Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[linux-2.6] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35
36 #ifndef KBUILD_EXTMOD
37 #define VK "k"
38 #else
39 #define VK
40 #endif
41
42 #ifdef CONFIG_IPW2200_DEBUG
43 #define VD "d"
44 #else
45 #define VD
46 #endif
47
48 #ifdef CONFIG_IPW2200_MONITOR
49 #define VM "m"
50 #else
51 #define VM
52 #endif
53
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
55 #define VP "p"
56 #else
57 #define VP
58 #endif
59
60 #ifdef CONFIG_IPW2200_RADIOTAP
61 #define VR "r"
62 #else
63 #define VR
64 #endif
65
66 #ifdef CONFIG_IPW2200_QOS
67 #define VQ "q"
68 #else
69 #define VQ
70 #endif
71
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION     IPW2200_VERSION
76
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
78
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
83
84 static int cmdlog = 0;
85 static int debug = 0;
86 static int channel = 0;
87 static int mode = 0;
88
89 static u32 ipw_debug_level;
90 static int associate;
91 static int auto_create = 1;
92 static int led = 0;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
98         'a', 'b', 'g', '?'
99 };
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
101
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
104 #endif
105
106
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
113
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116          QOS_TX3_CW_MIN_OFDM},
117         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118          QOS_TX3_CW_MAX_OFDM},
119         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
123 };
124
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127          QOS_TX3_CW_MIN_CCK},
128         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129          QOS_TX3_CW_MAX_CCK},
130         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133          QOS_TX3_TXOP_LIMIT_CCK}
134 };
135
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138          DEF_TX3_CW_MIN_OFDM},
139         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140          DEF_TX3_CW_MAX_OFDM},
141         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149          DEF_TX3_CW_MIN_CCK},
150         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151          DEF_TX3_CW_MAX_CCK},
152         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155          DEF_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
159
160 static int from_priority_to_tx_queue[] = {
161         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
163 };
164
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
166
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168                                        *qos_param);
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170                                      *qos_param);
171 #endif                          /* CONFIG_IPW2200_QOS */
172
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177                                 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
179
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181                              int len, int sync);
182
183 static void ipw_tx_queue_free(struct ipw_priv *);
184
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194                                 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
197
198 static int snprint_line(char *buf, size_t count,
199                         const u8 * data, u32 len, u32 ofs)
200 {
201         int out, i, j, l;
202         char c;
203
204         out = snprintf(buf, count, "%08X", ofs);
205
206         for (l = 0, i = 0; i < 2; i++) {
207                 out += snprintf(buf + out, count - out, " ");
208                 for (j = 0; j < 8 && l < len; j++, l++)
209                         out += snprintf(buf + out, count - out, "%02X ",
210                                         data[(i * 8 + j)]);
211                 for (; j < 8; j++)
212                         out += snprintf(buf + out, count - out, "   ");
213         }
214
215         out += snprintf(buf + out, count - out, " ");
216         for (l = 0, i = 0; i < 2; i++) {
217                 out += snprintf(buf + out, count - out, " ");
218                 for (j = 0; j < 8 && l < len; j++, l++) {
219                         c = data[(i * 8 + j)];
220                         if (!isascii(c) || !isprint(c))
221                                 c = '.';
222
223                         out += snprintf(buf + out, count - out, "%c", c);
224                 }
225
226                 for (; j < 8; j++)
227                         out += snprintf(buf + out, count - out, " ");
228         }
229
230         return out;
231 }
232
233 static void printk_buf(int level, const u8 * data, u32 len)
234 {
235         char line[81];
236         u32 ofs = 0;
237         if (!(ipw_debug_level & level))
238                 return;
239
240         while (len) {
241                 snprint_line(line, sizeof(line), &data[ofs],
242                              min(len, 16U), ofs);
243                 printk(KERN_DEBUG "%s\n", line);
244                 ofs += 16;
245                 len -= min(len, 16U);
246         }
247 }
248
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
250 {
251         size_t out = size;
252         u32 ofs = 0;
253         int total = 0;
254
255         while (size && len) {
256                 out = snprint_line(output, size, &data[ofs],
257                                    min_t(size_t, len, 16U), ofs);
258
259                 ofs += 16;
260                 output += out;
261                 size -= out;
262                 len -= min_t(size_t, len, 16U);
263                 total += out;
264         }
265         return total;
266 }
267
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
271
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
275
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
279 {
280         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281                      __LINE__, (u32) (b), (u32) (c));
282         _ipw_write_reg8(a, b, c);
283 }
284
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
288 {
289         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290                      __LINE__, (u32) (b), (u32) (c));
291         _ipw_write_reg16(a, b, c);
292 }
293
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
297 {
298         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299                      __LINE__, (u32) (b), (u32) (c));
300         _ipw_write_reg32(a, b, c);
301 }
302
303 /* 8-bit direct write (low 4K) */
304 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
305                 u8 val)
306 {
307         writeb(val, ipw->hw_base + ofs);
308 }
309
310 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
311 #define ipw_write8(ipw, ofs, val) do { \
312         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
313                         __LINE__, (u32)(ofs), (u32)(val)); \
314         _ipw_write8(ipw, ofs, val); \
315 } while (0)
316
317 /* 16-bit direct write (low 4K) */
318 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
319                 u16 val)
320 {
321         writew(val, ipw->hw_base + ofs);
322 }
323
324 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
325 #define ipw_write16(ipw, ofs, val) do { \
326         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
327                         __LINE__, (u32)(ofs), (u32)(val)); \
328         _ipw_write16(ipw, ofs, val); \
329 } while (0)
330
331 /* 32-bit direct write (low 4K) */
332 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
333                 u32 val)
334 {
335         writel(val, ipw->hw_base + ofs);
336 }
337
338 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_write32(ipw, ofs, val) do { \
340         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
341                         __LINE__, (u32)(ofs), (u32)(val)); \
342         _ipw_write32(ipw, ofs, val); \
343 } while (0)
344
345 /* 8-bit direct read (low 4K) */
346 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
347 {
348         return readb(ipw->hw_base + ofs);
349 }
350
351 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read8(ipw, ofs) ({ \
353         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
354                         (u32)(ofs)); \
355         _ipw_read8(ipw, ofs); \
356 })
357
358 /* 16-bit direct read (low 4K) */
359 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
360 {
361         return readw(ipw->hw_base + ofs);
362 }
363
364 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read16(ipw, ofs) ({ \
366         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
367                         (u32)(ofs)); \
368         _ipw_read16(ipw, ofs); \
369 })
370
371 /* 32-bit direct read (low 4K) */
372 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
373 {
374         return readl(ipw->hw_base + ofs);
375 }
376
377 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read32(ipw, ofs) ({ \
379         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
380                         (u32)(ofs)); \
381         _ipw_read32(ipw, ofs); \
382 })
383
384 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
385 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
386 #define ipw_read_indirect(a, b, c, d) ({ \
387         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
388                         __LINE__, (u32)(b), (u32)(d)); \
389         _ipw_read_indirect(a, b, c, d); \
390 })
391
392 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
393 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
394                                 int num);
395 #define ipw_write_indirect(a, b, c, d) do { \
396         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
397                         __LINE__, (u32)(b), (u32)(d)); \
398         _ipw_write_indirect(a, b, c, d); \
399 } while (0)
400
401 /* 32-bit indirect write (above 4K) */
402 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
403 {
404         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
405         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
406         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
407 }
408
409 /* 8-bit indirect write (above 4K) */
410 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
411 {
412         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
413         u32 dif_len = reg - aligned_addr;
414
415         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
416         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
417         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
418 }
419
420 /* 16-bit indirect write (above 4K) */
421 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
422 {
423         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
424         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
425
426         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
427         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
428         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
429 }
430
431 /* 8-bit indirect read (above 4K) */
432 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
433 {
434         u32 word;
435         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
436         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
437         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
438         return (word >> ((reg & 0x3) * 8)) & 0xff;
439 }
440
441 /* 32-bit indirect read (above 4K) */
442 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
443 {
444         u32 value;
445
446         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
447
448         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
449         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
450         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
451         return value;
452 }
453
454 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
455 /*    for area above 1st 4K of SRAM/reg space */
456 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
457                                int num)
458 {
459         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
460         u32 dif_len = addr - aligned_addr;
461         u32 i;
462
463         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
464
465         if (num <= 0) {
466                 return;
467         }
468
469         /* Read the first dword (or portion) byte by byte */
470         if (unlikely(dif_len)) {
471                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472                 /* Start reading at aligned_addr + dif_len */
473                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
474                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
475                 aligned_addr += 4;
476         }
477
478         /* Read all of the middle dwords as dwords, with auto-increment */
479         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
480         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
481                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
482
483         /* Read the last dword (or portion) byte by byte */
484         if (unlikely(num)) {
485                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
486                 for (i = 0; num > 0; i++, num--)
487                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
488         }
489 }
490
491 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
492 /*    for area above 1st 4K of SRAM/reg space */
493 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
494                                 int num)
495 {
496         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
497         u32 dif_len = addr - aligned_addr;
498         u32 i;
499
500         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
501
502         if (num <= 0) {
503                 return;
504         }
505
506         /* Write the first dword (or portion) byte by byte */
507         if (unlikely(dif_len)) {
508                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509                 /* Start writing at aligned_addr + dif_len */
510                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
511                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
512                 aligned_addr += 4;
513         }
514
515         /* Write all of the middle dwords as dwords, with auto-increment */
516         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
517         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
518                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
519
520         /* Write the last dword (or portion) byte by byte */
521         if (unlikely(num)) {
522                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
523                 for (i = 0; num > 0; i++, num--, buf++)
524                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
525         }
526 }
527
528 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
529 /*    for 1st 4K of SRAM/regs space */
530 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
531                              int num)
532 {
533         memcpy_toio((priv->hw_base + addr), buf, num);
534 }
535
536 /* Set bit(s) in low 4K of SRAM/regs */
537 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
538 {
539         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
540 }
541
542 /* Clear bit(s) in low 4K of SRAM/regs */
543 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
544 {
545         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
546 }
547
548 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
549 {
550         if (priv->status & STATUS_INT_ENABLED)
551                 return;
552         priv->status |= STATUS_INT_ENABLED;
553         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
554 }
555
556 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
557 {
558         if (!(priv->status & STATUS_INT_ENABLED))
559                 return;
560         priv->status &= ~STATUS_INT_ENABLED;
561         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
562 }
563
564 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
565 {
566         unsigned long flags;
567
568         spin_lock_irqsave(&priv->irq_lock, flags);
569         __ipw_enable_interrupts(priv);
570         spin_unlock_irqrestore(&priv->irq_lock, flags);
571 }
572
573 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
574 {
575         unsigned long flags;
576
577         spin_lock_irqsave(&priv->irq_lock, flags);
578         __ipw_disable_interrupts(priv);
579         spin_unlock_irqrestore(&priv->irq_lock, flags);
580 }
581
582 static char *ipw_error_desc(u32 val)
583 {
584         switch (val) {
585         case IPW_FW_ERROR_OK:
586                 return "ERROR_OK";
587         case IPW_FW_ERROR_FAIL:
588                 return "ERROR_FAIL";
589         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
590                 return "MEMORY_UNDERFLOW";
591         case IPW_FW_ERROR_MEMORY_OVERFLOW:
592                 return "MEMORY_OVERFLOW";
593         case IPW_FW_ERROR_BAD_PARAM:
594                 return "BAD_PARAM";
595         case IPW_FW_ERROR_BAD_CHECKSUM:
596                 return "BAD_CHECKSUM";
597         case IPW_FW_ERROR_NMI_INTERRUPT:
598                 return "NMI_INTERRUPT";
599         case IPW_FW_ERROR_BAD_DATABASE:
600                 return "BAD_DATABASE";
601         case IPW_FW_ERROR_ALLOC_FAIL:
602                 return "ALLOC_FAIL";
603         case IPW_FW_ERROR_DMA_UNDERRUN:
604                 return "DMA_UNDERRUN";
605         case IPW_FW_ERROR_DMA_STATUS:
606                 return "DMA_STATUS";
607         case IPW_FW_ERROR_DINO_ERROR:
608                 return "DINO_ERROR";
609         case IPW_FW_ERROR_EEPROM_ERROR:
610                 return "EEPROM_ERROR";
611         case IPW_FW_ERROR_SYSASSERT:
612                 return "SYSASSERT";
613         case IPW_FW_ERROR_FATAL_ERROR:
614                 return "FATAL_ERROR";
615         default:
616                 return "UNKNOWN_ERROR";
617         }
618 }
619
620 static void ipw_dump_error_log(struct ipw_priv *priv,
621                                struct ipw_fw_error *error)
622 {
623         u32 i;
624
625         if (!error) {
626                 IPW_ERROR("Error allocating and capturing error log.  "
627                           "Nothing to dump.\n");
628                 return;
629         }
630
631         IPW_ERROR("Start IPW Error Log Dump:\n");
632         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
633                   error->status, error->config);
634
635         for (i = 0; i < error->elem_len; i++)
636                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
637                           ipw_error_desc(error->elem[i].desc),
638                           error->elem[i].time,
639                           error->elem[i].blink1,
640                           error->elem[i].blink2,
641                           error->elem[i].link1,
642                           error->elem[i].link2, error->elem[i].data);
643         for (i = 0; i < error->log_len; i++)
644                 IPW_ERROR("%i\t0x%08x\t%i\n",
645                           error->log[i].time,
646                           error->log[i].data, error->log[i].event);
647 }
648
649 static inline int ipw_is_init(struct ipw_priv *priv)
650 {
651         return (priv->status & STATUS_INIT) ? 1 : 0;
652 }
653
654 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
655 {
656         u32 addr, field_info, field_len, field_count, total_len;
657
658         IPW_DEBUG_ORD("ordinal = %i\n", ord);
659
660         if (!priv || !val || !len) {
661                 IPW_DEBUG_ORD("Invalid argument\n");
662                 return -EINVAL;
663         }
664
665         /* verify device ordinal tables have been initialized */
666         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
667                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
668                 return -EINVAL;
669         }
670
671         switch (IPW_ORD_TABLE_ID_MASK & ord) {
672         case IPW_ORD_TABLE_0_MASK:
673                 /*
674                  * TABLE 0: Direct access to a table of 32 bit values
675                  *
676                  * This is a very simple table with the data directly
677                  * read from the table
678                  */
679
680                 /* remove the table id from the ordinal */
681                 ord &= IPW_ORD_TABLE_VALUE_MASK;
682
683                 /* boundary check */
684                 if (ord > priv->table0_len) {
685                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
686                                       "max (%i)\n", ord, priv->table0_len);
687                         return -EINVAL;
688                 }
689
690                 /* verify we have enough room to store the value */
691                 if (*len < sizeof(u32)) {
692                         IPW_DEBUG_ORD("ordinal buffer length too small, "
693                                       "need %zd\n", sizeof(u32));
694                         return -EINVAL;
695                 }
696
697                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
698                               ord, priv->table0_addr + (ord << 2));
699
700                 *len = sizeof(u32);
701                 ord <<= 2;
702                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
703                 break;
704
705         case IPW_ORD_TABLE_1_MASK:
706                 /*
707                  * TABLE 1: Indirect access to a table of 32 bit values
708                  *
709                  * This is a fairly large table of u32 values each
710                  * representing starting addr for the data (which is
711                  * also a u32)
712                  */
713
714                 /* remove the table id from the ordinal */
715                 ord &= IPW_ORD_TABLE_VALUE_MASK;
716
717                 /* boundary check */
718                 if (ord > priv->table1_len) {
719                         IPW_DEBUG_ORD("ordinal value too long\n");
720                         return -EINVAL;
721                 }
722
723                 /* verify we have enough room to store the value */
724                 if (*len < sizeof(u32)) {
725                         IPW_DEBUG_ORD("ordinal buffer length too small, "
726                                       "need %zd\n", sizeof(u32));
727                         return -EINVAL;
728                 }
729
730                 *((u32 *) val) =
731                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
732                 *len = sizeof(u32);
733                 break;
734
735         case IPW_ORD_TABLE_2_MASK:
736                 /*
737                  * TABLE 2: Indirect access to a table of variable sized values
738                  *
739                  * This table consist of six values, each containing
740                  *     - dword containing the starting offset of the data
741                  *     - dword containing the lengh in the first 16bits
742                  *       and the count in the second 16bits
743                  */
744
745                 /* remove the table id from the ordinal */
746                 ord &= IPW_ORD_TABLE_VALUE_MASK;
747
748                 /* boundary check */
749                 if (ord > priv->table2_len) {
750                         IPW_DEBUG_ORD("ordinal value too long\n");
751                         return -EINVAL;
752                 }
753
754                 /* get the address of statistic */
755                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
756
757                 /* get the second DW of statistics ;
758                  * two 16-bit words - first is length, second is count */
759                 field_info =
760                     ipw_read_reg32(priv,
761                                    priv->table2_addr + (ord << 3) +
762                                    sizeof(u32));
763
764                 /* get each entry length */
765                 field_len = *((u16 *) & field_info);
766
767                 /* get number of entries */
768                 field_count = *(((u16 *) & field_info) + 1);
769
770                 /* abort if not enought memory */
771                 total_len = field_len * field_count;
772                 if (total_len > *len) {
773                         *len = total_len;
774                         return -EINVAL;
775                 }
776
777                 *len = total_len;
778                 if (!total_len)
779                         return 0;
780
781                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
782                               "field_info = 0x%08x\n",
783                               addr, total_len, field_info);
784                 ipw_read_indirect(priv, addr, val, total_len);
785                 break;
786
787         default:
788                 IPW_DEBUG_ORD("Invalid ordinal!\n");
789                 return -EINVAL;
790
791         }
792
793         return 0;
794 }
795
796 static void ipw_init_ordinals(struct ipw_priv *priv)
797 {
798         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
799         priv->table0_len = ipw_read32(priv, priv->table0_addr);
800
801         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
802                       priv->table0_addr, priv->table0_len);
803
804         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
805         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
806
807         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
808                       priv->table1_addr, priv->table1_len);
809
810         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
811         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
812         priv->table2_len &= 0x0000ffff; /* use first two bytes */
813
814         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
815                       priv->table2_addr, priv->table2_len);
816
817 }
818
819 static u32 ipw_register_toggle(u32 reg)
820 {
821         reg &= ~IPW_START_STANDBY;
822         if (reg & IPW_GATE_ODMA)
823                 reg &= ~IPW_GATE_ODMA;
824         if (reg & IPW_GATE_IDMA)
825                 reg &= ~IPW_GATE_IDMA;
826         if (reg & IPW_GATE_ADMA)
827                 reg &= ~IPW_GATE_ADMA;
828         return reg;
829 }
830
831 /*
832  * LED behavior:
833  * - On radio ON, turn on any LEDs that require to be on during start
834  * - On initialization, start unassociated blink
835  * - On association, disable unassociated blink
836  * - On disassociation, start unassociated blink
837  * - On radio OFF, turn off any LEDs started during radio on
838  *
839  */
840 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
841 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
842 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
843
844 static void ipw_led_link_on(struct ipw_priv *priv)
845 {
846         unsigned long flags;
847         u32 led;
848
849         /* If configured to not use LEDs, or nic_type is 1,
850          * then we don't toggle a LINK led */
851         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
852                 return;
853
854         spin_lock_irqsave(&priv->lock, flags);
855
856         if (!(priv->status & STATUS_RF_KILL_MASK) &&
857             !(priv->status & STATUS_LED_LINK_ON)) {
858                 IPW_DEBUG_LED("Link LED On\n");
859                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
860                 led |= priv->led_association_on;
861
862                 led = ipw_register_toggle(led);
863
864                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
865                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
866
867                 priv->status |= STATUS_LED_LINK_ON;
868
869                 /* If we aren't associated, schedule turning the LED off */
870                 if (!(priv->status & STATUS_ASSOCIATED))
871                         queue_delayed_work(priv->workqueue,
872                                            &priv->led_link_off,
873                                            LD_TIME_LINK_ON);
874         }
875
876         spin_unlock_irqrestore(&priv->lock, flags);
877 }
878
879 static void ipw_bg_led_link_on(struct work_struct *work)
880 {
881         struct ipw_priv *priv =
882                 container_of(work, struct ipw_priv, led_link_on.work);
883         mutex_lock(&priv->mutex);
884         ipw_led_link_on(priv);
885         mutex_unlock(&priv->mutex);
886 }
887
888 static void ipw_led_link_off(struct ipw_priv *priv)
889 {
890         unsigned long flags;
891         u32 led;
892
893         /* If configured not to use LEDs, or nic type is 1,
894          * then we don't goggle the LINK led. */
895         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
896                 return;
897
898         spin_lock_irqsave(&priv->lock, flags);
899
900         if (priv->status & STATUS_LED_LINK_ON) {
901                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
902                 led &= priv->led_association_off;
903                 led = ipw_register_toggle(led);
904
905                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
906                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
907
908                 IPW_DEBUG_LED("Link LED Off\n");
909
910                 priv->status &= ~STATUS_LED_LINK_ON;
911
912                 /* If we aren't associated and the radio is on, schedule
913                  * turning the LED on (blink while unassociated) */
914                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
915                     !(priv->status & STATUS_ASSOCIATED))
916                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
917                                            LD_TIME_LINK_OFF);
918
919         }
920
921         spin_unlock_irqrestore(&priv->lock, flags);
922 }
923
924 static void ipw_bg_led_link_off(struct work_struct *work)
925 {
926         struct ipw_priv *priv =
927                 container_of(work, struct ipw_priv, led_link_off.work);
928         mutex_lock(&priv->mutex);
929         ipw_led_link_off(priv);
930         mutex_unlock(&priv->mutex);
931 }
932
933 static void __ipw_led_activity_on(struct ipw_priv *priv)
934 {
935         u32 led;
936
937         if (priv->config & CFG_NO_LED)
938                 return;
939
940         if (priv->status & STATUS_RF_KILL_MASK)
941                 return;
942
943         if (!(priv->status & STATUS_LED_ACT_ON)) {
944                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
945                 led |= priv->led_activity_on;
946
947                 led = ipw_register_toggle(led);
948
949                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
950                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
951
952                 IPW_DEBUG_LED("Activity LED On\n");
953
954                 priv->status |= STATUS_LED_ACT_ON;
955
956                 cancel_delayed_work(&priv->led_act_off);
957                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
958                                    LD_TIME_ACT_ON);
959         } else {
960                 /* Reschedule LED off for full time period */
961                 cancel_delayed_work(&priv->led_act_off);
962                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
963                                    LD_TIME_ACT_ON);
964         }
965 }
966
967 #if 0
968 void ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         unsigned long flags;
971         spin_lock_irqsave(&priv->lock, flags);
972         __ipw_led_activity_on(priv);
973         spin_unlock_irqrestore(&priv->lock, flags);
974 }
975 #endif  /*  0  */
976
977 static void ipw_led_activity_off(struct ipw_priv *priv)
978 {
979         unsigned long flags;
980         u32 led;
981
982         if (priv->config & CFG_NO_LED)
983                 return;
984
985         spin_lock_irqsave(&priv->lock, flags);
986
987         if (priv->status & STATUS_LED_ACT_ON) {
988                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
989                 led &= priv->led_activity_off;
990
991                 led = ipw_register_toggle(led);
992
993                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
994                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
995
996                 IPW_DEBUG_LED("Activity LED Off\n");
997
998                 priv->status &= ~STATUS_LED_ACT_ON;
999         }
1000
1001         spin_unlock_irqrestore(&priv->lock, flags);
1002 }
1003
1004 static void ipw_bg_led_activity_off(struct work_struct *work)
1005 {
1006         struct ipw_priv *priv =
1007                 container_of(work, struct ipw_priv, led_act_off.work);
1008         mutex_lock(&priv->mutex);
1009         ipw_led_activity_off(priv);
1010         mutex_unlock(&priv->mutex);
1011 }
1012
1013 static void ipw_led_band_on(struct ipw_priv *priv)
1014 {
1015         unsigned long flags;
1016         u32 led;
1017
1018         /* Only nic type 1 supports mode LEDs */
1019         if (priv->config & CFG_NO_LED ||
1020             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1021                 return;
1022
1023         spin_lock_irqsave(&priv->lock, flags);
1024
1025         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1026         if (priv->assoc_network->mode == IEEE_A) {
1027                 led |= priv->led_ofdm_on;
1028                 led &= priv->led_association_off;
1029                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1030         } else if (priv->assoc_network->mode == IEEE_G) {
1031                 led |= priv->led_ofdm_on;
1032                 led |= priv->led_association_on;
1033                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1034         } else {
1035                 led &= priv->led_ofdm_off;
1036                 led |= priv->led_association_on;
1037                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1038         }
1039
1040         led = ipw_register_toggle(led);
1041
1042         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1043         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1044
1045         spin_unlock_irqrestore(&priv->lock, flags);
1046 }
1047
1048 static void ipw_led_band_off(struct ipw_priv *priv)
1049 {
1050         unsigned long flags;
1051         u32 led;
1052
1053         /* Only nic type 1 supports mode LEDs */
1054         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1055                 return;
1056
1057         spin_lock_irqsave(&priv->lock, flags);
1058
1059         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1060         led &= priv->led_ofdm_off;
1061         led &= priv->led_association_off;
1062
1063         led = ipw_register_toggle(led);
1064
1065         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1066         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1067
1068         spin_unlock_irqrestore(&priv->lock, flags);
1069 }
1070
1071 static void ipw_led_radio_on(struct ipw_priv *priv)
1072 {
1073         ipw_led_link_on(priv);
1074 }
1075
1076 static void ipw_led_radio_off(struct ipw_priv *priv)
1077 {
1078         ipw_led_activity_off(priv);
1079         ipw_led_link_off(priv);
1080 }
1081
1082 static void ipw_led_link_up(struct ipw_priv *priv)
1083 {
1084         /* Set the Link Led on for all nic types */
1085         ipw_led_link_on(priv);
1086 }
1087
1088 static void ipw_led_link_down(struct ipw_priv *priv)
1089 {
1090         ipw_led_activity_off(priv);
1091         ipw_led_link_off(priv);
1092
1093         if (priv->status & STATUS_RF_KILL_MASK)
1094                 ipw_led_radio_off(priv);
1095 }
1096
1097 static void ipw_led_init(struct ipw_priv *priv)
1098 {
1099         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1100
1101         /* Set the default PINs for the link and activity leds */
1102         priv->led_activity_on = IPW_ACTIVITY_LED;
1103         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1104
1105         priv->led_association_on = IPW_ASSOCIATED_LED;
1106         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1107
1108         /* Set the default PINs for the OFDM leds */
1109         priv->led_ofdm_on = IPW_OFDM_LED;
1110         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1111
1112         switch (priv->nic_type) {
1113         case EEPROM_NIC_TYPE_1:
1114                 /* In this NIC type, the LEDs are reversed.... */
1115                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1116                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1117                 priv->led_association_on = IPW_ACTIVITY_LED;
1118                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1119
1120                 if (!(priv->config & CFG_NO_LED))
1121                         ipw_led_band_on(priv);
1122
1123                 /* And we don't blink link LEDs for this nic, so
1124                  * just return here */
1125                 return;
1126
1127         case EEPROM_NIC_TYPE_3:
1128         case EEPROM_NIC_TYPE_2:
1129         case EEPROM_NIC_TYPE_4:
1130         case EEPROM_NIC_TYPE_0:
1131                 break;
1132
1133         default:
1134                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1135                                priv->nic_type);
1136                 priv->nic_type = EEPROM_NIC_TYPE_0;
1137                 break;
1138         }
1139
1140         if (!(priv->config & CFG_NO_LED)) {
1141                 if (priv->status & STATUS_ASSOCIATED)
1142                         ipw_led_link_on(priv);
1143                 else
1144                         ipw_led_link_off(priv);
1145         }
1146 }
1147
1148 static void ipw_led_shutdown(struct ipw_priv *priv)
1149 {
1150         ipw_led_activity_off(priv);
1151         ipw_led_link_off(priv);
1152         ipw_led_band_off(priv);
1153         cancel_delayed_work(&priv->led_link_on);
1154         cancel_delayed_work(&priv->led_link_off);
1155         cancel_delayed_work(&priv->led_act_off);
1156 }
1157
1158 /*
1159  * The following adds a new attribute to the sysfs representation
1160  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1161  * used for controling the debug level.
1162  *
1163  * See the level definitions in ipw for details.
1164  */
1165 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1166 {
1167         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1168 }
1169
1170 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1171                                  size_t count)
1172 {
1173         char *p = (char *)buf;
1174         u32 val;
1175
1176         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1177                 p++;
1178                 if (p[0] == 'x' || p[0] == 'X')
1179                         p++;
1180                 val = simple_strtoul(p, &p, 16);
1181         } else
1182                 val = simple_strtoul(p, &p, 10);
1183         if (p == buf)
1184                 printk(KERN_INFO DRV_NAME
1185                        ": %s is not in hex or decimal form.\n", buf);
1186         else
1187                 ipw_debug_level = val;
1188
1189         return strnlen(buf, count);
1190 }
1191
1192 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1193                    show_debug_level, store_debug_level);
1194
1195 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1196 {
1197         /* length = 1st dword in log */
1198         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1199 }
1200
1201 static void ipw_capture_event_log(struct ipw_priv *priv,
1202                                   u32 log_len, struct ipw_event *log)
1203 {
1204         u32 base;
1205
1206         if (log_len) {
1207                 base = ipw_read32(priv, IPW_EVENT_LOG);
1208                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1209                                   (u8 *) log, sizeof(*log) * log_len);
1210         }
1211 }
1212
1213 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1214 {
1215         struct ipw_fw_error *error;
1216         u32 log_len = ipw_get_event_log_len(priv);
1217         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1218         u32 elem_len = ipw_read_reg32(priv, base);
1219
1220         error = kmalloc(sizeof(*error) +
1221                         sizeof(*error->elem) * elem_len +
1222                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1223         if (!error) {
1224                 IPW_ERROR("Memory allocation for firmware error log "
1225                           "failed.\n");
1226                 return NULL;
1227         }
1228         error->jiffies = jiffies;
1229         error->status = priv->status;
1230         error->config = priv->config;
1231         error->elem_len = elem_len;
1232         error->log_len = log_len;
1233         error->elem = (struct ipw_error_elem *)error->payload;
1234         error->log = (struct ipw_event *)(error->elem + elem_len);
1235
1236         ipw_capture_event_log(priv, log_len, error->log);
1237
1238         if (elem_len)
1239                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240                                   sizeof(*error->elem) * elem_len);
1241
1242         return error;
1243 }
1244
1245 static ssize_t show_event_log(struct device *d,
1246                               struct device_attribute *attr, char *buf)
1247 {
1248         struct ipw_priv *priv = dev_get_drvdata(d);
1249         u32 log_len = ipw_get_event_log_len(priv);
1250         u32 log_size;
1251         struct ipw_event *log;
1252         u32 len = 0, i;
1253
1254         /* not using min() because of its strict type checking */
1255         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256                         sizeof(*log) * log_len : PAGE_SIZE;
1257         log = kzalloc(log_size, GFP_KERNEL);
1258         if (!log) {
1259                 IPW_ERROR("Unable to allocate memory for log\n");
1260                 return 0;
1261         }
1262         log_len = log_size / sizeof(*log);
1263         ipw_capture_event_log(priv, log_len, log);
1264
1265         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266         for (i = 0; i < log_len; i++)
1267                 len += snprintf(buf + len, PAGE_SIZE - len,
1268                                 "\n%08X%08X%08X",
1269                                 log[i].time, log[i].event, log[i].data);
1270         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1271         kfree(log);
1272         return len;
1273 }
1274
1275 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1276
1277 static ssize_t show_error(struct device *d,
1278                           struct device_attribute *attr, char *buf)
1279 {
1280         struct ipw_priv *priv = dev_get_drvdata(d);
1281         u32 len = 0, i;
1282         if (!priv->error)
1283                 return 0;
1284         len += snprintf(buf + len, PAGE_SIZE - len,
1285                         "%08lX%08X%08X%08X",
1286                         priv->error->jiffies,
1287                         priv->error->status,
1288                         priv->error->config, priv->error->elem_len);
1289         for (i = 0; i < priv->error->elem_len; i++)
1290                 len += snprintf(buf + len, PAGE_SIZE - len,
1291                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1292                                 priv->error->elem[i].time,
1293                                 priv->error->elem[i].desc,
1294                                 priv->error->elem[i].blink1,
1295                                 priv->error->elem[i].blink2,
1296                                 priv->error->elem[i].link1,
1297                                 priv->error->elem[i].link2,
1298                                 priv->error->elem[i].data);
1299
1300         len += snprintf(buf + len, PAGE_SIZE - len,
1301                         "\n%08X", priv->error->log_len);
1302         for (i = 0; i < priv->error->log_len; i++)
1303                 len += snprintf(buf + len, PAGE_SIZE - len,
1304                                 "\n%08X%08X%08X",
1305                                 priv->error->log[i].time,
1306                                 priv->error->log[i].event,
1307                                 priv->error->log[i].data);
1308         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1309         return len;
1310 }
1311
1312 static ssize_t clear_error(struct device *d,
1313                            struct device_attribute *attr,
1314                            const char *buf, size_t count)
1315 {
1316         struct ipw_priv *priv = dev_get_drvdata(d);
1317
1318         kfree(priv->error);
1319         priv->error = NULL;
1320         return count;
1321 }
1322
1323 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1324
1325 static ssize_t show_cmd_log(struct device *d,
1326                             struct device_attribute *attr, char *buf)
1327 {
1328         struct ipw_priv *priv = dev_get_drvdata(d);
1329         u32 len = 0, i;
1330         if (!priv->cmdlog)
1331                 return 0;
1332         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1334              i = (i + 1) % priv->cmdlog_len) {
1335                 len +=
1336                     snprintf(buf + len, PAGE_SIZE - len,
1337                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339                              priv->cmdlog[i].cmd.len);
1340                 len +=
1341                     snprintk_buf(buf + len, PAGE_SIZE - len,
1342                                  (u8 *) priv->cmdlog[i].cmd.param,
1343                                  priv->cmdlog[i].cmd.len);
1344                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1345         }
1346         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1347         return len;
1348 }
1349
1350 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1351
1352 #ifdef CONFIG_IPW2200_PROMISCUOUS
1353 static void ipw_prom_free(struct ipw_priv *priv);
1354 static int ipw_prom_alloc(struct ipw_priv *priv);
1355 static ssize_t store_rtap_iface(struct device *d,
1356                          struct device_attribute *attr,
1357                          const char *buf, size_t count)
1358 {
1359         struct ipw_priv *priv = dev_get_drvdata(d);
1360         int rc = 0;
1361
1362         if (count < 1)
1363                 return -EINVAL;
1364
1365         switch (buf[0]) {
1366         case '0':
1367                 if (!rtap_iface)
1368                         return count;
1369
1370                 if (netif_running(priv->prom_net_dev)) {
1371                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1372                         return count;
1373                 }
1374
1375                 ipw_prom_free(priv);
1376                 rtap_iface = 0;
1377                 break;
1378
1379         case '1':
1380                 if (rtap_iface)
1381                         return count;
1382
1383                 rc = ipw_prom_alloc(priv);
1384                 if (!rc)
1385                         rtap_iface = 1;
1386                 break;
1387
1388         default:
1389                 return -EINVAL;
1390         }
1391
1392         if (rc) {
1393                 IPW_ERROR("Failed to register promiscuous network "
1394                           "device (error %d).\n", rc);
1395         }
1396
1397         return count;
1398 }
1399
1400 static ssize_t show_rtap_iface(struct device *d,
1401                         struct device_attribute *attr,
1402                         char *buf)
1403 {
1404         struct ipw_priv *priv = dev_get_drvdata(d);
1405         if (rtap_iface)
1406                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1407         else {
1408                 buf[0] = '-';
1409                 buf[1] = '1';
1410                 buf[2] = '\0';
1411                 return 3;
1412         }
1413 }
1414
1415 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1416                    store_rtap_iface);
1417
1418 static ssize_t store_rtap_filter(struct device *d,
1419                          struct device_attribute *attr,
1420                          const char *buf, size_t count)
1421 {
1422         struct ipw_priv *priv = dev_get_drvdata(d);
1423
1424         if (!priv->prom_priv) {
1425                 IPW_ERROR("Attempting to set filter without "
1426                           "rtap_iface enabled.\n");
1427                 return -EPERM;
1428         }
1429
1430         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1431
1432         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1433                        BIT_ARG16(priv->prom_priv->filter));
1434
1435         return count;
1436 }
1437
1438 static ssize_t show_rtap_filter(struct device *d,
1439                         struct device_attribute *attr,
1440                         char *buf)
1441 {
1442         struct ipw_priv *priv = dev_get_drvdata(d);
1443         return sprintf(buf, "0x%04X",
1444                        priv->prom_priv ? priv->prom_priv->filter : 0);
1445 }
1446
1447 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1448                    store_rtap_filter);
1449 #endif
1450
1451 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1452                              char *buf)
1453 {
1454         struct ipw_priv *priv = dev_get_drvdata(d);
1455         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1456 }
1457
1458 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1459                               const char *buf, size_t count)
1460 {
1461         struct ipw_priv *priv = dev_get_drvdata(d);
1462         struct net_device *dev = priv->net_dev;
1463         char buffer[] = "00000000";
1464         unsigned long len =
1465             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1466         unsigned long val;
1467         char *p = buffer;
1468
1469         IPW_DEBUG_INFO("enter\n");
1470
1471         strncpy(buffer, buf, len);
1472         buffer[len] = 0;
1473
1474         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1475                 p++;
1476                 if (p[0] == 'x' || p[0] == 'X')
1477                         p++;
1478                 val = simple_strtoul(p, &p, 16);
1479         } else
1480                 val = simple_strtoul(p, &p, 10);
1481         if (p == buffer) {
1482                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1483         } else {
1484                 priv->ieee->scan_age = val;
1485                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1486         }
1487
1488         IPW_DEBUG_INFO("exit\n");
1489         return len;
1490 }
1491
1492 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1493
1494 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1495                         char *buf)
1496 {
1497         struct ipw_priv *priv = dev_get_drvdata(d);
1498         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1499 }
1500
1501 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1502                          const char *buf, size_t count)
1503 {
1504         struct ipw_priv *priv = dev_get_drvdata(d);
1505
1506         IPW_DEBUG_INFO("enter\n");
1507
1508         if (count == 0)
1509                 return 0;
1510
1511         if (*buf == 0) {
1512                 IPW_DEBUG_LED("Disabling LED control.\n");
1513                 priv->config |= CFG_NO_LED;
1514                 ipw_led_shutdown(priv);
1515         } else {
1516                 IPW_DEBUG_LED("Enabling LED control.\n");
1517                 priv->config &= ~CFG_NO_LED;
1518                 ipw_led_init(priv);
1519         }
1520
1521         IPW_DEBUG_INFO("exit\n");
1522         return count;
1523 }
1524
1525 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1526
1527 static ssize_t show_status(struct device *d,
1528                            struct device_attribute *attr, char *buf)
1529 {
1530         struct ipw_priv *p = d->driver_data;
1531         return sprintf(buf, "0x%08x\n", (int)p->status);
1532 }
1533
1534 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1535
1536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1537                         char *buf)
1538 {
1539         struct ipw_priv *p = d->driver_data;
1540         return sprintf(buf, "0x%08x\n", (int)p->config);
1541 }
1542
1543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1544
1545 static ssize_t show_nic_type(struct device *d,
1546                              struct device_attribute *attr, char *buf)
1547 {
1548         struct ipw_priv *priv = d->driver_data;
1549         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1550 }
1551
1552 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1553
1554 static ssize_t show_ucode_version(struct device *d,
1555                                   struct device_attribute *attr, char *buf)
1556 {
1557         u32 len = sizeof(u32), tmp = 0;
1558         struct ipw_priv *p = d->driver_data;
1559
1560         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1561                 return 0;
1562
1563         return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1567
1568 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1569                         char *buf)
1570 {
1571         u32 len = sizeof(u32), tmp = 0;
1572         struct ipw_priv *p = d->driver_data;
1573
1574         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1575                 return 0;
1576
1577         return sprintf(buf, "0x%08x\n", tmp);
1578 }
1579
1580 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1581
1582 /*
1583  * Add a device attribute to view/control the delay between eeprom
1584  * operations.
