461 mutex_lock(&pit_state->lock);
462 pit_state->speaker_data_on = (val >> 1) & 1;
463 pit_set_gate(kvm, 2, val & 1);
464 mutex_unlock(&pit_state->lock);
467 static void speaker_ioport_read(struct kvm_io_device *this,
468 gpa_t addr, int len, void *data)
470 struct kvm_pit *pit = (struct kvm_pit *)this->private;
471 struct kvm_kpit_state *pit_state = &pit->pit_state;
472 struct kvm *kvm = pit->kvm;
473 unsigned int refresh_clock;
476 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
477 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
479 mutex_lock(&pit_state->lock);
480 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
481 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
482 if (len > sizeof(ret))
484 memcpy(data, (char *)&ret, len);
485 mutex_unlock(&pit_state->lock);
488 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr)
490 return (addr == KVM_SPEAKER_BASE_ADDRESS);
493 void kvm_pit_reset(struct kvm_pit *pit)
496 struct kvm_kpit_channel_state *c;
498 mutex_lock(&pit->pit_state.lock);
499 for (i = 0; i < 3; i++) {
500 c = &pit->pit_state.channels[i];
503 pit_load_count(pit->kvm, i, 0);
505 mutex_unlock(&pit->pit_state.lock);
507 atomic_set(&pit->pit_state.pit_timer.pending, 0);
508 pit->pit_state.inject_pending = 1;
511 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
514 struct kvm_kpit_state *pit_state;
516 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
520 mutex_init(&pit->pit_state.lock);
521 mutex_lock(&pit->pit_state.lock);
523 /* Initialize PIO device */
524 pit->dev.read = pit_ioport_read;
525 pit->dev.write = pit_ioport_write;
526 pit->dev.in_range = pit_in_range;
527 pit->dev.private = pit;
528 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
530 pit->speaker_dev.read = speaker_ioport_read;
531 pit->speaker_dev.write = speaker_ioport_write;
532 pit->speaker_dev.in_range = speaker_in_range;
533 pit->speaker_dev.private = pit;
534 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
536 kvm->arch.vpit = pit;
539 pit_state = &pit->pit_state;
540 pit_state->pit = pit;
541 hrtimer_init(&pit_state->pit_timer.timer,
542 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
543 mutex_unlock(&pit->pit_state.lock);
550 void kvm_free_pit(struct kvm *kvm)
552 struct hrtimer *timer;
554 if (kvm->arch.vpit) {
555 mutex_lock(&kvm->arch.vpit->pit_state.lock);
556 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
557 hrtimer_cancel(timer);
558 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
559 kfree(kvm->arch.vpit);
563 void __inject_pit_timer_intr(struct kvm *kvm)
565 mutex_lock(&kvm->lock);
566 kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1);
567 kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0);
568 kvm_pic_set_irq(pic_irqchip(kvm), 0, 1);
569 kvm_pic_set_irq(pic_irqchip(kvm), 0, 0);
570 mutex_unlock(&kvm->lock);
573 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
575 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
576 struct kvm *kvm = vcpu->kvm;
577 struct kvm_kpit_state *ps;
580 ps = &pit->pit_state;
582 /* Try to inject pending interrupts when:
584 * 2. Last interrupt was accepted or waited for too long time*/
585 if (atomic_read(&ps->pit_timer.pending) &&
586 (ps->inject_pending ||
587 (jiffies - ps->last_injected_time
588 >= KVM_MAX_PIT_INTR_INTERVAL))) {
589 ps->inject_pending = 0;
590 __inject_pit_timer_intr(kvm);
591 ps->last_injected_time = jiffies;
596 void kvm_pit_timer_intr_post(struct kvm_vcpu *vcpu, int vec)
598 struct kvm_arch *arch = &vcpu->kvm->arch;
599 struct kvm_kpit_state *ps;
601 if (vcpu && arch->vpit) {
602 ps = &arch->vpit->pit_state;
603 if (atomic_read(&ps->pit_timer.pending) &&
604 (((arch->vpic->pics[0].imr & 1) == 0 &&
605 arch->vpic->pics[0].irq_base == vec) ||
606 (arch->vioapic->redirtbl[0].fields.vector == vec &&
607 arch->vioapic->redirtbl[0].fields.mask != 1))) {
608 ps->inject_pending = 1;
609 atomic_dec(&ps->pit_timer.pending);
610 ps->channels[0].count_load_time = ktime_get();