1585  */
1586 static ssize_t show_eeprom_delay(struct device *d,
1587                                  struct device_attribute *attr, char *buf)
1588 {
1589         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1590         return sprintf(buf, "%i\n", n);
1591 }
1592 static ssize_t store_eeprom_delay(struct device *d,
1593                                   struct device_attribute *attr,
1594                                   const char *buf, size_t count)
1595 {
1596         struct ipw_priv *p = d->driver_data;
1597         sscanf(buf, "%i", &p->eeprom_delay);
1598         return strnlen(buf, count);
1599 }
1600
1601 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1602                    show_eeprom_delay, store_eeprom_delay);
1603
1604 static ssize_t show_command_event_reg(struct device *d,
1605                                       struct device_attribute *attr, char *buf)
1606 {
1607         u32 reg = 0;
1608         struct ipw_priv *p = d->driver_data;
1609
1610         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1611         return sprintf(buf, "0x%08x\n", reg);
1612 }
1613 static ssize_t store_command_event_reg(struct device *d,
1614                                        struct device_attribute *attr,
1615                                        const char *buf, size_t count)
1616 {
1617         u32 reg;
1618         struct ipw_priv *p = d->driver_data;
1619
1620         sscanf(buf, "%x", &reg);
1621         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1622         return strnlen(buf, count);
1623 }
1624
1625 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1626                    show_command_event_reg, store_command_event_reg);
1627
1628 static ssize_t show_mem_gpio_reg(struct device *d,
1629                                  struct device_attribute *attr, char *buf)
1630 {
1631         u32 reg = 0;
1632         struct ipw_priv *p = d->driver_data;
1633
1634         reg = ipw_read_reg32(p, 0x301100);
1635         return sprintf(buf, "0x%08x\n", reg);
1636 }
1637 static ssize_t store_mem_gpio_reg(struct device *d,
1638                                   struct device_attribute *attr,
1639                                   const char *buf, size_t count)
1640 {
1641         u32 reg;
1642         struct ipw_priv *p = d->driver_data;
1643
1644         sscanf(buf, "%x", &reg);
1645         ipw_write_reg32(p, 0x301100, reg);
1646         return strnlen(buf, count);
1647 }
1648
1649 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1650                    show_mem_gpio_reg, store_mem_gpio_reg);
1651
1652 static ssize_t show_indirect_dword(struct device *d,
1653                                    struct device_attribute *attr, char *buf)
1654 {
1655         u32 reg = 0;
1656         struct ipw_priv *priv = d->driver_data;
1657
1658         if (priv->status & STATUS_INDIRECT_DWORD)
1659                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1660         else
1661                 reg = 0;
1662
1663         return sprintf(buf, "0x%08x\n", reg);
1664 }
1665 static ssize_t store_indirect_dword(struct device *d,
1666                                     struct device_attribute *attr,
1667                                     const char *buf, size_t count)
1668 {
1669         struct ipw_priv *priv = d->driver_data;
1670
1671         sscanf(buf, "%x", &priv->indirect_dword);
1672         priv->status |= STATUS_INDIRECT_DWORD;
1673         return strnlen(buf, count);
1674 }
1675
1676 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1677                    show_indirect_dword, store_indirect_dword);
1678
1679 static ssize_t show_indirect_byte(struct device *d,
1680                                   struct device_attribute *attr, char *buf)
1681 {
1682         u8 reg = 0;
1683         struct ipw_priv *priv = d->driver_data;
1684
1685         if (priv->status & STATUS_INDIRECT_BYTE)
1686                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1687         else
1688                 reg = 0;
1689
1690         return sprintf(buf, "0x%02x\n", reg);
1691 }
1692 static ssize_t store_indirect_byte(struct device *d,
1693                                    struct device_attribute *attr,
1694                                    const char *buf, size_t count)
1695 {
1696         struct ipw_priv *priv = d->driver_data;
1697
1698         sscanf(buf, "%x", &priv->indirect_byte);
1699         priv->status |= STATUS_INDIRECT_BYTE;
1700         return strnlen(buf, count);
1701 }
1702
1703 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1704                    show_indirect_byte, store_indirect_byte);
1705
1706 static ssize_t show_direct_dword(struct device *d,
1707                                  struct device_attribute *attr, char *buf)
1708 {
1709         u32 reg = 0;
1710         struct ipw_priv *priv = d->driver_data;
1711
1712         if (priv->status & STATUS_DIRECT_DWORD)
1713                 reg = ipw_read32(priv, priv->direct_dword);
1714         else
1715                 reg = 0;
1716
1717         return sprintf(buf, "0x%08x\n", reg);
1718 }
1719 static ssize_t store_direct_dword(struct device *d,
1720                                   struct device_attribute *attr,
1721                                   const char *buf, size_t count)
1722 {
1723         struct ipw_priv *priv = d->driver_data;
1724
1725         sscanf(buf, "%x", &priv->direct_dword);
1726         priv->status |= STATUS_DIRECT_DWORD;
1727         return strnlen(buf, count);
1728 }
1729
1730 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1731                    show_direct_dword, store_direct_dword);
1732
1733 static int rf_kill_active(struct ipw_priv *priv)
1734 {
1735         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1736                 priv->status |= STATUS_RF_KILL_HW;
1737         else
1738                 priv->status &= ~STATUS_RF_KILL_HW;
1739
1740         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1741 }
1742
1743 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1744                             char *buf)
1745 {
1746         /* 0 - RF kill not enabled
1747            1 - SW based RF kill active (sysfs)
1748            2 - HW based RF kill active
1749            3 - Both HW and SW baed RF kill active */
1750         struct ipw_priv *priv = d->driver_data;
1751         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1752             (rf_kill_active(priv) ? 0x2 : 0x0);
1753         return sprintf(buf, "%i\n", val);
1754 }
1755
1756 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1757 {
1758         if ((disable_radio ? 1 : 0) ==
1759             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1760                 return 0;
1761
1762         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1763                           disable_radio ? "OFF" : "ON");
1764
1765         if (disable_radio) {
1766                 priv->status |= STATUS_RF_KILL_SW;
1767
1768                 if (priv->workqueue) {
1769                         cancel_delayed_work(&priv->request_scan);
1770                         cancel_delayed_work(&priv->request_direct_scan);
1771                         cancel_delayed_work(&priv->request_passive_scan);
1772                         cancel_delayed_work(&priv->scan_event);
1773                 }
1774                 queue_work(priv->workqueue, &priv->down);
1775         } else {
1776                 priv->status &= ~STATUS_RF_KILL_SW;
1777                 if (rf_kill_active(priv)) {
1778                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1779                                           "disabled by HW switch\n");
1780                         /* Make sure the RF_KILL check timer is running */
1781                         cancel_delayed_work(&priv->rf_kill);
1782                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1783                                            round_jiffies_relative(2 * HZ));
1784                 } else
1785                         queue_work(priv->workqueue, &priv->up);
1786         }
1787
1788         return 1;
1789 }
1790
1791 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1792                              const char *buf, size_t count)
1793 {
1794         struct ipw_priv *priv = d->driver_data;
1795
1796         ipw_radio_kill_sw(priv, buf[0] == '1');
1797
1798         return count;
1799 }
1800
1801 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1802
1803 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1804                                char *buf)
1805 {
1806         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1807         int pos = 0, len = 0;
1808         if (priv->config & CFG_SPEED_SCAN) {
1809                 while (priv->speed_scan[pos] != 0)
1810                         len += sprintf(&buf[len], "%d ",
1811                                        priv->speed_scan[pos++]);
1812                 return len + sprintf(&buf[len], "\n");
1813         }
1814
1815         return sprintf(buf, "0\n");
1816 }
1817
1818 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1819                                 const char *buf, size_t count)
1820 {
1821         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1822         int channel, pos = 0;
1823         const char *p = buf;
1824
1825         /* list of space separated channels to scan, optionally ending with 0 */
1826         while ((channel = simple_strtol(p, NULL, 0))) {
1827                 if (pos == MAX_SPEED_SCAN - 1) {
1828                         priv->speed_scan[pos] = 0;
1829                         break;
1830                 }
1831
1832                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1833                         priv->speed_scan[pos++] = channel;
1834                 else
1835                         IPW_WARNING("Skipping invalid channel request: %d\n",
1836                                     channel);
1837                 p = strchr(p, ' ');
1838                 if (!p)
1839                         break;
1840                 while (*p == ' ' || *p == '\t')
1841                         p++;
1842         }
1843
1844         if (pos == 0)
1845                 priv->config &= ~CFG_SPEED_SCAN;
1846         else {
1847                 priv->speed_scan_pos = 0;
1848                 priv->config |= CFG_SPEED_SCAN;
1849         }
1850
1851         return count;
1852 }
1853
1854 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1855                    store_speed_scan);
1856
1857 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1858                               char *buf)
1859 {
1860         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1861         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1862 }
1863
1864 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1865                                const char *buf, size_t count)
1866 {
1867         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1868         if (buf[0] == '1')
1869                 priv->config |= CFG_NET_STATS;
1870         else
1871                 priv->config &= ~CFG_NET_STATS;
1872
1873         return count;
1874 }
1875
1876 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1877                    show_net_stats, store_net_stats);
1878
1879 static ssize_t show_channels(struct device *d,
1880                              struct device_attribute *attr,
1881                              char *buf)
1882 {
1883         struct ipw_priv *priv = dev_get_drvdata(d);
1884         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1885         int len = 0, i;
1886
1887         len = sprintf(&buf[len],
1888                       "Displaying %d channels in 2.4Ghz band "
1889                       "(802.11bg):\n", geo->bg_channels);
1890
1891         for (i = 0; i < geo->bg_channels; i++) {
1892                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1893                                geo->bg[i].channel,
1894                                geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1895                                " (radar spectrum)" : "",
1896                                ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1897                                 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1898                                ? "" : ", IBSS",
1899                                geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1900                                "passive only" : "active/passive",
1901                                geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1902                                "B" : "B/G");
1903         }
1904
1905         len += sprintf(&buf[len],
1906                        "Displaying %d channels in 5.2Ghz band "
1907                        "(802.11a):\n", geo->a_channels);
1908         for (i = 0; i < geo->a_channels; i++) {
1909                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1910                                geo->a[i].channel,
1911                                geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1912                                " (radar spectrum)" : "",
1913                                ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1914                                 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1915                                ? "" : ", IBSS",
1916                                geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1917                                "passive only" : "active/passive");
1918         }
1919
1920         return len;
1921 }
1922
1923 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1924
1925 static void notify_wx_assoc_event(struct ipw_priv *priv)
1926 {
1927         union iwreq_data wrqu;
1928         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1929         if (priv->status & STATUS_ASSOCIATED)
1930                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1931         else
1932                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1933         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1934 }
1935
1936 static void ipw_irq_tasklet(struct ipw_priv *priv)
1937 {
1938         u32 inta, inta_mask, handled = 0;
1939         unsigned long flags;
1940         int rc = 0;
1941
1942         spin_lock_irqsave(&priv->irq_lock, flags);
1943
1944         inta = ipw_read32(priv, IPW_INTA_RW);
1945         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1946         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1947
1948         /* Add any cached INTA values that need to be handled */
1949         inta |= priv->isr_inta;
1950
1951         spin_unlock_irqrestore(&priv->irq_lock, flags);
1952
1953         spin_lock_irqsave(&priv->lock, flags);
1954
1955         /* handle all the justifications for the interrupt */
1956         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1957                 ipw_rx(priv);
1958                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1959         }
1960
1961         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1962                 IPW_DEBUG_HC("Command completed.\n");
1963                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1964                 priv->status &= ~STATUS_HCMD_ACTIVE;
1965                 wake_up_interruptible(&priv->wait_command_queue);
1966                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1967         }
1968
1969         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1970                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1971                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1972                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1973         }
1974
1975         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1976                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1977                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1978                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1979         }
1980
1981         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1982                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1983                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1984                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1985         }
1986
1987         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1988                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1989                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1990                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1991         }
1992
1993         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1994                 IPW_WARNING("STATUS_CHANGE\n");
1995                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1996         }
1997
1998         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1999                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2000                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2001         }
2002
2003         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2004                 IPW_WARNING("HOST_CMD_DONE\n");
2005                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2006         }
2007
2008         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2009                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2010                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2011         }
2012
2013         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2014                 IPW_WARNING("PHY_OFF_DONE\n");
2015                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2016         }
2017
2018         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2019                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2020                 priv->status |= STATUS_RF_KILL_HW;
2021                 wake_up_interruptible(&priv->wait_command_queue);
2022                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2023                 cancel_delayed_work(&priv->request_scan);
2024                 cancel_delayed_work(&priv->request_direct_scan);
2025                 cancel_delayed_work(&priv->request_passive_scan);
2026                 cancel_delayed_work(&priv->scan_event);
2027                 schedule_work(&priv->link_down);
2028                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2029                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2030         }
2031
2032         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2033                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2034                 if (priv->error) {
2035                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2036                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2037                                 struct ipw_fw_error *error =
2038                                     ipw_alloc_error_log(priv);
2039                                 ipw_dump_error_log(priv, error);
2040                                 kfree(error);
2041                         }
2042                 } else {
2043                         priv->error = ipw_alloc_error_log(priv);
2044                         if (priv->error)
2045                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2046                         else
2047                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2048                                              "log.\n");
2049                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2050                                 ipw_dump_error_log(priv, priv->error);
2051                 }
2052
2053                 /* XXX: If hardware encryption is for WPA/WPA2,
2054                  * we have to notify the supplicant. */
2055                 if (priv->ieee->sec.encrypt) {
2056                         priv->status &= ~STATUS_ASSOCIATED;
2057                         notify_wx_assoc_event(priv);
2058                 }
2059
2060                 /* Keep the restart process from trying to send host
2061                  * commands by clearing the INIT status bit */
2062                 priv->status &= ~STATUS_INIT;
2063
2064                 /* Cancel currently queued command. */
2065                 priv->status &= ~STATUS_HCMD_ACTIVE;
2066                 wake_up_interruptible(&priv->wait_command_queue);
2067
2068                 queue_work(priv->workqueue, &priv->adapter_restart);
2069                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2070         }
2071
2072         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2073                 IPW_ERROR("Parity error\n");
2074                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2075         }
2076
2077         if (handled != inta) {
2078                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2079         }
2080
2081         spin_unlock_irqrestore(&priv->lock, flags);
2082
2083         /* enable all interrupts */
2084         ipw_enable_interrupts(priv);
2085 }
2086
2087 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2088 static char *get_cmd_string(u8 cmd)
2089 {
2090         switch (cmd) {
2091                 IPW_CMD(HOST_COMPLETE);
2092                 IPW_CMD(POWER_DOWN);
2093                 IPW_CMD(SYSTEM_CONFIG);
2094                 IPW_CMD(MULTICAST_ADDRESS);
2095                 IPW_CMD(SSID);
2096                 IPW_CMD(ADAPTER_ADDRESS);
2097                 IPW_CMD(PORT_TYPE);
2098                 IPW_CMD(RTS_THRESHOLD);
2099                 IPW_CMD(FRAG_THRESHOLD);
2100                 IPW_CMD(POWER_MODE);
2101                 IPW_CMD(WEP_KEY);
2102                 IPW_CMD(TGI_TX_KEY);
2103                 IPW_CMD(SCAN_REQUEST);
2104                 IPW_CMD(SCAN_REQUEST_EXT);
2105                 IPW_CMD(ASSOCIATE);
2106                 IPW_CMD(SUPPORTED_RATES);
2107                 IPW_CMD(SCAN_ABORT);
2108                 IPW_CMD(TX_FLUSH);
2109                 IPW_CMD(QOS_PARAMETERS);
2110                 IPW_CMD(DINO_CONFIG);
2111                 IPW_CMD(RSN_CAPABILITIES);
2112                 IPW_CMD(RX_KEY);
2113                 IPW_CMD(CARD_DISABLE);
2114                 IPW_CMD(SEED_NUMBER);
2115                 IPW_CMD(TX_POWER);
2116                 IPW_CMD(COUNTRY_INFO);
2117                 IPW_CMD(AIRONET_INFO);
2118                 IPW_CMD(AP_TX_POWER);
2119                 IPW_CMD(CCKM_INFO);
2120                 IPW_CMD(CCX_VER_INFO);
2121                 IPW_CMD(SET_CALIBRATION);
2122                 IPW_CMD(SENSITIVITY_CALIB);
2123                 IPW_CMD(RETRY_LIMIT);
2124                 IPW_CMD(IPW_PRE_POWER_DOWN);
2125                 IPW_CMD(VAP_BEACON_TEMPLATE);
2126                 IPW_CMD(VAP_DTIM_PERIOD);
2127                 IPW_CMD(EXT_SUPPORTED_RATES);
2128                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2129                 IPW_CMD(VAP_QUIET_INTERVALS);
2130                 IPW_CMD(VAP_CHANNEL_SWITCH);
2131                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2132                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2133                 IPW_CMD(VAP_CF_PARAM_SET);
2134                 IPW_CMD(VAP_SET_BEACONING_STATE);
2135                 IPW_CMD(MEASUREMENT);
2136                 IPW_CMD(POWER_CAPABILITY);
2137                 IPW_CMD(SUPPORTED_CHANNELS);
2138                 IPW_CMD(TPC_REPORT);
2139                 IPW_CMD(WME_INFO);
2140                 IPW_CMD(PRODUCTION_COMMAND);
2141         default:
2142                 return "UNKNOWN";
2143         }
2144 }
2145
2146 #define HOST_COMPLETE_TIMEOUT HZ
2147
2148 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2149 {
2150         int rc = 0;
2151         unsigned long flags;
2152
2153         spin_lock_irqsave(&priv->lock, flags);
2154         if (priv->status & STATUS_HCMD_ACTIVE) {
2155                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2156                           get_cmd_string(cmd->cmd));
2157                 spin_unlock_irqrestore(&priv->lock, flags);
2158                 return -EAGAIN;
2159         }
2160
2161         priv->status |= STATUS_HCMD_ACTIVE;
2162
2163         if (priv->cmdlog) {
2164                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2165                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2166                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2167                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2168                        cmd->len);
2169                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2170         }
2171
2172         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2173                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2174                      priv->status);
2175
2176 #ifndef DEBUG_CMD_WEP_KEY
2177         if (cmd->cmd == IPW_CMD_WEP_KEY)
2178                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2179         else
2180 #endif
2181                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2182
2183         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2184         if (rc) {
2185                 priv->status &= ~STATUS_HCMD_ACTIVE;
2186                 IPW_ERROR("Failed to send %s: Reason %d\n",
2187                           get_cmd_string(cmd->cmd), rc);
2188                 spin_unlock_irqrestore(&priv->lock, flags);
2189                 goto exit;
2190         }
2191         spin_unlock_irqrestore(&priv->lock, flags);
2192
2193         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2194                                               !(priv->
2195                                                 status & STATUS_HCMD_ACTIVE),
2196                                               HOST_COMPLETE_TIMEOUT);
2197         if (rc == 0) {
2198                 spin_lock_irqsave(&priv->lock, flags);
2199                 if (priv->status & STATUS_HCMD_ACTIVE) {
2200                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2201                                   get_cmd_string(cmd->cmd));
2202                         priv->status &= ~STATUS_HCMD_ACTIVE;
2203                         spin_unlock_irqrestore(&priv->lock, flags);
2204                         rc = -EIO;
2205                         goto exit;
2206                 }
2207                 spin_unlock_irqrestore(&priv->lock, flags);
2208         } else
2209                 rc = 0;
2210
2211         if (priv->status & STATUS_RF_KILL_HW) {
2212                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2213                           get_cmd_string(cmd->cmd));
2214                 rc = -EIO;
2215                 goto exit;
2216         }
2217
2218       exit:
2219         if (priv->cmdlog) {
2220                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2221                 priv->cmdlog_pos %= priv->cmdlog_len;
2222         }
2223         return rc;
2224 }
2225
2226 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2227 {
2228         struct host_cmd cmd = {
2229                 .cmd = command,
2230         };
2231
2232         return __ipw_send_cmd(priv, &cmd);
2233 }
2234
2235 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2236                             void *data)
2237 {
2238         struct host_cmd cmd = {
2239                 .cmd = command,
2240                 .len = len,
2241                 .param = data,
2242         };
2243
2244         return __ipw_send_cmd(priv, &cmd);
2245 }
2246
2247 static int ipw_send_host_complete(struct ipw_priv *priv)
2248 {
2249         if (!priv) {
2250                 IPW_ERROR("Invalid args\n");
2251                 return -1;
2252         }
2253
2254         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2255 }
2256
2257 static int ipw_send_system_config(struct ipw_priv *priv)
2258 {
2259         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2260                                 sizeof(priv->sys_config),
2261                                 &priv->sys_config);
2262 }
2263
2264 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2265 {
2266         if (!priv || !ssid) {
2267                 IPW_ERROR("Invalid args\n");
2268                 return -1;
2269         }
2270
2271         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2272                                 ssid);
2273 }
2274
2275 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2276 {
2277         if (!priv || !mac) {
2278                 IPW_ERROR("Invalid args\n");
2279                 return -1;
2280         }
2281
2282         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2283                        priv->net_dev->name, mac);
2284
2285         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2286 }
2287
2288 /*
2289  * NOTE: This must be executed from our workqueue as it results in udelay
2290  * being called which may corrupt the keyboard if executed on default
2291  * workqueue
2292  */
2293 static void ipw_adapter_restart(void *adapter)
2294 {
2295         struct ipw_priv *priv = adapter;
2296
2297         if (priv->status & STATUS_RF_KILL_MASK)
2298                 return;
2299
2300         ipw_down(priv);
2301
2302         if (priv->assoc_network &&
2303             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2304                 ipw_remove_current_network(priv);
2305
2306         if (ipw_up(priv)) {
2307                 IPW_ERROR("Failed to up device\n");
2308                 return;
2309         }
2310 }
2311
2312 static void ipw_bg_adapter_restart(struct work_struct *work)
2313 {
2314         struct ipw_priv *priv =
2315                 container_of(work, struct ipw_priv, adapter_restart);
2316         mutex_lock(&priv->mutex);
2317         ipw_adapter_restart(priv);
2318         mutex_unlock(&priv->mutex);
2319 }
2320
2321 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2322
2323 static void ipw_scan_check(void *data)
2324 {
2325         struct ipw_priv *priv = data;
2326         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2327                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2328                                "adapter after (%dms).\n",
2329                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2330                 queue_work(priv->workqueue, &priv->adapter_restart);
2331         }
2332 }
2333
2334 static void ipw_bg_scan_check(struct work_struct *work)
2335 {
2336         struct ipw_priv *priv =
2337                 container_of(work, struct ipw_priv, scan_check.work);
2338         mutex_lock(&priv->mutex);
2339         ipw_scan_check(priv);
2340         mutex_unlock(&priv->mutex);
2341 }
2342
2343 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2344                                      struct ipw_scan_request_ext *request)
2345 {
2346         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2347                                 sizeof(*request), request);
2348 }
2349
2350 static int ipw_send_scan_abort(struct ipw_priv *priv)
2351 {
2352         if (!priv) {
2353                 IPW_ERROR("Invalid args\n");
2354                 return -1;
2355         }
2356
2357         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2358 }
2359
2360 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2361 {
2362         struct ipw_sensitivity_calib calib = {
2363                 .beacon_rssi_raw = cpu_to_le16(sens),
2364         };
2365
2366         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2367                                 &calib);
2368 }
2369
2370 static int ipw_send_associate(struct ipw_priv *priv,
2371                               struct ipw_associate *associate)
2372 {
2373         if (!priv || !associate) {
2374                 IPW_ERROR("Invalid args\n");
2375                 return -1;
2376         }
2377
2378         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2379                                 associate);
2380 }
2381
2382 static int ipw_send_supported_rates(struct ipw_priv *priv,
2383                                     struct ipw_supported_rates *rates)
2384 {
2385         if (!priv || !rates) {
2386                 IPW_ERROR("Invalid args\n");
2387                 return -1;
2388         }
2389
2390         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2391                                 rates);
2392 }
2393
2394 static int ipw_set_random_seed(struct ipw_priv *priv)
2395 {
2396         u32 val;
2397
2398         if (!priv) {
2399                 IPW_ERROR("Invalid args\n");
2400                 return -1;
2401         }
2402
2403         get_random_bytes(&val, sizeof(val));
2404
2405         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2406 }
2407
2408 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2409 {
2410         __le32 v = cpu_to_le32(phy_off);
2411         if (!priv) {
2412                 IPW_ERROR("Invalid args\n");
2413                 return -1;
2414         }
2415
2416         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2417 }
2418
2419 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2420 {
2421         if (!priv || !power) {
2422                 IPW_ERROR("Invalid args\n");
2423                 return -1;
2424         }
2425
2426         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2427 }
2428
2429 static int ipw_set_tx_power(struct ipw_priv *priv)
2430 {
2431         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2432         struct ipw_tx_power tx_power;
2433         s8 max_power;
2434         int i;
2435
2436         memset(&tx_power, 0, sizeof(tx_power));
2437
2438         /* configure device for 'G' band */
2439         tx_power.ieee_mode = IPW_G_MODE;
2440         tx_power.num_channels = geo->bg_channels;
2441         for (i = 0; i < geo->bg_channels; i++) {
2442                 max_power = geo->bg[i].max_power;
2443                 tx_power.channels_tx_power[i].channel_number =
2444                     geo->bg[i].channel;
2445                 tx_power.channels_tx_power[i].tx_power = max_power ?
2446                     min(max_power, priv->tx_power) : priv->tx_power;
2447         }
2448         if (ipw_send_tx_power(priv, &tx_power))
2449                 return -EIO;
2450
2451         /* configure device to also handle 'B' band */
2452         tx_power.ieee_mode = IPW_B_MODE;
2453         if (ipw_send_tx_power(priv, &tx_power))
2454                 return -EIO;
2455
2456         /* configure device to also handle 'A' band */
2457         if (priv->ieee->abg_true) {
2458                 tx_power.ieee_mode = IPW_A_MODE;
2459                 tx_power.num_channels = geo->a_channels;
2460                 for (i = 0; i < tx_power.num_channels; i++) {
2461                         max_power = geo->a[i].max_power;
2462                         tx_power.channels_tx_power[i].channel_number =
2463                             geo->a[i].channel;
2464                         tx_power.channels_tx_power[i].tx_power = max_power ?
2465                             min(max_power, priv->tx_power) : priv->tx_power;
2466                 }
2467                 if (ipw_send_tx_power(priv, &tx_power))
2468                         return -EIO;
2469         }
2470         return 0;
2471 }
2472
2473 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2474 {
2475         struct ipw_rts_threshold rts_threshold = {
2476                 .rts_threshold = cpu_to_le16(rts),
2477         };
2478
2479         if (!priv) {
2480                 IPW_ERROR("Invalid args\n");
2481                 return -1;
2482         }
2483
2484         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2485                                 sizeof(rts_threshold), &rts_threshold);
2486 }
2487
2488 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2489 {
2490         struct ipw_frag_threshold frag_threshold = {
2491                 .frag_threshold = cpu_to_le16(frag),
2492         };
2493
2494         if (!priv) {
2495                 IPW_ERROR("Invalid args\n");
2496                 return -1;
2497         }
2498
2499         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2500                                 sizeof(frag_threshold), &frag_threshold);
2501 }
2502
2503 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2504 {
2505         __le32 param;
2506
2507         if (!priv) {
2508                 IPW_ERROR("Invalid args\n");
2509                 return -1;
2510         }
2511
2512         /* If on battery, set to 3, if AC set to CAM, else user
2513          * level */
2514         switch (mode) {
2515         case IPW_POWER_BATTERY:
2516                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2517                 break;
2518         case IPW_POWER_AC:
2519                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2520                 break;
2521         default:
2522                 param = cpu_to_le32(mode);
2523                 break;
2524         }
2525
2526         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2527                                 &param);
2528 }
2529
2530 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2531 {
2532         struct ipw_retry_limit retry_limit = {
2533                 .short_retry_limit = slimit,
2534                 .long_retry_limit = llimit
2535         };
2536
2537         if (!priv) {
2538                 IPW_ERROR("Invalid args\n");
2539                 return -1;
2540         }
2541
2542         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2543                                 &retry_limit);
2544 }
2545
2546 /*
2547  * The IPW device contains a Microwire compatible EEPROM that stores
2548  * various data like the MAC address.  Usually the firmware has exclusive
2549  * access to the eeprom, but during device initialization (before the
2550  * device driver has sent the HostComplete command to the firmware) the
2551  * device driver has read access to the EEPROM by way of indirect addressing
2552  * through a couple of memory mapped registers.
2553  *
2554  * The following is a simplified implementation for pulling data out of the
2555  * the eeprom, along with some helper functions to find information in
2556  * the per device private data's copy of the eeprom.
2557  *
2558  * NOTE: To better understand how these functions work (i.e what is a chip
2559  *       select and why do have to keep driving the eeprom clock?), read
2560  *       just about any data sheet for a Microwire compatible EEPROM.
2561  */
2562
2563 /* write a 32 bit value into the indirect accessor register */
2564 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2565 {
2566         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2567
2568         /* the eeprom requires some time to complete the operation */
2569         udelay(p->eeprom_delay);
2570
2571         return;
2572 }
2573
2574 /* perform a chip select operation */
2575 static void eeprom_cs(struct ipw_priv *priv)
2576 {
2577         eeprom_write_reg(priv, 0);
2578         eeprom_write_reg(priv, EEPROM_BIT_CS);
2579         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2580         eeprom_write_reg(priv, EEPROM_BIT_CS);
2581 }
2582
2583 /* perform a chip select operation */
2584 static void eeprom_disable_cs(struct ipw_priv *priv)
2585 {
2586         eeprom_write_reg(priv, EEPROM_BIT_CS);
2587         eeprom_write_reg(priv, 0);
2588         eeprom_write_reg(priv, EEPROM_BIT_SK);
2589 }
2590
2591 /* push a single bit down to the eeprom */
2592 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2593 {
2594         int d = (bit ? EEPROM_BIT_DI : 0);
2595         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2596         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2597 }
2598
2599 /* push an opcode followed by an address down to the eeprom */
2600 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2601 {
2602         int i;
2603
2604         eeprom_cs(priv);
2605         eeprom_write_bit(priv, 1);
2606         eeprom_write_bit(priv, op & 2);
2607         eeprom_write_bit(priv, op & 1);
2608         for (i = 7; i >= 0; i--) {
2609                 eeprom_write_bit(priv, addr & (1 << i));
2610         }
2611 }
2612
2613 /* pull 16 bits off the eeprom, one bit at a time */
2614 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2615 {
2616         int i;
2617         u16 r = 0;
2618
2619         /* Send READ Opcode */
2620         eeprom_op(priv, EEPROM_CMD_READ, addr);
2621
2622         /* Send dummy bit */
2623         eeprom_write_reg(priv, EEPROM_BIT_CS);
2624
2625         /* Read the byte off the eeprom one bit at a time */
2626         for (i = 0; i < 16; i++) {
2627                 u32 data = 0;
2628                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2629                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2630                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2631                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2632         }
2633
2634         /* Send another dummy bit */
2635         eeprom_write_reg(priv, 0);
2636         eeprom_disable_cs(priv);
2637
2638         return r;
2639 }
2640
2641 /* helper function for pulling the mac address out of the private */
2642 /* data's copy of the eeprom data                                 */
2643 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2644 {
2645         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2646 }
2647
2648 /*
2649  * Either the device driver (i.e. the host) or the firmware can
2650  * load eeprom data into the designated region in SRAM.  If neither
2651  * happens then the FW will shutdown with a fatal error.
2652  *
2653  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2654  * bit needs region of shared SRAM needs to be non-zero.
2655  */
2656 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2657 {
2658         int i;
2659         __le16 *eeprom = (__le16 *) priv->eeprom;
2660
2661         IPW_DEBUG_TRACE(">>\n");
2662
2663         /* read entire contents of eeprom into private buffer */
2664         for (i = 0; i < 128; i++)
2665                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2666
2667         /*
2668            If the data looks correct, then copy it to our private
2669            copy.  Otherwise let the firmware know to perform the operation
2670            on its own.
2671          */
2672         if (priv->eeprom[EEPROM_VERSION] != 0) {
2673                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2674
2675                 /* write the eeprom data to sram */
2676                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2677                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2678
2679                 /* Do not load eeprom data on fatal error or suspend */
2680                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2681         } else {
2682                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2683
2684                 /* Load eeprom data on fatal error or suspend */
2685                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2686         }
2687
2688         IPW_DEBUG_TRACE("<<\n");
2689 }
2690
2691 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2692 {
2693         count >>= 2;
2694         if (!count)
2695                 return;
2696         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2697         while (count--)
2698                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2699 }
2700
2701 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2702 {
2703         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2704                         CB_NUMBER_OF_ELEMENTS_SMALL *
2705                         sizeof(struct command_block));
2706 }
2707
2708 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2709 {                               /* start dma engine but no transfers yet */
2710
2711         IPW_DEBUG_FW(">> : \n");
2712
2713         /* Start the dma */
2714         ipw_fw_dma_reset_command_blocks(priv);
2715
2716         /* Write CB base address */
2717         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2718
2719         IPW_DEBUG_FW("<< : \n");
2720         return 0;
2721 }
2722
2723 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2724 {
2725         u32 control = 0;
2726
2727         IPW_DEBUG_FW(">> :\n");
2728
2729         /* set the Stop and Abort bit */
2730         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2731         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2732         priv->sram_desc.last_cb_index = 0;
2733
2734         IPW_DEBUG_FW("<< \n");
2735 }
2736
2737 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2738                                           struct command_block *cb)
2739 {
2740         u32 address =
2741             IPW_SHARED_SRAM_DMA_CONTROL +
2742             (sizeof(struct command_block) * index);
2743         IPW_DEBUG_FW(">> :\n");
2744
2745         ipw_write_indirect(priv, address, (u8 *) cb,
2746                            (int)sizeof(struct command_block));
2747
2748         IPW_DEBUG_FW("<< :\n");
2749         return 0;
2750
2751 }
2752
2753 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2754 {
2755         u32 control = 0;
2756         u32 index = 0;
2757
2758         IPW_DEBUG_FW(">> :\n");
2759
2760         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2761                 ipw_fw_dma_write_command_block(priv, index,
2762                                                &priv->sram_desc.cb_list[index]);
2763
2764         /* Enable the DMA in the CSR register */
2765         ipw_clear_bit(priv, IPW_RESET_REG,
2766                       IPW_RESET_REG_MASTER_DISABLED |
2767                       IPW_RESET_REG_STOP_MASTER);
2768
2769         /* Set the Start bit. */
2770         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2771         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2772
2773         IPW_DEBUG_FW("<< :\n");
2774         return 0;
2775 }
2776
2777 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2778 {
2779         u32 address;
2780         u32 register_value = 0;
2781         u32 cb_fields_address = 0;
2782
2783         IPW_DEBUG_FW(">> :\n");
2784         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2785         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2786
2787         /* Read the DMA Controlor register */
2788         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2789         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2790
2791         /* Print the CB values */
2792         cb_fields_address = address;
2793         register_value = ipw_read_reg32(priv, cb_fields_address);
2794         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2795
2796         cb_fields_address += sizeof(u32);
2797         register_value = ipw_read_reg32(priv, cb_fields_address);
2798         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2799
2800         cb_fields_address += sizeof(u32);
2801         register_value = ipw_read_reg32(priv, cb_fields_address);
2802         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2803                           register_value);
2804
2805         cb_fields_address += sizeof(u32);
2806         register_value = ipw_read_reg32(priv, cb_fields_address);
2807         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2808
2809         IPW_DEBUG_FW(">> :\n");
2810 }
2811
2812 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2813 {
2814         u32 current_cb_address = 0;
2815         u32 current_cb_index = 0;
2816
2817         IPW_DEBUG_FW("<< :\n");
2818         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2819
2820         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2821             sizeof(struct command_block);
2822
2823         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2824                           current_cb_index, current_cb_address);
2825
2826         IPW_DEBUG_FW(">> :\n");
2827         return current_cb_index;
2828
2829 }
2830
2831 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2832                                         u32 src_address,
2833                                         u32 dest_address,
2834                                         u32 length,
2835                                         int interrupt_enabled, int is_last)
2836 {
2837
2838         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2839             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2840             CB_DEST_SIZE_LONG;
2841         struct command_block *cb;
2842         u32 last_cb_element = 0;
2843
2844         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2845                           src_address, dest_address, length);
2846
2847         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2848                 return -1;
2849
2850         last_cb_element = priv->sram_desc.last_cb_index;
2851         cb = &priv->sram_desc.cb_list[last_cb_element];
2852         priv->sram_desc.last_cb_index++;
2853
2854         /* Calculate the new CB control word */
2855         if (interrupt_enabled)
2856                 control |= CB_INT_ENABLED;
2857
2858         if (is_last)
2859                 control |= CB_LAST_VALID;
2860
2861         control |= length;
2862
2863         /* Calculate the CB Element's checksum value */
2864         cb->status = control ^ src_address ^ dest_address;
2865
2866         /* Copy the Source and Destination addresses */
2867         cb->dest_addr = dest_address;
2868         cb->source_addr = src_address;
2869
2870         /* Copy the Control Word last */
2871         cb->control = control;
2872
2873         return 0;
2874 }
2875
2876 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2877                                  u32 src_phys, u32 dest_address, u32 length)
2878 {
2879         u32 bytes_left = length;
2880         u32 src_offset = 0;
2881         u32 dest_offset = 0;
2882         int status = 0;
2883         IPW_DEBUG_FW(">> \n");
2884         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2885                           src_phys, dest_address, length);
2886         while (bytes_left > CB_MAX_LENGTH) {
2887                 status = ipw_fw_dma_add_command_block(priv,
2888                                                       src_phys + src_offset,
2889                                                       dest_address +
2890                                                       dest_offset,
2891                                                       CB_MAX_LENGTH, 0, 0);
2892                 if (status) {
2893                         IPW_DEBUG_FW_INFO(": Failed\n");
2894                         return -1;
2895                 } else
2896                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2897
2898                 src_offset += CB_MAX_LENGTH;
2899                 dest_offset += CB_MAX_LENGTH;
2900                 bytes_left -= CB_MAX_LENGTH;
2901         }
2902
2903         /* add the buffer tail */
2904         if (bytes_left > 0) {
2905                 status =
2906                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2907                                                  dest_address + dest_offset,
2908                                                  bytes_left, 0, 0);
2909                 if (status) {
2910                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2911                         return -1;
2912                 } else
2913                         IPW_DEBUG_FW_INFO
2914                             (": Adding new cb - the buffer tail\n");
2915         }
2916
2917         IPW_DEBUG_FW("<< \n");
2918         return 0;
2919 }
2920
2921 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2922 {
2923         u32 current_index = 0, previous_index;
2924         u32 watchdog = 0;
2925
2926         IPW_DEBUG_FW(">> : \n");
2927
2928         current_index = ipw_fw_dma_command_block_index(priv);
2929         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2930                           (int)priv->sram_desc.last_cb_index);
2931
2932         while (current_index < priv->sram_desc.last_cb_index) {
2933                 udelay(50);
2934                 previous_index = current_index;
2935                 current_index = ipw_fw_dma_command_block_index(priv);
2936
2937                 if (previous_index < current_index) {
2938                         watchdog = 0;
2939                         continue;
2940                 }
2941                 if (++watchdog > 400) {
2942                         IPW_DEBUG_FW_INFO("Timeout\n");
2943                         ipw_fw_dma_dump_command_block(priv);
2944                         ipw_fw_dma_abort(priv);
2945                         return -1;
2946                 }
2947         }
2948
2949         ipw_fw_dma_abort(priv);
2950
2951         /*Disable the DMA in the CSR register */
2952         ipw_set_bit(priv, IPW_RESET_REG,
2953                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2954
2955         IPW_DEBUG_FW("<< dmaWaitSync \n");
2956         return 0;
2957 }
2958
2959 static void ipw_remove_current_network(struct ipw_priv *priv)
2960 {
2961         struct list_head *element, *safe;
2962         struct ieee80211_network *network = NULL;
2963         unsigned long flags;
2964
2965         spin_lock_irqsave(&priv->ieee->lock, flags);
2966         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2967                 network = list_entry(element, struct ieee80211_network, list);
2968                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2969                         list_del(element);
2970                         list_add_tail(&network->list,
2971                                       &priv->ieee->network_free_list);
2972                 }
2973         }
2974         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2975 }
2976
2977 /**
2978  * Check that card is still alive.
2979  * Reads debug register from domain0.
2980  * If card is present, pre-defined value should
2981  * be found there.
2982  *
2983  * @param priv
2984  * @return 1 if card is present, 0 otherwise
2985  */
2986 static inline int ipw_alive(struct ipw_priv *priv)
2987 {
2988         return ipw_read32(priv, 0x90) == 0xd55555d5;
2989 }
2990
2991 /* timeout in msec, attempted in 10-msec quanta */
2992 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2993                                int timeout)
2994 {
2995         int i = 0;
2996
2997         do {
2998                 if ((ipw_read32(priv, addr) & mask) == mask)
2999                         return i;
3000                 mdelay(10);
3001                 i += 10;
3002         } while (i < timeout);
3003
3004         return -ETIME;
3005 }
3006
3007 /* These functions load the firmware and micro code for the operation of
3008  * the ipw hardware.  It assumes the buffer has all the bits for the
3009  * image and the caller is handling the memory allocation and clean up.
3010  */
3011
3012 static int ipw_stop_master(struct ipw_priv *priv)
3013 {
3014         int rc;
3015
3016         IPW_DEBUG_TRACE(">> \n");
3017         /* stop master. typical delay - 0 */
3018         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3019
3020         /* timeout is in msec, polled in 10-msec quanta */
3021         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3022                           IPW_RESET_REG_MASTER_DISABLED, 100);
3023         if (rc < 0) {
3024                 IPW_ERROR("wait for stop master failed after 100ms\n");
3025                 return -1;
3026         }
3027
3028         IPW_DEBUG_INFO("stop master %dms\n", rc);
3029
3030         return rc;
3031 }
3032
3033 static void ipw_arc_release(struct ipw_priv *priv)
3034 {
3035         IPW_DEBUG_TRACE(">> \n");
3036         mdelay(5);
3037
3038         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3039
3040         /* no one knows timing, for safety add some delay */
3041         mdelay(5);
3042 }
3043
3044 struct fw_chunk {
3045         __le32 address;
3046         __le32 length;
3047 };
3048
3049 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3050 {
3051         int rc = 0, i, addr;
3052         u8 cr = 0;
3053         __le16 *image;
3054
3055         image = (__le16 *) data;
3056
3057         IPW_DEBUG_TRACE(">> \n");
3058
3059         rc = ipw_stop_master(priv);
3060
3061         if (rc < 0)
3062                 return rc;
3063
3064         for (addr = IPW_SHARED_LOWER_BOUND;
3065              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3066                 ipw_write32(priv, addr, 0);
3067         }
3068
3069         /* no ucode (yet) */
3070         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3071         /* destroy DMA queues */
3072         /* reset sequence */
3073
3074         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3075         ipw_arc_release(priv);
3076         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3077         mdelay(1);
3078
3079         /* reset PHY */
3080         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3081         mdelay(1);
3082
3083         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3084         mdelay(1);
3085
3086         /* enable ucode store */
3087         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3088         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3089         mdelay(1);
3090
3091         /* write ucode */
3092         /**
3093          * @bug
3094          * Do NOT set indirect address register once and then
3095          * store data to indirect data register in the loop.
3096          * It seems very reasonable, but in this case DINO do not
3097          * accept ucode. It is essential to set address each time.
3098          */
3099         /* load new ipw uCode */
3100         for (i = 0; i < len / 2; i++)
3101                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3102                                 le16_to_cpu(image[i]));
3103
3104         /* enable DINO */
3105         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3106         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3107
3108         /* this is where the igx / win driver deveates from the VAP driver. */
3109
3110         /* wait for alive response */
3111         for (i = 0; i < 100; i++) {
3112                 /* poll for incoming data */
3113                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3114                 if (cr & DINO_RXFIFO_DATA)
3115                         break;
3116                 mdelay(1);
3117         }
3118
3119         if (cr & DINO_RXFIFO_DATA) {
3120                 /* alive_command_responce size is NOT multiple of 4 */
3121                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3122
3123                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3124                         response_buffer[i] =
3125                             cpu_to_le32(ipw_read_reg32(priv,
3126                                                        IPW_BASEBAND_RX_FIFO_READ));
3127                 memcpy(&priv->dino_alive, response_buffer,
3128                        sizeof(priv->dino_alive));
3129                 if (priv->dino_alive.alive_command == 1
3130                     && priv->dino_alive.ucode_valid == 1) {
3131                         rc = 0;
3132                         IPW_DEBUG_INFO
3133                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3134                              "of %02d/%02d/%02d %02d:%02d\n",
3135                              priv->dino_alive.software_revision,
3136                              priv->dino_alive.software_revision,
3137                              priv->dino_alive.device_identifier,
3138                              priv->dino_alive.device_identifier,
3139                              priv->dino_alive.time_stamp[0],
3140                              priv->dino_alive.time_stamp[1],
3141                              priv->dino_alive.time_stamp[2],
3142                              priv->dino_alive.time_stamp[3],
3143                              priv->dino_alive.time_stamp[4]);
3144                 } else {
3145                         IPW_DEBUG_INFO("Microcode is not alive\n");
3146                         rc = -EINVAL;
3147                 }
3148         } else {
3149                 IPW_DEBUG_INFO("No alive response from DINO\n");
3150                 rc = -ETIME;
3151         }
3152
3153         /* disable DINO, otherwise for some reason
3154            firmware have problem getting alive resp. */
3155         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3156
3157         return rc;
3158 }
3159
3160 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3161 {
3162         int rc = -1;
3163         int offset = 0;
3164         struct fw_chunk *chunk;
3165         dma_addr_t shared_phys;
3166         u8 *shared_virt;
3167
3168         IPW_DEBUG_TRACE("<< : \n");
3169         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3170
3171         if (!shared_virt)
3172                 return -ENOMEM;
3173
3174         memmove(shared_virt, data, len);
3175
3176         /* Start the Dma */
3177         rc = ipw_fw_dma_enable(priv);
3178
3179         if (priv->sram_desc.last_cb_index > 0) {
3180                 /* the DMA is already ready this would be a bug. */
3181                 BUG();
3182                 goto out;
3183         }
3184
3185         do {
3186                 chunk = (struct fw_chunk *)(data + offset);
3187                 offset += sizeof(struct fw_chunk);
3188                 /* build DMA packet and queue up for sending */
3189                 /* dma to chunk->address, the chunk->length bytes from data +
3190                  * offeset*/
3191                 /* Dma loading */
3192                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3193                                            le32_to_cpu(chunk->address),
3194                                            le32_to_cpu(chunk->length));
3195                 if (rc) {
3196                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3197                         goto out;
3198                 }
3199
3200                 offset += le32_to_cpu(chunk->length);
3201         } while (offset < len);
3202
3203         /* Run the DMA and wait for the answer */
3204         rc = ipw_fw_dma_kick(priv);
3205         if (rc) {
3206                 IPW_ERROR("dmaKick Failed\n");
3207                 goto out;
3208         }
3209
3210         rc = ipw_fw_dma_wait(priv);
3211         if (rc) {
3212                 IPW_ERROR("dmaWaitSync Failed\n");
3213                 goto out;
3214         }
3215       out:
3216         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3217         return rc;
3218 }
3219
3220 /* stop nic */
3221 static int ipw_stop_nic(struct ipw_priv *priv)
3222 {
3223         int rc = 0;
3224
3225         /* stop */
3226         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3227
3228         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3229                           IPW_RESET_REG_MASTER_DISABLED, 500);
3230         if (rc < 0) {
3231                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3232                 return rc;
3233         }
3234
3235         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3236
3237         return rc;
3238 }
3239
3240 static void ipw_start_nic(struct ipw_priv *priv)
3241 {
3242         IPW_DEBUG_TRACE(">>\n");
3243
3244         /* prvHwStartNic  release ARC */
3245         ipw_clear_bit(priv, IPW_RESET_REG,
3246                       IPW_RESET_REG_MASTER_DISABLED |
3247                       IPW_RESET_REG_STOP_MASTER |
3248                       CBD_RESET_REG_PRINCETON_RESET);
3249
3250         /* enable power management */
3251         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3252                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3253
3254         IPW_DEBUG_TRACE("<<\n");
3255 }
3256
3257 static int ipw_init_nic(struct ipw_priv *priv)
3258 {
3259         int rc;
3260
3261         IPW_DEBUG_TRACE(">>\n");
3262         /* reset */
3263         /*prvHwInitNic */
3264         /* set "initialization complete" bit to move adapter to D0 state */
3265         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3266
3267         /* low-level PLL activation */
3268         ipw_write32(priv, IPW_READ_INT_REGISTER,
3269                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3270
3271         /* wait for clock stabilization */
3272         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3273                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3274         if (rc < 0)
3275                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3276
3277         /* assert SW reset */
3278         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3279
3280         udelay(10);
3281
3282         /* set "initialization complete" bit to move adapter to D0 state */
3283         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3284
3285         IPW_DEBUG_TRACE(">>\n");
3286         return 0;
3287 }
3288
3289 /* Call this function from process context, it will sleep in request_firmware.
3290  * Probe is an ok place to call this from.
3291  */
3292 static int ipw_reset_nic(struct ipw_priv *priv)
3293 {
3294         int rc = 0;
3295         unsigned long flags;
3296
3297         IPW_DEBUG_TRACE(">>\n");
3298
3299         rc = ipw_init_nic(priv);
3300
3301         spin_lock_irqsave(&priv->lock, flags);
3302         /* Clear the 'host command active' bit... */
3303         priv->status &= ~STATUS_HCMD_ACTIVE;
3304         wake_up_interruptible(&priv->wait_command_queue);
3305         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3306         wake_up_interruptible(&priv->wait_state);
3307         spin_unlock_irqrestore(&priv->lock, flags);
3308
3309         IPW_DEBUG_TRACE("<<\n");
3310         return rc;
3311 }
3312
3313
3314 struct ipw_fw {
3315         __le32 ver;
3316         __le32 boot_size;
3317         __le32 ucode_size;
3318         __le32 fw_size;
3319         u8 data[0];
3320 };
3321
3322 static int ipw_get_fw(struct ipw_priv *priv,
3323                       const struct firmware **raw, const char *name)
3324 {
3325         struct ipw_fw *fw;
3326         int rc;
3327
3328         /* ask firmware_class module to get the boot firmware off disk */
3329         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3330         if (rc < 0) {
3331                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3332                 return rc;
3333         }
3334
3335         if ((*raw)->size < sizeof(*fw)) {
3336                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3337                 return -EINVAL;
3338         }
3339
3340         fw = (void *)(*raw)->data;
3341
3342         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3343             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3344                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3345                           name, (*raw)->size);
3346                 return -EINVAL;
3347         }
3348
3349         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3350                        name,
3351                        le32_to_cpu(fw->ver) >> 16,
3352                        le32_to_cpu(fw->ver) & 0xff,
3353                        (*raw)->size - sizeof(*fw));
3354         return 0;
3355 }
3356
3357 #define IPW_RX_BUF_SIZE (3000)
3358
3359 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3360                                       struct ipw_rx_queue *rxq)
3361 {
3362         unsigned long flags;
3363         int i;
3364
3365         spin_lock_irqsave(&rxq->lock, flags);
3366
3367         INIT_LIST_HEAD(&rxq->rx_free);
3368         INIT_LIST_HEAD(&rxq->rx_used);
3369
3370         /* Fill the rx_used queue with _all_ of the Rx buffers */
3371         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3372                 /* In the reset function, these buffers may have been allocated
3373                  * to an SKB, so we need to unmap and free potential storage */
3374                 if (rxq->pool[i].skb != NULL) {
3375                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3376                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3377                         dev_kfree_skb(rxq->pool[i].skb);
3378                         rxq->pool[i].skb = NULL;
3379                 }
3380                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3381         }
3382
3383         /* Set us so that we have processed and used all buffers, but have
3384          * not restocked the Rx queue with fresh buffers */
3385         rxq->read = rxq->write = 0;
3386         rxq->free_count = 0;
3387         spin_unlock_irqrestore(&rxq->lock, flags);
3388 }
3389
3390 #ifdef CONFIG_PM
3391 static int fw_loaded = 0;
3392 static const struct firmware *raw = NULL;
3393
3394 static void free_firmware(void)
3395 {
3396         if (fw_loaded) {
3397                 release_firmware(raw);
3398                 raw = NULL;
3399                 fw_loaded = 0;
3400         }
3401 }
3402 #else
3403 #define free_firmware() do {} while (0)
3404 #endif
3405
3406 static int ipw_load(struct ipw_priv *priv)
3407 {
3408 #ifndef CONFIG_PM
3409         const struct firmware *raw = NULL;
3410 #endif
3411         struct ipw_fw *fw;
3412         u8 *boot_img, *ucode_img, *fw_img;
3413         u8 *name = NULL;
3414         int rc = 0, retries = 3;
3415
3416         switch (priv->ieee->iw_mode) {
3417         case IW_MODE_ADHOC:
3418                 name = "ipw2200-ibss.fw";
3419                 break;
3420 #ifdef CONFIG_IPW2200_MONITOR
3421         case IW_MODE_MONITOR:
3422                 name = "ipw2200-sniffer.fw";
3423                 break;
3424 #endif
3425         case IW_MODE_INFRA:
3426                 name = "ipw2200-bss.fw";
3427                 break;
3428         }
3429
3430         if (!name) {
3431                 rc = -EINVAL;
3432                 goto error;
3433         }
3434
3435 #ifdef CONFIG_PM
3436         if (!fw_loaded) {
3437 #endif
3438                 rc = ipw_get_fw(priv, &raw, name);
3439                 if (rc < 0)
3440                         goto error;
3441 #ifdef CONFIG_PM
3442         }
3443 #endif
3444
3445         fw = (void *)raw->data;
3446         boot_img = &fw->data[0];
3447         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3448         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3449                            le32_to_cpu(fw->ucode_size)];
3450
3451         if (rc < 0)
3452                 goto error;
3453
3454         if (!priv->rxq)
3455                 priv->rxq = ipw_rx_queue_alloc(priv);
3456         else
3457                 ipw_rx_queue_reset(priv, priv->rxq);
3458         if (!priv->rxq) {
3459                 IPW_ERROR("Unable to initialize Rx queue\n");
3460                 goto error;
3461         }
3462
3463       retry:
3464         /* Ensure interrupts are disabled */
3465         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3466         priv->status &= ~STATUS_INT_ENABLED;
3467
3468         /* ack pending interrupts */
3469         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3470
3471         ipw_stop_nic(priv);
3472
3473         rc = ipw_reset_nic(priv);
3474         if (rc < 0) {
3475                 IPW_ERROR("Unable to reset NIC\n");
3476                 goto error;
3477         }
3478
3479         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3480                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3481
3482         /* DMA the initial boot firmware into the device */
3483         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3484         if (rc < 0) {
3485                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3486                 goto error;
3487         }
3488
3489         /* kick start the device */
3490         ipw_start_nic(priv);
3491
3492         /* wait for the device to finish its initial startup sequence */
3493         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3494                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3495         if (rc < 0) {
3496                 IPW_ERROR("device failed to boot initial fw image\n");
3497                 goto error;
3498         }
3499         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3500
3501         /* ack fw init done interrupt */
3502         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3503
3504         /* DMA the ucode into the device */
3505         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3506         if (rc < 0) {
3507                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3508                 goto error;
3509         }
3510
3511         /* stop nic */
3512         ipw_stop_nic(priv);
3513
3514         /* DMA bss firmware into the device */
3515         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3516         if (rc < 0) {
3517                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3518                 goto error;
3519         }
3520 #ifdef CONFIG_PM
3521         fw_loaded = 1;
3522 #endif
3523
3524         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3525
3526         rc = ipw_queue_reset(priv);
3527         if (rc < 0) {
3528                 IPW_ERROR("Unable to initialize queues\n");
3529                 goto error;
3530         }
3531
3532         /* Ensure interrupts are disabled */
3533         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3534         /* ack pending interrupts */
3535         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3536
3537         /* kick start the device */
3538         ipw_start_nic(priv);
3539
3540         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3541                 if (retries > 0) {
3542                         IPW_WARNING("Parity error.  Retrying init.\n");
3543                         retries--;
3544                         goto retry;
3545                 }
3546
3547                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3548                 rc = -EIO;
3549                 goto error;
3550         }
3551
3552         /* wait for the device */
3553         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3554                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3555         if (rc < 0) {
3556                 IPW_ERROR("device failed to start within 500ms\n");
3557                 goto error;
3558         }
3559         IPW_DEBUG_INFO("device response after %dms\n", rc);
3560
3561         /* ack fw init done interrupt */
3562         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3563
3564         /* read eeprom data and initialize the eeprom region of sram */
3565         priv->eeprom_delay = 1;
3566         ipw_eeprom_init_sram(priv);
3567
3568         /* enable interrupts */
3569         ipw_enable_interrupts(priv);
3570
3571         /* Ensure our queue has valid packets */
3572         ipw_rx_queue_replenish(priv);
3573
3574         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3575
3576         /* ack pending interrupts */
3577         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3578
3579 #ifndef CONFIG_PM
3580         release_firmware(raw);
3581 #endif
3582         return 0;
3583
3584       error:
3585         if (priv->rxq) {
3586                 ipw_rx_queue_free(priv, priv->rxq);
3587                 priv->rxq = NULL;
3588         }
3589         ipw_tx_queue_free(priv);
3590         if (raw)
3591                 release_firmware(raw);
3592 #ifdef CONFIG_PM
3593         fw_loaded = 0;
3594         raw = NULL;
3595 #endif
3596
3597         return rc;
3598 }
3599
3600 /**
3601  * DMA services
3602  *
3603  * Theory of operation
3604  *
3605  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3606  * 2 empty entries always kept in the buffer to protect from overflow.
3607  *
3608  * For Tx queue, there are low mark and high mark limits. If, after queuing
3609  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3610  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3611  * Tx queue resumed.
3612  *
3613  * The IPW operates with six queues, one receive queue in the device's
3614  * sram, one transmit queue for sending commands to the device firmware,
3615  * and four transmit queues for data.
3616  *
3617  * The four transmit queues allow for performing quality of service (qos)
3618  * transmissions as per the 802.11 protocol.  Currently Linux does not
3619  * provide a mechanism to the user for utilizing prioritized queues, so
3620  * we only utilize the first data transmit queue (queue1).
3621  */
3622
3623 /**
3624  * Driver allocates buffers of this size for Rx
3625  */
3626
3627 /**
3628  * ipw_rx_queue_space - Return number of free slots available in queue.
3629  */
3630 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3631 {
3632         int s = q->read - q->write;
3633         if (s <= 0)
3634                 s += RX_QUEUE_SIZE;
3635         /* keep some buffer to not confuse full and empty queue */
3636         s -= 2;
3637         if (s < 0)
3638                 s = 0;
3639         return s;
3640 }
3641
3642 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3643 {
3644         int s = q->last_used - q->first_empty;
3645         if (s <= 0)
3646                 s += q->n_bd;
3647         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3648         if (s < 0)
3649                 s = 0;
3650         return s;
3651 }
3652
3653 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3654 {
3655         return (++index == n_bd) ? 0 : index;
3656 }
3657
3658 /**
3659  * Initialize common DMA queue structure
3660  *
3661  * @param q                queue to init
3662  * @param count            Number of BD's to allocate. Should be power of 2
3663  * @param read_register    Address for 'read' register
3664  *                         (not offset within BAR, full address)
3665  * @param write_register   Address for 'write' register
3666  *                         (not offset within BAR, full address)
3667  * @param base_register    Address for 'base' register
3668  *                         (not offset within BAR, full address)
3669  * @param size             Address for 'size' register
3670  *                         (not offset within BAR, full address)
3671  */
3672 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3673                            int count, u32 read, u32 write, u32 base, u32 size)
3674 {
3675         q->n_bd = count;
3676
3677         q->low_mark = q->n_bd / 4;
3678         if (q->low_mark < 4)
3679                 q->low_mark = 4;
3680
3681         q->high_mark = q->n_bd / 8;
3682         if (q->high_mark < 2)
3683                 q->high_mark = 2;
3684
3685         q->first_empty = q->last_used = 0;
3686         q->reg_r = read;
3687         q->reg_w = write;
3688
3689         ipw_write32(priv, base, q->dma_addr);
3690         ipw_write32(priv, size, count);
3691         ipw_write32(priv, read, 0);
3692         ipw_write32(priv, write, 0);
3693
3694         _ipw_read32(priv, 0x90);
3695 }
3696
3697 static int ipw_queue_tx_init(struct ipw_priv *priv,
3698                              struct clx2_tx_queue *q,
3699                              int count, u32 read, u32 write, u32 base, u32 size)
3700 {
3701         struct pci_dev *dev = priv->pci_dev;
3702
3703         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3704         if (!q->txb) {
3705                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3706                 return -ENOMEM;
3707         }
3708
3709         q->bd =
3710             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3711         if (!q->bd) {
3712                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3713                           sizeof(q->bd[0]) * count);
3714                 kfree(q->txb);
3715                 q->txb = NULL;
3716                 return -ENOMEM;
3717         }
3718
3719         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3720         return 0;
3721 }
3722
3723 /**
3724  * Free one TFD, those at index [txq->q.last_used].
3725  * Do NOT advance any indexes
3726  *
3727  * @param dev
3728  * @param txq
3729  */
3730 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3731                                   struct clx2_tx_queue *txq)
3732 {
3733         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3734         struct pci_dev *dev = priv->pci_dev;
3735         int i;
3736
3737         /* classify bd */
3738         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3739                 /* nothing to cleanup after for host commands */
3740                 return;
3741
3742         /* sanity check */
3743         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3744                 IPW_ERROR("Too many chunks: %i\n",
3745                           le32_to_cpu(bd->u.data.num_chunks));
3746                 /** @todo issue fatal error, it is quite serious situation */
3747                 return;
3748         }
3749
3750         /* unmap chunks if any */
3751         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3752                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3753                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3754                                  PCI_DMA_TODEVICE);
3755                 if (txq->txb[txq->q.last_used]) {
3756                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3757                         txq->txb[txq->q.last_used] = NULL;
3758                 }
3759         }
3760 }
3761
3762 /**
3763  * Deallocate DMA queue.
3764  *
3765  * Empty queue by removing and destroying all BD's.
3766  * Free all buffers.
3767  *
3768  * @param dev
3769  * @param q
3770  */
3771 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3772 {
3773         struct clx2_queue *q = &txq->q;
3774         struct pci_dev *dev = priv->pci_dev;
3775
3776         if (q->n_bd == 0)
3777                 return;
3778
3779         /* first, empty all BD's */
3780         for (; q->first_empty != q->last_used;
3781              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3782                 ipw_queue_tx_free_tfd(priv, txq);
3783         }
3784
3785         /* free buffers belonging to queue itself */
3786         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3787                             q->dma_addr);
3788         kfree(txq->txb);
3789
3790         /* 0 fill whole structure */
3791         memset(txq, 0, sizeof(*txq));
3792 }
3793
3794 /**
3795  * Destroy all DMA queues and structures
3796  *
3797  * @param priv
3798  */
3799 static void ipw_tx_queue_free(struct ipw_priv *priv)
3800 {
3801         /* Tx CMD queue */
3802         ipw_queue_tx_free(priv, &priv->txq_cmd);
3803
3804         /* Tx queues */
3805         ipw_queue_tx_free(priv, &priv->txq[0]);
3806         ipw_queue_tx_free(priv, &priv->txq[1]);
3807         ipw_queue_tx_free(priv, &priv->txq[2]);
3808         ipw_queue_tx_free(priv, &priv->txq[3]);
3809 }
3810
3811 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3812 {
3813         /* First 3 bytes are manufacturer */
3814         bssid[0] = priv->mac_addr[0];
3815         bssid[1] = priv->mac_addr[1];
3816         bssid[2] = priv->mac_addr[2];
3817
3818         /* Last bytes are random */
3819         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3820
3821         bssid[0] &= 0xfe;       /* clear multicast bit */
3822         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3823 }
3824
3825 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3826 {
3827         struct ipw_station_entry entry;
3828         int i;
3829
3830         for (i = 0; i < priv->num_stations; i++) {
3831                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3832                         /* Another node is active in network */
3833                         priv->missed_adhoc_beacons = 0;
3834                         if (!(priv->config & CFG_STATIC_CHANNEL))
3835                                 /* when other nodes drop out, we drop out */
3836                                 priv->config &= ~CFG_ADHOC_PERSIST;
3837
3838                         return i;
3839                 }
3840         }
3841
3842         if (i == MAX_STATIONS)
3843                 return IPW_INVALID_STATION;
3844
3845         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3846
3847         entry.reserved = 0;
3848         entry.support_mode = 0;
3849         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3850         memcpy(priv->stations[i], bssid, ETH_ALEN);
3851         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3852                          &entry, sizeof(entry));
3853         priv->num_stations++;
3854
3855         return i;
3856 }
3857
3858 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3859 {
3860         int i;
3861
3862         for (i = 0; i < priv->num_stations; i++)
3863                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3864                         return i;
3865
3866         return IPW_INVALID_STATION;
3867 }
3868
3869 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3870 {
3871         int err;
3872
3873         if (priv->status & STATUS_ASSOCIATING) {
3874                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3875                 queue_work(priv->workqueue, &priv->disassociate);
3876                 return;
3877         }
3878
3879         if (!(priv->status & STATUS_ASSOCIATED)) {
3880                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3881                 return;
3882         }
3883
3884         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3885                         "on channel %d.\n",
3886                         priv->assoc_request.bssid,
3887                         priv->assoc_request.channel);
3888
3889         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3890         priv->status |= STATUS_DISASSOCIATING;
3891
3892         if (quiet)
3893                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3894         else
3895                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3896
3897         err = ipw_send_associate(priv, &priv->assoc_request);
3898         if (err) {
3899                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3900                              "failed.\n");
3901                 return;
3902         }
3903
3904 }
3905
3906 static int ipw_disassociate(void *data)
3907 {
3908         struct ipw_priv *priv = data;
3909         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3910                 return 0;
3911         ipw_send_disassociate(data, 0);
3912         netif_carrier_off(priv->net_dev);
3913         return 1;
3914 }
3915
3916 static void ipw_bg_disassociate(struct work_struct *work)
3917 {
3918         struct ipw_priv *priv =
3919                 container_of(work, struct ipw_priv, disassociate);
3920         mutex_lock(&priv->mutex);
3921         ipw_disassociate(priv);
3922         mutex_unlock(&priv->mutex);
3923 }
3924
3925 static void ipw_system_config(struct work_struct *work)
3926 {
3927         struct ipw_priv *priv =
3928                 container_of(work, struct ipw_priv, system_config);
3929
3930 #ifdef CONFIG_IPW2200_PROMISCUOUS
3931         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3932                 priv->sys_config.accept_all_data_frames = 1;
3933                 priv->sys_config.accept_non_directed_frames = 1;
3934                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3935                 priv->sys_config.accept_all_mgmt_frames = 1;
3936         }
3937 #endif
3938
3939         ipw_send_system_config(priv);
3940 }
3941
3942 struct ipw_status_code {
3943         u16 status;
3944         const char *reason;
3945 };
3946
3947 static const struct ipw_status_code ipw_status_codes[] = {
3948         {0x00, "Successful"},
3949         {0x01, "Unspecified failure"},
3950         {0x0A, "Cannot support all requested capabilities in the "
3951          "Capability information field"},
3952         {0x0B, "Reassociation denied due to inability to confirm that "
3953          "association exists"},
3954         {0x0C, "Association denied due to reason outside the scope of this "
3955          "standard"},
3956         {0x0D,
3957          "Responding station does not support the specified authentication "
3958          "algorithm"},
3959         {0x0E,
3960          "Received an Authentication frame with authentication sequence "
3961          "transaction sequence number out of expected sequence"},
3962         {0x0F, "Authentication rejected because of challenge failure"},
3963         {0x10, "Authentication rejected due to timeout waiting for next "
3964          "frame in sequence"},
3965         {0x11, "Association denied because AP is unable to handle additional "
3966          "associated stations"},
3967         {0x12,
3968          "Association denied due to requesting station not supporting all "
3969          "of the datarates in the BSSBasicServiceSet Parameter"},
3970         {0x13,
3971          "Association denied due to requesting station not supporting "
3972          "short preamble operation"},
3973         {0x14,
3974          "Association denied due to requesting station not supporting "
3975          "PBCC encoding"},
3976         {0x15,
3977          "Association denied due to requesting station not supporting "
3978          "channel agility"},
3979         {0x19,
3980          "Association denied due to requesting station not supporting "
3981          "short slot operation"},
3982         {0x1A,
3983          "Association denied due to requesting station not supporting "
3984          "DSSS-OFDM operation"},
3985         {0x28, "Invalid Information Element"},
3986         {0x29, "Group Cipher is not valid"},
3987         {0x2A, "Pairwise Cipher is not valid"},
3988         {0x2B, "AKMP is not valid"},
3989         {0x2C, "Unsupported RSN IE version"},
3990         {0x2D, "Invalid RSN IE Capabilities"},
3991         {0x2E, "Cipher suite is rejected per security policy"},
3992 };
3993
3994 static const char *ipw_get_status_code(u16 status)
3995 {
3996         int i;
3997         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3998                 if (ipw_status_codes[i].status == (status & 0xff))
3999                         return ipw_status_codes[i].reason;
4000         return "Unknown status value.";
4001 }
4002
4003 static void inline average_init(struct average *avg)
4004 {
4005         memset(avg, 0, sizeof(*avg));
4006 }
4007
4008 #define DEPTH_RSSI 8
4009 #define DEPTH_NOISE 16
4010 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4011 {
4012         return ((depth-1)*prev_avg +  val)/depth;
4013 }
4014
4015 static void average_add(struct average *avg, s16 val)
4016 {
4017         avg->sum -= avg->entries[avg->pos];
4018         avg->sum += val;
4019         avg->entries[avg->pos++] = val;
4020         if (unlikely(avg->pos == AVG_ENTRIES)) {
4021                 avg->init = 1;
4022                 avg->pos = 0;
4023         }
4024 }
4025
4026 static s16 average_value(struct average *avg)
4027 {
4028         if (!unlikely(avg->init)) {
4029                 if (avg->pos)
4030                         return avg->sum / avg->pos;
4031                 return 0;
4032         }
4033
4034         return avg->sum / AVG_ENTRIES;
4035 }
4036
4037 static void ipw_reset_stats(struct ipw_priv *priv)
4038 {
4039         u32 len = sizeof(u32);
4040
4041         priv->quality = 0;
4042
4043         average_init(&priv->average_missed_beacons);
4044         priv->exp_avg_rssi = -60;
4045         priv->exp_avg_noise = -85 + 0x100;
4046
4047         priv->last_rate = 0;
4048         priv->last_missed_beacons = 0;
4049         priv->last_rx_packets = 0;
4050         priv->last_tx_packets = 0;
4051         priv->last_tx_failures = 0;
4052
4053         /* Firmware managed, reset only when NIC is restarted, so we have to
4054          * normalize on the current value */
4055         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4056                         &priv->last_rx_err, &len);
4057         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4058                         &priv->last_tx_failures, &len);
4059
4060         /* Driver managed, reset with each association */
4061         priv->missed_adhoc_beacons = 0;
4062         priv->missed_beacons = 0;
4063         priv->tx_packets = 0;
4064         priv->rx_packets = 0;
4065
4066 }
4067
4068 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4069 {
4070         u32 i = 0x80000000;
4071         u32 mask = priv->rates_mask;
4072         /* If currently associated in B mode, restrict the maximum
4073          * rate match to B rates */
4074         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4075                 mask &= IEEE80211_CCK_RATES_MASK;
4076
4077         /* TODO: Verify that the rate is supported by the current rates
4078          * list. */
4079
4080         while (i && !(mask & i))
4081                 i >>= 1;
4082         switch (i) {
4083         case IEEE80211_CCK_RATE_1MB_MASK:
4084                 return 1000000;
4085         case IEEE80211_CCK_RATE_2MB_MASK:
4086                 return 2000000;
4087         case IEEE80211_CCK_RATE_5MB_MASK:
4088                 return 5500000;
4089         case IEEE80211_OFDM_RATE_6MB_MASK:
4090                 return 6000000;
4091         case IEEE80211_OFDM_RATE_9MB_MASK:
4092                 return 9000000;
4093         case IEEE80211_CCK_RATE_11MB_MASK:
4094                 return 11000000;
4095         case IEEE80211_OFDM_RATE_12MB_MASK:
4096                 return 12000000;
4097         case IEEE80211_OFDM_RATE_18MB_MASK:
4098                 return 18000000;
4099         case IEEE80211_OFDM_RATE_24MB_MASK:
4100                 return 24000000;
4101         case IEEE80211_OFDM_RATE_36MB_MASK:
4102                 return 36000000;
4103         case IEEE80211_OFDM_RATE_48MB_MASK:
4104                 return 48000000;
4105         case IEEE80211_OFDM_RATE_54MB_MASK:
4106                 return 54000000;
4107         }
4108
4109         if (priv->ieee->mode == IEEE_B)
4110                 return 11000000;
4111         else
4112                 return 54000000;
4113 }
4114
4115 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4116 {
4117         u32 rate, len = sizeof(rate);
4118         int err;
4119
4120         if (!(priv->status & STATUS_ASSOCIATED))
4121                 return 0;
4122
4123         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4124                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4125                                       &len);
4126                 if (err) {
4127                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4128                         return 0;
4129                 }
4130         } else
4131                 return ipw_get_max_rate(priv);
4132
4133         switch (rate) {
4134         case IPW_TX_RATE_1MB:
4135                 return 1000000;
4136         case IPW_TX_RATE_2MB:
4137                 return 2000000;
4138         case IPW_TX_RATE_5MB:
4139                 return 5500000;
4140         case IPW_TX_RATE_6MB:
4141                 return 6000000;
4142         case IPW_TX_RATE_9MB:
4143                 return 9000000;
4144         case IPW_TX_RATE_11MB:
4145                 return 11000000;
4146         case IPW_TX_RATE_12MB:
4147                 return 12000000;
4148         case IPW_TX_RATE_18MB:
4149                 return 18000000;
4150         case IPW_TX_RATE_24MB:
4151                 return 24000000;
4152         case IPW_TX_RATE_36MB:
4153                 return 36000000;
4154         case IPW_TX_RATE_48MB:
4155                 return 48000000;
4156         case IPW_TX_RATE_54MB:
4157                 return 54000000;
4158         }
4159
4160         return 0;
4161 }
4162
4163 #define IPW_STATS_INTERVAL (2 * HZ)
4164 static void ipw_gather_stats(struct ipw_priv *priv)
4165 {
4166         u32 rx_err, rx_err_delta, rx_packets_delta;
4167         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4168         u32 missed_beacons_percent, missed_beacons_delta;
4169         u32 quality = 0;
4170         u32 len = sizeof(u32);
4171         s16 rssi;
4172         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4173             rate_quality;
4174         u32 max_rate;
4175
4176         if (!(priv->status & STATUS_ASSOCIATED)) {
4177                 priv->quality = 0;
4178                 return;
4179         }
4180
4181         /* Update the statistics */
4182         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4183                         &priv->missed_beacons, &len);
4184         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4185         priv->last_missed_beacons = priv->missed_beacons;
4186         if (priv->assoc_request.beacon_interval) {
4187                 missed_beacons_percent = missed_beacons_delta *
4188                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4189                     (IPW_STATS_INTERVAL * 10);
4190         } else {
4191                 missed_beacons_percent = 0;
4192         }
4193         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4194
4195         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4196         rx_err_delta = rx_err - priv->last_rx_err;
4197         priv->last_rx_err = rx_err;
4198
4199         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4200         tx_failures_delta = tx_failures - priv->last_tx_failures;
4201         priv->last_tx_failures = tx_failures;
4202
4203         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4204         priv->last_rx_packets = priv->rx_packets;
4205
4206         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4207         priv->last_tx_packets = priv->tx_packets;
4208
4209         /* Calculate quality based on the following:
4210          *
4211          * Missed beacon: 100% = 0, 0% = 70% missed
4212          * Rate: 60% = 1Mbs, 100% = Max
4213          * Rx and Tx errors represent a straight % of total Rx/Tx
4214          * RSSI: 100% = > -50,  0% = < -80
4215          * Rx errors: 100% = 0, 0% = 50% missed
4216          *
4217          * The lowest computed quality is used.
4218          *
4219          */
4220 #define BEACON_THRESHOLD 5
4221         beacon_quality = 100 - missed_beacons_percent;
4222         if (beacon_quality < BEACON_THRESHOLD)
4223                 beacon_quality = 0;
4224         else
4225                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4226                     (100 - BEACON_THRESHOLD);
4227         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4228                         beacon_quality, missed_beacons_percent);
4229
4230         priv->last_rate = ipw_get_current_rate(priv);
4231         max_rate = ipw_get_max_rate(priv);
4232         rate_quality = priv->last_rate * 40 / max_rate + 60;
4233         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4234                         rate_quality, priv->last_rate / 1000000);
4235
4236         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4237                 rx_quality = 100 - (rx_err_delta * 100) /
4238                     (rx_packets_delta + rx_err_delta);
4239         else
4240                 rx_quality = 100;
4241         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4242                         rx_quality, rx_err_delta, rx_packets_delta);
4243
4244         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4245                 tx_quality = 100 - (tx_failures_delta * 100) /
4246                     (tx_packets_delta + tx_failures_delta);
4247         else
4248                 tx_quality = 100;
4249         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4250                         tx_quality, tx_failures_delta, tx_packets_delta);
4251
4252         rssi = priv->exp_avg_rssi;
4253         signal_quality =
4254             (100 *
4255              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4256              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4257              (priv->ieee->perfect_rssi - rssi) *
4258              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4259               62 * (priv->ieee->perfect_rssi - rssi))) /
4260             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4261              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4262         if (signal_quality > 100)
4263                 signal_quality = 100;
4264         else if (signal_quality < 1)
4265                 signal_quality = 0;
4266
4267         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4268                         signal_quality, rssi);
4269
4270         quality = min(beacon_quality,
4271                       min(rate_quality,
4272                           min(tx_quality, min(rx_quality, signal_quality))));
4273         if (quality == beacon_quality)
4274                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4275                                 quality);
4276         if (quality == rate_quality)
4277                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4278                                 quality);
4279         if (quality == tx_quality)
4280                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4281                                 quality);
4282         if (quality == rx_quality)
4283                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4284                                 quality);
4285         if (quality == signal_quality)
4286                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4287                                 quality);
4288
4289         priv->quality = quality;
4290
4291         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4292                            IPW_STATS_INTERVAL);
4293 }
4294
4295 static void ipw_bg_gather_stats(struct work_struct *work)
4296 {
4297         struct ipw_priv *priv =
4298                 container_of(work, struct ipw_priv, gather_stats.work);
4299         mutex_lock(&priv->mutex);
4300         ipw_gather_stats(priv);
4301         mutex_unlock(&priv->mutex);
4302 }
4303
4304 /* Missed beacon behavior:
4305  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4306  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4307  * Above disassociate threshold, give up and stop scanning.
4308  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4309 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4310                                             int missed_count)
4311 {
4312         priv->notif_missed_beacons = missed_count;
4313
4314         if (missed_count > priv->disassociate_threshold &&
4315             priv->status & STATUS_ASSOCIATED) {
4316                 /* If associated and we've hit the missed
4317                  * beacon threshold, disassociate, turn
4318                  * off roaming, and abort any active scans */
4319                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4320                           IPW_DL_STATE | IPW_DL_ASSOC,
4321                           "Missed beacon: %d - disassociate\n", missed_count);
4322                 priv->status &= ~STATUS_ROAMING;
4323                 if (priv->status & STATUS_SCANNING) {
4324                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4325                                   IPW_DL_STATE,
4326                                   "Aborting scan with missed beacon.\n");
4327                         queue_work(priv->workqueue, &priv->abort_scan);
4328                 }
4329
4330                 queue_work(priv->workqueue, &priv->disassociate);
4331                 return;
4332         }
4333
4334         if (priv->status & STATUS_ROAMING) {
4335                 /* If we are currently roaming, then just
4336                  * print a debug statement... */
4337                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4338                           "Missed beacon: %d - roam in progress\n",
4339                           missed_count);
4340                 return;
4341         }
4342
4343         if (roaming &&
4344             (missed_count > priv->roaming_threshold &&
4345              missed_count <= priv->disassociate_threshold)) {
4346                 /* If we are not already roaming, set the ROAM
4347                  * bit in the status and kick off a scan.
4348                  * This can happen several times before we reach
4349                  * disassociate_threshold. */
4350                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4351                           "Missed beacon: %d - initiate "
4352                           "roaming\n", missed_count);
4353                 if (!(priv->status & STATUS_ROAMING)) {
4354                         priv->status |= STATUS_ROAMING;
4355                         if (!(priv->status & STATUS_SCANNING))
4356                                 queue_delayed_work(priv->workqueue,
4357                                                    &priv->request_scan, 0);
4358                 }
4359                 return;
4360         }
4361
4362         if (priv->status & STATUS_SCANNING &&
4363             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4364                 /* Stop scan to keep fw from getting
4365                  * stuck (only if we aren't roaming --
4366                  * otherwise we'll never scan more than 2 or 3
4367                  * channels..) */
4368                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4369                           "Aborting scan with missed beacon.\n");
4370                 queue_work(priv->workqueue, &priv->abort_scan);
4371         }
4372
4373         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4374 }
4375
4376 static void ipw_scan_event(struct work_struct *work)
4377 {
4378         union iwreq_data wrqu;
4379
4380         struct ipw_priv *priv =
4381                 container_of(work, struct ipw_priv, scan_event.work);
4382
4383         wrqu.data.length = 0;
4384         wrqu.data.flags = 0;
4385         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4386 }
4387
4388 static void handle_scan_event(struct ipw_priv *priv)
4389 {
4390         /* Only userspace-requested scan completion events go out immediately */
4391         if (!priv->user_requested_scan) {
4392                 if (!delayed_work_pending(&priv->scan_event))
4393                         queue_delayed_work(priv->workqueue, &priv->scan_event,
4394                                          round_jiffies_relative(msecs_to_jiffies(4000)));
4395         } else {
4396                 union iwreq_data wrqu;
4397
4398                 priv->user_requested_scan = 0;
4399                 cancel_delayed_work(&priv->scan_event);
4400
4401                 wrqu.data.length = 0;
4402                 wrqu.data.flags = 0;
4403                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4404         }
4405 }
4406
4407 /**
4408  * Handle host notification packet.
4409  * Called from interrupt routine
4410  */
4411 static void ipw_rx_notification(struct ipw_priv *priv,
4412                                        struct ipw_rx_notification *notif)
4413 {
4414         DECLARE_SSID_BUF(ssid);
4415         u16 size = le16_to_cpu(notif->size);
4416         notif->size = le16_to_cpu(notif->size);
4417
4418         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4419
4420         switch (notif->subtype) {
4421         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4422                         struct notif_association *assoc = &notif->u.assoc;
4423
4424                         switch (assoc->state) {
4425                         case CMAS_ASSOCIATED:{
4426                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4427                                                   IPW_DL_ASSOC,
4428                                                   "associated: '%s' %pM \n",
4429                                                   print_ssid(ssid, priv->essid,
4430                                                              priv->essid_len),
4431                                                   priv->bssid);
4432
4433                                         switch (priv->ieee->iw_mode) {
4434                                         case IW_MODE_INFRA:
4435                                                 memcpy(priv->ieee->bssid,
4436                                                        priv->bssid, ETH_ALEN);
4437                                                 break;
4438
4439                                         case IW_MODE_ADHOC:
4440                                                 memcpy(priv->ieee->bssid,
4441                                                        priv->bssid, ETH_ALEN);
4442
4443                                                 /* clear out the station table */
4444                                                 priv->num_stations = 0;
4445
4446                                                 IPW_DEBUG_ASSOC
4447                                                     ("queueing adhoc check\n");
4448                                                 queue_delayed_work(priv->
4449                                                                    workqueue,
4450                                                                    &priv->
4451                                                                    adhoc_check,
4452                                                                    le16_to_cpu(priv->
4453                                                                    assoc_request.
4454                                                                    beacon_interval));
4455                                                 break;
4456                                         }
4457
4458                                         priv->status &= ~STATUS_ASSOCIATING;
4459                                         priv->status |= STATUS_ASSOCIATED;
4460                                         queue_work(priv->workqueue,
4461                                                    &priv->system_config);
4462
4463 #ifdef CONFIG_IPW2200_QOS
4464 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4465                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4466                                         if ((priv->status & STATUS_AUTH) &&
4467                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4468                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4469                                                 if ((sizeof
4470                                                      (struct
4471                                                       ieee80211_assoc_response)
4472                                                      <= size)
4473                                                     && (size <= 2314)) {
4474                                                         struct
4475                                                         ieee80211_rx_stats
4476                                                             stats = {
4477                                                                 .len = size - 1,
4478                                                         };
4479
4480                                                         IPW_DEBUG_QOS
4481                                                             ("QoS Associate "
4482                                                              "size %d\n", size);
4483                                                         ieee80211_rx_mgt(priv->
4484                                                                          ieee,
4485                                                                          (struct
4486                                                                           ieee80211_hdr_4addr
4487                                                                           *)
4488                                                                          &notif->u.raw, &stats);
4489                                                 }
4490                                         }
4491 #endif
4492
4493                                         schedule_work(&priv->link_up);
4494
4495                                         break;
4496                                 }
4497
4498                         case CMAS_AUTHENTICATED:{
4499                                         if (priv->
4500                                             status & (STATUS_ASSOCIATED |
4501                                                       STATUS_AUTH)) {
4502                                                 struct notif_authenticate *auth
4503                                                     = &notif->u.auth;
4504                                                 IPW_DEBUG(IPW_DL_NOTIF |
4505                                                           IPW_DL_STATE |
4506                                                           IPW_DL_ASSOC,
4507                                                           "deauthenticated: '%s' "
4508                                                           "%pM"
4509                                                           ": (0x%04X) - %s \n",
4510                                                           print_ssid(ssid,
4511                                                                      priv->
4512                                                                      essid,
4513                                                                      priv->
4514                                                                      essid_len),
4515                                                           priv->bssid,
4516                                                           le16_to_cpu(auth->status),
4517                                                           ipw_get_status_code
4518                                                           (le16_to_cpu
4519                                                            (auth->status)));
4520
4521                                                 priv->status &=
4522                                                     ~(STATUS_ASSOCIATING |
4523                                                       STATUS_AUTH |
4524                                                       STATUS_ASSOCIATED);
4525
4526                                                 schedule_work(&priv->link_down);
4527                                                 break;
4528                                         }
4529
4530                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4531                                                   IPW_DL_ASSOC,
4532                                                   "authenticated: '%s' %pM\n",
4533                                                   print_ssid(ssid, priv->essid,
4534                                                              priv->essid_len),
4535                                                   priv->bssid);
4536                                         break;
4537                                 }
4538
4539                         case CMAS_INIT:{
4540                                         if (priv->status & STATUS_AUTH) {
4541                                                 struct
4542                                                     ieee80211_assoc_response
4543                                                 *resp;
4544                                                 resp =
4545                                                     (struct
4546                                                      ieee80211_assoc_response
4547                                                      *)&notif->u.raw;
4548                                                 IPW_DEBUG(IPW_DL_NOTIF |
4549                                                           IPW_DL_STATE |
4550                                                           IPW_DL_ASSOC,
4551                                                           "association failed (0x%04X): %s\n",
4552                                                           le16_to_cpu(resp->status),
4553                                                           ipw_get_status_code
4554                                                           (le16_to_cpu
4555                                                            (resp->status)));
4556                                         }
4557
4558                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4559                                                   IPW_DL_ASSOC,
4560                                                   "disassociated: '%s' %pM \n",
4561                                                   print_ssid(ssid, priv->essid,
4562                                                              priv->essid_len),
4563                                                   priv->bssid);
4564
4565                                         priv->status &=
4566                                             ~(STATUS_DISASSOCIATING |
4567                                               STATUS_ASSOCIATING |
4568                                               STATUS_ASSOCIATED | STATUS_AUTH);
4569                                         if (priv->assoc_network
4570                                             && (priv->assoc_network->
4571                                                 capability &
4572                                                 WLAN_CAPABILITY_IBSS))
4573                                                 ipw_remove_current_network
4574                                                     (priv);
4575
4576                                         schedule_work(&priv->link_down);
4577
4578                                         break;
4579                                 }
4580
4581                         case CMAS_RX_ASSOC_RESP:
4582                                 break;
4583
4584                         default:
4585                                 IPW_ERROR("assoc: unknown (%d)\n",
4586                                           assoc->state);
4587                                 break;
4588                         }
4589
4590                         break;
4591                 }
4592
4593         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4594                         struct notif_authenticate *auth = &notif->u.auth;
4595                         switch (auth->state) {
4596                         case CMAS_AUTHENTICATED:
4597                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4598                                           "authenticated: '%s' %pM \n",
4599                                           print_ssid(ssid, priv->essid,
4600                                                      priv->essid_len),
4601                                           priv->bssid);
4602                                 priv->status |= STATUS_AUTH;
4603                                 break;
4604
4605                         case CMAS_INIT:
4606                                 if (priv->status & STATUS_AUTH) {
4607                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4608                                                   IPW_DL_ASSOC,
4609                                                   "authentication failed (0x%04X): %s\n",
4610                                                   le16_to_cpu(auth->status),
4611                                                   ipw_get_status_code(le16_to_cpu
4612                                                                       (auth->
4613                                                                        status)));
4614                                 }
4615                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4616                                           IPW_DL_ASSOC,
4617                                           "deauthenticated: '%s' %pM\n",
4618                                           print_ssid(ssid, priv->essid,
4619                                                      priv->essid_len),
4620                                           priv->bssid);
4621
4622                                 priv->status &= ~(STATUS_ASSOCIATING |
4623                                                   STATUS_AUTH |
4624                                                   STATUS_ASSOCIATED);
4625
4626                                 schedule_work(&priv->link_down);
4627                                 break;
4628
4629                         case CMAS_TX_AUTH_SEQ_1:
4630                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4632                                 break;
4633                         case CMAS_RX_AUTH_SEQ_2:
4634                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4636                                 break;
4637                         case CMAS_AUTH_SEQ_1_PASS:
4638                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4640                                 break;
4641                         case CMAS_AUTH_SEQ_1_FAIL:
4642                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4644                                 break;
4645                         case CMAS_TX_AUTH_SEQ_3:
4646                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4648                                 break;
4649                         case CMAS_RX_AUTH_SEQ_4:
4650                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4652                                 break;
4653                         case CMAS_AUTH_SEQ_2_PASS:
4654                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4656                                 break;
4657                         case CMAS_AUTH_SEQ_2_FAIL:
4658                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4659                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4660                                 break;
4661                         case CMAS_TX_ASSOC:
4662                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4664                                 break;
4665                         case CMAS_RX_ASSOC_RESP:
4666                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4667                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4668
4669                                 break;
4670                         case CMAS_ASSOCIATED:
4671                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4672                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4673                                 break;
4674                         default:
4675                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4676                                                 auth->state);
4677                                 break;
4678                         }
4679                         break;
4680                 }
4681
4682         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4683                         struct notif_channel_result *x =
4684                             &notif->u.channel_result;
4685
4686                         if (size == sizeof(*x)) {
4687                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4688                                                x->channel_num);
4689                         } else {
4690                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4691                                                "(should be %zd)\n",
4692                                                size, sizeof(*x));
4693                         }
4694                         break;
4695                 }
4696
4697         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4698                         struct notif_scan_complete *x = &notif->u.scan_complete;
4699                         if (size == sizeof(*x)) {
4700                                 IPW_DEBUG_SCAN
4701                                     ("Scan completed: type %d, %d channels, "
4702                                      "%d status\n", x->scan_type,
4703                                      x->num_channels, x->status);
4704                         } else {
4705                                 IPW_ERROR("Scan completed of wrong size %d "
4706                                           "(should be %zd)\n",
4707                                           size, sizeof(*x));
4708                         }
4709
4710                         priv->status &=
4711                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4712
4713                         wake_up_interruptible(&priv->wait_state);
4714                         cancel_delayed_work(&priv->scan_check);
4715
4716                         if (priv->status & STATUS_EXIT_PENDING)
4717                                 break;
4718
4719                         priv->ieee->scans++;
4720
4721 #ifdef CONFIG_IPW2200_MONITOR
4722                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4723                                 priv->status |= STATUS_SCAN_FORCED;
4724                                 queue_delayed_work(priv->workqueue,
4725                                                    &priv->request_scan, 0);
4726                                 break;
4727                         }
4728                         priv->status &= ~STATUS_SCAN_FORCED;
4729 #endif                          /* CONFIG_IPW2200_MONITOR */
4730
4731                         /* Do queued direct scans first */
4732                         if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4733                                 queue_delayed_work(priv->workqueue,
4734                                                    &priv->request_direct_scan, 0);
4735                         }
4736
4737                         if (!(priv->status & (STATUS_ASSOCIATED |
4738                                               STATUS_ASSOCIATING |
4739                                               STATUS_ROAMING |
4740                                               STATUS_DISASSOCIATING)))
4741                                 queue_work(priv->workqueue, &priv->associate);
4742                         else if (priv->status & STATUS_ROAMING) {
4743                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4744                                         /* If a scan completed and we are in roam mode, then
4745                                          * the scan that completed was the one requested as a
4746                                          * result of entering roam... so, schedule the
4747                                          * roam work */
4748                                         queue_work(priv->workqueue,
4749                                                    &priv->roam);
4750                                 else
4751                                         /* Don't schedule if we aborted the scan */
4752                                         priv->status &= ~STATUS_ROAMING;
4753                         } else if (priv->status & STATUS_SCAN_PENDING)
4754                                 queue_delayed_work(priv->workqueue,
4755                                                    &priv->request_scan, 0);
4756                         else if (priv->config & CFG_BACKGROUND_SCAN
4757                                  && priv->status & STATUS_ASSOCIATED)
4758                                 queue_delayed_work(priv->workqueue,
4759                                                    &priv->request_scan,
4760                                                    round_jiffies_relative(HZ));
4761
4762                         /* Send an empty event to user space.
4763                          * We don't send the received data on the event because
4764                          * it would require us to do complex transcoding, and
4765                          * we want to minimise the work done in the irq handler
4766                          * Use a request to extract the data.
4767                          * Also, we generate this even for any scan, regardless
4768                          * on how the scan was initiated. User space can just
4769                          * sync on periodic scan to get fresh data...
4770                          * Jean II */
4771                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4772                                 handle_scan_event(priv);
4773                         break;
4774                 }
4775
4776         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4777                         struct notif_frag_length *x = &notif->u.frag_len;
4778
4779                         if (size == sizeof(*x))
4780                                 IPW_ERROR("Frag length: %d\n",
4781                                           le16_to_cpu(x->frag_length));
4782                         else
4783                                 IPW_ERROR("Frag length of wrong size %d "
4784                                           "(should be %zd)\n",
4785                                           size, sizeof(*x));
4786                         break;
4787                 }
4788
4789         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4790                         struct notif_link_deterioration *x =
4791                             &notif->u.link_deterioration;
4792
4793                         if (size == sizeof(*x)) {
4794                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4795                                         "link deterioration: type %d, cnt %d\n",
4796                                         x->silence_notification_type,
4797                                         x->silence_count);
4798                                 memcpy(&priv->last_link_deterioration, x,
4799                                        sizeof(*x));
4800                         } else {
4801                                 IPW_ERROR("Link Deterioration of wrong size %d "
4802                                           "(should be %zd)\n",
4803                                           size, sizeof(*x));
4804                         }
4805                         break;
4806                 }
4807
4808         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4809                         IPW_ERROR("Dino config\n");
4810                         if (priv->hcmd
4811                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4812                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4813
4814                         break;
4815                 }
4816
4817         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4818                         struct notif_beacon_state *x = &notif->u.beacon_state;
4819                         if (size != sizeof(*x)) {
4820                                 IPW_ERROR
4821                                     ("Beacon state of wrong size %d (should "
4822                                      "be %zd)\n", size, sizeof(*x));
4823                                 break;
4824                         }
4825
4826                         if (le32_to_cpu(x->state) ==
4827                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4828                                 ipw_handle_missed_beacon(priv,
4829                                                          le32_to_cpu(x->
4830                                                                      number));
4831
4832                         break;
4833                 }
4834
4835         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4836                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4837                         if (size == sizeof(*x)) {
4838                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4839                                           "0x%02x station %d\n",
4840                                           x->key_state, x->security_type,
4841                                           x->station_index);
4842                                 break;
4843                         }
4844
4845                         IPW_ERROR
4846                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4847                              size, sizeof(*x));
4848                         break;
4849                 }
4850
4851         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4852                         struct notif_calibration *x = &notif->u.calibration;
4853
4854                         if (size == sizeof(*x)) {
4855                                 memcpy(&priv->calib, x, sizeof(*x));
4856                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4857                                 break;
4858                         }
4859
4860                         IPW_ERROR
4861                             ("Calibration of wrong size %d (should be %zd)\n",
4862                              size, sizeof(*x));
4863                         break;
4864                 }
4865
4866         case HOST_NOTIFICATION_NOISE_STATS:{
4867                         if (size == sizeof(u32)) {
4868                                 priv->exp_avg_noise =
4869                                     exponential_average(priv->exp_avg_noise,
4870                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4871                                     DEPTH_NOISE);
4872                                 break;
4873                         }
4874
4875                         IPW_ERROR
4876                             ("Noise stat is wrong size %d (should be %zd)\n",
4877                              size, sizeof(u32));
4878                         break;
4879                 }
4880
4881         default:
4882                 IPW_DEBUG_NOTIF("Unknown notification: "
4883                                 "subtype=%d,flags=0x%2x,size=%d\n",
4884                                 notif->subtype, notif->flags, size);
4885         }
4886 }
4887
4888 /**
4889  * Destroys all DMA structures and initialise them again
4890  *
4891  * @param priv
4892  * @return error code
4893  */
4894 static int ipw_queue_reset(struct ipw_priv *priv)
4895 {
4896         int rc = 0;
4897         /** @todo customize queue sizes */
4898         int nTx = 64, nTxCmd = 8;
4899         ipw_tx_queue_free(priv);
4900         /* Tx CMD queue */
4901         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4902                                IPW_TX_CMD_QUEUE_READ_INDEX,
4903                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4904                                IPW_TX_CMD_QUEUE_BD_BASE,
4905                                IPW_TX_CMD_QUEUE_BD_SIZE);
4906         if (rc) {
4907                 IPW_ERROR("Tx Cmd queue init failed\n");
4908                 goto error;
4909         }
4910         /* Tx queue(s) */
4911         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4912                                IPW_TX_QUEUE_0_READ_INDEX,
4913                                IPW_TX_QUEUE_0_WRITE_INDEX,
4914                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4915         if (rc) {
4916                 IPW_ERROR("Tx 0 queue init failed\n");
4917                 goto error;
4918         }
4919         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4920                                IPW_TX_QUEUE_1_READ_INDEX,
4921                                IPW_TX_QUEUE_1_WRITE_INDEX,
4922                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4923         if (rc) {
4924                 IPW_ERROR("Tx 1 queue init failed\n");
4925                 goto error;
4926         }
4927         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4928                                IPW_TX_QUEUE_2_READ_INDEX,
4929                                IPW_TX_QUEUE_2_WRITE_INDEX,
4930                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4931         if (rc) {
4932                 IPW_ERROR("Tx 2 queue init failed\n");
4933                 goto error;
4934         }
4935         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4936                                IPW_TX_QUEUE_3_READ_INDEX,
4937                                IPW_TX_QUEUE_3_WRITE_INDEX,
4938                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4939         if (rc) {
4940                 IPW_ERROR("Tx 3 queue init failed\n");
4941                 goto error;
4942         }
4943         /* statistics */
4944         priv->rx_bufs_min = 0;
4945         priv->rx_pend_max = 0;
4946         return rc;
4947
4948       error:
4949         ipw_tx_queue_free(priv);
4950         return rc;
4951 }
4952
4953 /**
4954  * Reclaim Tx queue entries no more used by NIC.
4955  *
4956  * When FW advances 'R' index, all entries between old and
4957  * new 'R' index need to be reclaimed. As result, some free space
4958  * forms. If there is enough free space (> low mark), wake Tx queue.
4959  *
4960  * @note Need to protect against garbage in 'R' index
4961  * @param priv
4962  * @param txq
4963  * @param qindex
4964  * @return Number of used entries remains in the queue
4965  */
4966 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4967                                 struct clx2_tx_queue *txq, int qindex)
4968 {
4969         u32 hw_tail;
4970         int used;
4971         struct clx2_queue *q = &txq->q;
4972
4973         hw_tail = ipw_read32(priv, q->reg_r);
4974         if (hw_tail >= q->n_bd) {
4975                 IPW_ERROR
4976                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4977                      hw_tail, q->n_bd);
4978                 goto done;
4979         }
4980         for (; q->last_used != hw_tail;
4981              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4982                 ipw_queue_tx_free_tfd(priv, txq);
4983                 priv->tx_packets++;
4984         }
4985       done:
4986         if ((ipw_tx_queue_space(q) > q->low_mark) &&
4987             (qindex >= 0))
4988                 netif_wake_queue(priv->net_dev);
4989         used = q->first_empty - q->last_used;
4990         if (used < 0)
4991                 used += q->n_bd;
4992
4993         return used;
4994 }
4995
4996 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4997                              int len, int sync)
4998 {
4999         struct clx2_tx_queue *txq = &priv->txq_cmd;
5000         struct clx2_queue *q = &txq->q;
5001         struct tfd_frame *tfd;
5002
5003         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5004                 IPW_ERROR("No space for Tx\n");
5005                 return -EBUSY;
5006         }
5007
5008         tfd = &txq->bd[q->first_empty];
5009         txq->txb[q->first_empty] = NULL;
5010
5011         memset(tfd, 0, sizeof(*tfd));
5012         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5013         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5014         priv->hcmd_seq++;
5015         tfd->u.cmd.index = hcmd;
5016         tfd->u.cmd.length = len;
5017         memcpy(tfd->u.cmd.payload, buf, len);
5018         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5019         ipw_write32(priv, q->reg_w, q->first_empty);
5020         _ipw_read32(priv, 0x90);
5021
5022         return 0;
5023 }
5024
5025 /*
5026  * Rx theory of operation
5027  *
5028  * The host allocates 32 DMA target addresses and passes the host address
5029  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5030  * 0 to 31
5031  *
5032  * Rx Queue Indexes
5033  * The host/firmware share two index registers for managing the Rx buffers.
5034  *
5035  * The READ index maps to the first position that the firmware may be writing
5036  * to -- the driver can read up to (but not including) this position and get
5037  * good data.
5038  * The READ index is managed by the firmware once the card is enabled.
5039  *
5040  * The WRITE index maps to the last position the driver has read from -- the
5041  * position preceding WRITE is the last slot the firmware can place a packet.
5042  *
5043  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5044  * WRITE = READ.
5045  *
5046  * During initialization the host sets up the READ queue position to the first
5047  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5048  *
5049  * When the firmware places a packet in a buffer it will advance the READ index
5050  * and fire the RX interrupt.  The driver can then query the READ index and
5051  * process as many packets as possible, moving the WRITE index forward as it
5052  * resets the Rx queue buffers with new memory.
5053  *
5054  * The management in the driver is as follows:
5055  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5056  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5057  *   to replensish the ipw->rxq->rx_free.
5058  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5059  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5060  *   'processed' and 'read' driver indexes as well)
5061  * + A received packet is processed and handed to the kernel network stack,
5062  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5063  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5064  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5065  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5066  *   were enough free buffers and RX_STALLED is set it is cleared.
5067  *
5068  *
5069  * Driver sequence:
5070  *
5071  * ipw_rx_queue_alloc()       Allocates rx_free
5072  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5073  *                            ipw_rx_queue_restock
5074  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5075  *                            queue, updates firmware pointers, and updates
5076  *                            the WRITE index.  If insufficient rx_free buffers
5077  *                            are available, schedules ipw_rx_queue_replenish
5078  *
5079  * -- enable interrupts --
5080  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5081  *                            READ INDEX, detaching the SKB from the pool.
5082  *                            Moves the packet buffer from queue to rx_used.
5083  *                            Calls ipw_rx_queue_restock to refill any empty
5084  *                            slots.
5085  * ...
5086  *
5087  */
5088
5089 /*
5090  * If there are slots in the RX queue that  need to be restocked,
5091  * and we have free pre-allocated buffers, fill the ranks as much
5092  * as we can pulling from rx_free.
5093  *
5094  * This moves the 'write' index forward to catch up with 'processed', and
5095  * also updates the memory address in the firmware to reference the new
5096  * target buffer.
5097  */
5098 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5099 {
5100         struct ipw_rx_queue *rxq = priv->rxq;
5101         struct list_head *element;
5102         struct ipw_rx_mem_buffer *rxb;
5103         unsigned long flags;
5104         int write;
5105
5106         spin_lock_irqsave(&rxq->lock, flags);
5107         write = rxq->write;
5108         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5109                 element = rxq->rx_free.next;
5110                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5111                 list_del(element);
5112
5113                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5114                             rxb->dma_addr);
5115                 rxq->queue[rxq->write] = rxb;
5116                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5117                 rxq->free_count--;
5118         }
5119         spin_unlock_irqrestore(&rxq->lock, flags);
5120
5121         /* If the pre-allocated buffer pool is dropping low, schedule to
5122          * refill it */
5123         if (rxq->free_count <= RX_LOW_WATERMARK)
5124                 queue_work(priv->workqueue, &priv->rx_replenish);
5125
5126         /* If we've added more space for the firmware to place data, tell it */
5127         if (write != rxq->write)
5128                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5129 }
5130
5131 /*
5132  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5133  * Also restock the Rx queue via ipw_rx_queue_restock.
5134  *
5135  * This is called as a scheduled work item (except for during intialization)
5136  */
5137 static void ipw_rx_queue_replenish(void *data)
5138 {
5139         struct ipw_priv *priv = data;
5140         struct ipw_rx_queue *rxq = priv->rxq;
5141         struct list_head *element;
5142         struct ipw_rx_mem_buffer *rxb;
5143         unsigned long flags;
5144
5145         spin_lock_irqsave(&rxq->lock, flags);
5146         while (!list_empty(&rxq->rx_used)) {
5147                 element = rxq->rx_used.next;
5148                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5149                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5150                 if (!rxb->skb) {
5151                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5152                                priv->net_dev->name);
5153                         /* We don't reschedule replenish work here -- we will
5154                          * call the restock method and if it still needs
5155                          * more buffers it will schedule replenish */
5156                         break;
5157                 }
5158                 list_del(element);
5159
5160                 rxb->dma_addr =
5161                     pci_map_single(priv->pci_dev, rxb->skb->data,
5162                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5163
5164                 list_add_tail(&rxb->list, &rxq->rx_free);
5165                 rxq->free_count++;
5166         }
5167         spin_unlock_irqrestore(&rxq->lock, flags);
5168
5169         ipw_rx_queue_restock(priv);
5170 }
5171
5172 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5173 {
5174         struct ipw_priv *priv =
5175                 container_of(work, struct ipw_priv, rx_replenish);
5176         mutex_lock(&priv->mutex);
5177         ipw_rx_queue_replenish(priv);
5178         mutex_unlock(&priv->mutex);
5179 }
5180
5181 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5182  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5183  * This free routine walks the list of POOL entries and if SKB is set to
5184  * non NULL it is unmapped and freed
5185  */
5186 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5187 {
5188         int i;
5189
5190         if (!rxq)
5191                 return;
5192
5193         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5194                 if (rxq->pool[i].skb != NULL) {
5195                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5196                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5197                         dev_kfree_skb(rxq->pool[i].skb);
5198                 }
5199         }
5200
5201         kfree(rxq);
5202 }
5203
5204 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5205 {
5206         struct ipw_rx_queue *rxq;
5207         int i;
5208
5209         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5210         if (unlikely(!rxq)) {
5211                 IPW_ERROR("memory allocation failed\n");
5212                 return NULL;
5213         }
5214         spin_lock_init(&rxq->lock);
5215         INIT_LIST_HEAD(&rxq->rx_free);
5216         INIT_LIST_HEAD(&rxq->rx_used);
5217
5218         /* Fill the rx_used queue with _all_ of the Rx buffers */
5219         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5220                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5221
5222         /* Set us so that we have processed and used all buffers, but have
5223          * not restocked the Rx queue with fresh buffers */
5224         rxq->read = rxq->write = 0;
5225         rxq->free_count = 0;
5226
5227         return rxq;
5228 }
5229
5230 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5231 {
5232         rate &= ~IEEE80211_BASIC_RATE_MASK;
5233         if (ieee_mode == IEEE_A) {
5234                 switch (rate) {
5235                 case IEEE80211_OFDM_RATE_6MB:
5236                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5237                             1 : 0;
5238                 case IEEE80211_OFDM_RATE_9MB:
5239                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5240                             1 : 0;
5241                 case IEEE80211_OFDM_RATE_12MB:
5242                         return priv->
5243                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5244                 case IEEE80211_OFDM_RATE_18MB:
5245                         return priv->
5246                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5247                 case IEEE80211_OFDM_RATE_24MB:
5248                         return priv->
5249                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5250                 case IEEE80211_OFDM_RATE_36MB:
5251                         return priv->
5252                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5253                 case IEEE80211_OFDM_RATE_48MB:
5254                         return priv->
5255                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5256                 case IEEE80211_OFDM_RATE_54MB:
5257                         return priv->
5258                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5259                 default:
5260                         return 0;
5261                 }
5262         }
5263
5264         /* B and G mixed */
5265         switch (rate) {
5266         case IEEE80211_CCK_RATE_1MB:
5267                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5268         case IEEE80211_CCK_RATE_2MB:
5269                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5270         case IEEE80211_CCK_RATE_5MB:
5271                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5272         case IEEE80211_CCK_RATE_11MB:
5273                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5274         }
5275
5276         /* If we are limited to B modulations, bail at this point */
5277         if (ieee_mode == IEEE_B)
5278                 return 0;
5279
5280         /* G */
5281         switch (rate) {
5282         case IEEE80211_OFDM_RATE_6MB:
5283                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5284         case IEEE80211_OFDM_RATE_9MB:
5285                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5286         case IEEE80211_OFDM_RATE_12MB:
5287                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5288         case IEEE80211_OFDM_RATE_18MB:
5289                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5290         case IEEE80211_OFDM_RATE_24MB:
5291                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5292         case IEEE80211_OFDM_RATE_36MB:
5293                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5294         case IEEE80211_OFDM_RATE_48MB:
5295                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5296         case IEEE80211_OFDM_RATE_54MB:
5297                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5298         }
5299
5300         return 0;
5301 }
5302
5303 static int ipw_compatible_rates(struct ipw_priv *priv,
5304                                 const struct ieee80211_network *network,
5305                                 struct ipw_supported_rates *rates)
5306 {
5307         int num_rates, i;
5308
5309         memset(rates, 0, sizeof(*rates));
5310         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5311         rates->num_rates = 0;
5312         for (i = 0; i < num_rates; i++) {
5313                 if (!ipw_is_rate_in_mask(priv, network->mode,
5314                                          network->rates[i])) {
5315
5316                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5317                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5318                                                "rate %02X\n",
5319                                                network->rates[i]);
5320                                 rates->supported_rates[rates->num_rates++] =
5321                                     network->rates[i];
5322                                 continue;
5323                         }
5324
5325                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5326                                        network->rates[i], priv->rates_mask);
5327                         continue;
5328                 }
5329
5330                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5331         }
5332
5333         num_rates = min(network->rates_ex_len,
5334                         (u8) (IPW_MAX_RATES - num_rates));
5335         for (i = 0; i < num_rates; i++) {
5336                 if (!ipw_is_rate_in_mask(priv, network->mode,
5337                                          network->rates_ex[i])) {
5338                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5339                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5340                                                "rate %02X\n",
5341                                                network->rates_ex[i]);
5342                                 rates->supported_rates[rates->num_rates++] =
5343                                     network->rates[i];
5344                                 continue;
5345                         }
5346
5347                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5348                                        network->rates_ex[i], priv->rates_mask);
5349                         continue;
5350                 }
5351
5352                 rates->supported_rates[rates->num_rates++] =
5353                     network->rates_ex[i];
5354         }
5355
5356         return 1;
5357 }
5358
5359 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5360                                   const struct ipw_supported_rates *src)
5361 {
5362         u8 i;
5363         for (i = 0; i < src->num_rates; i++)
5364                 dest->supported_rates[i] = src->supported_rates[i];
5365         dest->num_rates = src->num_rates;
5366 }
5367
5368 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5369  * mask should ever be used -- right now all callers to add the scan rates are
5370  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5371 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5372                                    u8 modulation, u32 rate_mask)
5373 {
5374         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5375             IEEE80211_BASIC_RATE_MASK : 0;
5376
5377         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5378                 rates->supported_rates[rates->num_rates++] =
5379                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5380
5381         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5382                 rates->supported_rates[rates->num_rates++] =
5383                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5384
5385         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5386                 rates->supported_rates[rates->num_rates++] = basic_mask |
5387                     IEEE80211_CCK_RATE_5MB;
5388
5389         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5390                 rates->supported_rates[rates->num_rates++] = basic_mask |
5391                     IEEE80211_CCK_RATE_11MB;
5392 }
5393
5394 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5395                                     u8 modulation, u32 rate_mask)
5396 {
5397         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5398             IEEE80211_BASIC_RATE_MASK : 0;
5399
5400         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5401                 rates->supported_rates[rates->num_rates++] = basic_mask |
5402                     IEEE80211_OFDM_RATE_6MB;
5403
5404         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5405                 rates->supported_rates[rates->num_rates++] =
5406                     IEEE80211_OFDM_RATE_9MB;
5407
5408         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5409                 rates->supported_rates[rates->num_rates++] = basic_mask |
5410                     IEEE80211_OFDM_RATE_12MB;
5411
5412         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5413                 rates->supported_rates[rates->num_rates++] =
5414                     IEEE80211_OFDM_RATE_18MB;
5415
5416         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5417                 rates->supported_rates[rates->num_rates++] = basic_mask |
5418                     IEEE80211_OFDM_RATE_24MB;
5419
5420         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5421                 rates->supported_rates[rates->num_rates++] =
5422                     IEEE80211_OFDM_RATE_36MB;
5423
5424         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5425                 rates->supported_rates[rates->num_rates++] =
5426                     IEEE80211_OFDM_RATE_48MB;
5427
5428         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5429                 rates->supported_rates[rates->num_rates++] =
5430                     IEEE80211_OFDM_RATE_54MB;
5431 }
5432
5433 struct ipw_network_match {
5434         struct ieee80211_network *network;
5435         struct ipw_supported_rates rates;
5436 };
5437
5438 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5439                                   struct ipw_network_match *match,
5440                                   struct ieee80211_network *network,
5441                                   int roaming)
5442 {
5443         struct ipw_supported_rates rates;
5444         DECLARE_SSID_BUF(ssid);
5445
5446         /* Verify that this network's capability is compatible with the
5447          * current mode (AdHoc or Infrastructure) */
5448         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5449              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5450                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5451                                 "capability mismatch.\n",
5452                                 print_ssid(ssid, network->ssid,
5453                                            network->ssid_len),
5454                                 network->bssid);
5455                 return 0;
5456         }
5457
5458         if (unlikely(roaming)) {
5459                 /* If we are roaming, then ensure check if this is a valid
5460                  * network to try and roam to */
5461                 if ((network->ssid_len != match->network->ssid_len) ||
5462                     memcmp(network->ssid, match->network->ssid,
5463                            network->ssid_len)) {
5464                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5465                                         "because of non-network ESSID.\n",
5466                                         print_ssid(ssid, network->ssid,
5467                                                    network->ssid_len),
5468                                         network->bssid);
5469                         return 0;
5470                 }
5471         } else {
5472                 /* If an ESSID has been configured then compare the broadcast
5473                  * ESSID to ours */
5474                 if ((priv->config & CFG_STATIC_ESSID) &&
5475                     ((network->ssid_len != priv->essid_len) ||
5476                      memcmp(network->ssid, priv->essid,
5477                             min(network->ssid_len, priv->essid_len)))) {
5478                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5479
5480                         strncpy(escaped,
5481                                 print_ssid(ssid, network->ssid,
5482                                            network->ssid_len),
5483                                 sizeof(escaped));
5484                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5485                                         "because of ESSID mismatch: '%s'.\n",
5486                                         escaped, network->bssid,
5487                                         print_ssid(ssid, priv->essid,
5488                                                    priv->essid_len));
5489                         return 0;
5490                 }
5491         }
5492
5493         /* If the old network rate is better than this one, don't bother
5494          * testing everything else. */
5495
5496         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5497                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5498                                 "current network.\n",
5499                                 print_ssid(ssid, match->network->ssid,
5500                                            match->network->ssid_len));
5501                 return 0;
5502         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5503                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5504                                 "current network.\n",
5505                                 print_ssid(ssid, match->network->ssid,
5506                                            match->network->ssid_len));
5507                 return 0;
5508         }
5509
5510         /* Now go through and see if the requested network is valid... */
5511         if (priv->ieee->scan_age != 0 &&
5512             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5513                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5514                                 "because of age: %ums.\n",
5515                                 print_ssid(ssid, network->ssid,
5516                                            network->ssid_len),
5517                                 network->bssid,
5518                                 jiffies_to_msecs(jiffies -
5519                                                  network->last_scanned));
5520                 return 0;
5521         }
5522
5523         if ((priv->config & CFG_STATIC_CHANNEL) &&
5524             (network->channel != priv->channel)) {
5525                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5526                                 "because of channel mismatch: %d != %d.\n",
5527                                 print_ssid(ssid, network->ssid,
5528                                            network->ssid_len),
5529                                 network->bssid,
5530                                 network->channel, priv->channel);
5531                 return 0;
5532         }
5533
5534         /* Verify privacy compatability */
5535         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5536             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5537                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5538                                 "because of privacy mismatch: %s != %s.\n",
5539                                 print_ssid(ssid, network->ssid,
5540                                            network->ssid_len),
5541                                 network->bssid,
5542                                 priv->
5543                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5544                                 network->
5545                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5546                                 "off");
5547                 return 0;
5548         }
5549
5550         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5551                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5552                                 "because of the same BSSID match: %pM"
5553                                 ".\n", print_ssid(ssid, network->ssid,
5554                                                   network->ssid_len),
5555                                 network->bssid,
5556                                 priv->bssid);
5557                 return 0;
5558         }
5559
5560         /* Filter out any incompatible freq / mode combinations */
5561         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5562                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5563                                 "because of invalid frequency/mode "
5564                                 "combination.\n",
5565                                 print_ssid(ssid, network->ssid,
5566                                            network->ssid_len),
5567                                 network->bssid);
5568                 return 0;
5569         }
5570
5571         /* Ensure that the rates supported by the driver are compatible with
5572          * this AP, including verification of basic rates (mandatory) */
5573         if (!ipw_compatible_rates(priv, network, &rates)) {
5574                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5575                                 "because configured rate mask excludes "
5576                                 "AP mandatory rate.\n",
5577                                 print_ssid(ssid, network->ssid,
5578                                            network->ssid_len),
5579                                 network->bssid);
5580                 return 0;
5581         }
5582
5583         if (rates.num_rates == 0) {
5584                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5585                                 "because of no compatible rates.\n",
5586                                 print_ssid(ssid, network->ssid,
5587                                            network->ssid_len),
5588                                 network->bssid);
5589                 return 0;
5590         }
5591
5592         /* TODO: Perform any further minimal comparititive tests.  We do not
5593          * want to put too much policy logic here; intelligent scan selection
5594          * should occur within a generic IEEE 802.11 user space tool.  */
5595
5596         /* Set up 'new' AP to this network */
5597         ipw_copy_rates(&match->rates, &rates);
5598         match->network = network;
5599         IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5600                         print_ssid(ssid, network->ssid, network->ssid_len),
5601                         network->bssid);
5602
5603         return 1;
5604 }
5605
5606 static void ipw_merge_adhoc_network(struct work_struct *work)
5607 {
5608         DECLARE_SSID_BUF(ssid);
5609         struct ipw_priv *priv =
5610                 container_of(work, struct ipw_priv, merge_networks);
5611         struct ieee80211_network *network = NULL;
5612         struct ipw_network_match match = {
5613                 .network = priv->assoc_network
5614         };
5615
5616         if ((priv->status & STATUS_ASSOCIATED) &&
5617             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5618                 /* First pass through ROAM process -- look for a better
5619                  * network */
5620                 unsigned long flags;
5621
5622                 spin_lock_irqsave(&priv->ieee->lock, flags);
5623                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5624                         if (network != priv->assoc_network)
5625                                 ipw_find_adhoc_network(priv, &match, network,
5626                                                        1);
5627                 }
5628                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5629
5630                 if (match.network == priv->assoc_network) {
5631                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5632                                         "merge to.\n");
5633                         return;
5634                 }
5635
5636                 mutex_lock(&priv->mutex);
5637                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5638                         IPW_DEBUG_MERGE("remove network %s\n",
5639                                         print_ssid(ssid, priv->essid,
5640                                                    priv->essid_len));
5641                         ipw_remove_current_network(priv);
5642                 }
5643
5644                 ipw_disassociate(priv);
5645                 priv->assoc_network = match.network;
5646                 mutex_unlock(&priv->mutex);
5647                 return;
5648         }
5649 }
5650
5651 static int ipw_best_network(struct ipw_priv *priv,
5652                             struct ipw_network_match *match,
5653                             struct ieee80211_network *network, int roaming)
5654 {
5655         struct ipw_supported_rates rates;
5656         DECLARE_SSID_BUF(ssid);
5657
5658         /* Verify that this network's capability is compatible with the
5659          * current mode (AdHoc or Infrastructure) */
5660         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5661              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5662             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5663              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5664                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5665                                 "capability mismatch.\n",
5666                                 print_ssid(ssid, network->ssid,
5667                                            network->ssid_len),
5668                                 network->bssid);
5669                 return 0;
5670         }
5671
5672         if (unlikely(roaming)) {
5673                 /* If we are roaming, then ensure check if this is a valid
5674                  * network to try and roam to */
5675                 if ((network->ssid_len != match->network->ssid_len) ||
5676                     memcmp(network->ssid, match->network->ssid,
5677                            network->ssid_len)) {
5678                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5679                                         "because of non-network ESSID.\n",
5680                                         print_ssid(ssid, network->ssid,
5681                                                    network->ssid_len),
5682                                         network->bssid);
5683                         return 0;
5684                 }
5685         } else {
5686                 /* If an ESSID has been configured then compare the broadcast
5687                  * ESSID to ours */
5688                 if ((priv->config & CFG_STATIC_ESSID) &&
5689                     ((network->ssid_len != priv->essid_len) ||
5690                      memcmp(network->ssid, priv->essid,
5691                             min(network->ssid_len, priv->essid_len)))) {
5692                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5693                         strncpy(escaped,
5694                                 print_ssid(ssid, network->ssid,
5695                                            network->ssid_len),
5696                                 sizeof(escaped));
5697                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5698                                         "because of ESSID mismatch: '%s'.\n",
5699                                         escaped, network->bssid,
5700                                         print_ssid(ssid, priv->essid,
5701                                                    priv->essid_len));
5702                         return 0;
5703                 }
5704         }
5705
5706         /* If the old network rate is better than this one, don't bother
5707          * testing everything else. */
5708         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5709                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5710                 strncpy(escaped,
5711                         print_ssid(ssid, network->ssid, network->ssid_len),
5712                         sizeof(escaped));
5713                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5714                                 "'%s (%pM)' has a stronger signal.\n",
5715                                 escaped, network->bssid,
5716                                 print_ssid(ssid, match->network->ssid,
5717                                            match->network->ssid_len),
5718                                 match->network->bssid);
5719                 return 0;
5720         }
5721
5722         /* If this network has already had an association attempt within the
5723          * last 3 seconds, do not try and associate again... */
5724         if (network->last_associate &&
5725             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5726                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5727                                 "because of storming (%ums since last "
5728                                 "assoc attempt).\n",
5729                                 print_ssid(ssid, network->ssid,
5730                                            network->ssid_len),
5731                                 network->bssid,
5732                                 jiffies_to_msecs(jiffies -
5733                                                  network->last_associate));
5734                 return 0;
5735         }
5736
5737         /* Now go through and see if the requested network is valid... */
5738         if (priv->ieee->scan_age != 0 &&
5739             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5740                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5741                                 "because of age: %ums.\n",
5742                                 print_ssid(ssid, network->ssid,
5743                                            network->ssid_len),
5744                                 network->bssid,
5745                                 jiffies_to_msecs(jiffies -
5746                                                  network->last_scanned));
5747                 return 0;
5748         }
5749
5750         if ((priv->config & CFG_STATIC_CHANNEL) &&
5751             (network->channel != priv->channel)) {
5752                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5753                                 "because of channel mismatch: %d != %d.\n",
5754                                 print_ssid(ssid, network->ssid,
5755                                            network->ssid_len),
5756                                 network->bssid,
5757                                 network->channel, priv->channel);
5758                 return 0;
5759         }
5760
5761         /* Verify privacy compatability */
5762         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5763             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5764                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5765                                 "because of privacy mismatch: %s != %s.\n",
5766                                 print_ssid(ssid, network->ssid,
5767                                            network->ssid_len),
5768                                 network->bssid,
5769                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5770                                 "off",
5771                                 network->capability &
5772                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5773                 return 0;
5774         }
5775
5776         if ((priv->config & CFG_STATIC_BSSID) &&
5777             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5778                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5779                                 "because of BSSID mismatch: %pM.\n",
5780                                 print_ssid(ssid, network->ssid,
5781                                            network->ssid_len),
5782                                 network->bssid, priv->bssid);
5783                 return 0;
5784         }
5785
5786         /* Filter out any incompatible freq / mode combinations */
5787         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5788                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5789                                 "because of invalid frequency/mode "
5790                                 "combination.\n",
5791                                 print_ssid(ssid, network->ssid,
5792                                            network->ssid_len),
5793                                 network->bssid);
5794                 return 0;
5795         }
5796
5797         /* Filter out invalid channel in current GEO */
5798         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5799                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5800                                 "because of invalid channel in current GEO\n",
5801                                 print_ssid(ssid, network->ssid,
5802                                            network->ssid_len),
5803                                 network->bssid);
5804                 return 0;
5805         }
5806
5807         /* Ensure that the rates supported by the driver are compatible with
5808          * this AP, including verification of basic rates (mandatory) */
5809         if (!ipw_compatible_rates(priv, network, &rates)) {
5810                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5811                                 "because configured rate mask excludes "
5812                                 "AP mandatory rate.\n",
5813                                 print_ssid(ssid, network->ssid,
5814                                            network->ssid_len),
5815                                 network->bssid);
5816                 return 0;
5817         }
5818
5819         if (rates.num_rates == 0) {
5820                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5821                                 "because of no compatible rates.\n",
5822                                 print_ssid(ssid, network->ssid,
5823                                            network->ssid_len),
5824                                 network->bssid);
5825                 return 0;
5826         }
5827
5828         /* TODO: Perform any further minimal comparititive tests.  We do not
5829          * want to put too much policy logic here; intelligent scan selection
5830          * should occur within a generic IEEE 802.11 user space tool.  */
5831
5832         /* Set up 'new' AP to this network */
5833         ipw_copy_rates(&match->rates, &rates);
5834         match->network = network;
5835
5836         IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5837                         print_ssid(ssid, network->ssid, network->ssid_len),
5838                         network->bssid);
5839
5840         return 1;
5841 }
5842
5843 static void ipw_adhoc_create(struct ipw_priv *priv,
5844                              struct ieee80211_network *network)
5845 {
5846         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5847         int i;
5848
5849         /*
5850          * For the purposes of scanning, we can set our wireless mode
5851          * to trigger scans across combinations of bands, but when it
5852          * comes to creating a new ad-hoc network, we have tell the FW
5853          * exactly which band to use.
5854          *
5855          * We also have the possibility of an invalid channel for the
5856          * chossen band.  Attempting to create a new ad-hoc network
5857          * with an invalid channel for wireless mode will trigger a
5858          * FW fatal error.
5859          *
5860          */
5861         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5862         case IEEE80211_52GHZ_BAND:
5863                 network->mode = IEEE_A;
5864                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5865                 BUG_ON(i == -1);
5866                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5867                         IPW_WARNING("Overriding invalid channel\n");
5868                         priv->channel = geo->a[0].channel;
5869                 }
5870                 break;
5871
5872         case IEEE80211_24GHZ_BAND:
5873                 if (priv->ieee->mode & IEEE_G)
5874                         network->mode = IEEE_G;
5875                 else
5876                         network->mode = IEEE_B;
5877                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5878                 BUG_ON(i == -1);
5879                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5880                         IPW_WARNING("Overriding invalid channel\n");
5881                         priv->channel = geo->bg[0].channel;
5882                 }
5883                 break;
5884
5885         default:
5886                 IPW_WARNING("Overriding invalid channel\n");
5887                 if (priv->ieee->mode & IEEE_A) {
5888                         network->mode = IEEE_A;
5889                         priv->channel = geo->a[0].channel;
5890                 } else if (priv->ieee->mode & IEEE_G) {
5891                         network->mode = IEEE_G;
5892                         priv->channel = geo->bg[0].channel;
5893                 } else {
5894                         network->mode = IEEE_B;
5895                         priv->channel = geo->bg[0].channel;
5896                 }
5897                 break;
5898         }
5899
5900         network->channel = priv->channel;
5901         priv->config |= CFG_ADHOC_PERSIST;
5902         ipw_create_bssid(priv, network->bssid);
5903         network->ssid_len = priv->essid_len;
5904         memcpy(network->ssid, priv->essid, priv->essid_len);
5905         memset(&network->stats, 0, sizeof(network->stats));
5906         network->capability = WLAN_CAPABILITY_IBSS;
5907         if (!(priv->config & CFG_PREAMBLE_LONG))
5908                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5909         if (priv->capability & CAP_PRIVACY_ON)
5910                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5911         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5912         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5913         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5914         memcpy(network->rates_ex,
5915                &priv->rates.supported_rates[network->rates_len],
5916                network->rates_ex_len);
5917         network->last_scanned = 0;
5918         network->flags = 0;
5919         network->last_associate = 0;
5920         network->time_stamp[0] = 0;
5921         network->time_stamp[1] = 0;
5922         network->beacon_interval = 100; /* Default */
5923         network->listen_interval = 10;  /* Default */
5924         network->atim_window = 0;       /* Default */
5925         network->wpa_ie_len = 0;
5926         network->rsn_ie_len = 0;
5927 }
5928
5929 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5930 {
5931         struct ipw_tgi_tx_key key;
5932
5933         if (!(priv->ieee->sec.flags & (1 << index)))
5934                 return;
5935
5936         key.key_id = index;
5937         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5938         key.security_type = type;
5939         key.station_index = 0;  /* always 0 for BSS */
5940         key.flags = 0;
5941         /* 0 for new key; previous value of counter (after fatal error) */
5942         key.tx_counter[0] = cpu_to_le32(0);
5943         key.tx_counter[1] = cpu_to_le32(0);
5944
5945         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5946 }
5947
5948 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5949 {
5950         struct ipw_wep_key key;
5951         int i;
5952
5953         key.cmd_id = DINO_CMD_WEP_KEY;
5954         key.seq_num = 0;
5955
5956         /* Note: AES keys cannot be set for multiple times.
5957          * Only set it at the first time. */
5958         for (i = 0; i < 4; i++) {
5959                 key.key_index = i | type;
5960                 if (!(priv->ieee->sec.flags & (1 << i))) {
5961                         key.key_size = 0;
5962                         continue;
5963                 }
5964
5965                 key.key_size = priv->ieee->sec.key_sizes[i];
5966                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5967
5968                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5969         }
5970 }
5971
5972 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5973 {
5974         if (priv->ieee->host_encrypt)
5975                 return;
5976
5977         switch (level) {
5978         case SEC_LEVEL_3:
5979                 priv->sys_config.disable_unicast_decryption = 0;
5980                 priv->ieee->host_decrypt = 0;
5981                 break;
5982         case SEC_LEVEL_2:
5983                 priv->sys_config.disable_unicast_decryption = 1;
5984                 priv->ieee->host_decrypt = 1;
5985                 break;
5986         case SEC_LEVEL_1:
5987                 priv->sys_config.disable_unicast_decryption = 0;
5988                 priv->ieee->host_decrypt = 0;
5989                 break;
5990         case SEC_LEVEL_0:
5991                 priv->sys_config.disable_unicast_decryption = 1;
5992                 break;
5993         default:
5994                 break;
5995         }
5996 }
5997
5998 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5999 {
6000         if (priv->ieee->host_encrypt)
6001                 return;
6002
6003         switch (level) {
6004         case SEC_LEVEL_3:
6005                 priv->sys_config.disable_multicast_decryption = 0;
6006                 break;
6007         case SEC_LEVEL_2:
6008                 priv->sys_config.disable_multicast_decryption = 1;
6009                 break;
6010         case SEC_LEVEL_1:
6011                 priv->sys_config.disable_multicast_decryption = 0;
6012                 break;
6013         case SEC_LEVEL_0:
6014                 priv->sys_config.disable_multicast_decryption = 1;
6015                 break;
6016         default:
6017                 break;
6018         }
6019 }
6020
6021 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6022 {
6023         switch (priv->ieee->sec.level) {
6024         case SEC_LEVEL_3:
6025                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6026                         ipw_send_tgi_tx_key(priv,
6027                                             DCT_FLAG_EXT_SECURITY_CCM,
6028                                             priv->ieee->sec.active_key);
6029
6030                 if (!priv->ieee->host_mc_decrypt)
6031                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6032                 break;
6033         case SEC_LEVEL_2:
6034                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6035                         ipw_send_tgi_tx_key(priv,
6036                                             DCT_FLAG_EXT_SECURITY_TKIP,
6037                                             priv->ieee->sec.active_key);
6038                 break;
6039         case SEC_LEVEL_1:
6040                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6041                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6042                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6043                 break;
6044         case SEC_LEVEL_0:
6045         default:
6046                 break;
6047         }
6048 }
6049
6050 static void ipw_adhoc_check(void *data)
6051 {
6052         struct ipw_priv *priv = data;
6053
6054         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6055             !(priv->config & CFG_ADHOC_PERSIST)) {
6056                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6057                           IPW_DL_STATE | IPW_DL_ASSOC,
6058                           "Missed beacon: %d - disassociate\n",
6059                           priv->missed_adhoc_beacons);
6060                 ipw_remove_current_network(priv);
6061                 ipw_disassociate(priv);
6062                 return;
6063         }
6064
6065         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6066                            le16_to_cpu(priv->assoc_request.beacon_interval));
6067 }
6068
6069 static void ipw_bg_adhoc_check(struct work_struct *work)
6070 {
6071         struct ipw_priv *priv =
6072                 container_of(work, struct ipw_priv, adhoc_check.work);
6073         mutex_lock(&priv->mutex);
6074         ipw_adhoc_check(priv);
6075         mutex_unlock(&priv->mutex);
6076 }
6077
6078 static void ipw_debug_config(struct ipw_priv *priv)
6079 {
6080         DECLARE_SSID_BUF(ssid);
6081         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6082                        "[CFG 0x%08X]\n", priv->config);
6083         if (priv->config & CFG_STATIC_CHANNEL)
6084                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6085         else
6086                 IPW_DEBUG_INFO("Channel unlocked.\n");
6087         if (priv->config & CFG_STATIC_ESSID)
6088                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6089                                print_ssid(ssid, priv->essid, priv->essid_len));
6090         else
6091                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6092         if (priv->config & CFG_STATIC_BSSID)
6093                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6094         else
6095                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6096         if (priv->capability & CAP_PRIVACY_ON)
6097                 IPW_DEBUG_INFO("PRIVACY on\n");
6098         else
6099                 IPW_DEBUG_INFO("PRIVACY off\n");
6100         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6101 }
6102
6103 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6104 {
6105         /* TODO: Verify that this works... */
6106         struct ipw_fixed_rate fr = {
6107                 .tx_rates = priv->rates_mask
6108         };
6109         u32 reg;
6110         u16 mask = 0;
6111
6112         /* Identify 'current FW band' and match it with the fixed
6113          * Tx rates */
6114
6115         switch (priv->ieee->freq_band) {
6116         case IEEE80211_52GHZ_BAND:      /* A only */
6117                 /* IEEE_A */
6118                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6119                         /* Invalid fixed rate mask */
6120                         IPW_DEBUG_WX
6121                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6122                         fr.tx_rates = 0;
6123                         break;
6124                 }
6125
6126                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6127                 break;
6128
6129         default:                /* 2.4Ghz or Mixed */
6130                 /* IEEE_B */
6131                 if (mode == IEEE_B) {
6132                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6133                                 /* Invalid fixed rate mask */
6134                                 IPW_DEBUG_WX
6135                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6136                                 fr.tx_rates = 0;
6137                         }
6138                         break;
6139                 }
6140
6141                 /* IEEE_G */
6142                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6143                                     IEEE80211_OFDM_RATES_MASK)) {
6144                         /* Invalid fixed rate mask */
6145                         IPW_DEBUG_WX
6146                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6147                         fr.tx_rates = 0;
6148                         break;
6149                 }
6150
6151                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6152                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6153                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6154                 }
6155
6156                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6157                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6158                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6159                 }
6160
6161                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6162                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6163                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6164                 }
6165
6166                 fr.tx_rates |= mask;
6167                 break;
6168         }
6169
6170         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6171         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6172 }
6173
6174 static void ipw_abort_scan(struct ipw_priv *priv)
6175 {
6176         int err;
6177
6178         if (priv->status & STATUS_SCAN_ABORTING) {
6179                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6180                 return;
6181         }
6182         priv->status |= STATUS_SCAN_ABORTING;
6183
6184         err = ipw_send_scan_abort(priv);
6185         if (err)
6186                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6187 }
6188
6189 static void ipw_add_scan_channels(struct ipw_priv *priv,
6190                                   struct ipw_scan_request_ext *scan,
6191                                   int scan_type)
6192 {
6193         int channel_index = 0;
6194         const struct ieee80211_geo *geo;
6195         int i;
6196
6197         geo = ieee80211_get_geo(priv->ieee);
6198
6199         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6200                 int start = channel_index;
6201                 for (i = 0; i < geo->a_channels; i++) {
6202                         if ((priv->status & STATUS_ASSOCIATED) &&
6203                             geo->a[i].channel == priv->channel)
6204                                 continue;
6205                         channel_index++;
6206                         scan->channels_list[channel_index] = geo->a[i].channel;
6207                         ipw_set_scan_type(scan, channel_index,
6208                                           geo->a[i].
6209                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6210                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6211                                           scan_type);
6212                 }
6213
6214                 if (start != channel_index) {
6215                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6216                             (channel_index - start);
6217                         channel_index++;
6218                 }
6219         }
6220
6221         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6222                 int start = channel_index;
6223                 if (priv->config & CFG_SPEED_SCAN) {
6224                         int index;
6225                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6226                                 /* nop out the list */
6227                                 [0] = 0
6228                         };
6229
6230                         u8 channel;
6231                         while (channel_index < IPW_SCAN_CHANNELS) {
6232                                 channel =
6233                                     priv->speed_scan[priv->speed_scan_pos];
6234                                 if (channel == 0) {
6235                                         priv->speed_scan_pos = 0;
6236                                         channel = priv->speed_scan[0];
6237                                 }
6238                                 if ((priv->status & STATUS_ASSOCIATED) &&
6239                                     channel == priv->channel) {
6240                                         priv->speed_scan_pos++;
6241                                         continue;
6242                                 }
6243
6244                                 /* If this channel has already been
6245                                  * added in scan, break from loop
6246                                  * and this will be the first channel
6247                                  * in the next scan.
6248                                  */
6249                                 if (channels[channel - 1] != 0)
6250                                         break;
6251
6252                                 channels[channel - 1] = 1;
6253                                 priv->speed_scan_pos++;
6254                                 channel_index++;
6255                                 scan->channels_list[channel_index] = channel;
6256                                 index =
6257                                     ieee80211_channel_to_index(priv->ieee, channel);
6258                                 ipw_set_scan_type(scan, channel_index,
6259                                                   geo->bg[index].
6260                                                   flags &
6261                                                   IEEE80211_CH_PASSIVE_ONLY ?
6262                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6263                                                   : scan_type);
6264                         }
6265                 } else {
6266                         for (i = 0; i < geo->bg_channels; i++) {
6267                                 if ((priv->status & STATUS_ASSOCIATED) &&
6268                                     geo->bg[i].channel == priv->channel)
6269                                         continue;
6270                                 channel_index++;
6271                                 scan->channels_list[channel_index] =
6272                                     geo->bg[i].channel;
6273                                 ipw_set_scan_type(scan, channel_index,
6274                                                   geo->bg[i].
6275                                                   flags &
6276                                                   IEEE80211_CH_PASSIVE_ONLY ?
6277                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6278                                                   : scan_type);
6279                         }
6280                 }
6281
6282                 if (start != channel_index) {
6283                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6284                             (channel_index - start);
6285                 }
6286         }
6287 }
6288
6289 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6290 {
6291         /* staying on passive channels longer than the DTIM interval during a
6292          * scan, while associated, causes the firmware to cancel the scan
6293          * without notification. Hence, don't stay on passive channels longer
6294          * than the beacon interval.
6295          */
6296         if (priv->status & STATUS_ASSOCIATED
6297             && priv->assoc_network->beacon_interval > 10)
6298                 return priv->assoc_network->beacon_interval - 10;
6299         else
6300                 return 120;
6301 }
6302
6303 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6304 {
6305         struct ipw_scan_request_ext scan;
6306         int err = 0, scan_type;
6307
6308         if (!(priv->status & STATUS_INIT) ||
6309             (priv->status & STATUS_EXIT_PENDING))
6310                 return 0;
6311
6312         mutex_lock(&priv->mutex);
6313
6314         if (direct && (priv->direct_scan_ssid_len == 0)) {
6315                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6316                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6317                 goto done;
6318         }
6319
6320         if (priv->status & STATUS_SCANNING) {
6321                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6322                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6323                                         STATUS_SCAN_PENDING;
6324                 goto done;
6325         }
6326
6327         if (!(priv->status & STATUS_SCAN_FORCED) &&
6328             priv->status & STATUS_SCAN_ABORTING) {
6329                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6330                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6331                                         STATUS_SCAN_PENDING;
6332                 goto done;
6333         }
6334
6335         if (priv->status & STATUS_RF_KILL_MASK) {
6336                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6337                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6338                                         STATUS_SCAN_PENDING;
6339                 goto done;
6340         }
6341
6342         memset(&scan, 0, sizeof(scan));
6343         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6344
6345         if (type == IW_SCAN_TYPE_PASSIVE) {
6346                 IPW_DEBUG_WX("use passive scanning\n");
6347                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6348                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6349                         cpu_to_le16(ipw_passive_dwell_time(priv));
6350                 ipw_add_scan_channels(priv, &scan, scan_type);
6351                 goto send_request;
6352         }
6353
6354         /* Use active scan by default. */
6355         if (priv->config & CFG_SPEED_SCAN)
6356                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6357                         cpu_to_le16(30);
6358         else
6359                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6360                         cpu_to_le16(20);
6361
6362         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6363                 cpu_to_le16(20);
6364
6365         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6366                 cpu_to_le16(ipw_passive_dwell_time(priv));
6367         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6368
6369 #ifdef CONFIG_IPW2200_MONITOR
6370         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6371                 u8 channel;
6372                 u8 band = 0;
6373
6374                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6375                 case IEEE80211_52GHZ_BAND:
6376                         band = (u8) (IPW_A_MODE << 6) | 1;
6377                         channel = priv->channel;
6378                         break;
6379
6380                 case IEEE80211_24GHZ_BAND:
6381                         band = (u8) (IPW_B_MODE << 6) | 1;
6382                         channel = priv->channel;
6383                         break;
6384
6385                 default:
6386                         band = (u8) (IPW_B_MODE << 6) | 1;
6387                         channel = 9;
6388                         break;
6389                 }
6390
6391                 scan.channels_list[0] = band;
6392                 scan.channels_list[1] = channel;
6393                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6394
6395                 /* NOTE:  The card will sit on this channel for this time
6396                  * period.  Scan aborts are timing sensitive and frequently
6397                  * result in firmware restarts.  As such, it is best to
6398                  * set a small dwell_time here and just keep re-issuing
6399                  * scans.  Otherwise fast channel hopping will not actually
6400                  * hop channels.
6401                  *
6402                  * TODO: Move SPEED SCAN support to all modes and bands */
6403                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6404                         cpu_to_le16(2000);
6405         } else {
6406 #endif                          /* CONFIG_IPW2200_MONITOR */
6407                 /* Honor direct scans first, otherwise if we are roaming make
6408                  * this a direct scan for the current network.  Finally,
6409                  * ensure that every other scan is a fast channel hop scan */
6410                 if (direct) {
6411                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6412                                             priv->direct_scan_ssid_len);
6413                         if (err) {
6414                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6415                                              "failed\n");
6416                                 goto done;
6417                         }
6418
6419                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6420                 } else if ((priv->status & STATUS_ROAMING)
6421                            || (!(priv->status & STATUS_ASSOCIATED)
6422                                && (priv->config & CFG_STATIC_ESSID)
6423                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6424                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6425                         if (err) {
6426                                 IPW_DEBUG_HC("Attempt to send SSID command "
6427                                              "failed.\n");
6428                                 goto done;
6429                         }
6430
6431                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6432                 } else
6433                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6434
6435                 ipw_add_scan_channels(priv, &scan, scan_type);
6436 #ifdef CONFIG_IPW2200_MONITOR
6437         }
6438 #endif
6439
6440 send_request:
6441         err = ipw_send_scan_request_ext(priv, &scan);
6442         if (err) {
6443                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6444                 goto done;
6445         }
6446
6447         priv->status |= STATUS_SCANNING;
6448         if (direct) {
6449                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6450                 priv->direct_scan_ssid_len = 0;
6451         } else
6452                 priv->status &= ~STATUS_SCAN_PENDING;
6453
6454         queue_delayed_work(priv->workqueue, &priv->scan_check,
6455                            IPW_SCAN_CHECK_WATCHDOG);
6456 done:
6457         mutex_unlock(&priv->mutex);
6458         return err;
6459 }
6460
6461 static void ipw_request_passive_scan(struct work_struct *work)
6462 {
6463         struct ipw_priv *priv =
6464                 container_of(work, struct ipw_priv, request_passive_scan.work);
6465         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6466 }
6467
6468 static void ipw_request_scan(struct work_struct *work)
6469 {
6470         struct ipw_priv *priv =
6471                 container_of(work, struct ipw_priv, request_scan.work);
6472         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6473 }
6474
6475 static void ipw_request_direct_scan(struct work_struct *work)
6476 {
6477         struct ipw_priv *priv =
6478                 container_of(work, struct ipw_priv, request_direct_scan.work);
6479         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6480 }
6481
6482 static void ipw_bg_abort_scan(struct work_struct *work)
6483 {
6484         struct ipw_priv *priv =
6485                 container_of(work, struct ipw_priv, abort_scan);
6486         mutex_lock(&priv->mutex);
6487         ipw_abort_scan(priv);
6488         mutex_unlock(&priv->mutex);
6489 }
6490
6491 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6492 {
6493         /* This is called when wpa_supplicant loads and closes the driver
6494          * interface. */
6495         priv->ieee->wpa_enabled = value;
6496         return 0;
6497 }
6498
6499 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6500 {
6501         struct ieee80211_device *ieee = priv->ieee;
6502         struct ieee80211_security sec = {
6503                 .flags = SEC_AUTH_MODE,
6504         };
6505         int ret = 0;
6506
6507         if (value & IW_AUTH_ALG_SHARED_KEY) {
6508                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6509                 ieee->open_wep = 0;
6510         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6511                 sec.auth_mode = WLAN_AUTH_OPEN;
6512                 ieee->open_wep = 1;
6513         } else if (value & IW_AUTH_ALG_LEAP) {
6514                 sec.auth_mode = WLAN_AUTH_LEAP;
6515                 ieee->open_wep = 1;
6516         } else
6517                 return -EINVAL;
6518
6519         if (ieee->set_security)
6520                 ieee->set_security(ieee->dev, &sec);
6521         else
6522                 ret = -EOPNOTSUPP;
6523
6524         return ret;
6525 }
6526
6527 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6528                                 int wpa_ie_len)
6529 {
6530         /* make sure WPA is enabled */
6531         ipw_wpa_enable(priv, 1);
6532 }
6533
6534 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6535                             char *capabilities, int length)
6536 {
6537         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6538
6539         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6540                                 capabilities);
6541 }
6542
6543 /*
6544  * WE-18 support
6545  */
6546
6547 /* SIOCSIWGENIE */
6548 static int ipw_wx_set_genie(struct net_device *dev,
6549                             struct iw_request_info *info,
6550                             union iwreq_data *wrqu, char *extra)
6551 {
6552         struct ipw_priv *priv = ieee80211_priv(dev);
6553         struct ieee80211_device *ieee = priv->ieee;
6554         u8 *buf;
6555         int err = 0;
6556
6557         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6558             (wrqu->data.length && extra == NULL))
6559                 return -EINVAL;
6560
6561         if (wrqu->data.length) {
6562                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6563                 if (buf == NULL) {
6564                         err = -ENOMEM;
6565                         goto out;
6566                 }
6567
6568                 memcpy(buf, extra, wrqu->data.length);
6569                 kfree(ieee->wpa_ie);
6570                 ieee->wpa_ie = buf;
6571                 ieee->wpa_ie_len = wrqu->data.length;
6572         } else {
6573                 kfree(ieee->wpa_ie);
6574                 ieee->wpa_ie = NULL;
6575                 ieee->wpa_ie_len = 0;
6576         }
6577
6578         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6579       out:
6580         return err;
6581 }
6582
6583 /* SIOCGIWGENIE */
6584 static int ipw_wx_get_genie(struct net_device *dev,
6585                             struct iw_request_info *info,
6586                             union iwreq_data *wrqu, char *extra)
6587 {
6588         struct ipw_priv *priv = ieee80211_priv(dev);
6589         struct ieee80211_device *ieee = priv->ieee;
6590         int err = 0;
6591
6592         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6593                 wrqu->data.length = 0;
6594                 goto out;
6595         }
6596
6597         if (wrqu->data.length < ieee->wpa_ie_len) {
6598                 err = -E2BIG;
6599                 goto out;
6600         }
6601
6602         wrqu->data.length = ieee->wpa_ie_len;
6603         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6604
6605       out:
6606         return err;
6607 }
6608
6609 static int wext_cipher2level(int cipher)
6610 {
6611         switch (cipher) {
6612         case IW_AUTH_CIPHER_NONE:
6613                 return SEC_LEVEL_0;
6614         case IW_AUTH_CIPHER_WEP40:
6615         case IW_AUTH_CIPHER_WEP104:
6616                 return SEC_LEVEL_1;
6617         case IW_AUTH_CIPHER_TKIP:
6618                 return SEC_LEVEL_2;
6619         case IW_AUTH_CIPHER_CCMP:
6620                 return SEC_LEVEL_3;
6621         default:
6622                 return -1;
6623         }
6624 }
6625
6626 /* SIOCSIWAUTH */
6627 static int ipw_wx_set_auth(struct net_device *dev,
6628                            struct iw_request_info *info,
6629                            union iwreq_data *wrqu, char *extra)
6630 {
6631         struct ipw_priv *priv = ieee80211_priv(dev);
6632         struct ieee80211_device *ieee = priv->ieee;
6633         struct iw_param *param = &wrqu->param;
6634         struct lib80211_crypt_data *crypt;
6635         unsigned long flags;
6636         int ret = 0;
6637
6638         switch (param->flags & IW_AUTH_INDEX) {
6639         case IW_AUTH_WPA_VERSION:
6640                 break;
6641         case IW_AUTH_CIPHER_PAIRWISE:
6642                 ipw_set_hw_decrypt_unicast(priv,
6643                                            wext_cipher2level(param->value));
6644                 break;
6645         case IW_AUTH_CIPHER_GROUP:
6646                 ipw_set_hw_decrypt_multicast(priv,
6647                                              wext_cipher2level(param->value));
6648                 break;
6649         case IW_AUTH_KEY_MGMT:
6650                 /*
6651                  * ipw2200 does not use these parameters
6652                  */
6653                 break;
6654
6655         case IW_AUTH_TKIP_COUNTERMEASURES:
6656                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6657                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6658                         break;
6659
6660                 flags = crypt->ops->get_flags(crypt->priv);
6661
6662                 if (param->value)
6663                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6664                 else
6665                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6666
6667                 crypt->ops->set_flags(flags, crypt->priv);
6668
6669                 break;
6670
6671         case IW_AUTH_DROP_UNENCRYPTED:{
6672                         /* HACK:
6673                          *
6674                          * wpa_supplicant calls set_wpa_enabled when the driver
6675                          * is loaded and unloaded, regardless of if WPA is being
6676                          * used.  No other calls are made which can be used to
6677                          * determine if encryption will be used or not prior to
6678                          * association being expected.  If encryption is not being
6679                          * used, drop_unencrypted is set to false, else true -- we
6680                          * can use this to determine if the CAP_PRIVACY_ON bit should
6681                          * be set.
6682                          */
6683                         struct ieee80211_security sec = {
6684                                 .flags = SEC_ENABLED,
6685                                 .enabled = param->value,
6686                         };
6687                         priv->ieee->drop_unencrypted = param->value;
6688                         /* We only change SEC_LEVEL for open mode. Others
6689                          * are set by ipw_wpa_set_encryption.
6690                          */
6691                         if (!param->value) {
6692                                 sec.flags |= SEC_LEVEL;
6693                                 sec.level = SEC_LEVEL_0;
6694                         } else {
6695                                 sec.flags |= SEC_LEVEL;
6696                                 sec.level = SEC_LEVEL_1;
6697                         }
6698                         if (priv->ieee->set_security)
6699                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6700                         break;
6701                 }
6702
6703         case IW_AUTH_80211_AUTH_ALG:
6704                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6705                 break;
6706
6707         case IW_AUTH_WPA_ENABLED:
6708                 ret = ipw_wpa_enable(priv, param->value);
6709                 ipw_disassociate(priv);
6710                 break;
6711
6712         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6713                 ieee->ieee802_1x = param->value;
6714                 break;
6715
6716         case IW_AUTH_PRIVACY_INVOKED:
6717                 ieee->privacy_invoked = param->value;
6718                 break;
6719
6720         default:
6721                 return -EOPNOTSUPP;
6722         }
6723         return ret;
6724 }
6725
6726 /* SIOCGIWAUTH */
6727 static int ipw_wx_get_auth(struct net_device *dev,
6728                            struct iw_request_info *info,
6729                            union iwreq_data *wrqu, char *extra)
6730 {
6731         struct ipw_priv *priv = ieee80211_priv(dev);
6732         struct ieee80211_device *ieee = priv->ieee;
6733         struct lib80211_crypt_data *crypt;
6734         struct iw_param *param = &wrqu->param;
6735         int ret = 0;
6736
6737         switch (param->flags & IW_AUTH_INDEX) {
6738         case IW_AUTH_WPA_VERSION:
6739         case IW_AUTH_CIPHER_PAIRWISE:
6740         case IW_AUTH_CIPHER_GROUP:
6741         case IW_AUTH_KEY_MGMT:
6742                 /*
6743                  * wpa_supplicant will control these internally
6744                  */
6745                 ret = -EOPNOTSUPP;
6746                 break;
6747
6748         case IW_AUTH_TKIP_COUNTERMEASURES:
6749                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6750                 if (!crypt || !crypt->ops->get_flags)
6751                         break;
6752
6753                 param->value = (crypt->ops->get_flags(crypt->priv) &
6754                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6755
6756                 break;
6757
6758         case IW_AUTH_DROP_UNENCRYPTED:
6759                 param->value = ieee->drop_unencrypted;
6760                 break;
6761
6762         case IW_AUTH_80211_AUTH_ALG:
6763                 param->value = ieee->sec.auth_mode;
6764                 break;
6765
6766         case IW_AUTH_WPA_ENABLED:
6767                 param->value = ieee->wpa_enabled;
6768                 break;
6769
6770         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6771                 param->value = ieee->ieee802_1x;
6772                 break;
6773
6774         case IW_AUTH_ROAMING_CONTROL:
6775         case IW_AUTH_PRIVACY_INVOKED:
6776                 param->value = ieee->privacy_invoked;
6777                 break;
6778
6779         default:
6780                 return -EOPNOTSUPP;
6781         }
6782         return 0;
6783 }
6784
6785 /* SIOCSIWENCODEEXT */
6786 static int ipw_wx_set_encodeext(struct net_device *dev,
6787                                 struct iw_request_info *info,
6788                                 union iwreq_data *wrqu, char *extra)
6789 {
6790         struct ipw_priv *priv = ieee80211_priv(dev);
6791         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6792
6793         if (hwcrypto) {
6794                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6795                         /* IPW HW can't build TKIP MIC,
6796                            host decryption still needed */
6797                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6798                                 priv->ieee->host_mc_decrypt = 1;
6799                         else {
6800                                 priv->ieee->host_encrypt = 0;
6801                                 priv->ieee->host_encrypt_msdu = 1;
6802                                 priv->ieee->host_decrypt = 1;
6803                         }
6804                 } else {
6805                         priv->ieee->host_encrypt = 0;
6806                         priv->ieee->host_encrypt_msdu = 0;
6807                         priv->ieee->host_decrypt = 0;
6808                         priv->ieee->host_mc_decrypt = 0;
6809                 }
6810         }
6811
6812         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6813 }
6814
6815 /* SIOCGIWENCODEEXT */
6816 static int ipw_wx_get_encodeext(struct net_device *dev,
6817                                 struct iw_request_info *info,
6818                                 union iwreq_data *wrqu, char *extra)
6819 {
6820         struct ipw_priv *priv = ieee80211_priv(dev);
6821         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6822 }
6823
6824 /* SIOCSIWMLME */
6825 static int ipw_wx_set_mlme(struct net_device *dev,
6826                            struct iw_request_info *info,
6827                            union iwreq_data *wrqu, char *extra)
6828 {
6829         struct ipw_priv *priv = ieee80211_priv(dev);
6830         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6831         __le16 reason;
6832
6833         reason = cpu_to_le16(mlme->reason_code);
6834
6835         switch (mlme->cmd) {
6836         case IW_MLME_DEAUTH:
6837                 /* silently ignore */
6838                 break;
6839
6840         case IW_MLME_DISASSOC:
6841                 ipw_disassociate(priv);
6842                 break;
6843
6844         default:
6845                 return -EOPNOTSUPP;
6846         }
6847         return 0;
6848 }
6849
6850 #ifdef CONFIG_IPW2200_QOS
6851
6852 /* QoS */
6853 /*
6854 * get the modulation type of the current network or
6855 * the card current mode
6856 */
6857 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6858 {
6859         u8 mode = 0;
6860
6861         if (priv->status & STATUS_ASSOCIATED) {
6862                 unsigned long flags;
6863
6864                 spin_lock_irqsave(&priv->ieee->lock, flags);
6865                 mode = priv->assoc_network->mode;
6866                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6867         } else {
6868                 mode = priv->ieee->mode;
6869         }
6870         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6871         return mode;
6872 }
6873
6874 /*
6875 * Handle management frame beacon and probe response
6876 */
6877 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6878                                          int active_network,
6879                                          struct ieee80211_network *network)
6880 {
6881         u32 size = sizeof(struct ieee80211_qos_parameters);
6882
6883         if (network->capability & WLAN_CAPABILITY_IBSS)
6884                 network->qos_data.active = network->qos_data.supported;
6885
6886         if (network->flags & NETWORK_HAS_QOS_MASK) {
6887                 if (active_network &&
6888                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6889                         network->qos_data.active = network->qos_data.supported;
6890
6891                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6892                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6893                     (network->qos_data.old_param_count !=
6894                      network->qos_data.param_count)) {
6895                         network->qos_data.old_param_count =
6896                             network->qos_data.param_count;
6897                         schedule_work(&priv->qos_activate);
6898                         IPW_DEBUG_QOS("QoS parameters change call "
6899                                       "qos_activate\n");
6900                 }
6901         } else {
6902                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6903                         memcpy(&network->qos_data.parameters,
6904                                &def_parameters_CCK, size);
6905                 else
6906                         memcpy(&network->qos_data.parameters,
6907                                &def_parameters_OFDM, size);
6908
6909                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6910                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6911                         schedule_work(&priv->qos_activate);
6912                 }
6913
6914                 network->qos_data.active = 0;
6915                 network->qos_data.supported = 0;
6916         }
6917         if ((priv->status & STATUS_ASSOCIATED) &&
6918             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6919                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6920                         if (network->capability & WLAN_CAPABILITY_IBSS)
6921                                 if ((network->ssid_len ==
6922                                      priv->assoc_network->ssid_len) &&
6923                                     !memcmp(network->ssid,
6924                                             priv->assoc_network->ssid,
6925                                             network->ssid_len)) {
6926                                         queue_work(priv->workqueue,
6927                                                    &priv->merge_networks);
6928                                 }
6929         }
6930
6931         return 0;
6932 }
6933
6934 /*
6935 * This function set up the firmware to support QoS. It sends
6936 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6937 */
6938 static int ipw_qos_activate(struct ipw_priv *priv,
6939                             struct ieee80211_qos_data *qos_network_data)
6940 {
6941         int err;
6942         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6943         struct ieee80211_qos_parameters *active_one = NULL;
6944         u32 size = sizeof(struct ieee80211_qos_parameters);
6945         u32 burst_duration;
6946         int i;
6947         u8 type;
6948
6949         type = ipw_qos_current_mode(priv);
6950
6951         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6952         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6953         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6954         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6955
6956         if (qos_network_data == NULL) {
6957                 if (type == IEEE_B) {
6958                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6959                         active_one = &def_parameters_CCK;
6960                 } else
6961                         active_one = &def_parameters_OFDM;
6962
6963                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6964                 burst_duration = ipw_qos_get_burst_duration(priv);
6965                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6966                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6967                             cpu_to_le16(burst_duration);
6968         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6969                 if (type == IEEE_B) {
6970                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6971                                       type);
6972                         if (priv->qos_data.qos_enable == 0)
6973                                 active_one = &def_parameters_CCK;
6974                         else
6975                                 active_one = priv->qos_data.def_qos_parm_CCK;
6976                 } else {
6977                         if (priv->qos_data.qos_enable == 0)
6978                                 active_one = &def_parameters_OFDM;
6979                         else
6980                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6981                 }
6982                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6983         } else {
6984                 unsigned long flags;
6985                 int active;
6986
6987                 spin_lock_irqsave(&priv->ieee->lock, flags);
6988                 active_one = &(qos_network_data->parameters);
6989                 qos_network_data->old_param_count =
6990                     qos_network_data->param_count;
6991                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6992                 active = qos_network_data->supported;
6993                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6994
6995                 if (active == 0) {
6996                         burst_duration = ipw_qos_get_burst_duration(priv);
6997                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6998                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6999                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
7000                 }
7001         }
7002
7003         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7004         err = ipw_send_qos_params_command(priv,
7005                                           (struct ieee80211_qos_parameters *)
7006                                           &(qos_parameters[0]));
7007         if (err)
7008                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7009
7010         return err;
7011 }
7012
7013 /*
7014 * send IPW_CMD_WME_INFO to the firmware
7015 */
7016 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7017 {
7018         int ret = 0;
7019         struct ieee80211_qos_information_element qos_info;
7020
7021         if (priv == NULL)
7022                 return -1;
7023
7024         qos_info.elementID = QOS_ELEMENT_ID;
7025         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7026
7027         qos_info.version = QOS_VERSION_1;
7028         qos_info.ac_info = 0;
7029
7030         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7031         qos_info.qui_type = QOS_OUI_TYPE;
7032         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7033
7034         ret = ipw_send_qos_info_command(priv, &qos_info);
7035         if (ret != 0) {
7036                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7037         }
7038         return ret;
7039 }
7040
7041 /*
7042 * Set the QoS parameter with the association request structure
7043 */
7044 static int ipw_qos_association(struct ipw_priv *priv,
7045                                struct ieee80211_network *network)
7046 {
7047         int err = 0;
7048         struct ieee80211_qos_data *qos_data = NULL;
7049         struct ieee80211_qos_data ibss_data = {
7050                 .supported = 1,
7051                 .active = 1,
7052         };
7053
7054         switch (priv->ieee->iw_mode) {
7055         case IW_MODE_ADHOC:
7056                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7057
7058                 qos_data = &ibss_data;
7059                 break;
7060
7061         case IW_MODE_INFRA:
7062                 qos_data = &network->qos_data;
7063                 break;
7064
7065         default:
7066                 BUG();
7067                 break;
7068         }
7069
7070         err = ipw_qos_activate(priv, qos_data);
7071         if (err) {
7072                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7073                 return err;
7074         }
7075
7076         if (priv->qos_data.qos_enable && qos_data->supported) {
7077                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7078                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7079                 return ipw_qos_set_info_element(priv);
7080         }
7081
7082         return 0;
7083 }
7084
7085 /*
7086 * handling the beaconing responses. if we get different QoS setting
7087 * off the network from the associated setting, adjust the QoS
7088 * setting
7089 */
7090 static int ipw_qos_association_resp(struct ipw_priv *priv,
7091                                     struct ieee80211_network *network)
7092 {
7093         int ret = 0;
7094         unsigned long flags;
7095         u32 size = sizeof(struct ieee80211_qos_parameters);
7096         int set_qos_param = 0;
7097
7098         if ((priv == NULL) || (network == NULL) ||
7099             (priv->assoc_network == NULL))
7100                 return ret;
7101
7102         if (!(priv->status & STATUS_ASSOCIATED))
7103                 return ret;
7104
7105         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7106                 return ret;
7107
7108         spin_lock_irqsave(&priv->ieee->lock, flags);
7109         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7110                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7111                        sizeof(struct ieee80211_qos_data));
7112                 priv->assoc_network->qos_data.active = 1;
7113                 if ((network->qos_data.old_param_count !=
7114                      network->qos_data.param_count)) {
7115                         set_qos_param = 1;
7116                         network->qos_data.old_param_count =
7117                             network->qos_data.param_count;
7118                 }
7119
7120         } else {
7121                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7122                         memcpy(&priv->assoc_network->qos_data.parameters,
7123                                &def_parameters_CCK, size);
7124                 else
7125                         memcpy(&priv->assoc_network->qos_data.parameters,
7126                                &def_parameters_OFDM, size);
7127                 priv->assoc_network->qos_data.active = 0;
7128                 priv->assoc_network->qos_data.supported = 0;
7129                 set_qos_param = 1;
7130         }
7131
7132         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7133
7134         if (set_qos_param == 1)
7135                 schedule_work(&priv->qos_activate);
7136
7137         return ret;
7138 }
7139
7140 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7141 {
7142         u32 ret = 0;
7143
7144         if ((priv == NULL))
7145                 return 0;
7146
7147         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7148                 ret = priv->qos_data.burst_duration_CCK;
7149         else
7150                 ret = priv->qos_data.burst_duration_OFDM;
7151
7152         return ret;
7153 }
7154
7155 /*
7156 * Initialize the setting of QoS global
7157 */
7158 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7159                          int burst_enable, u32 burst_duration_CCK,
7160                          u32 burst_duration_OFDM)
7161 {
7162         priv->qos_data.qos_enable = enable;
7163
7164         if (priv->qos_data.qos_enable) {
7165                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7166                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7167                 IPW_DEBUG_QOS("QoS is enabled\n");
7168         } else {
7169                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7170                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7171                 IPW_DEBUG_QOS("QoS is not enabled\n");
7172         }
7173
7174         priv->qos_data.burst_enable = burst_enable;
7175
7176         if (burst_enable) {
7177                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7178                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7179         } else {
7180                 priv->qos_data.burst_duration_CCK = 0;
7181                 priv->qos_data.burst_duration_OFDM = 0;
7182         }
7183 }
7184
7185 /*
7186 * map the packet priority to the right TX Queue
7187 */
7188 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7189 {
7190         if (priority > 7 || !priv->qos_data.qos_enable)
7191                 priority = 0;
7192
7193         return from_priority_to_tx_queue[priority] - 1;
7194 }
7195
7196 static int ipw_is_qos_active(struct net_device *dev,
7197                              struct sk_buff *skb)
7198 {
7199         struct ipw_priv *priv = ieee80211_priv(dev);
7200         struct ieee80211_qos_data *qos_data = NULL;
7201         int active, supported;
7202         u8 *daddr = skb->data + ETH_ALEN;
7203         int unicast = !is_multicast_ether_addr(daddr);
7204
7205         if (!(priv->status & STATUS_ASSOCIATED))
7206                 return 0;
7207
7208         qos_data = &priv->assoc_network->qos_data;
7209
7210         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7211                 if (unicast == 0)
7212                         qos_data->active = 0;
7213                 else
7214                         qos_data->active = qos_data->supported;
7215         }
7216         active = qos_data->active;
7217         supported = qos_data->supported;
7218         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7219                       "unicast %d\n",
7220                       priv->qos_data.qos_enable, active, supported, unicast);
7221         if (active && priv->qos_data.qos_enable)
7222                 return 1;
7223
7224         return 0;
7225
7226 }
7227 /*
7228 * add QoS parameter to the TX command
7229 */
7230 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7231                                         u16 priority,
7232                                         struct tfd_data *tfd)
7233 {
7234         int tx_queue_id = 0;
7235
7236
7237         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7238         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7239
7240         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7241                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7242                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7243         }
7244         return 0;
7245 }
7246
7247 /*
7248 * background support to run QoS activate functionality
7249 */
7250 static void ipw_bg_qos_activate(struct work_struct *work)
7251 {
7252         struct ipw_priv *priv =
7253                 container_of(work, struct ipw_priv, qos_activate);
7254
7255         if (priv == NULL)
7256                 return;
7257
7258         mutex_lock(&priv->mutex);
7259
7260         if (priv->status & STATUS_ASSOCIATED)
7261                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7262
7263         mutex_unlock(&priv->mutex);
7264 }
7265
7266 static int ipw_handle_probe_response(struct net_device *dev,
7267                                      struct ieee80211_probe_response *resp,
7268                                      struct ieee80211_network *network)
7269 {
7270         struct ipw_priv *priv = ieee80211_priv(dev);
7271         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7272                               (network == priv->assoc_network));
7273
7274         ipw_qos_handle_probe_response(priv, active_network, network);
7275
7276         return 0;
7277 }
7278
7279 static int ipw_handle_beacon(struct net_device *dev,
7280                              struct ieee80211_beacon *resp,
7281                              struct ieee80211_network *network)
7282 {
7283         struct ipw_priv *priv = ieee80211_priv(dev);
7284         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7285                               (network == priv->assoc_network));
7286
7287         ipw_qos_handle_probe_response(priv, active_network, network);
7288
7289         return 0;
7290 }
7291
7292 static int ipw_handle_assoc_response(struct net_device *dev,
7293                                      struct ieee80211_assoc_response *resp,
7294                                      struct ieee80211_network *network)
7295 {
7296         struct ipw_priv *priv = ieee80211_priv(dev);
7297         ipw_qos_association_resp(priv, network);
7298         return 0;
7299 }
7300
7301 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7302                                        *qos_param)
7303 {
7304         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7305                                 sizeof(*qos_param) * 3, qos_param);
7306 }
7307
7308 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7309                                      *qos_param)
7310 {
7311         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7312                                 qos_param);
7313 }
7314
7315 #endif                          /* CONFIG_IPW2200_QOS */
7316
7317 static int ipw_associate_network(struct ipw_priv *priv,
7318                                  struct ieee80211_network *network,
7319                                  struct ipw_supported_rates *rates, int roaming)
7320 {
7321         int err;
7322         DECLARE_SSID_BUF(ssid);
7323
7324         if (priv->config & CFG_FIXED_RATE)
7325                 ipw_set_fixed_rate(priv, network->mode);
7326
7327         if (!(priv->config & CFG_STATIC_ESSID)) {
7328                 priv->essid_len = min(network->ssid_len,
7329                                       (u8) IW_ESSID_MAX_SIZE);
7330                 memcpy(priv->essid, network->ssid, priv->essid_len);
7331         }
7332
7333         network->last_associate = jiffies;
7334
7335         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7336         priv->assoc_request.channel = network->channel;
7337         priv->assoc_request.auth_key = 0;
7338
7339         if ((priv->capability & CAP_PRIVACY_ON) &&
7340             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7341                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7342                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7343
7344                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7345                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7346
7347         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7348                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7349                 priv->assoc_request.auth_type = AUTH_LEAP;
7350         else
7351                 priv->assoc_request.auth_type = AUTH_OPEN;
7352
7353         if (priv->ieee->wpa_ie_len) {
7354                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7355                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7356                                  priv->ieee->wpa_ie_len);
7357         }
7358
7359         /*
7360          * It is valid for our ieee device to support multiple modes, but
7361          * when it comes to associating to a given network we have to choose
7362          * just one mode.
7363          */
7364         if (network->mode & priv->ieee->mode & IEEE_A)
7365                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7366         else if (network->mode & priv->ieee->mode & IEEE_G)
7367                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7368         else if (network->mode & priv->ieee->mode & IEEE_B)
7369                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7370
7371         priv->assoc_request.capability = cpu_to_le16(network->capability);
7372         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7373             && !(priv->config & CFG_PREAMBLE_LONG)) {
7374                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7375         } else {
7376                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7377
7378                 /* Clear the short preamble if we won't be supporting it */
7379                 priv->assoc_request.capability &=
7380                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7381         }
7382
7383         /* Clear capability bits that aren't used in Ad Hoc */
7384         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7385                 priv->assoc_request.capability &=
7386                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7387
7388         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7389                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7390                         roaming ? "Rea" : "A",
7391                         print_ssid(ssid, priv->essid, priv->essid_len),
7392                         network->channel,
7393                         ipw_modes[priv->assoc_request.ieee_mode],
7394                         rates->num_rates,
7395                         (priv->assoc_request.preamble_length ==
7396                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7397                         network->capability &
7398                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7399                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7400                         priv->capability & CAP_PRIVACY_ON ?
7401                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7402                          "(open)") : "",
7403                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7404                         priv->capability & CAP_PRIVACY_ON ?
7405                         '1' + priv->ieee->sec.active_key : '.',
7406                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7407
7408         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7409         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7410             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7411                 priv->assoc_request.assoc_type = HC_IBSS_START;
7412                 priv->assoc_request.assoc_tsf_msw = 0;
7413                 priv->assoc_request.assoc_tsf_lsw = 0;
7414         } else {
7415                 if (unlikely(roaming))
7416                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7417                 else
7418                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7419                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7420                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7421         }
7422
7423         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7424
7425         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7426                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7427                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7428         } else {
7429                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7430                 priv->assoc_request.atim_window = 0;
7431         }
7432
7433         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7434
7435         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7436         if (err) {
7437                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7438                 return err;
7439         }
7440
7441         rates->ieee_mode = priv->assoc_request.ieee_mode;
7442         rates->purpose = IPW_RATE_CONNECT;
7443         ipw_send_supported_rates(priv, rates);
7444
7445         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7446                 priv->sys_config.dot11g_auto_detection = 1;
7447         else
7448                 priv->sys_config.dot11g_auto_detection = 0;
7449
7450         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7451                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7452         else
7453                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7454
7455         err = ipw_send_system_config(priv);
7456         if (err) {
7457                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7458                 return err;
7459         }
7460
7461         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7462         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7463         if (err) {
7464                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7465                 return err;
7466         }
7467
7468         /*
7469          * If preemption is enabled, it is possible for the association
7470          * to complete before we return from ipw_send_associate.  Therefore
7471          * we have to be sure and update our priviate data first.
7472          */
7473         priv->channel = network->channel;
7474         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7475         priv->status |= STATUS_ASSOCIATING;
7476         priv->status &= ~STATUS_SECURITY_UPDATED;
7477
7478         priv->assoc_network = network;
7479
7480 #ifdef CONFIG_IPW2200_QOS
7481         ipw_qos_association(priv, network);
7482 #endif
7483
7484         err = ipw_send_associate(priv, &priv->assoc_request);
7485         if (err) {
7486                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7487                 return err;
7488         }
7489
7490         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7491                   print_ssid(ssid, priv->essid, priv->essid_len),
7492                   priv->bssid);
7493
7494         return 0;
7495 }
7496
7497 static void ipw_roam(void *data)
7498 {
7499         struct ipw_priv *priv = data;
7500         struct ieee80211_network *network = NULL;
7501         struct ipw_network_match match = {
7502                 .network = priv->assoc_network
7503         };
7504
7505         /* The roaming process is as follows:
7506          *
7507          * 1.  Missed beacon threshold triggers the roaming process by
7508          *     setting the status ROAM bit and requesting a scan.
7509          * 2.  When the scan completes, it schedules the ROAM work
7510          * 3.  The ROAM work looks at all of the known networks for one that
7511          *     is a better network than the currently associated.  If none
7512          *     found, the ROAM process is over (ROAM bit cleared)
7513          * 4.  If a better network is found, a disassociation request is
7514          *     sent.
7515          * 5.  When the disassociation completes, the roam work is again
7516          *     scheduled.  The second time through, the driver is no longer
7517          *     associated, and the newly selected network is sent an
7518          *     association request.
7519          * 6.  At this point ,the roaming process is complete and the ROAM
7520          *     status bit is cleared.
7521          */
7522
7523         /* If we are no longer associated, and the roaming bit is no longer
7524          * set, then we are not actively roaming, so just return */
7525         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7526                 return;
7527
7528         if (priv->status & STATUS_ASSOCIATED) {
7529                 /* First pass through ROAM process -- look for a better
7530                  * network */
7531                 unsigned long flags;
7532                 u8 rssi = priv->assoc_network->stats.rssi;
7533                 priv->assoc_network->stats.rssi = -128;
7534                 spin_lock_irqsave(&priv->ieee->lock, flags);
7535                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7536                         if (network != priv->assoc_network)
7537                                 ipw_best_network(priv, &match, network, 1);
7538                 }
7539                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7540                 priv->assoc_network->stats.rssi = rssi;
7541
7542                 if (match.network == priv->assoc_network) {
7543                         IPW_DEBUG_ASSOC("No better APs in this network to "
7544                                         "roam to.\n");
7545                         priv->status &= ~STATUS_ROAMING;
7546                         ipw_debug_config(priv);
7547                         return;
7548                 }
7549
7550                 ipw_send_disassociate(priv, 1);
7551                 priv->assoc_network = match.network;
7552
7553                 return;
7554         }
7555
7556         /* Second pass through ROAM process -- request association */
7557         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7558         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7559         priv->status &= ~STATUS_ROAMING;
7560 }
7561
7562 static void ipw_bg_roam(struct work_struct *work)
7563 {
7564         struct ipw_priv *priv =
7565                 container_of(work, struct ipw_priv, roam);
7566         mutex_lock(&priv->mutex);
7567         ipw_roam(priv);
7568         mutex_unlock(&priv->mutex);
7569 }
7570
7571 static int ipw_associate(void *data)
7572 {
7573         struct ipw_priv *priv = data;
7574
7575         struct ieee80211_network *network = NULL;
7576         struct ipw_network_match match = {
7577                 .network = NULL
7578         };
7579         struct ipw_supported_rates *rates;
7580         struct list_head *element;
7581         unsigned long flags;
7582         DECLARE_SSID_BUF(ssid);
7583
7584         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7585                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7586                 return 0;
7587         }
7588
7589         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7590                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7591                                 "progress)\n");
7592                 return 0;
7593         }
7594
7595         if (priv->status & STATUS_DISASSOCIATING) {
7596                 IPW_DEBUG_ASSOC("Not attempting association (in "
7597                                 "disassociating)\n ");
7598                 queue_work(priv->workqueue, &priv->associate);
7599                 return 0;
7600         }
7601
7602         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7603                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7604                                 "initialized)\n");
7605                 return 0;
7606         }
7607
7608         if (!(priv->config & CFG_ASSOCIATE) &&
7609             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7610                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7611                 return 0;
7612         }
7613
7614         /* Protect our use of the network_list */
7615         spin_lock_irqsave(&priv->ieee->lock, flags);
7616         list_for_each_entry(network, &priv->ieee->network_list, list)
7617             ipw_best_network(priv, &match, network, 0);
7618
7619         network = match.network;
7620         rates = &match.rates;
7621
7622         if (network == NULL &&
7623             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7624             priv->config & CFG_ADHOC_CREATE &&
7625             priv->config & CFG_STATIC_ESSID &&
7626             priv->config & CFG_STATIC_CHANNEL) {
7627                 /* Use oldest network if the free list is empty */
7628                 if (list_empty(&priv->ieee->network_free_list)) {
7629                         struct ieee80211_network *oldest = NULL;
7630                         struct ieee80211_network *target;
7631
7632                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7633                                 if ((oldest == NULL) ||
7634                                     (target->last_scanned < oldest->last_scanned))
7635                                         oldest = target;
7636                         }
7637
7638                         /* If there are no more slots, expire the oldest */
7639                         list_del(&oldest->list);
7640                         target = oldest;
7641                         IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7642                                         "network list.\n",
7643                                         print_ssid(ssid, target->ssid,
7644                                                    target->ssid_len),
7645                                         target->bssid);
7646                         list_add_tail(&target->list,
7647                                       &priv->ieee->network_free_list);
7648                 }
7649
7650                 element = priv->ieee->network_free_list.next;
7651                 network = list_entry(element, struct ieee80211_network, list);
7652                 ipw_adhoc_create(priv, network);
7653                 rates = &priv->rates;
7654                 list_del(element);
7655                 list_add_tail(&network->list, &priv->ieee->network_list);
7656         }
7657         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7658
7659         /* If we reached the end of the list, then we don't have any valid
7660          * matching APs */
7661         if (!network) {
7662                 ipw_debug_config(priv);
7663
7664                 if (!(priv->status & STATUS_SCANNING)) {
7665                         if (!(priv->config & CFG_SPEED_SCAN))
7666                                 queue_delayed_work(priv->workqueue,
7667                                                    &priv->request_scan,
7668                                                    SCAN_INTERVAL);
7669                         else
7670                                 queue_delayed_work(priv->workqueue,
7671                                                    &priv->request_scan, 0);
7672                 }
7673
7674                 return 0;
7675         }
7676
7677         ipw_associate_network(priv, network, rates, 0);
7678
7679         return 1;
7680 }
7681
7682 static void ipw_bg_associate(struct work_struct *work)
7683 {
7684         struct ipw_priv *priv =
7685                 container_of(work, struct ipw_priv, associate);
7686         mutex_lock(&priv->mutex);
7687         ipw_associate(priv);
7688         mutex_unlock(&priv->mutex);
7689 }
7690
7691 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7692                                       struct sk_buff *skb)
7693 {
7694         struct ieee80211_hdr *hdr;
7695         u16 fc;
7696
7697         hdr = (struct ieee80211_hdr *)skb->data;
7698         fc = le16_to_cpu(hdr->frame_control);
7699         if (!(fc & IEEE80211_FCTL_PROTECTED))
7700                 return;
7701
7702         fc &= ~IEEE80211_FCTL_PROTECTED;
7703         hdr->frame_control = cpu_to_le16(fc);
7704         switch (priv->ieee->sec.level) {
7705         case SEC_LEVEL_3:
7706                 /* Remove CCMP HDR */
7707                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7708                         skb->data + IEEE80211_3ADDR_LEN + 8,
7709                         skb->len - IEEE80211_3ADDR_LEN - 8);
7710                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7711                 break;
7712         case SEC_LEVEL_2:
7713                 break;
7714         case SEC_LEVEL_1:
7715                 /* Remove IV */
7716                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7717                         skb->data + IEEE80211_3ADDR_LEN + 4,
7718                         skb->len - IEEE80211_3ADDR_LEN - 4);
7719                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7720                 break;
7721         case SEC_LEVEL_0:
7722                 break;
7723         default:
7724                 printk(KERN_ERR "Unknow security level %d\n",
7725                        priv->ieee->sec.level);
7726                 break;
7727         }
7728 }
7729
7730 static void ipw_handle_data_packet(struct ipw_priv *priv,
7731                                    struct ipw_rx_mem_buffer *rxb,
7732                                    struct ieee80211_rx_stats *stats)
7733 {
7734         struct net_device *dev = priv->net_dev;
7735         struct ieee80211_hdr_4addr *hdr;
7736         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7737
7738         /* We received data from the HW, so stop the watchdog */
7739         dev->trans_start = jiffies;
7740
7741         /* We only process data packets if the
7742          * interface is open */
7743         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7744                      skb_tailroom(rxb->skb))) {
7745                 dev->stats.rx_errors++;
7746                 priv->wstats.discard.misc++;
7747                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7748                 return;
7749         } else if (unlikely(!netif_running(priv->net_dev))) {
7750                 dev->stats.rx_dropped++;
7751                 priv->wstats.discard.misc++;
7752                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7753                 return;
7754         }
7755
7756         /* Advance skb->data to the start of the actual payload */
7757         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7758
7759         /* Set the size of the skb to the size of the frame */
7760         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7761
7762         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7763
7764         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7765         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7766         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7767             (is_multicast_ether_addr(hdr->addr1) ?
7768              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7769                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7770
7771         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7772                 dev->stats.rx_errors++;
7773         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7774                 rxb->skb = NULL;
7775                 __ipw_led_activity_on(priv);
7776         }
7777 }
7778
7779 #ifdef CONFIG_IPW2200_RADIOTAP
7780 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7781                                            struct ipw_rx_mem_buffer *rxb,
7782                                            struct ieee80211_rx_stats *stats)
7783 {
7784         struct net_device *dev = priv->net_dev;
7785         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7786         struct ipw_rx_frame *frame = &pkt->u.frame;
7787
7788         /* initial pull of some data */
7789         u16 received_channel = frame->received_channel;
7790         u8 antennaAndPhy = frame->antennaAndPhy;
7791         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7792         u16 pktrate = frame->rate;
7793
7794         /* Magic struct that slots into the radiotap header -- no reason
7795          * to build this manually element by element, we can write it much
7796          * more efficiently than we can parse it. ORDER MATTERS HERE */
7797         struct ipw_rt_hdr *ipw_rt;
7798
7799         short len = le16_to_cpu(pkt->u.frame.length);
7800
7801         /* We received data from the HW, so stop the watchdog */
7802         dev->trans_start = jiffies;
7803
7804         /* We only process data packets if the
7805          * interface is open */
7806         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7807                      skb_tailroom(rxb->skb))) {
7808                 dev->stats.rx_errors++;
7809                 priv->wstats.discard.misc++;
7810                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7811                 return;
7812         } else if (unlikely(!netif_running(priv->net_dev))) {
7813                 dev->stats.rx_dropped++;
7814                 priv->wstats.discard.misc++;
7815                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7816                 return;
7817         }
7818
7819         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7820          * that now */
7821         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7822                 /* FIXME: Should alloc bigger skb instead */
7823                 dev->stats.rx_dropped++;
7824                 priv->wstats.discard.misc++;
7825                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7826                 return;
7827         }
7828
7829         /* copy the frame itself */
7830         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7831                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7832
7833         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7834
7835         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7836         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7837         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7838
7839         /* Big bitfield of all the fields we provide in radiotap */
7840         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7841              (1 << IEEE80211_RADIOTAP_TSFT) |
7842              (1 << IEEE80211_RADIOTAP_FLAGS) |
7843              (1 << IEEE80211_RADIOTAP_RATE) |
7844              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7845              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7846              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7847              (1 << IEEE80211_RADIOTAP_ANTENNA));
7848
7849         /* Zero the flags, we'll add to them as we go */
7850         ipw_rt->rt_flags = 0;
7851         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7852                                frame->parent_tsf[2] << 16 |
7853                                frame->parent_tsf[1] << 8  |
7854                                frame->parent_tsf[0]);
7855
7856         /* Convert signal to DBM */
7857         ipw_rt->rt_dbmsignal = antsignal;
7858         ipw_rt->rt_dbmnoise = frame->noise;
7859
7860         /* Convert the channel data and set the flags */
7861         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7862         if (received_channel > 14) {    /* 802.11a */
7863                 ipw_rt->rt_chbitmask =
7864                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7865         } else if (antennaAndPhy & 32) {        /* 802.11b */
7866                 ipw_rt->rt_chbitmask =
7867                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7868         } else {                /* 802.11g */
7869                 ipw_rt->rt_chbitmask =
7870                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7871         }
7872
7873         /* set the rate in multiples of 500k/s */
7874         switch (pktrate) {
7875         case IPW_TX_RATE_1MB:
7876                 ipw_rt->rt_rate = 2;
7877                 break;
7878         case IPW_TX_RATE_2MB:
7879                 ipw_rt->rt_rate = 4;
7880                 break;
7881         case IPW_TX_RATE_5MB:
7882                 ipw_rt->rt_rate = 10;
7883                 break;
7884         case IPW_TX_RATE_6MB:
7885                 ipw_rt->rt_rate = 12;
7886                 break;
7887         case IPW_TX_RATE_9MB:
7888                 ipw_rt->rt_rate = 18;
7889                 break;
7890         case IPW_TX_RATE_11MB:
7891                 ipw_rt->rt_rate = 22;
7892                 break;
7893         case IPW_TX_RATE_12MB:
7894                 ipw_rt->rt_rate = 24;
7895                 break;
7896         case IPW_TX_RATE_18MB:
7897                 ipw_rt->rt_rate = 36;
7898                 break;
7899         case IPW_TX_RATE_24MB:
7900                 ipw_rt->rt_rate = 48;
7901                 break;
7902         case IPW_TX_RATE_36MB:
7903                 ipw_rt->rt_rate = 72;
7904                 break;
7905         case IPW_TX_RATE_48MB:
7906                 ipw_rt->rt_rate = 96;
7907                 break;
7908         case IPW_TX_RATE_54MB:
7909                 ipw_rt->rt_rate = 108;
7910                 break;
7911         default:
7912                 ipw_rt->rt_rate = 0;
7913                 break;
7914         }
7915
7916         /* antenna number */
7917         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7918
7919         /* set the preamble flag if we have it */
7920         if ((antennaAndPhy & 64))
7921                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7922
7923         /* Set the size of the skb to the size of the frame */
7924         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7925
7926         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7927
7928         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7929                 dev->stats.rx_errors++;
7930         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7931                 rxb->skb = NULL;
7932                 /* no LED during capture */
7933         }
7934 }
7935 #endif
7936
7937 #ifdef CONFIG_IPW2200_PROMISCUOUS
7938 #define ieee80211_is_probe_response(fc) \
7939    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7940     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7941
7942 #define ieee80211_is_management(fc) \
7943    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7944
7945 #define ieee80211_is_control(fc) \
7946    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7947
7948 #define ieee80211_is_data(fc) \
7949    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7950
7951 #define ieee80211_is_assoc_request(fc) \
7952    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7953
7954 #define ieee80211_is_reassoc_request(fc) \
7955    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7956
7957 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7958                                       struct ipw_rx_mem_buffer *rxb,
7959                                       struct ieee80211_rx_stats *stats)
7960 {
7961         struct net_device *dev = priv->prom_net_dev;
7962         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7963         struct ipw_rx_frame *frame = &pkt->u.frame;
7964         struct ipw_rt_hdr *ipw_rt;
7965
7966         /* First cache any information we need before we overwrite
7967          * the information provided in the skb from the hardware */
7968         struct ieee80211_hdr *hdr;
7969         u16 channel = frame->received_channel;
7970         u8 phy_flags = frame->antennaAndPhy;
7971         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7972         s8 noise = frame->noise;
7973         u8 rate = frame->rate;
7974         short len = le16_to_cpu(pkt->u.frame.length);
7975         struct sk_buff *skb;
7976         int hdr_only = 0;
7977         u16 filter = priv->prom_priv->filter;
7978
7979         /* If the filter is set to not include Rx frames then return */
7980         if (filter & IPW_PROM_NO_RX)
7981                 return;
7982
7983         /* We received data from the HW, so stop the watchdog */
7984         dev->trans_start = jiffies;
7985
7986         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7987                 dev->stats.rx_errors++;
7988                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7989                 return;
7990         }
7991
7992         /* We only process data packets if the interface is open */
7993         if (unlikely(!netif_running(dev))) {
7994                 dev->stats.rx_dropped++;
7995                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7996                 return;
7997         }
7998
7999         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8000          * that now */
8001         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8002                 /* FIXME: Should alloc bigger skb instead */
8003                 dev->stats.rx_dropped++;
8004                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8005                 return;
8006         }
8007
8008         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8009         if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
8010                 if (filter & IPW_PROM_NO_MGMT)
8011                         return;
8012                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8013                         hdr_only = 1;
8014         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
8015                 if (filter & IPW_PROM_NO_CTL)
8016                         return;
8017                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8018                         hdr_only = 1;
8019         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
8020                 if (filter & IPW_PROM_NO_DATA)
8021                         return;
8022                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8023                         hdr_only = 1;
8024         }
8025
8026         /* Copy the SKB since this is for the promiscuous side */
8027         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8028         if (skb == NULL) {
8029                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8030                 return;
8031         }
8032
8033         /* copy the frame data to write after where the radiotap header goes */
8034         ipw_rt = (void *)skb->data;
8035
8036         if (hdr_only)
8037                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8038
8039         memcpy(ipw_rt->payload, hdr, len);
8040
8041         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8042         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8043         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8044
8045         /* Set the size of the skb to the size of the frame */
8046         skb_put(skb, sizeof(*ipw_rt) + len);
8047
8048         /* Big bitfield of all the fields we provide in radiotap */
8049         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8050              (1 << IEEE80211_RADIOTAP_TSFT) |
8051              (1 << IEEE80211_RADIOTAP_FLAGS) |
8052              (1 << IEEE80211_RADIOTAP_RATE) |
8053              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8054              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8055              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8056              (1 << IEEE80211_RADIOTAP_ANTENNA));
8057
8058         /* Zero the flags, we'll add to them as we go */
8059         ipw_rt->rt_flags = 0;
8060         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8061                                frame->parent_tsf[2] << 16 |
8062                                frame->parent_tsf[1] << 8  |
8063                                frame->parent_tsf[0]);
8064
8065         /* Convert to DBM */
8066         ipw_rt->rt_dbmsignal = signal;
8067         ipw_rt->rt_dbmnoise = noise;
8068
8069         /* Convert the channel data and set the flags */
8070         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8071         if (channel > 14) {     /* 802.11a */
8072                 ipw_rt->rt_chbitmask =
8073                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8074         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8075                 ipw_rt->rt_chbitmask =
8076                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8077         } else {                /* 802.11g */
8078                 ipw_rt->rt_chbitmask =
8079                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8080         }
8081
8082         /* set the rate in multiples of 500k/s */
8083         switch (rate) {
8084         case IPW_TX_RATE_1MB:
8085                 ipw_rt->rt_rate = 2;
8086                 break;
8087         case IPW_TX_RATE_2MB:
8088                 ipw_rt->rt_rate = 4;
8089                 break;
8090         case IPW_TX_RATE_5MB:
8091                 ipw_rt->rt_rate = 10;
8092                 break;
8093         case IPW_TX_RATE_6MB:
8094                 ipw_rt->rt_rate = 12;
8095                 break;
8096         case IPW_TX_RATE_9MB:
8097                 ipw_rt->rt_rate = 18;
8098                 break;
8099         case IPW_TX_RATE_11MB:
8100                 ipw_rt->rt_rate = 22;
8101                 break;
8102         case IPW_TX_RATE_12MB:
8103                 ipw_rt->rt_rate = 24;
8104                 break;
8105         case IPW_TX_RATE_18MB:
8106                 ipw_rt->rt_rate = 36;
8107                 break;
8108         case IPW_TX_RATE_24MB:
8109                 ipw_rt->rt_rate = 48;
8110                 break;
8111         case IPW_TX_RATE_36MB:
8112                 ipw_rt->rt_rate = 72;
8113                 break;
8114         case IPW_TX_RATE_48MB:
8115                 ipw_rt->rt_rate = 96;
8116                 break;
8117         case IPW_TX_RATE_54MB:
8118                 ipw_rt->rt_rate = 108;
8119                 break;
8120         default:
8121                 ipw_rt->rt_rate = 0;
8122                 break;
8123         }
8124
8125         /* antenna number */
8126         ipw_rt->rt_antenna = (phy_flags & 3);
8127
8128         /* set the preamble flag if we have it */
8129         if (phy_flags & (1 << 6))
8130                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8131
8132         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8133
8134         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8135                 dev->stats.rx_errors++;
8136                 dev_kfree_skb_any(skb);
8137         }
8138 }
8139 #endif
8140
8141 static int is_network_packet(struct ipw_priv *priv,
8142                                     struct ieee80211_hdr_4addr *header)
8143 {
8144         /* Filter incoming packets to determine if they are targetted toward
8145          * this network, discarding packets coming from ourselves */
8146         switch (priv->ieee->iw_mode) {
8147         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8148                 /* packets from our adapter are dropped (echo) */
8149                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8150                         return 0;
8151
8152                 /* {broad,multi}cast packets to our BSSID go through */
8153                 if (is_multicast_ether_addr(header->addr1))
8154                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8155
8156                 /* packets to our adapter go through */
8157                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8158                                ETH_ALEN);
8159
8160         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8161                 /* packets from our adapter are dropped (echo) */
8162                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8163                         return 0;
8164
8165                 /* {broad,multi}cast packets to our BSS go through */
8166                 if (is_multicast_ether_addr(header->addr1))
8167                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8168
8169                 /* packets to our adapter go through */
8170                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8171                                ETH_ALEN);
8172         }
8173
8174         return 1;
8175 }
8176
8177 #define IPW_PACKET_RETRY_TIME HZ
8178
8179 static  int is_duplicate_packet(struct ipw_priv *priv,
8180                                       struct ieee80211_hdr_4addr *header)
8181 {
8182         u16 sc = le16_to_cpu(header->seq_ctl);
8183         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8184         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8185         u16 *last_seq, *last_frag;
8186         unsigned long *last_time;
8187
8188         switch (priv->ieee->iw_mode) {
8189         case IW_MODE_ADHOC:
8190                 {
8191                         struct list_head *p;
8192                         struct ipw_ibss_seq *entry = NULL;
8193                         u8 *mac = header->addr2;
8194                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8195
8196                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8197                                 entry =
8198                                     list_entry(p, struct ipw_ibss_seq, list);
8199                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8200                                         break;
8201                         }
8202                         if (p == &priv->ibss_mac_hash[index]) {
8203                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8204                                 if (!entry) {
8205                                         IPW_ERROR
8206                                             ("Cannot malloc new mac entry\n");
8207                                         return 0;
8208                                 }
8209                                 memcpy(entry->mac, mac, ETH_ALEN);
8210                                 entry->seq_num = seq;
8211                                 entry->frag_num = frag;
8212                                 entry->packet_time = jiffies;
8213                                 list_add(&entry->list,
8214                                          &priv->ibss_mac_hash[index]);
8215                                 return 0;
8216                         }
8217                         last_seq = &entry->seq_num;
8218                         last_frag = &entry->frag_num;
8219                         last_time = &entry->packet_time;
8220                         break;
8221                 }
8222         case IW_MODE_INFRA:
8223                 last_seq = &priv->last_seq_num;
8224                 last_frag = &priv->last_frag_num;
8225                 last_time = &priv->last_packet_time;
8226                 break;
8227         default:
8228                 return 0;
8229         }
8230         if ((*last_seq == seq) &&
8231             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8232                 if (*last_frag == frag)
8233                         goto drop;
8234                 if (*last_frag + 1 != frag)
8235                         /* out-of-order fragment */
8236                         goto drop;
8237         } else
8238                 *last_seq = seq;
8239
8240         *last_frag = frag;
8241         *last_time = jiffies;
8242         return 0;
8243
8244       drop:
8245         /* Comment this line now since we observed the card receives
8246          * duplicate packets but the FCTL_RETRY bit is not set in the
8247          * IBSS mode with fragmentation enabled.
8248          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8249         return 1;
8250 }
8251
8252 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8253                                    struct ipw_rx_mem_buffer *rxb,
8254                                    struct ieee80211_rx_stats *stats)
8255 {
8256         struct sk_buff *skb = rxb->skb;
8257         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8258         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8259             (skb->data + IPW_RX_FRAME_SIZE);
8260
8261         ieee80211_rx_mgt(priv->ieee, header, stats);
8262
8263         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8264             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8265               IEEE80211_STYPE_PROBE_RESP) ||
8266              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8267               IEEE80211_STYPE_BEACON))) {
8268                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8269                         ipw_add_station(priv, header->addr2);
8270         }
8271
8272         if (priv->config & CFG_NET_STATS) {
8273                 IPW_DEBUG_HC("sending stat packet\n");
8274
8275                 /* Set the size of the skb to the size of the full
8276                  * ipw header and 802.11 frame */
8277                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8278                         IPW_RX_FRAME_SIZE);
8279
8280                 /* Advance past the ipw packet header to the 802.11 frame */
8281                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8282
8283                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8284                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8285
8286                 skb->dev = priv->ieee->dev;
8287
8288                 /* Point raw at the ieee80211_stats */
8289                 skb_reset_mac_header(skb);
8290
8291                 skb->pkt_type = PACKET_OTHERHOST;
8292                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8293                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8294                 netif_rx(skb);
8295                 rxb->skb = NULL;
8296         }
8297 }
8298
8299 /*
8300  * Main entry function for recieving a packet with 80211 headers.  This
8301  * should be called when ever the FW has notified us that there is a new
8302  * skb in the recieve queue.
8303  */
8304 static void ipw_rx(struct ipw_priv *priv)
8305 {
8306         struct ipw_rx_mem_buffer *rxb;
8307         struct ipw_rx_packet *pkt;
8308         struct ieee80211_hdr_4addr *header;
8309         u32 r, w, i;
8310         u8 network_packet;
8311         u8 fill_rx = 0;
8312
8313         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8314         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8315         i = priv->rxq->read;
8316
8317         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8318                 fill_rx = 1;
8319
8320         while (i != r) {
8321                 rxb = priv->rxq->queue[i];
8322                 if (unlikely(rxb == NULL)) {
8323                         printk(KERN_CRIT "Queue not allocated!\n");
8324                         break;
8325                 }
8326                 priv->rxq->queue[i] = NULL;
8327
8328                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8329                                             IPW_RX_BUF_SIZE,
8330                                             PCI_DMA_FROMDEVICE);
8331
8332                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8333                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8334                              pkt->header.message_type,
8335                              pkt->header.rx_seq_num, pkt->header.control_bits);
8336
8337                 switch (pkt->header.message_type) {
8338                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8339                                 struct ieee80211_rx_stats stats = {
8340                                         .rssi = pkt->u.frame.rssi_dbm -
8341                                             IPW_RSSI_TO_DBM,
8342                                         .signal =
8343                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8344                                             IPW_RSSI_TO_DBM + 0x100,
8345                                         .noise =
8346                                             le16_to_cpu(pkt->u.frame.noise),
8347                                         .rate = pkt->u.frame.rate,
8348                                         .mac_time = jiffies,
8349                                         .received_channel =
8350                                             pkt->u.frame.received_channel,
8351                                         .freq =
8352                                             (pkt->u.frame.
8353                                              control & (1 << 0)) ?
8354                                             IEEE80211_24GHZ_BAND :
8355                                             IEEE80211_52GHZ_BAND,
8356                                         .len = le16_to_cpu(pkt->u.frame.length),
8357                                 };
8358
8359                                 if (stats.rssi != 0)
8360                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8361                                 if (stats.signal != 0)
8362                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8363                                 if (stats.noise != 0)
8364                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8365                                 if (stats.rate != 0)
8366                                         stats.mask |= IEEE80211_STATMASK_RATE;
8367
8368                                 priv->rx_packets++;
8369
8370 #ifdef CONFIG_IPW2200_PROMISCUOUS
8371         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8372                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8373 #endif
8374
8375 #ifdef CONFIG_IPW2200_MONITOR
8376                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8377 #ifdef CONFIG_IPW2200_RADIOTAP
8378
8379                 ipw_handle_data_packet_monitor(priv,
8380                                                rxb,
8381                                                &stats);
8382 #else
8383                 ipw_handle_data_packet(priv, rxb,
8384                                        &stats);
8385 #endif
8386                                         break;
8387                                 }
8388 #endif
8389
8390                                 header =
8391                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8392                                                                    data +
8393                                                                    IPW_RX_FRAME_SIZE);
8394                                 /* TODO: Check Ad-Hoc dest/source and make sure
8395                                  * that we are actually parsing these packets
8396                                  * correctly -- we should probably use the
8397                                  * frame control of the packet and disregard
8398                                  * the current iw_mode */
8399
8400                                 network_packet =
8401                                     is_network_packet(priv, header);
8402                                 if (network_packet && priv->assoc_network) {
8403                                         priv->assoc_network->stats.rssi =
8404                                             stats.rssi;
8405                                         priv->exp_avg_rssi =
8406                                             exponential_average(priv->exp_avg_rssi,
8407                                             stats.rssi, DEPTH_RSSI);
8408                                 }
8409
8410                                 IPW_DEBUG_RX("Frame: len=%u\n",
8411                                              le16_to_cpu(pkt->u.frame.length));
8412
8413                                 if (le16_to_cpu(pkt->u.frame.length) <
8414                                     ieee80211_get_hdrlen(le16_to_cpu(
8415                                                     header->frame_ctl))) {
8416                                         IPW_DEBUG_DROP
8417                                             ("Received packet is too small. "
8418                                              "Dropping.\n");
8419                                         priv->net_dev->stats.rx_errors++;
8420                                         priv->wstats.discard.misc++;
8421                                         break;
8422                                 }
8423
8424                                 switch (WLAN_FC_GET_TYPE
8425                                         (le16_to_cpu(header->frame_ctl))) {
8426
8427                                 case IEEE80211_FTYPE_MGMT:
8428                                         ipw_handle_mgmt_packet(priv, rxb,
8429                                                                &stats);
8430                                         break;
8431
8432                                 case IEEE80211_FTYPE_CTL:
8433                                         break;
8434
8435                                 case IEEE80211_FTYPE_DATA:
8436                                         if (unlikely(!network_packet ||
8437                                                      is_duplicate_packet(priv,
8438                                                                          header)))
8439                                         {
8440                                                 IPW_DEBUG_DROP("Dropping: "
8441                                                                "%pM, "
8442                                                                "%pM, "
8443                                                                "%pM\n",
8444                                                                header->addr1,
8445                                                                header->addr2,
8446                                                                header->addr3);
8447                                                 break;
8448                                         }
8449
8450                                         ipw_handle_data_packet(priv, rxb,
8451                                                                &stats);
8452
8453                                         break;
8454                                 }
8455                                 break;
8456                         }
8457
8458                 case RX_HOST_NOTIFICATION_TYPE:{
8459                                 IPW_DEBUG_RX
8460                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8461                                      pkt->u.notification.subtype,
8462                                      pkt->u.notification.flags,
8463                                      le16_to_cpu(pkt->u.notification.size));
8464                                 ipw_rx_notification(priv, &pkt->u.notification);
8465                                 break;
8466                         }
8467
8468                 default:
8469                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8470                                      pkt->header.message_type);
8471                         break;
8472                 }
8473
8474                 /* For now we just don't re-use anything.  We can tweak this
8475                  * later to try and re-use notification packets and SKBs that
8476                  * fail to Rx correctly */
8477                 if (rxb->skb != NULL) {
8478                         dev_kfree_skb_any(rxb->skb);
8479                         rxb->skb = NULL;
8480                 }
8481
8482                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8483                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8484                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8485
8486                 i = (i + 1) % RX_QUEUE_SIZE;
8487
8488                 /* If there are a lot of unsued frames, restock the Rx queue
8489                  * so the ucode won't assert */
8490                 if (fill_rx) {
8491                         priv->rxq->read = i;
8492                         ipw_rx_queue_replenish(priv);
8493                 }
8494         }
8495
8496         /* Backtrack one entry */
8497         priv->rxq->read = i;
8498         ipw_rx_queue_restock(priv);
8499 }
8500
8501 #define DEFAULT_RTS_THRESHOLD     2304U
8502 #define MIN_RTS_THRESHOLD         1U
8503 #define MAX_RTS_THRESHOLD         2304U
8504 #define DEFAULT_BEACON_INTERVAL   100U
8505 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8506 #define DEFAULT_LONG_RETRY_LIMIT  4U
8507
8508 /**
8509  * ipw_sw_reset
8510  * @option: options to control different reset behaviour
8511  *          0 = reset everything except the 'disable' module_param
8512  *          1 = reset everything and print out driver info (for probe only)
8513  *          2 = reset everything
8514  */
8515 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8516 {
8517         int band, modulation;
8518         int old_mode = priv->ieee->iw_mode;
8519
8520         /* Initialize module parameter values here */
8521         priv->config = 0;
8522
8523         /* We default to disabling the LED code as right now it causes
8524          * too many systems to lock up... */
8525         if (!led)
8526                 priv->config |= CFG_NO_LED;
8527
8528         if (associate)
8529                 priv->config |= CFG_ASSOCIATE;
8530         else
8531                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8532
8533         if (auto_create)
8534                 priv->config |= CFG_ADHOC_CREATE;
8535         else
8536                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8537
8538         priv->config &= ~CFG_STATIC_ESSID;
8539         priv->essid_len = 0;
8540         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8541
8542         if (disable && option) {
8543                 priv->status |= STATUS_RF_KILL_SW;
8544                 IPW_DEBUG_INFO("Radio disabled.\n");
8545         }
8546
8547         if (channel != 0) {
8548                 priv->config |= CFG_STATIC_CHANNEL;
8549                 priv->channel = channel;
8550                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8551                 /* TODO: Validate that provided channel is in range */
8552         }
8553 #ifdef CONFIG_IPW2200_QOS
8554         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8555                      burst_duration_CCK, burst_duration_OFDM);
8556 #endif                          /* CONFIG_IPW2200_QOS */
8557
8558         switch (mode) {
8559         case 1:
8560                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8561                 priv->net_dev->type = ARPHRD_ETHER;
8562
8563                 break;
8564 #ifdef CONFIG_IPW2200_MONITOR
8565         case 2:
8566                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8567 #ifdef CONFIG_IPW2200_RADIOTAP
8568                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8569 #else
8570                 priv->net_dev->type = ARPHRD_IEEE80211;
8571 #endif
8572                 break;
8573 #endif
8574         default:
8575         case 0:
8576                 priv->net_dev->type = ARPHRD_ETHER;
8577                 priv->ieee->iw_mode = IW_MODE_INFRA;
8578                 break;
8579         }
8580
8581         if (hwcrypto) {
8582                 priv->ieee->host_encrypt = 0;
8583                 priv->ieee->host_encrypt_msdu = 0;
8584                 priv->ieee->host_decrypt = 0;
8585                 priv->ieee->host_mc_decrypt = 0;
8586         }
8587         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8588
8589         /* IPW2200/2915 is abled to do hardware fragmentation. */
8590         priv->ieee->host_open_frag = 0;
8591
8592         if ((priv->pci_dev->device == 0x4223) ||
8593             (priv->pci_dev->device == 0x4224)) {
8594                 if (option == 1)
8595                         printk(KERN_INFO DRV_NAME
8596                                ": Detected Intel PRO/Wireless 2915ABG Network "
8597                                "Connection\n");
8598                 priv->ieee->abg_true = 1;
8599                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8600                 modulation = IEEE80211_OFDM_MODULATION |
8601                     IEEE80211_CCK_MODULATION;
8602                 priv->adapter = IPW_2915ABG;
8603                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8604         } else {
8605                 if (option == 1)
8606                         printk(KERN_INFO DRV_NAME
8607                                ": Detected Intel PRO/Wireless 2200BG Network "
8608                                "Connection\n");
8609
8610                 priv->ieee->abg_true = 0;
8611                 band = IEEE80211_24GHZ_BAND;
8612                 modulation = IEEE80211_OFDM_MODULATION |
8613                     IEEE80211_CCK_MODULATION;
8614                 priv->adapter = IPW_2200BG;
8615                 priv->ieee->mode = IEEE_G | IEEE_B;
8616         }
8617
8618         priv->ieee->freq_band = band;
8619         priv->ieee->modulation = modulation;
8620
8621         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8622
8623         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8624         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8625
8626         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8627         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8628         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8629
8630         /* If power management is turned on, default to AC mode */
8631         priv->power_mode = IPW_POWER_AC;
8632         priv->tx_power = IPW_TX_POWER_DEFAULT;
8633
8634         return old_mode == priv->ieee->iw_mode;
8635 }
8636
8637 /*
8638  * This file defines the Wireless Extension handlers.  It does not
8639  * define any methods of hardware manipulation and relies on the
8640  * functions defined in ipw_main to provide the HW interaction.
8641  *
8642  * The exception to this is the use of the ipw_get_ordinal()
8643  * function used to poll the hardware vs. making unecessary calls.
8644  *
8645  */
8646
8647 static int ipw_wx_get_name(struct net_device *dev,
8648                            struct iw_request_info *info,
8649                            union iwreq_data *wrqu, char *extra)
8650 {
8651         struct ipw_priv *priv = ieee80211_priv(dev);
8652         mutex_lock(&priv->mutex);
8653         if (priv->status & STATUS_RF_KILL_MASK)
8654                 strcpy(wrqu->name, "radio off");
8655         else if (!(priv->status & STATUS_ASSOCIATED))
8656                 strcpy(wrqu->name, "unassociated");
8657         else
8658                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8659                          ipw_modes[priv->assoc_request.ieee_mode]);
8660         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8661         mutex_unlock(&priv->mutex);
8662         return 0;
8663 }
8664
8665 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8666 {
8667         if (channel == 0) {
8668                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8669                 priv->config &= ~CFG_STATIC_CHANNEL;
8670                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8671                                 "parameters.\n");
8672                 ipw_associate(priv);
8673                 return 0;
8674         }
8675
8676         priv->config |= CFG_STATIC_CHANNEL;
8677
8678         if (priv->channel == channel) {
8679                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8680                                channel);
8681                 return 0;
8682         }
8683
8684         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8685         priv->channel = channel;
8686
8687 #ifdef CONFIG_IPW2200_MONITOR
8688         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8689                 int i;
8690                 if (priv->status & STATUS_SCANNING) {
8691                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8692                                        "channel change.\n");
8693                         ipw_abort_scan(priv);
8694                 }
8695
8696                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8697                         udelay(10);
8698
8699                 if (priv->status & STATUS_SCANNING)
8700                         IPW_DEBUG_SCAN("Still scanning...\n");
8701                 else
8702                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8703                                        1000 - i);
8704
8705                 return 0;
8706         }
8707 #endif                          /* CONFIG_IPW2200_MONITOR */
8708
8709         /* Network configuration changed -- force [re]association */
8710         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8711         if (!ipw_disassociate(priv))
8712                 ipw_associate(priv);
8713
8714         return 0;
8715 }
8716
8717 static int ipw_wx_set_freq(struct net_device *dev,
8718                            struct iw_request_info *info,
8719                            union iwreq_data *wrqu, char *extra)
8720 {
8721         struct ipw_priv *priv = ieee80211_priv(dev);
8722         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8723         struct iw_freq *fwrq = &wrqu->freq;
8724         int ret = 0, i;
8725         u8 channel, flags;
8726         int band;
8727
8728         if (fwrq->m == 0) {
8729                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8730                 mutex_lock(&priv->mutex);
8731                 ret = ipw_set_channel(priv, 0);
8732                 mutex_unlock(&priv->mutex);
8733                 return ret;
8734         }
8735         /* if setting by freq convert to channel */
8736         if (fwrq->e == 1) {
8737                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8738                 if (channel == 0)
8739                         return -EINVAL;
8740         } else
8741                 channel = fwrq->m;
8742
8743         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8744                 return -EINVAL;
8745
8746         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8747                 i = ieee80211_channel_to_index(priv->ieee, channel);
8748                 if (i == -1)
8749                         return -EINVAL;
8750
8751                 flags = (band == IEEE80211_24GHZ_BAND) ?
8752                     geo->bg[i].flags : geo->a[i].flags;
8753                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8754                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8755                         return -EINVAL;
8756                 }
8757         }
8758
8759         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8760         mutex_lock(&priv->mutex);
8761         ret = ipw_set_channel(priv, channel);
8762         mutex_unlock(&priv->mutex);
8763         return ret;
8764 }
8765
8766 static int ipw_wx_get_freq(struct net_device *dev,
8767                            struct iw_request_info *info,
8768                            union iwreq_data *wrqu, char *extra)
8769 {
8770         struct ipw_priv *priv = ieee80211_priv(dev);
8771
8772         wrqu->freq.e = 0;
8773
8774         /* If we are associated, trying to associate, or have a statically
8775          * configured CHANNEL then return that; otherwise return ANY */
8776         mutex_lock(&priv->mutex);
8777         if (priv->config & CFG_STATIC_CHANNEL ||
8778             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8779                 int i;
8780
8781                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8782                 BUG_ON(i == -1);
8783                 wrqu->freq.e = 1;
8784
8785                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8786                 case IEEE80211_52GHZ_BAND:
8787                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8788                         break;
8789
8790                 case IEEE80211_24GHZ_BAND:
8791                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8792                         break;
8793
8794                 default:
8795                         BUG();
8796                 }
8797         } else
8798                 wrqu->freq.m = 0;
8799
8800         mutex_unlock(&priv->mutex);
8801         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8802         return 0;
8803 }
8804
8805 static int ipw_wx_set_mode(struct net_device *dev,
8806                            struct iw_request_info *info,
8807                            union iwreq_data *wrqu, char *extra)
8808 {
8809         struct ipw_priv *priv = ieee80211_priv(dev);
8810         int err = 0;
8811
8812         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8813
8814         switch (wrqu->mode) {
8815 #ifdef CONFIG_IPW2200_MONITOR
8816         case IW_MODE_MONITOR:
8817 #endif
8818         case IW_MODE_ADHOC:
8819         case IW_MODE_INFRA:
8820                 break;
8821         case IW_MODE_AUTO:
8822                 wrqu->mode = IW_MODE_INFRA;
8823                 break;
8824         default:
8825                 return -EINVAL;
8826         }
8827         if (wrqu->mode == priv->ieee->iw_mode)
8828                 return 0;
8829
8830         mutex_lock(&priv->mutex);
8831
8832         ipw_sw_reset(priv, 0);
8833
8834 #ifdef CONFIG_IPW2200_MONITOR
8835         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8836                 priv->net_dev->type = ARPHRD_ETHER;
8837
8838         if (wrqu->mode == IW_MODE_MONITOR)
8839 #ifdef CONFIG_IPW2200_RADIOTAP
8840                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8841 #else
8842                 priv->net_dev->type = ARPHRD_IEEE80211;
8843 #endif
8844 #endif                          /* CONFIG_IPW2200_MONITOR */
8845
8846         /* Free the existing firmware and reset the fw_loaded
8847          * flag so ipw_load() will bring in the new firmawre */
8848         free_firmware();
8849
8850         priv->ieee->iw_mode = wrqu->mode;
8851
8852         queue_work(priv->workqueue, &priv->adapter_restart);
8853         mutex_unlock(&priv->mutex);
8854         return err;
8855 }
8856
8857 static int ipw_wx_get_mode(struct net_device *dev,
8858                            struct iw_request_info *info,
8859                            union iwreq_data *wrqu, char *extra)
8860 {
8861         struct ipw_priv *priv = ieee80211_priv(dev);
8862         mutex_lock(&priv->mutex);
8863         wrqu->mode = priv->ieee->iw_mode;
8864         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8865         mutex_unlock(&priv->mutex);
8866         return 0;
8867 }
8868
8869 /* Values are in microsecond */
8870 static const s32 timeout_duration[] = {
8871         350000,
8872         250000,
8873         75000,
8874         37000,
8875         25000,
8876 };
8877
8878 static const s32 period_duration[] = {
8879         400000,
8880         700000,
8881         1000000,
8882         1000000,
8883         1000000
8884 };
8885
8886 static int ipw_wx_get_range(struct net_device *dev,
8887                             struct iw_request_info *info,
8888                             union iwreq_data *wrqu, char *extra)
8889 {
8890         struct ipw_priv *priv = ieee80211_priv(dev);
8891         struct iw_range *range = (struct iw_range *)extra;
8892         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8893         int i = 0, j;
8894
8895         wrqu->data.length = sizeof(*range);
8896         memset(range, 0, sizeof(*range));
8897
8898         /* 54Mbs == ~27 Mb/s real (802.11g) */
8899         range->throughput = 27 * 1000 * 1000;
8900
8901         range->max_qual.qual = 100;
8902         /* TODO: Find real max RSSI and stick here */
8903         range->max_qual.level = 0;
8904         range->max_qual.noise = 0;
8905         range->max_qual.updated = 7;    /* Updated all three */
8906
8907         range->avg_qual.qual = 70;
8908         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8909         range->avg_qual.level = 0;      /* FIXME to real average level */
8910         range->avg_qual.noise = 0;
8911         range->avg_qual.updated = 7;    /* Updated all three */
8912         mutex_lock(&priv->mutex);
8913         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8914
8915         for (i = 0; i < range->num_bitrates; i++)
8916                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8917                     500000;
8918
8919         range->max_rts = DEFAULT_RTS_THRESHOLD;
8920         range->min_frag = MIN_FRAG_THRESHOLD;
8921         range->max_frag = MAX_FRAG_THRESHOLD;
8922
8923         range->encoding_size[0] = 5;
8924         range->encoding_size[1] = 13;
8925         range->num_encoding_sizes = 2;
8926         range->max_encoding_tokens = WEP_KEYS;
8927
8928         /* Set the Wireless Extension versions */
8929         range->we_version_compiled = WIRELESS_EXT;
8930         range->we_version_source = 18;
8931
8932         i = 0;
8933         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8934                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8935                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8936                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8937                                 continue;
8938
8939                         range->freq[i].i = geo->bg[j].channel;
8940                         range->freq[i].m = geo->bg[j].freq * 100000;
8941                         range->freq[i].e = 1;
8942                         i++;
8943                 }
8944         }
8945
8946         if (priv->ieee->mode & IEEE_A) {
8947                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8948                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8949                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8950                                 continue;
8951
8952                         range->freq[i].i = geo->a[j].channel;
8953                         range->freq[i].m = geo->a[j].freq * 100000;
8954                         range->freq[i].e = 1;
8955                         i++;
8956                 }
8957         }
8958
8959         range->num_channels = i;
8960         range->num_frequency = i;
8961
8962         mutex_unlock(&priv->mutex);
8963
8964         /* Event capability (kernel + driver) */
8965         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8966                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8967                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8968                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8969         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8970
8971         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8972                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8973
8974         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8975
8976         IPW_DEBUG_WX("GET Range\n");
8977         return 0;
8978 }
8979
8980 static int ipw_wx_set_wap(struct net_device *dev,
8981                           struct iw_request_info *info,
8982                           union iwreq_data *wrqu, char *extra)
8983 {
8984         struct ipw_priv *priv = ieee80211_priv(dev);
8985
8986         static const unsigned char any[] = {
8987                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8988         };
8989         static const unsigned char off[] = {
8990                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8991         };
8992
8993         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8994                 return -EINVAL;
8995         mutex_lock(&priv->mutex);
8996         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8997             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8998                 /* we disable mandatory BSSID association */
8999                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9000                 priv->config &= ~CFG_STATIC_BSSID;
9001                 IPW_DEBUG_ASSOC("Attempting to associate with new "
9002                                 "parameters.\n");
9003                 ipw_associate(priv);
9004                 mutex_unlock(&priv->mutex);
9005                 return 0;
9006         }
9007
9008         priv->config |= CFG_STATIC_BSSID;
9009         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9010                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9011                 mutex_unlock(&priv->mutex);
9012                 return 0;
9013         }
9014
9015         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9016                      wrqu->ap_addr.sa_data);
9017
9018         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9019
9020         /* Network configuration changed -- force [re]association */
9021         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9022         if (!ipw_disassociate(priv))
9023                 ipw_associate(priv);
9024
9025         mutex_unlock(&priv->mutex);
9026         return 0;
9027 }
9028
9029 static int ipw_wx_get_wap(struct net_device *dev,
9030                           struct iw_request_info *info,
9031                           union iwreq_data *wrqu, char *extra)
9032 {
9033         struct ipw_priv *priv = ieee80211_priv(dev);
9034
9035         /* If we are associated, trying to associate, or have a statically
9036          * configured BSSID then return that; otherwise return ANY */
9037         mutex_lock(&priv->mutex);
9038         if (priv->config & CFG_STATIC_BSSID ||
9039             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9040                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9041                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9042         } else
9043                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9044
9045         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9046                      wrqu->ap_addr.sa_data);
9047         mutex_unlock(&priv->mutex);
9048         return 0;
9049 }
9050
9051 static int ipw_wx_set_essid(struct net_device *dev,
9052                             struct iw_request_info *info,
9053                             union iwreq_data *wrqu, char *extra)
9054 {
9055         struct ipw_priv *priv = ieee80211_priv(dev);
9056         int length;
9057         DECLARE_SSID_BUF(ssid);
9058
9059         mutex_lock(&priv->mutex);
9060
9061         if (!wrqu->essid.flags)
9062         {
9063                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9064                 ipw_disassociate(priv);
9065                 priv->config &= ~CFG_STATIC_ESSID;
9066                 ipw_associate(priv);
9067                 mutex_unlock(&priv->mutex);
9068                 return 0;
9069         }
9070
9071         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9072
9073         priv->config |= CFG_STATIC_ESSID;
9074
9075         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9076             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9077                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9078                 mutex_unlock(&priv->mutex);
9079                 return 0;
9080         }
9081
9082         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9083                      print_ssid(ssid, extra, length), length);
9084
9085         priv->essid_len = length;
9086         memcpy(priv->essid, extra, priv->essid_len);
9087
9088         /* Network configuration changed -- force [re]association */
9089         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9090         if (!ipw_disassociate(priv))
9091                 ipw_associate(priv);
9092
9093         mutex_unlock(&priv->mutex);
9094         return 0;
9095 }
9096
9097 static int ipw_wx_get_essid(struct net_device *dev,
9098                             struct iw_request_info *info,
9099                             union iwreq_data *wrqu, char *extra)
9100 {
9101         struct ipw_priv *priv = ieee80211_priv(dev);
9102         DECLARE_SSID_BUF(ssid);
9103
9104         /* If we are associated, trying to associate, or have a statically
9105          * configured ESSID then return that; otherwise return ANY */
9106         mutex_lock(&priv->mutex);
9107         if (priv->config & CFG_STATIC_ESSID ||
9108             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9109                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9110                              print_ssid(ssid, priv->essid, priv->essid_len));
9111                 memcpy(extra, priv->essid, priv->essid_len);
9112                 wrqu->essid.length = priv->essid_len;
9113                 wrqu->essid.flags = 1;  /* active */
9114         } else {
9115                 IPW_DEBUG_WX("Getting essid: ANY\n");
9116                 wrqu->essid.length = 0;
9117                 wrqu->essid.flags = 0;  /* active */
9118         }
9119         mutex_unlock(&priv->mutex);
9120         return 0;
9121 }
9122
9123 static int ipw_wx_set_nick(struct net_device *dev,
9124                            struct iw_request_info *info,
9125                            union iwreq_data *wrqu, char *extra)
9126 {
9127         struct ipw_priv *priv = ieee80211_priv(dev);
9128
9129         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9130         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9131                 return -E2BIG;
9132         mutex_lock(&priv->mutex);
9133         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9134         memset(priv->nick, 0, sizeof(priv->nick));
9135         memcpy(priv->nick, extra, wrqu->data.length);
9136         IPW_DEBUG_TRACE("<<\n");
9137         mutex_unlock(&priv->mutex);
9138         return 0;
9139
9140 }
9141
9142 static int ipw_wx_get_nick(struct net_device *dev,
9143                            struct iw_request_info *info,
9144                            union iwreq_data *wrqu, char *extra)
9145 {
9146         struct ipw_priv *priv = ieee80211_priv(dev);
9147         IPW_DEBUG_WX("Getting nick\n");
9148         mutex_lock(&priv->mutex);
9149         wrqu->data.length = strlen(priv->nick);
9150         memcpy(extra, priv->nick, wrqu->data.length);
9151         wrqu->data.flags = 1;   /* active */
9152         mutex_unlock(&priv->mutex);
9153         return 0;
9154 }
9155
9156 static int ipw_wx_set_sens(struct net_device *dev,
9157                             struct iw_request_info *info,
9158                             union iwreq_data *wrqu, char *extra)
9159 {
9160         struct ipw_priv *priv = ieee80211_priv(dev);
9161         int err = 0;
9162
9163         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9164         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9165         mutex_lock(&priv->mutex);
9166
9167         if (wrqu->sens.fixed == 0)
9168         {
9169                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9170                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9171                 goto out;
9172         }
9173         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9174             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9175                 err = -EINVAL;
9176                 goto out;
9177         }
9178
9179         priv->roaming_threshold = wrqu->sens.value;
9180         priv->disassociate_threshold = 3*wrqu->sens.value;
9181       out:
9182         mutex_unlock(&priv->mutex);
9183         return err;
9184 }
9185
9186 static int ipw_wx_get_sens(struct net_device *dev,
9187                             struct iw_request_info *info,
9188                             union iwreq_data *wrqu, char *extra)
9189 {
9190         struct ipw_priv *priv = ieee80211_priv(dev);
9191         mutex_lock(&priv->mutex);
9192         wrqu->sens.fixed = 1;
9193         wrqu->sens.value = priv->roaming_threshold;
9194         mutex_unlock(&priv->mutex);
9195
9196         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9197                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9198
9199         return 0;
9200 }
9201
9202 static int ipw_wx_set_rate(struct net_device *dev,
9203                            struct iw_request_info *info,
9204                            union iwreq_data *wrqu, char *extra)
9205 {
9206         /* TODO: We should use semaphores or locks for access to priv */
9207         struct ipw_priv *priv = ieee80211_priv(dev);
9208         u32 target_rate = wrqu->bitrate.value;
9209         u32 fixed, mask;
9210
9211         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9212         /* value = X, fixed = 1 means only rate X */
9213         /* value = X, fixed = 0 means all rates lower equal X */
9214
9215         if (target_rate == -1) {
9216                 fixed = 0;
9217                 mask = IEEE80211_DEFAULT_RATES_MASK;
9218                 /* Now we should reassociate */
9219                 goto apply;
9220         }
9221
9222         mask = 0;
9223         fixed = wrqu->bitrate.fixed;
9224
9225         if (target_rate == 1000000 || !fixed)
9226                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9227         if (target_rate == 1000000)
9228                 goto apply;
9229
9230         if (target_rate == 2000000 || !fixed)
9231                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9232         if (target_rate == 2000000)
9233                 goto apply;
9234
9235         if (target_rate == 5500000 || !fixed)
9236                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9237         if (target_rate == 5500000)
9238                 goto apply;
9239
9240         if (target_rate == 6000000 || !fixed)
9241                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9242         if (target_rate == 6000000)
9243                 goto apply;
9244
9245         if (target_rate == 9000000 || !fixed)
9246                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9247         if (target_rate == 9000000)
9248                 goto apply;
9249
9250         if (target_rate == 11000000 || !fixed)
9251                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9252         if (target_rate == 11000000)
9253                 goto apply;
9254
9255         if (target_rate == 12000000 || !fixed)
9256                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9257         if (target_rate == 12000000)
9258                 goto apply;
9259
9260         if (target_rate == 18000000 || !fixed)
9261                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9262         if (target_rate == 18000000)
9263                 goto apply;
9264
9265         if (target_rate == 24000000 || !fixed)
9266                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9267         if (target_rate == 24000000)
9268                 goto apply;
9269
9270         if (target_rate == 36000000 || !fixed)
9271                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9272         if (target_rate == 36000000)
9273                 goto apply;
9274
9275         if (target_rate == 48000000 || !fixed)
9276                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9277         if (target_rate == 48000000)
9278                 goto apply;
9279
9280         if (target_rate == 54000000 || !fixed)
9281                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9282         if (target_rate == 54000000)
9283                 goto apply;
9284
9285         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9286         return -EINVAL;
9287
9288       apply:
9289         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9290                      mask, fixed ? "fixed" : "sub-rates");
9291         mutex_lock(&priv->mutex);
9292         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9293                 priv->config &= ~CFG_FIXED_RATE;
9294                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9295         } else
9296                 priv->config |= CFG_FIXED_RATE;
9297
9298         if (priv->rates_mask == mask) {
9299                 IPW_DEBUG_WX("Mask set to current mask.\n");
9300                 mutex_unlock(&priv->mutex);
9301                 return 0;
9302         }
9303
9304         priv->rates_mask = mask;
9305
9306         /* Network configuration changed -- force [re]association */
9307         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9308         if (!ipw_disassociate(priv))
9309                 ipw_associate(priv);
9310
9311         mutex_unlock(&priv->mutex);
9312         return 0;
9313 }
9314
9315 static int ipw_wx_get_rate(struct net_device *dev,
9316                            struct iw_request_info *info,
9317                            union iwreq_data *wrqu, char *extra)
9318 {
9319         struct ipw_priv *priv = ieee80211_priv(dev);
9320         mutex_lock(&priv->mutex);
9321         wrqu->bitrate.value = priv->last_rate;
9322         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9323         mutex_unlock(&priv->mutex);
9324         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9325         return 0;
9326 }
9327
9328 static int ipw_wx_set_rts(struct net_device *dev,
9329                           struct iw_request_info *info,
9330                           union iwreq_data *wrqu, char *extra)
9331 {
9332         struct ipw_priv *priv = ieee80211_priv(dev);
9333         mutex_lock(&priv->mutex);
9334         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9335                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9336         else {
9337                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9338                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9339                         mutex_unlock(&priv->mutex);
9340                         return -EINVAL;
9341                 }
9342                 priv->rts_threshold = wrqu->rts.value;
9343         }
9344
9345         ipw_send_rts_threshold(priv, priv->rts_threshold);
9346         mutex_unlock(&priv->mutex);
9347         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9348         return 0;
9349 }
9350
9351 static int ipw_wx_get_rts(struct net_device *dev,
9352                           struct iw_request_info *info,
9353                           union iwreq_data *wrqu, char *extra)
9354 {
9355         struct ipw_priv *priv = ieee80211_priv(dev);
9356         mutex_lock(&priv->mutex);
9357         wrqu->rts.value = priv->rts_threshold;
9358         wrqu->rts.fixed = 0;    /* no auto select */
9359         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9360         mutex_unlock(&priv->mutex);
9361         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9362         return 0;
9363 }
9364
9365 static int ipw_wx_set_txpow(struct net_device *dev,
9366                             struct iw_request_info *info,
9367                             union iwreq_data *wrqu, char *extra)
9368 {
9369         struct ipw_priv *priv = ieee80211_priv(dev);
9370         int err = 0;
9371
9372         mutex_lock(&priv->mutex);
9373         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9374                 err = -EINPROGRESS;
9375                 goto out;
9376         }
9377
9378         if (!wrqu->power.fixed)
9379                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9380
9381         if (wrqu->power.flags != IW_TXPOW_DBM) {
9382                 err = -EINVAL;
9383                 goto out;
9384         }
9385
9386         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9387             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9388                 err = -EINVAL;
9389                 goto out;
9390         }
9391
9392         priv->tx_power = wrqu->power.value;
9393         err = ipw_set_tx_power(priv);
9394       out:
9395         mutex_unlock(&priv->mutex);
9396         return err;
9397 }
9398
9399 static int ipw_wx_get_txpow(struct net_device *dev,
9400                             struct iw_request_info *info,
9401                             union iwreq_data *wrqu, char *extra)
9402 {
9403         struct ipw_priv *priv = ieee80211_priv(dev);
9404         mutex_lock(&priv->mutex);
9405         wrqu->power.value = priv->tx_power;
9406         wrqu->power.fixed = 1;
9407         wrqu->power.flags = IW_TXPOW_DBM;
9408         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9409         mutex_unlock(&priv->mutex);
9410
9411         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9412                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9413
9414         return 0;
9415 }
9416
9417 static int ipw_wx_set_frag(struct net_device *dev,
9418                            struct iw_request_info *info,
9419                            union iwreq_data *wrqu, char *extra)
9420 {
9421         struct ipw_priv *priv = ieee80211_priv(dev);
9422         mutex_lock(&priv->mutex);
9423         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9424                 priv->ieee->fts = DEFAULT_FTS;
9425         else {
9426                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9427                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9428                         mutex_unlock(&priv->mutex);
9429                         return -EINVAL;
9430                 }
9431
9432                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9433         }
9434
9435         ipw_send_frag_threshold(priv, wrqu->frag.value);
9436         mutex_unlock(&priv->mutex);
9437         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9438         return 0;
9439 }
9440
9441 static int ipw_wx_get_frag(struct net_device *dev,
9442                            struct iw_request_info *info,
9443                            union iwreq_data *wrqu, char *extra)
9444 {
9445         struct ipw_priv *priv = ieee80211_priv(dev);
9446         mutex_lock(&priv->mutex);
9447         wrqu->frag.value = priv->ieee->fts;
9448         wrqu->frag.fixed = 0;   /* no auto select */
9449         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9450         mutex_unlock(&priv->mutex);
9451         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9452
9453         return 0;
9454 }
9455
9456 static int ipw_wx_set_retry(struct net_device *dev,
9457                             struct iw_request_info *info,
9458                             union iwreq_data *wrqu, char *extra)
9459 {
9460         struct ipw_priv *priv = ieee80211_priv(dev);
9461
9462         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9463                 return -EINVAL;
9464
9465         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9466                 return 0;
9467
9468         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9469                 return -EINVAL;
9470
9471         mutex_lock(&priv->mutex);
9472         if (wrqu->retry.flags & IW_RETRY_SHORT)
9473                 priv->short_retry_limit = (u8) wrqu->retry.value;
9474         else if (wrqu->retry.flags & IW_RETRY_LONG)
9475                 priv->long_retry_limit = (u8) wrqu->retry.value;
9476         else {
9477                 priv->short_retry_limit = (u8) wrqu->retry.value;
9478                 priv->long_retry_limit = (u8) wrqu->retry.value;
9479         }
9480
9481         ipw_send_retry_limit(priv, priv->short_retry_limit,
9482                              priv->long_retry_limit);
9483         mutex_unlock(&priv->mutex);
9484         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9485                      priv->short_retry_limit, priv->long_retry_limit);
9486         return 0;
9487 }
9488
9489 static int ipw_wx_get_retry(struct net_device *dev,
9490                             struct iw_request_info *info,
9491                             union iwreq_data *wrqu, char *extra)
9492 {
9493         struct ipw_priv *priv = ieee80211_priv(dev);
9494
9495         mutex_lock(&priv->mutex);
9496         wrqu->retry.disabled = 0;
9497
9498         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9499                 mutex_unlock(&priv->mutex);
9500                 return -EINVAL;
9501         }
9502
9503         if (wrqu->retry.flags & IW_RETRY_LONG) {
9504                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9505                 wrqu->retry.value = priv->long_retry_limit;
9506         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9507                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9508                 wrqu->retry.value = priv->short_retry_limit;
9509         } else {
9510                 wrqu->retry.flags = IW_RETRY_LIMIT;
9511                 wrqu->retry.value = priv->short_retry_limit;
9512         }
9513         mutex_unlock(&priv->mutex);
9514
9515         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9516
9517         return 0;
9518 }
9519
9520 static int ipw_wx_set_scan(struct net_device *dev,
9521                            struct iw_request_info *info,
9522                            union iwreq_data *wrqu, char *extra)
9523 {
9524         struct ipw_priv *priv = ieee80211_priv(dev);
9525         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9526         struct delayed_work *work = NULL;
9527
9528         mutex_lock(&priv->mutex);
9529
9530         priv->user_requested_scan = 1;
9531
9532         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9533                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9534                         int len = min((int)req->essid_len,
9535                                       (int)sizeof(priv->direct_scan_ssid));
9536                         memcpy(priv->direct_scan_ssid, req->essid, len);
9537                         priv->direct_scan_ssid_len = len;
9538                         work = &priv->request_direct_scan;
9539                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9540                         work = &priv->request_passive_scan;
9541                 }
9542         } else {
9543                 /* Normal active broadcast scan */
9544                 work = &priv->request_scan;
9545         }
9546
9547         mutex_unlock(&priv->mutex);
9548
9549         IPW_DEBUG_WX("Start scan\n");
9550
9551         queue_delayed_work(priv->workqueue, work, 0);
9552
9553         return 0;
9554 }
9555
9556 static int ipw_wx_get_scan(struct net_device *dev,
9557                            struct iw_request_info *info,
9558                            union iwreq_data *wrqu, char *extra)
9559 {
9560         struct ipw_priv *priv = ieee80211_priv(dev);
9561         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9562 }
9563
9564 static int ipw_wx_set_encode(struct net_device *dev,
9565                              struct iw_request_info *info,
9566                              union iwreq_data *wrqu, char *key)
9567 {
9568         struct ipw_priv *priv = ieee80211_priv(dev);
9569         int ret;
9570         u32 cap = priv->capability;
9571
9572         mutex_lock(&priv->mutex);
9573         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9574
9575         /* In IBSS mode, we need to notify the firmware to update
9576          * the beacon info after we changed the capability. */
9577         if (cap != priv->capability &&
9578             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9579             priv->status & STATUS_ASSOCIATED)
9580                 ipw_disassociate(priv);
9581
9582         mutex_unlock(&priv->mutex);
9583         return ret;
9584 }
9585
9586 static int ipw_wx_get_encode(struct net_device *dev,
9587                              struct iw_request_info *info,
9588                              union iwreq_data *wrqu, char *key)
9589 {
9590         struct ipw_priv *priv = ieee80211_priv(dev);
9591         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9592 }
9593
9594 static int ipw_wx_set_power(struct net_device *dev,
9595                             struct iw_request_info *info,
9596                             union iwreq_data *wrqu, char *extra)
9597 {
9598         struct ipw_priv *priv = ieee80211_priv(dev);
9599         int err;
9600         mutex_lock(&priv->mutex);
9601         if (wrqu->power.disabled) {
9602                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9603                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9604                 if (err) {
9605                         IPW_DEBUG_WX("failed setting power mode.\n");
9606                         mutex_unlock(&priv->mutex);
9607                         return err;
9608                 }
9609                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9610                 mutex_unlock(&priv->mutex);
9611                 return 0;
9612         }
9613
9614         switch (wrqu->power.flags & IW_POWER_MODE) {
9615         case IW_POWER_ON:       /* If not specified */
9616         case IW_POWER_MODE:     /* If set all mask */
9617         case IW_POWER_ALL_R:    /* If explicitly state all */
9618                 break;
9619         default:                /* Otherwise we don't support it */
9620                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9621                              wrqu->power.flags);
9622                 mutex_unlock(&priv->mutex);
9623                 return -EOPNOTSUPP;
9624         }
9625
9626         /* If the user hasn't specified a power management mode yet, default
9627          * to BATTERY */
9628         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9629                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9630         else
9631                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9632
9633         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9634         if (err) {
9635                 IPW_DEBUG_WX("failed setting power mode.\n");
9636                 mutex_unlock(&priv->mutex);
9637                 return err;
9638         }
9639
9640         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9641         mutex_unlock(&priv->mutex);
9642         return 0;
9643 }
9644
9645 static int ipw_wx_get_power(struct net_device *dev,
9646                             struct iw_request_info *info,
9647                             union iwreq_data *wrqu, char *extra)
9648 {
9649         struct ipw_priv *priv = ieee80211_priv(dev);
9650         mutex_lock(&priv->mutex);
9651         if (!(priv->power_mode & IPW_POWER_ENABLED))
9652                 wrqu->power.disabled = 1;
9653         else
9654                 wrqu->power.disabled = 0;
9655
9656         mutex_unlock(&priv->mutex);
9657         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9658
9659         return 0;
9660 }
9661
9662 static int ipw_wx_set_powermode(struct net_device *dev,
9663                                 struct iw_request_info *info,
9664                                 union iwreq_data *wrqu, char *extra)
9665 {
9666         struct ipw_priv *priv = ieee80211_priv(dev);
9667         int mode = *(int *)extra;
9668         int err;
9669
9670         mutex_lock(&priv->mutex);
9671         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9672                 mode = IPW_POWER_AC;
9673
9674         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9675                 err = ipw_send_power_mode(priv, mode);
9676                 if (err) {
9677                         IPW_DEBUG_WX("failed setting power mode.\n");
9678                         mutex_unlock(&priv->mutex);
9679                         return err;
9680                 }
9681                 priv->power_mode = IPW_POWER_ENABLED | mode;
9682         }
9683         mutex_unlock(&priv->mutex);
9684         return 0;
9685 }
9686
9687 #define MAX_WX_STRING 80
9688 static int ipw_wx_get_powermode(struct net_device *dev,
9689                                 struct iw_request_info *info,
9690                                 union iwreq_data *wrqu, char *extra)
9691 {
9692         struct ipw_priv *priv = ieee80211_priv(dev);
9693         int level = IPW_POWER_LEVEL(priv->power_mode);
9694         char *p = extra;
9695
9696         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9697
9698         switch (level) {
9699         case IPW_POWER_AC:
9700                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9701                 break;
9702         case IPW_POWER_BATTERY:
9703                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9704                 break;
9705         default:
9706                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9707                               "(Timeout %dms, Period %dms)",
9708                               timeout_duration[level - 1] / 1000,
9709                               period_duration[level - 1] / 1000);
9710         }
9711
9712         if (!(priv->power_mode & IPW_POWER_ENABLED))
9713                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9714
9715         wrqu->data.length = p - extra + 1;
9716
9717         return 0;
9718 }
9719
9720 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9721                                     struct iw_request_info *info,
9722                                     union iwreq_data *wrqu, char *extra)
9723 {
9724         struct ipw_priv *priv = ieee80211_priv(dev);
9725         int mode = *(int *)extra;
9726         u8 band = 0, modulation = 0;
9727
9728         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9729                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9730                 return -EINVAL;
9731         }
9732         mutex_lock(&priv->mutex);
9733         if (priv->adapter == IPW_2915ABG) {
9734                 priv->ieee->abg_true = 1;
9735                 if (mode & IEEE_A) {
9736                         band |= IEEE80211_52GHZ_BAND;
9737                         modulation |= IEEE80211_OFDM_MODULATION;
9738                 } else
9739                         priv->ieee->abg_true = 0;
9740         } else {
9741                 if (mode & IEEE_A) {
9742                         IPW_WARNING("Attempt to set 2200BG into "
9743                                     "802.11a mode\n");
9744                         mutex_unlock(&priv->mutex);
9745                         return -EINVAL;
9746                 }
9747
9748                 priv->ieee->abg_true = 0;
9749         }
9750
9751         if (mode & IEEE_B) {
9752                 band |= IEEE80211_24GHZ_BAND;
9753                 modulation |= IEEE80211_CCK_MODULATION;
9754         } else
9755                 priv->ieee->abg_true = 0;
9756
9757         if (mode & IEEE_G) {
9758                 band |= IEEE80211_24GHZ_BAND;
9759                 modulation |= IEEE80211_OFDM_MODULATION;
9760         } else
9761                 priv->ieee->abg_true = 0;
9762
9763         priv->ieee->mode = mode;
9764         priv->ieee->freq_band = band;
9765         priv->ieee->modulation = modulation;
9766         init_supported_rates(priv, &priv->rates);
9767
9768         /* Network configuration changed -- force [re]association */
9769         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9770         if (!ipw_disassociate(priv)) {
9771                 ipw_send_supported_rates(priv, &priv->rates);
9772                 ipw_associate(priv);
9773         }
9774
9775         /* Update the band LEDs */
9776         ipw_led_band_on(priv);
9777
9778         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9779                      mode & IEEE_A ? 'a' : '.',
9780                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9781         mutex_unlock(&priv->mutex);
9782         return 0;
9783 }
9784
9785 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9786                                     struct iw_request_info *info,
9787                                     union iwreq_data *wrqu, char *extra)
9788 {
9789         struct ipw_priv *priv = ieee80211_priv(dev);
9790         mutex_lock(&priv->mutex);
9791         switch (priv->ieee->mode) {
9792         case IEEE_A:
9793                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9794                 break;
9795         case IEEE_B:
9796                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9797                 break;
9798         case IEEE_A | IEEE_B:
9799                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9800                 break;
9801         case IEEE_G:
9802                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9803                 break;
9804         case IEEE_A | IEEE_G:
9805                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9806                 break;
9807         case IEEE_B | IEEE_G:
9808                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9809                 break;
9810         case IEEE_A | IEEE_B | IEEE_G:
9811                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9812                 break;
9813         default:
9814                 strncpy(extra, "unknown", MAX_WX_STRING);
9815                 break;
9816         }
9817
9818         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9819
9820         wrqu->data.length = strlen(extra) + 1;
9821         mutex_unlock(&priv->mutex);
9822
9823         return 0;
9824 }
9825
9826 static int ipw_wx_set_preamble(struct net_device *dev,
9827                                struct iw_request_info *info,
9828                                union iwreq_data *wrqu, char *extra)
9829 {
9830         struct ipw_priv *priv = ieee80211_priv(dev);
9831         int mode = *(int *)extra;
9832         mutex_lock(&priv->mutex);
9833         /* Switching from SHORT -> LONG requires a disassociation */
9834         if (mode == 1) {
9835                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9836                         priv->config |= CFG_PREAMBLE_LONG;
9837
9838                         /* Network configuration changed -- force [re]association */
9839                         IPW_DEBUG_ASSOC
9840                             ("[re]association triggered due to preamble change.\n");
9841                         if (!ipw_disassociate(priv))
9842                                 ipw_associate(priv);
9843                 }
9844                 goto done;
9845         }
9846
9847         if (mode == 0) {
9848                 priv->config &= ~CFG_PREAMBLE_LONG;
9849                 goto done;
9850         }
9851         mutex_unlock(&priv->mutex);
9852         return -EINVAL;
9853
9854       done:
9855         mutex_unlock(&priv->mutex);
9856         return 0;
9857 }
9858
9859 static int ipw_wx_get_preamble(struct net_device *dev,
9860                                struct iw_request_info *info,
9861                                union iwreq_data *wrqu, char *extra)
9862 {
9863         struct ipw_priv *priv = ieee80211_priv(dev);
9864         mutex_lock(&priv->mutex);
9865         if (priv->config & CFG_PREAMBLE_LONG)
9866                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9867         else
9868                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9869         mutex_unlock(&priv->mutex);
9870         return 0;
9871 }
9872
9873 #ifdef CONFIG_IPW2200_MONITOR
9874 static int ipw_wx_set_monitor(struct net_device *dev,
9875                               struct iw_request_info *info,
9876                               union iwreq_data *wrqu, char *extra)
9877 {
9878         struct ipw_priv *priv = ieee80211_priv(dev);
9879         int *parms = (int *)extra;
9880         int enable = (parms[0] > 0);
9881         mutex_lock(&priv->mutex);
9882         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9883         if (enable) {
9884                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9885 #ifdef CONFIG_IPW2200_RADIOTAP
9886                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9887 #else
9888                         priv->net_dev->type = ARPHRD_IEEE80211;
9889 #endif
9890                         queue_work(priv->workqueue, &priv->adapter_restart);
9891                 }
9892
9893                 ipw_set_channel(priv, parms[1]);
9894         } else {
9895                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9896                         mutex_unlock(&priv->mutex);
9897                         return 0;
9898                 }
9899                 priv->net_dev->type = ARPHRD_ETHER;
9900                 queue_work(priv->workqueue, &priv->adapter_restart);
9901         }
9902         mutex_unlock(&priv->mutex);
9903         return 0;
9904 }
9905
9906 #endif                          /* CONFIG_IPW2200_MONITOR */
9907
9908 static int ipw_wx_reset(struct net_device *dev,
9909                         struct iw_request_info *info,
9910                         union iwreq_data *wrqu, char *extra)
9911 {
9912         struct ipw_priv *priv = ieee80211_priv(dev);
9913         IPW_DEBUG_WX("RESET\n");
9914         queue_work(priv->workqueue, &priv->adapter_restart);
9915         return 0;
9916 }
9917
9918 static int ipw_wx_sw_reset(struct net_device *dev,
9919                            struct iw_request_info *info,
9920                            union iwreq_data *wrqu, char *extra)
9921 {
9922         struct ipw_priv *priv = ieee80211_priv(dev);
9923         union iwreq_data wrqu_sec = {
9924                 .encoding = {
9925                              .flags = IW_ENCODE_DISABLED,
9926                              },
9927         };
9928         int ret;
9929
9930         IPW_DEBUG_WX("SW_RESET\n");
9931
9932         mutex_lock(&priv->mutex);
9933
9934         ret = ipw_sw_reset(priv, 2);
9935         if (!ret) {
9936                 free_firmware();
9937                 ipw_adapter_restart(priv);
9938         }
9939
9940         /* The SW reset bit might have been toggled on by the 'disable'
9941          * module parameter, so take appropriate action */
9942         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9943
9944         mutex_unlock(&priv->mutex);
9945         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9946         mutex_lock(&priv->mutex);
9947
9948         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9949                 /* Configuration likely changed -- force [re]association */
9950                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9951                                 "reset.\n");
9952                 if (!ipw_disassociate(priv))
9953                         ipw_associate(priv);
9954         }
9955
9956         mutex_unlock(&priv->mutex);
9957
9958         return 0;
9959 }
9960
9961 /* Rebase the WE IOCTLs to zero for the handler array */
9962 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9963 static iw_handler ipw_wx_handlers[] = {
9964         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9965         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9966         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9967         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9968         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9969         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9970         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9971         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9972         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9973         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9974         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9975         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9976         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9977         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9978         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9979         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9980         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9981         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9982         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9983         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9984         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9985         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9986         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9987         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9988         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9989         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9990         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9991         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9992         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9993         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9994         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9995         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9996         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9997         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9998         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9999         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10000         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10001         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10002         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10003         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10004         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10005 };
10006
10007 enum {
10008         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10009         IPW_PRIV_GET_POWER,
10010         IPW_PRIV_SET_MODE,
10011         IPW_PRIV_GET_MODE,
10012         IPW_PRIV_SET_PREAMBLE,
10013         IPW_PRIV_GET_PREAMBLE,
10014         IPW_PRIV_RESET,
10015         IPW_PRIV_SW_RESET,
10016 #ifdef CONFIG_IPW2200_MONITOR
10017         IPW_PRIV_SET_MONITOR,
10018 #endif
10019 };
10020
10021 static struct iw_priv_args ipw_priv_args[] = {
10022         {
10023          .cmd = IPW_PRIV_SET_POWER,
10024          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10025          .name = "set_power"},
10026         {
10027          .cmd = IPW_PRIV_GET_POWER,
10028          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10029          .name = "get_power"},
10030         {
10031          .cmd = IPW_PRIV_SET_MODE,
10032          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10033          .name = "set_mode"},
10034         {
10035          .cmd = IPW_PRIV_GET_MODE,
10036          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10037          .name = "get_mode"},
10038         {
10039          .cmd = IPW_PRIV_SET_PREAMBLE,
10040          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10041          .name = "set_preamble"},
10042         {
10043          .cmd = IPW_PRIV_GET_PREAMBLE,
10044          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10045          .name = "get_preamble"},
10046         {
10047          IPW_PRIV_RESET,
10048          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10049         {
10050          IPW_PRIV_SW_RESET,
10051          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10052 #ifdef CONFIG_IPW2200_MONITOR
10053         {
10054          IPW_PRIV_SET_MONITOR,
10055          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10056 #endif                          /* CONFIG_IPW2200_MONITOR */
10057 };
10058
10059 static iw_handler ipw_priv_handler[] = {
10060         ipw_wx_set_powermode,
10061         ipw_wx_get_powermode,
10062         ipw_wx_set_wireless_mode,
10063         ipw_wx_get_wireless_mode,
10064         ipw_wx_set_preamble,
10065         ipw_wx_get_preamble,
10066         ipw_wx_reset,
10067         ipw_wx_sw_reset,
10068 #ifdef CONFIG_IPW2200_MONITOR
10069         ipw_wx_set_monitor,
10070 #endif
10071 };
10072
10073 static struct iw_handler_def ipw_wx_handler_def = {
10074         .standard = ipw_wx_handlers,
10075         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10076         .num_private = ARRAY_SIZE(ipw_priv_handler),
10077         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10078         .private = ipw_priv_handler,
10079         .private_args = ipw_priv_args,
10080         .get_wireless_stats = ipw_get_wireless_stats,
10081 };
10082
10083 /*
10084  * Get wireless statistics.
10085  * Called by /proc/net/wireless
10086  * Also called by SIOCGIWSTATS
10087  */
10088 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10089 {
10090         struct ipw_priv *priv = ieee80211_priv(dev);
10091         struct iw_statistics *wstats;
10092
10093         wstats = &priv->wstats;
10094
10095         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10096          * netdev->get_wireless_stats seems to be called before fw is
10097          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10098          * and associated; if not associcated, the values are all meaningless
10099          * anyway, so set them all to NULL and INVALID */
10100         if (!(priv->status & STATUS_ASSOCIATED)) {
10101                 wstats->miss.beacon = 0;
10102                 wstats->discard.retries = 0;
10103                 wstats->qual.qual = 0;
10104                 wstats->qual.level = 0;
10105                 wstats->qual.noise = 0;
10106                 wstats->qual.updated = 7;
10107                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10108                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10109                 return wstats;
10110         }
10111
10112         wstats->qual.qual = priv->quality;
10113         wstats->qual.level = priv->exp_avg_rssi;
10114         wstats->qual.noise = priv->exp_avg_noise;
10115         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10116             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10117
10118         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10119         wstats->discard.retries = priv->last_tx_failures;
10120         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10121
10122 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10123         goto fail_get_ordinal;
10124         wstats->discard.retries += tx_retry; */
10125
10126         return wstats;
10127 }
10128
10129 /* net device stuff */
10130
10131 static  void init_sys_config(struct ipw_sys_config *sys_config)
10132 {
10133         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10134         sys_config->bt_coexistence = 0;
10135         sys_config->answer_broadcast_ssid_probe = 0;
10136         sys_config->accept_all_data_frames = 0;
10137         sys_config->accept_non_directed_frames = 1;
10138         sys_config->exclude_unicast_unencrypted = 0;
10139         sys_config->disable_unicast_decryption = 1;
10140         sys_config->exclude_multicast_unencrypted = 0;
10141         sys_config->disable_multicast_decryption = 1;
10142         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10143                 antenna = CFG_SYS_ANTENNA_BOTH;
10144         sys_config->antenna_diversity = antenna;
10145         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10146         sys_config->dot11g_auto_detection = 0;
10147         sys_config->enable_cts_to_self = 0;
10148         sys_config->bt_coexist_collision_thr = 0;
10149         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10150         sys_config->silence_threshold = 0x1e;
10151 }
10152
10153 static int ipw_net_open(struct net_device *dev)
10154 {
10155         IPW_DEBUG_INFO("dev->open\n");
10156         netif_start_queue(dev);
10157         return 0;
10158 }
10159
10160 static int ipw_net_stop(struct net_device *dev)
10161 {
10162         IPW_DEBUG_INFO("dev->close\n");
10163         netif_stop_queue(dev);
10164         return 0;
10165 }
10166
10167 /*
10168 todo:
10169
10170 modify to send one tfd per fragment instead of using chunking.  otherwise
10171 we need to heavily modify the ieee80211_skb_to_txb.
10172 */
10173
10174 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10175                              int pri)
10176 {
10177         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10178             txb->fragments[0]->data;
10179         int i = 0;
10180         struct tfd_frame *tfd;
10181 #ifdef CONFIG_IPW2200_QOS
10182         int tx_id = ipw_get_tx_queue_number(priv, pri);
10183         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10184 #else
10185         struct clx2_tx_queue *txq = &priv->txq[0];
10186 #endif
10187         struct clx2_queue *q = &txq->q;
10188         u8 id, hdr_len, unicast;
10189         u16 remaining_bytes;
10190         int fc;
10191
10192         if (!(priv->status & STATUS_ASSOCIATED))
10193                 goto drop;
10194
10195         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10196         switch (priv->ieee->iw_mode) {
10197         case IW_MODE_ADHOC:
10198                 unicast = !is_multicast_ether_addr(hdr->addr1);
10199                 id = ipw_find_station(priv, hdr->addr1);
10200                 if (id == IPW_INVALID_STATION) {
10201                         id = ipw_add_station(priv, hdr->addr1);
10202                         if (id == IPW_INVALID_STATION) {
10203                                 IPW_WARNING("Attempt to send data to "
10204                                             "invalid cell: %pM\n",
10205                                             hdr->addr1);
10206                                 goto drop;
10207                         }
10208                 }
10209                 break;
10210
10211         case IW_MODE_INFRA:
10212         default:
10213                 unicast = !is_multicast_ether_addr(hdr->addr3);
10214                 id = 0;
10215                 break;
10216         }
10217
10218         tfd = &txq->bd[q->first_empty];
10219         txq->txb[q->first_empty] = txb;
10220         memset(tfd, 0, sizeof(*tfd));
10221         tfd->u.data.station_number = id;
10222
10223         tfd->control_flags.message_type = TX_FRAME_TYPE;
10224         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10225
10226         tfd->u.data.cmd_id = DINO_CMD_TX;
10227         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10228         remaining_bytes = txb->payload_size;
10229
10230         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10231                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10232         else
10233                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10234
10235         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10236                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10237
10238         fc = le16_to_cpu(hdr->frame_ctl);
10239         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10240
10241         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10242
10243         if (likely(unicast))
10244                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10245
10246         if (txb->encrypted && !priv->ieee->host_encrypt) {
10247                 switch (priv->ieee->sec.level) {
10248                 case SEC_LEVEL_3:
10249                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10250                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10251                         /* XXX: ACK flag must be set for CCMP even if it
10252                          * is a multicast/broadcast packet, because CCMP
10253                          * group communication encrypted by GTK is
10254                          * actually done by the AP. */
10255                         if (!unicast)
10256                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10257
10258                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10259                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10260                         tfd->u.data.key_index = 0;
10261                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10262                         break;
10263                 case SEC_LEVEL_2:
10264                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10265                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10266                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10267                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10268                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10269                         break;
10270                 case SEC_LEVEL_1:
10271                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10272                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10273                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10274                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10275                             40)
10276                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10277                         else
10278                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10279                         break;
10280                 case SEC_LEVEL_0:
10281                         break;
10282                 default:
10283                         printk(KERN_ERR "Unknow security level %d\n",
10284                                priv->ieee->sec.level);
10285                         break;
10286                 }
10287         } else
10288                 /* No hardware encryption */
10289                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10290
10291 #ifdef CONFIG_IPW2200_QOS
10292         if (fc & IEEE80211_STYPE_QOS_DATA)
10293                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10294 #endif                          /* CONFIG_IPW2200_QOS */
10295
10296         /* payload */
10297         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10298                                                  txb->nr_frags));
10299         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10300                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10301         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10302                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10303                                i, le32_to_cpu(tfd->u.data.num_chunks),
10304                                txb->fragments[i]->len - hdr_len);
10305                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10306                              i, tfd->u.data.num_chunks,
10307                              txb->fragments[i]->len - hdr_len);
10308                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10309                            txb->fragments[i]->len - hdr_len);
10310
10311                 tfd->u.data.chunk_ptr[i] =
10312                     cpu_to_le32(pci_map_single
10313                                 (priv->pci_dev,
10314                                  txb->fragments[i]->data + hdr_len,
10315                                  txb->fragments[i]->len - hdr_len,
10316                                  PCI_DMA_TODEVICE));
10317                 tfd->u.data.chunk_len[i] =
10318                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10319         }
10320
10321         if (i != txb->nr_frags) {
10322                 struct sk_buff *skb;
10323                 u16 remaining_bytes = 0;
10324                 int j;
10325
10326                 for (j = i; j < txb->nr_frags; j++)
10327                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10328
10329                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10330                        remaining_bytes);
10331                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10332                 if (skb != NULL) {
10333                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10334                         for (j = i; j < txb->nr_frags; j++) {
10335                                 int size = txb->fragments[j]->len - hdr_len;
10336
10337                                 printk(KERN_INFO "Adding frag %d %d...\n",
10338                                        j, size);
10339                                 memcpy(skb_put(skb, size),
10340                                        txb->fragments[j]->data + hdr_len, size);
10341                         }
10342                         dev_kfree_skb_any(txb->fragments[i]);
10343                         txb->fragments[i] = skb;
10344                         tfd->u.data.chunk_ptr[i] =
10345                             cpu_to_le32(pci_map_single
10346                                         (priv->pci_dev, skb->data,
10347                                          remaining_bytes,
10348                                          PCI_DMA_TODEVICE));
10349
10350                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10351                 }
10352         }
10353
10354         /* kick DMA */
10355         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10356         ipw_write32(priv, q->reg_w, q->first_empty);
10357
10358         if (ipw_tx_queue_space(q) < q->high_mark)
10359                 netif_stop_queue(priv->net_dev);
10360
10361         return NETDEV_TX_OK;
10362
10363       drop:
10364         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10365         ieee80211_txb_free(txb);
10366         return NETDEV_TX_OK;
10367 }
10368
10369 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10370 {
10371         struct ipw_priv *priv = ieee80211_priv(dev);
10372 #ifdef CONFIG_IPW2200_QOS
10373         int tx_id = ipw_get_tx_queue_number(priv, pri);
10374         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10375 #else
10376         struct clx2_tx_queue *txq = &priv->txq[0];
10377 #endif                          /* CONFIG_IPW2200_QOS */
10378
10379         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10380                 return 1;
10381
10382         return 0;
10383 }
10384
10385 #ifdef CONFIG_IPW2200_PROMISCUOUS
10386 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10387                                       struct ieee80211_txb *txb)
10388 {
10389         struct ieee80211_rx_stats dummystats;
10390         struct ieee80211_hdr *hdr;
10391         u8 n;
10392         u16 filter = priv->prom_priv->filter;
10393         int hdr_only = 0;
10394
10395         if (filter & IPW_PROM_NO_TX)
10396                 return;
10397
10398         memset(&dummystats, 0, sizeof(dummystats));
10399
10400         /* Filtering of fragment chains is done agains the first fragment */
10401         hdr = (void *)txb->fragments[0]->data;
10402         if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10403                 if (filter & IPW_PROM_NO_MGMT)
10404                         return;
10405                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10406                         hdr_only = 1;
10407         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10408                 if (filter & IPW_PROM_NO_CTL)
10409                         return;
10410                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10411                         hdr_only = 1;
10412         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10413                 if (filter & IPW_PROM_NO_DATA)
10414                         return;
10415                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10416                         hdr_only = 1;
10417         }
10418
10419         for(n=0; n<txb->nr_frags; ++n) {
10420                 struct sk_buff *src = txb->fragments[n];
10421                 struct sk_buff *dst;
10422                 struct ieee80211_radiotap_header *rt_hdr;
10423                 int len;
10424
10425                 if (hdr_only) {
10426                         hdr = (void *)src->data;
10427                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10428                 } else
10429                         len = src->len;
10430
10431                 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10432                 if (!dst)
10433                         continue;
10434
10435                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10436
10437                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10438                 rt_hdr->it_pad = 0;
10439                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10440                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10441
10442                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10443                         ieee80211chan2mhz(priv->channel));
10444                 if (priv->channel > 14)         /* 802.11a */
10445                         *(__le16*)skb_put(dst, sizeof(u16)) =
10446                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10447                                              IEEE80211_CHAN_5GHZ);
10448                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10449                         *(__le16*)skb_put(dst, sizeof(u16)) =
10450                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10451                                              IEEE80211_CHAN_2GHZ);
10452                 else            /* 802.11g */
10453                         *(__le16*)skb_put(dst, sizeof(u16)) =
10454                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10455                                  IEEE80211_CHAN_2GHZ);
10456
10457                 rt_hdr->it_len = cpu_to_le16(dst->len);
10458
10459                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10460
10461                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10462                         dev_kfree_skb_any(dst);
10463         }
10464 }
10465 #endif
10466
10467 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10468                                    struct net_device *dev, int pri)
10469 {
10470         struct ipw_priv *priv = ieee80211_priv(dev);
10471         unsigned long flags;
10472         int ret;
10473
10474         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10475         spin_lock_irqsave(&priv->lock, flags);
10476
10477 #ifdef CONFIG_IPW2200_PROMISCUOUS
10478         if (rtap_iface && netif_running(priv->prom_net_dev))
10479                 ipw_handle_promiscuous_tx(priv, txb);
10480 #endif
10481
10482         ret = ipw_tx_skb(priv, txb, pri);
10483         if (ret == NETDEV_TX_OK)
10484                 __ipw_led_activity_on(priv);
10485         spin_unlock_irqrestore(&priv->lock, flags);
10486
10487         return ret;
10488 }
10489
10490 static void ipw_net_set_multicast_list(struct net_device *dev)
10491 {
10492
10493 }
10494
10495 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10496 {
10497         struct ipw_priv *priv = ieee80211_priv(dev);
10498         struct sockaddr *addr = p;
10499
10500         if (!is_valid_ether_addr(addr->sa_data))
10501                 return -EADDRNOTAVAIL;
10502         mutex_lock(&priv->mutex);
10503         priv->config |= CFG_CUSTOM_MAC;
10504         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10505         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10506                priv->net_dev->name, priv->mac_addr);
10507         queue_work(priv->workqueue, &priv->adapter_restart);
10508         mutex_unlock(&priv->mutex);
10509         return 0;
10510 }
10511
10512 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10513                                     struct ethtool_drvinfo *info)
10514 {
10515         struct ipw_priv *p = ieee80211_priv(dev);
10516         char vers[64];
10517         char date[32];
10518         u32 len;
10519
10520         strcpy(info->driver, DRV_NAME);
10521         strcpy(info->version, DRV_VERSION);
10522
10523         len = sizeof(vers);
10524         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10525         len = sizeof(date);
10526         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10527
10528         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10529                  vers, date);
10530         strcpy(info->bus_info, pci_name(p->pci_dev));
10531         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10532 }
10533
10534 static u32 ipw_ethtool_get_link(struct net_device *dev)
10535 {
10536         struct ipw_priv *priv = ieee80211_priv(dev);
10537         return (priv->status & STATUS_ASSOCIATED) != 0;
10538 }
10539
10540 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10541 {
10542         return IPW_EEPROM_IMAGE_SIZE;
10543 }
10544
10545 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10546                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10547 {
10548         struct ipw_priv *p = ieee80211_priv(dev);
10549
10550         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10551                 return -EINVAL;
10552         mutex_lock(&p->mutex);
10553         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10554         mutex_unlock(&p->mutex);
10555         return 0;
10556 }
10557
10558 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10559                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10560 {
10561         struct ipw_priv *p = ieee80211_priv(dev);
10562         int i;
10563
10564         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10565                 return -EINVAL;
10566         mutex_lock(&p->mutex);
10567         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10568         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10569                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10570         mutex_unlock(&p->mutex);
10571         return 0;
10572 }
10573
10574 static const struct ethtool_ops ipw_ethtool_ops = {
10575         .get_link = ipw_ethtool_get_link,
10576         .get_drvinfo = ipw_ethtool_get_drvinfo,
10577         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10578         .get_eeprom = ipw_ethtool_get_eeprom,
10579         .set_eeprom = ipw_ethtool_set_eeprom,
10580 };
10581
10582 static irqreturn_t ipw_isr(int irq, void *data)
10583 {
10584         struct ipw_priv *priv = data;
10585         u32 inta, inta_mask;
10586
10587         if (!priv)
10588                 return IRQ_NONE;
10589
10590         spin_lock(&priv->irq_lock);
10591
10592         if (!(priv->status & STATUS_INT_ENABLED)) {
10593                 /* IRQ is disabled */
10594                 goto none;
10595         }
10596
10597         inta = ipw_read32(priv, IPW_INTA_RW);
10598         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10599
10600         if (inta == 0xFFFFFFFF) {
10601                 /* Hardware disappeared */
10602                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10603                 goto none;
10604         }
10605
10606         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10607                 /* Shared interrupt */
10608                 goto none;
10609         }
10610
10611         /* tell the device to stop sending interrupts */
10612         __ipw_disable_interrupts(priv);
10613
10614         /* ack current interrupts */
10615         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10616         ipw_write32(priv, IPW_INTA_RW, inta);
10617
10618         /* Cache INTA value for our tasklet */
10619         priv->isr_inta = inta;
10620
10621         tasklet_schedule(&priv->irq_tasklet);
10622
10623         spin_unlock(&priv->irq_lock);
10624
10625         return IRQ_HANDLED;
10626       none:
10627         spin_unlock(&priv->irq_lock);
10628         return IRQ_NONE;
10629 }
10630
10631 static void ipw_rf_kill(void *adapter)
10632 {
10633         struct ipw_priv *priv = adapter;
10634         unsigned long flags;
10635
10636         spin_lock_irqsave(&priv->lock, flags);
10637
10638         if (rf_kill_active(priv)) {
10639                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10640                 if (priv->workqueue)
10641                         queue_delayed_work(priv->workqueue,
10642                                            &priv->rf_kill, 2 * HZ);
10643                 goto exit_unlock;
10644         }
10645
10646         /* RF Kill is now disabled, so bring the device back up */
10647
10648         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10649                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10650                                   "device\n");
10651
10652                 /* we can not do an adapter restart while inside an irq lock */
10653                 queue_work(priv->workqueue, &priv->adapter_restart);
10654         } else
10655                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10656                                   "enabled\n");
10657
10658       exit_unlock:
10659         spin_unlock_irqrestore(&priv->lock, flags);
10660 }
10661
10662 static void ipw_bg_rf_kill(struct work_struct *work)
10663 {
10664         struct ipw_priv *priv =
10665                 container_of(work, struct ipw_priv, rf_kill.work);
10666         mutex_lock(&priv->mutex);
10667         ipw_rf_kill(priv);
10668         mutex_unlock(&priv->mutex);
10669 }
10670
10671 static void ipw_link_up(struct ipw_priv *priv)
10672 {
10673         priv->last_seq_num = -1;
10674         priv->last_frag_num = -1;
10675         priv->last_packet_time = 0;
10676
10677         netif_carrier_on(priv->net_dev);
10678
10679         cancel_delayed_work(&priv->request_scan);
10680         cancel_delayed_work(&priv->request_direct_scan);
10681         cancel_delayed_work(&priv->request_passive_scan);
10682         cancel_delayed_work(&priv->scan_event);
10683         ipw_reset_stats(priv);
10684         /* Ensure the rate is updated immediately */
10685         priv->last_rate = ipw_get_current_rate(priv);
10686         ipw_gather_stats(priv);
10687         ipw_led_link_up(priv);
10688         notify_wx_assoc_event(priv);
10689
10690         if (priv->config & CFG_BACKGROUND_SCAN)
10691                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10692 }
10693
10694 static void ipw_bg_link_up(struct work_struct *work)
10695 {
10696         struct ipw_priv *priv =
10697                 container_of(work, struct ipw_priv, link_up);
10698         mutex_lock(&priv->mutex);
10699         ipw_link_up(priv);
10700         mutex_unlock(&priv->mutex);
10701 }
10702
10703 static void ipw_link_down(struct ipw_priv *priv)
10704 {
10705         ipw_led_link_down(priv);
10706         netif_carrier_off(priv->net_dev);
10707         notify_wx_assoc_event(priv);
10708
10709         /* Cancel any queued work ... */
10710         cancel_delayed_work(&priv->request_scan);
10711         cancel_delayed_work(&priv->request_direct_scan);
10712         cancel_delayed_work(&priv->request_passive_scan);
10713         cancel_delayed_work(&priv->adhoc_check);
10714         cancel_delayed_work(&priv->gather_stats);
10715
10716         ipw_reset_stats(priv);
10717
10718         if (!(priv->status & STATUS_EXIT_PENDING)) {
10719                 /* Queue up another scan... */
10720                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10721         } else
10722                 cancel_delayed_work(&priv->scan_event);
10723 }
10724
10725 static void ipw_bg_link_down(struct work_struct *work)
10726 {
10727         struct ipw_priv *priv =
10728                 container_of(work, struct ipw_priv, link_down);
10729         mutex_lock(&priv->mutex);
10730         ipw_link_down(priv);
10731         mutex_unlock(&priv->mutex);
10732 }
10733
10734 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10735 {
10736         int ret = 0;
10737
10738         priv->workqueue = create_workqueue(DRV_NAME);
10739         init_waitqueue_head(&priv->wait_command_queue);
10740         init_waitqueue_head(&priv->wait_state);
10741
10742         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10743         INIT_WORK(&priv->associate, ipw_bg_associate);
10744         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10745         INIT_WORK(&priv->system_config, ipw_system_config);
10746         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10747         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10748         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10749         INIT_WORK(&priv->up, ipw_bg_up);
10750         INIT_WORK(&priv->down, ipw_bg_down);
10751         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10752         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10753         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10754         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10755         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10756         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10757         INIT_WORK(&priv->roam, ipw_bg_roam);
10758         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10759         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10760         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10761         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10762         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10763         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10764         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10765
10766 #ifdef CONFIG_IPW2200_QOS
10767         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10768 #endif                          /* CONFIG_IPW2200_QOS */
10769
10770         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10771                      ipw_irq_tasklet, (unsigned long)priv);
10772
10773         return ret;
10774 }
10775
10776 static void shim__set_security(struct net_device *dev,
10777                                struct ieee80211_security *sec)
10778 {
10779         struct ipw_priv *priv = ieee80211_priv(dev);
10780         int i;
10781         for (i = 0; i < 4; i++) {
10782                 if (sec->flags & (1 << i)) {
10783                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10784                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10785                         if (sec->key_sizes[i] == 0)
10786                                 priv->ieee->sec.flags &= ~(1 << i);
10787                         else {
10788                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10789                                        sec->key_sizes[i]);
10790                                 priv->ieee->sec.flags |= (1 << i);
10791                         }
10792                         priv->status |= STATUS_SECURITY_UPDATED;
10793                 } else if (sec->level != SEC_LEVEL_1)
10794                         priv->ieee->sec.flags &= ~(1 << i);
10795         }
10796
10797         if (sec->flags & SEC_ACTIVE_KEY) {
10798                 if (sec->active_key <= 3) {
10799                         priv->ieee->sec.active_key = sec->active_key;
10800                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10801                 } else
10802                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10803                 priv->status |= STATUS_SECURITY_UPDATED;
10804         } else
10805                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10806
10807         if ((sec->flags & SEC_AUTH_MODE) &&
10808             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10809                 priv->ieee->sec.auth_mode = sec->auth_mode;
10810                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10811                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10812                         priv->capability |= CAP_SHARED_KEY;
10813                 else
10814                         priv->capability &= ~CAP_SHARED_KEY;
10815                 priv->status |= STATUS_SECURITY_UPDATED;
10816         }
10817
10818         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10819                 priv->ieee->sec.flags |= SEC_ENABLED;
10820                 priv->ieee->sec.enabled = sec->enabled;
10821                 priv->status |= STATUS_SECURITY_UPDATED;
10822                 if (sec->enabled)
10823                         priv->capability |= CAP_PRIVACY_ON;
10824                 else
10825                         priv->capability &= ~CAP_PRIVACY_ON;
10826         }
10827
10828         if (sec->flags & SEC_ENCRYPT)
10829                 priv->ieee->sec.encrypt = sec->encrypt;
10830
10831         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10832                 priv->ieee->sec.level = sec->level;
10833                 priv->ieee->sec.flags |= SEC_LEVEL;
10834                 priv->status |= STATUS_SECURITY_UPDATED;
10835         }
10836
10837         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10838                 ipw_set_hwcrypto_keys(priv);
10839
10840         /* To match current functionality of ipw2100 (which works well w/
10841          * various supplicants, we don't force a disassociate if the
10842          * privacy capability changes ... */
10843 #if 0
10844         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10845             (((priv->assoc_request.capability &
10846                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10847              (!(priv->assoc_request.capability &
10848                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10849                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10850                                 "change.\n");
10851                 ipw_disassociate(priv);
10852         }
10853 #endif
10854 }
10855
10856 static int init_supported_rates(struct ipw_priv *priv,
10857                                 struct ipw_supported_rates *rates)
10858 {
10859         /* TODO: Mask out rates based on priv->rates_mask */
10860
10861         memset(rates, 0, sizeof(*rates));
10862         /* configure supported rates */
10863         switch (priv->ieee->freq_band) {
10864         case IEEE80211_52GHZ_BAND:
10865                 rates->ieee_mode = IPW_A_MODE;
10866                 rates->purpose = IPW_RATE_CAPABILITIES;
10867                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10868                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10869                 break;
10870
10871         default:                /* Mixed or 2.4Ghz */
10872                 rates->ieee_mode = IPW_G_MODE;
10873                 rates->purpose = IPW_RATE_CAPABILITIES;
10874                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10875                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10876                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10877                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10878                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10879                 }
10880                 break;
10881         }
10882
10883         return 0;
10884 }
10885
10886 static int ipw_config(struct ipw_priv *priv)
10887 {
10888         /* This is only called from ipw_up, which resets/reloads the firmware
10889            so, we don't need to first disable the card before we configure
10890            it */
10891         if (ipw_set_tx_power(priv))
10892                 goto error;
10893
10894         /* initialize adapter address */
10895         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10896                 goto error;
10897
10898         /* set basic system config settings */
10899         init_sys_config(&priv->sys_config);
10900
10901         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10902          * Does not support BT priority yet (don't abort or defer our Tx) */
10903         if (bt_coexist) {
10904                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10905
10906                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10907                         priv->sys_config.bt_coexistence
10908                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10909                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10910                         priv->sys_config.bt_coexistence
10911                             |= CFG_BT_COEXISTENCE_OOB;
10912         }
10913
10914 #ifdef CONFIG_IPW2200_PROMISCUOUS
10915         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10916                 priv->sys_config.accept_all_data_frames = 1;
10917                 priv->sys_config.accept_non_directed_frames = 1;
10918                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10919                 priv->sys_config.accept_all_mgmt_frames = 1;
10920         }
10921 #endif
10922
10923         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10924                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10925         else
10926                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10927
10928         if (ipw_send_system_config(priv))
10929                 goto error;
10930
10931         init_supported_rates(priv, &priv->rates);
10932         if (ipw_send_supported_rates(priv, &priv->rates))
10933                 goto error;
10934
10935         /* Set request-to-send threshold */
10936         if (priv->rts_threshold) {
10937                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10938                         goto error;
10939         }
10940 #ifdef CONFIG_IPW2200_QOS
10941         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10942         ipw_qos_activate(priv, NULL);
10943 #endif                          /* CONFIG_IPW2200_QOS */
10944
10945         if (ipw_set_random_seed(priv))
10946                 goto error;
10947
10948         /* final state transition to the RUN state */
10949         if (ipw_send_host_complete(priv))
10950                 goto error;
10951
10952         priv->status |= STATUS_INIT;
10953
10954         ipw_led_init(priv);
10955         ipw_led_radio_on(priv);
10956         priv->notif_missed_beacons = 0;
10957
10958         /* Set hardware WEP key if it is configured. */
10959         if ((priv->capability & CAP_PRIVACY_ON) &&
10960             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10961             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10962                 ipw_set_hwcrypto_keys(priv);
10963
10964         return 0;
10965
10966       error:
10967         return -EIO;
10968 }
10969
10970 /*
10971  * NOTE:
10972  *
10973  * These tables have been tested in conjunction with the
10974  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10975  *
10976  * Altering this values, using it on other hardware, or in geographies
10977  * not intended for resale of the above mentioned Intel adapters has
10978  * not been tested.
10979  *
10980  * Remember to update the table in README.ipw2200 when changing this
10981  * table.
10982  *
10983  */
10984 static const struct ieee80211_geo ipw_geos[] = {
10985         {                       /* Restricted */
10986          "---",
10987          .bg_channels = 11,
10988          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10989                 {2427, 4}, {2432, 5}, {2437, 6},
10990                 {2442, 7}, {2447, 8}, {2452, 9},
10991                 {2457, 10}, {2462, 11}},
10992          },
10993
10994         {                       /* Custom US/Canada */
10995          "ZZF",
10996          .bg_channels = 11,
10997          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10998                 {2427, 4}, {2432, 5}, {2437, 6},
10999                 {2442, 7}, {2447, 8}, {2452, 9},
11000                 {2457, 10}, {2462, 11}},
11001          .a_channels = 8,
11002          .a = {{5180, 36},
11003                {5200, 40},
11004                {5220, 44},
11005                {5240, 48},
11006                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11007                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11008                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11009                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11010          },
11011
11012         {                       /* Rest of World */
11013          "ZZD",
11014          .bg_channels = 13,
11015          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11016                 {2427, 4}, {2432, 5}, {2437, 6},
11017                 {2442, 7}, {2447, 8}, {2452, 9},
11018                 {2457, 10}, {2462, 11}, {2467, 12},
11019                 {2472, 13}},
11020          },
11021
11022         {                       /* Custom USA & Europe & High */
11023          "ZZA",
11024          .bg_channels = 11,
11025          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11026                 {2427, 4}, {2432, 5}, {2437, 6},
11027                 {2442, 7}, {2447, 8}, {2452, 9},
11028                 {2457, 10}, {2462, 11}},
11029          .a_channels = 13,
11030          .a = {{5180, 36},
11031                {5200, 40},
11032                {5220, 44},
11033                {5240, 48},
11034                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11035                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11036                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11037                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11038                {5745, 149},
11039                {5765, 153},
11040                {5785, 157},
11041                {5805, 161},
11042                {5825, 165}},
11043          },
11044
11045         {                       /* Custom NA & Europe */
11046          "ZZB",
11047          .bg_channels = 11,
11048          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11049                 {2427, 4}, {2432, 5}, {2437, 6},
11050                 {2442, 7}, {2447, 8}, {2452, 9},
11051                 {2457, 10}, {2462, 11}},
11052          .a_channels = 13,
11053          .a = {{5180, 36},
11054                {5200, 40},
11055                {5220, 44},
11056                {5240, 48},
11057                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11058                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11059                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11060                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11061                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11062                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11063                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11064                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11065                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11066          },
11067
11068         {                       /* Custom Japan */
11069          "ZZC",
11070          .bg_channels = 11,
11071          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11072                 {2427, 4}, {2432, 5}, {2437, 6},
11073                 {2442, 7}, {2447, 8}, {2452, 9},
11074                 {2457, 10}, {2462, 11}},
11075          .a_channels = 4,
11076          .a = {{5170, 34}, {5190, 38},
11077                {5210, 42}, {5230, 46}},
11078          },
11079
11080         {                       /* Custom */
11081          "ZZM",
11082          .bg_channels = 11,
11083          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11084                 {2427, 4}, {2432, 5}, {2437, 6},
11085                 {2442, 7}, {2447, 8}, {2452, 9},
11086                 {2457, 10}, {2462, 11}},
11087          },
11088
11089         {                       /* Europe */
11090          "ZZE",
11091          .bg_channels = 13,
11092          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11093                 {2427, 4}, {2432, 5}, {2437, 6},
11094                 {2442, 7}, {2447, 8}, {2452, 9},
11095                 {2457, 10}, {2462, 11}, {2467, 12},
11096                 {2472, 13}},
11097          .a_channels = 19,
11098          .a = {{5180, 36},
11099                {5200, 40},
11100                {5220, 44},
11101                {5240, 48},
11102                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11103                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11104                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11105                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11106                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11107                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11108                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11109                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11110                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11111                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11112                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11113                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11114                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11115                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11116                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11117          },
11118
11119         {                       /* Custom Japan */
11120          "ZZJ",
11121          .bg_channels = 14,
11122          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11123                 {2427, 4}, {2432, 5}, {2437, 6},
11124                 {2442, 7}, {2447, 8}, {2452, 9},
11125                 {2457, 10}, {2462, 11}, {2467, 12},
11126                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11127          .a_channels = 4,
11128          .a = {{5170, 34}, {5190, 38},
11129                {5210, 42}, {5230, 46}},
11130          },
11131
11132         {                       /* Rest of World */
11133          "ZZR",
11134          .bg_channels = 14,
11135          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11136                 {2427, 4}, {2432, 5}, {2437, 6},
11137                 {2442, 7}, {2447, 8}, {2452, 9},
11138                 {2457, 10}, {2462, 11}, {2467, 12},
11139                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11140                              IEEE80211_CH_PASSIVE_ONLY}},
11141          },
11142
11143         {                       /* High Band */
11144          "ZZH",
11145          .bg_channels = 13,
11146          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11147                 {2427, 4}, {2432, 5}, {2437, 6},
11148                 {2442, 7}, {2447, 8}, {2452, 9},
11149                 {2457, 10}, {2462, 11},
11150                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11151                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11152          .a_channels = 4,
11153          .a = {{5745, 149}, {5765, 153},
11154                {5785, 157}, {5805, 161}},
11155          },
11156
11157         {                       /* Custom Europe */
11158          "ZZG",
11159          .bg_channels = 13,
11160          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11161                 {2427, 4}, {2432, 5}, {2437, 6},
11162                 {2442, 7}, {2447, 8}, {2452, 9},
11163                 {2457, 10}, {2462, 11},
11164                 {2467, 12}, {2472, 13}},
11165          .a_channels = 4,
11166          .a = {{5180, 36}, {5200, 40},
11167                {5220, 44}, {5240, 48}},
11168          },
11169
11170         {                       /* Europe */
11171          "ZZK",
11172          .bg_channels = 13,
11173          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11174                 {2427, 4}, {2432, 5}, {2437, 6},
11175                 {2442, 7}, {2447, 8}, {2452, 9},
11176                 {2457, 10}, {2462, 11},
11177                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11178                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11179          .a_channels = 24,
11180          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11181                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11182                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11183                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11184                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11185                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11186                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11187                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11188                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11189                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11190                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11191                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11192                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11193                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11194                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11195                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11196                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11197                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11198                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11199                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11200                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11201                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11202                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11203                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11204          },
11205
11206         {                       /* Europe */
11207          "ZZL",
11208          .bg_channels = 11,
11209          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11210                 {2427, 4}, {2432, 5}, {2437, 6},
11211                 {2442, 7}, {2447, 8}, {2452, 9},
11212                 {2457, 10}, {2462, 11}},
11213          .a_channels = 13,
11214          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11215                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11216                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11217                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11218                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11219                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11220                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11221                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11222                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11223                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11224                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11225                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11226                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11227          }
11228 };
11229
11230 #define MAX_HW_RESTARTS 5
11231 static int ipw_up(struct ipw_priv *priv)
11232 {
11233         int rc, i, j;
11234
11235         /* Age scan list entries found before suspend */
11236         if (priv->suspend_time) {
11237                 ieee80211_networks_age(priv->ieee, priv->suspend_time);
11238                 priv->suspend_time = 0;
11239         }
11240
11241         if (priv->status & STATUS_EXIT_PENDING)
11242                 return -EIO;
11243
11244         if (cmdlog && !priv->cmdlog) {
11245                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11246                                        GFP_KERNEL);
11247                 if (priv->cmdlog == NULL) {
11248                         IPW_ERROR("Error allocating %d command log entries.\n",
11249                                   cmdlog);
11250                         return -ENOMEM;
11251                 } else {
11252                         priv->cmdlog_len = cmdlog;
11253                 }
11254         }
11255
11256         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11257                 /* Load the microcode, firmware, and eeprom.
11258                  * Also start the clocks. */
11259                 rc = ipw_load(priv);
11260                 if (rc) {
11261                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11262                         return rc;
11263                 }
11264
11265                 ipw_init_ordinals(priv);
11266                 if (!(priv->config & CFG_CUSTOM_MAC))
11267                         eeprom_parse_mac(priv, priv->mac_addr);
11268                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11269
11270                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11271                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11272                                     ipw_geos[j].name, 3))
11273                                 break;
11274                 }
11275                 if (j == ARRAY_SIZE(ipw_geos)) {
11276                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11277                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11278                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11279                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11280                         j = 0;
11281                 }
11282                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11283                         IPW_WARNING("Could not set geography.");
11284                         return 0;
11285                 }
11286
11287                 if (priv->status & STATUS_RF_KILL_SW) {
11288                         IPW_WARNING("Radio disabled by module parameter.\n");
11289                         return 0;
11290                 } else if (rf_kill_active(priv)) {
11291                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11292                                     "Kill switch must be turned off for "
11293                                     "wireless networking to work.\n");
11294                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11295                                            2 * HZ);
11296                         return 0;
11297                 }
11298
11299                 rc = ipw_config(priv);
11300                 if (!rc) {
11301                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11302
11303                         /* If configure to try and auto-associate, kick
11304                          * off a scan. */
11305                         queue_delayed_work(priv->workqueue,
11306                                            &priv->request_scan, 0);
11307
11308                         return 0;
11309                 }
11310
11311                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11312                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11313                                i, MAX_HW_RESTARTS);
11314
11315                 /* We had an error bringing up the hardware, so take it
11316                  * all the way back down so we can try again */
11317                 ipw_down(priv);
11318         }
11319
11320         /* tried to restart and config the device for as long as our
11321          * patience could withstand */
11322         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11323
11324         return -EIO;
11325 }
11326
11327 static void ipw_bg_up(struct work_struct *work)
11328 {
11329         struct ipw_priv *priv =
11330                 container_of(work, struct ipw_priv, up);
11331         mutex_lock(&priv->mutex);
11332         ipw_up(priv);
11333         mutex_unlock(&priv->mutex);
11334 }
11335
11336 static void ipw_deinit(struct ipw_priv *priv)
11337 {
11338         int i;
11339
11340         if (priv->status & STATUS_SCANNING) {
11341                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11342                 ipw_abort_scan(priv);
11343         }
11344
11345         if (priv->status & STATUS_ASSOCIATED) {
11346                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11347                 ipw_disassociate(priv);
11348         }
11349
11350         ipw_led_shutdown(priv);
11351
11352         /* Wait up to 1s for status to change to not scanning and not
11353          * associated (disassociation can take a while for a ful 802.11
11354          * exchange */
11355         for (i = 1000; i && (priv->status &
11356                              (STATUS_DISASSOCIATING |
11357                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11358                 udelay(10);
11359
11360         if (priv->status & (STATUS_DISASSOCIATING |
11361                             STATUS_ASSOCIATED | STATUS_SCANNING))
11362                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11363         else
11364                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11365
11366         /* Attempt to disable the card */
11367         ipw_send_card_disable(priv, 0);
11368
11369         priv->status &= ~STATUS_INIT;
11370 }
11371
11372 static void ipw_down(struct ipw_priv *priv)
11373 {
11374         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11375
11376         priv->status |= STATUS_EXIT_PENDING;
11377
11378         if (ipw_is_init(priv))
11379                 ipw_deinit(priv);
11380
11381         /* Wipe out the EXIT_PENDING status bit if we are not actually
11382          * exiting the module */
11383         if (!exit_pending)
11384                 priv->status &= ~STATUS_EXIT_PENDING;
11385
11386         /* tell the device to stop sending interrupts */
11387         ipw_disable_interrupts(priv);
11388
11389         /* Clear all bits but the RF Kill */
11390         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11391         netif_carrier_off(priv->net_dev);
11392
11393         ipw_stop_nic(priv);
11394
11395         ipw_led_radio_off(priv);
11396 }
11397
11398 static void ipw_bg_down(struct work_struct *work)
11399 {
11400         struct ipw_priv *priv =
11401                 container_of(work, struct ipw_priv, down);
11402         mutex_lock(&priv->mutex);
11403         ipw_down(priv);
11404         mutex_unlock(&priv->mutex);
11405 }
11406
11407 /* Called by register_netdev() */
11408 static int ipw_net_init(struct net_device *dev)
11409 {
11410         struct ipw_priv *priv = ieee80211_priv(dev);
11411         mutex_lock(&priv->mutex);
11412
11413         if (ipw_up(priv)) {
11414                 mutex_unlock(&priv->mutex);
11415                 return -EIO;
11416         }
11417
11418         mutex_unlock(&priv->mutex);
11419         return 0;
11420 }
11421
11422 /* PCI driver stuff */
11423 static struct pci_device_id card_ids[] = {
11424         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11425         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11426         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11427         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11428         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11429         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11430         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11431         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11432         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11433         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11434         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11435         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11436         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11437         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11438         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11439         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11440         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11441         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11442         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11443         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11444         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11445         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11446
11447         /* required last entry */
11448         {0,}
11449 };
11450
11451 MODULE_DEVICE_TABLE(pci, card_ids);
11452
11453 static struct attribute *ipw_sysfs_entries[] = {
11454         &dev_attr_rf_kill.attr,
11455         &dev_attr_direct_dword.attr,
11456         &dev_attr_indirect_byte.attr,
11457         &dev_attr_indirect_dword.attr,
11458         &dev_attr_mem_gpio_reg.attr,
11459         &dev_attr_command_event_reg.attr,
11460         &dev_attr_nic_type.attr,
11461         &dev_attr_status.attr,
11462         &dev_attr_cfg.attr,
11463         &dev_attr_error.attr,
11464         &dev_attr_event_log.attr,
11465         &dev_attr_cmd_log.attr,
11466         &dev_attr_eeprom_delay.attr,
11467         &dev_attr_ucode_version.attr,
11468         &dev_attr_rtc.attr,
11469         &dev_attr_scan_age.attr,
11470         &dev_attr_led.attr,
11471         &dev_attr_speed_scan.attr,
11472         &dev_attr_net_stats.attr,
11473         &dev_attr_channels.attr,
11474 #ifdef CONFIG_IPW2200_PROMISCUOUS
11475         &dev_attr_rtap_iface.attr,
11476         &dev_attr_rtap_filter.attr,
11477 #endif
11478         NULL
11479 };
11480
11481 static struct attribute_group ipw_attribute_group = {
11482         .name = NULL,           /* put in device directory */
11483         .attrs = ipw_sysfs_entries,
11484 };
11485
11486 #ifdef CONFIG_IPW2200_PROMISCUOUS
11487 static int ipw_prom_open(struct net_device *dev)
11488 {
11489         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11490         struct ipw_priv *priv = prom_priv->priv;
11491
11492         IPW_DEBUG_INFO("prom dev->open\n");
11493         netif_carrier_off(dev);
11494
11495         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11496                 priv->sys_config.accept_all_data_frames = 1;
11497                 priv->sys_config.accept_non_directed_frames = 1;
11498                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11499                 priv->sys_config.accept_all_mgmt_frames = 1;
11500
11501                 ipw_send_system_config(priv);
11502         }
11503
11504         return 0;
11505 }
11506
11507 static int ipw_prom_stop(struct net_device *dev)
11508 {
11509         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11510         struct ipw_priv *priv = prom_priv->priv;
11511
11512         IPW_DEBUG_INFO("prom dev->stop\n");
11513
11514         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11515                 priv->sys_config.accept_all_data_frames = 0;
11516                 priv->sys_config.accept_non_directed_frames = 0;
11517                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11518                 priv->sys_config.accept_all_mgmt_frames = 0;
11519
11520                 ipw_send_system_config(priv);
11521         }
11522
11523         return 0;
11524 }
11525
11526 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11527 {
11528         IPW_DEBUG_INFO("prom dev->xmit\n");
11529         return -EOPNOTSUPP;
11530 }
11531
11532 static const struct net_device_ops ipw_prom_netdev_ops = {
11533         .ndo_open               = ipw_prom_open,
11534         .ndo_stop               = ipw_prom_stop,
11535         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11536         .ndo_change_mtu         = ieee80211_change_mtu,
11537         .ndo_set_mac_address    = eth_mac_addr,
11538         .ndo_validate_addr      = eth_validate_addr,
11539 };
11540
11541 static int ipw_prom_alloc(struct ipw_priv *priv)
11542 {
11543         int rc = 0;
11544
11545         if (priv->prom_net_dev)
11546                 return -EPERM;
11547
11548         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11549         if (priv->prom_net_dev == NULL)
11550                 return -ENOMEM;
11551
11552         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11553         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11554         priv->prom_priv->priv = priv;
11555
11556         strcpy(priv->prom_net_dev->name, "rtap%d");
11557         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11558
11559         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11560         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11561
11562         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11563         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11564
11565         rc = register_netdev(priv->prom_net_dev);
11566         if (rc) {
11567                 free_ieee80211(priv->prom_net_dev);
11568                 priv->prom_net_dev = NULL;
11569                 return rc;
11570         }
11571
11572         return 0;
11573 }
11574
11575 static void ipw_prom_free(struct ipw_priv *priv)
11576 {
11577         if (!priv->prom_net_dev)
11578                 return;
11579
11580         unregister_netdev(priv->prom_net_dev);
11581         free_ieee80211(priv->prom_net_dev);
11582
11583         priv->prom_net_dev = NULL;
11584 }
11585
11586 #endif
11587
11588 static const struct net_device_ops ipw_netdev_ops = {
11589         .ndo_init               = ipw_net_init,
11590         .ndo_open               = ipw_net_open,
11591         .ndo_stop               = ipw_net_stop,
11592         .ndo_set_multicast_list = ipw_net_set_multicast_list,
11593         .ndo_set_mac_address    = ipw_net_set_mac_address,
11594         .ndo_start_xmit         = ieee80211_xmit,
11595         .ndo_change_mtu         = ieee80211_change_mtu,
11596         .ndo_validate_addr      = eth_validate_addr,
11597 };
11598
11599 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11600                                    const struct pci_device_id *ent)
11601 {
11602         int err = 0;
11603         struct net_device *net_dev;
11604         void __iomem *base;
11605         u32 length, val;
11606         struct ipw_priv *priv;
11607         int i;
11608
11609         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11610         if (net_dev == NULL) {
11611                 err = -ENOMEM;
11612                 goto out;
11613         }
11614
11615         priv = ieee80211_priv(net_dev);
11616         priv->ieee = netdev_priv(net_dev);
11617
11618         priv->net_dev = net_dev;
11619         priv->pci_dev = pdev;
11620         ipw_debug_level = debug;
11621         spin_lock_init(&priv->irq_lock);
11622         spin_lock_init(&priv->lock);
11623         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11624                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11625
11626         mutex_init(&priv->mutex);
11627         if (pci_enable_device(pdev)) {
11628                 err = -ENODEV;
11629                 goto out_free_ieee80211;
11630         }
11631
11632         pci_set_master(pdev);
11633
11634         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11635         if (!err)
11636                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11637         if (err) {
11638                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11639                 goto out_pci_disable_device;
11640         }
11641
11642         pci_set_drvdata(pdev, priv);
11643
11644         err = pci_request_regions(pdev, DRV_NAME);
11645         if (err)
11646                 goto out_pci_disable_device;
11647
11648         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11649          * PCI Tx retries from interfering with C3 CPU state */
11650         pci_read_config_dword(pdev, 0x40, &val);
11651         if ((val & 0x0000ff00) != 0)
11652                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11653
11654         length = pci_resource_len(pdev, 0);
11655         priv->hw_len = length;
11656
11657         base = pci_ioremap_bar(pdev, 0);
11658         if (!base) {
11659                 err = -ENODEV;
11660                 goto out_pci_release_regions;
11661         }
11662
11663         priv->hw_base = base;
11664         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11665         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11666
11667         err = ipw_setup_deferred_work(priv);
11668         if (err) {
11669                 IPW_ERROR("Unable to setup deferred work\n");
11670                 goto out_iounmap;
11671         }
11672
11673         ipw_sw_reset(priv, 1);
11674
11675         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11676         if (err) {
11677                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11678                 goto out_destroy_workqueue;
11679         }
11680
11681         SET_NETDEV_DEV(net_dev, &pdev->dev);
11682
11683         mutex_lock(&priv->mutex);
11684
11685         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11686         priv->ieee->set_security = shim__set_security;
11687         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11688
11689 #ifdef CONFIG_IPW2200_QOS
11690         priv->ieee->is_qos_active = ipw_is_qos_active;
11691         priv->ieee->handle_probe_response = ipw_handle_beacon;
11692         priv->ieee->handle_beacon = ipw_handle_probe_response;
11693         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11694 #endif                          /* CONFIG_IPW2200_QOS */
11695
11696         priv->ieee->perfect_rssi = -20;
11697         priv->ieee->worst_rssi = -85;
11698
11699         net_dev->netdev_ops = &ipw_netdev_ops;
11700         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11701         net_dev->wireless_data = &priv->wireless_data;
11702         net_dev->wireless_handlers = &ipw_wx_handler_def;
11703         net_dev->ethtool_ops = &ipw_ethtool_ops;
11704         net_dev->irq = pdev->irq;
11705         net_dev->base_addr = (unsigned long)priv->hw_base;
11706         net_dev->mem_start = pci_resource_start(pdev, 0);
11707         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11708
11709         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11710         if (err) {
11711                 IPW_ERROR("failed to create sysfs device attributes\n");
11712                 mutex_unlock(&priv->mutex);
11713                 goto out_release_irq;
11714         }
11715
11716         mutex_unlock(&priv->mutex);
11717         err = register_netdev(net_dev);
11718         if (err) {
11719                 IPW_ERROR("failed to register network device\n");
11720                 goto out_remove_sysfs;
11721         }
11722
11723 #ifdef CONFIG_IPW2200_PROMISCUOUS
11724         if (rtap_iface) {
11725                 err = ipw_prom_alloc(priv);
11726                 if (err) {
11727                         IPW_ERROR("Failed to register promiscuous network "
11728                                   "device (error %d).\n", err);
11729                         unregister_netdev(priv->net_dev);
11730                         goto out_remove_sysfs;
11731                 }
11732         }
11733 #endif
11734
11735         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11736                "channels, %d 802.11a channels)\n",
11737                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11738                priv->ieee->geo.a_channels);
11739
11740         return 0;
11741
11742       out_remove_sysfs:
11743         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11744       out_release_irq:
11745         free_irq(pdev->irq, priv);
11746       out_destroy_workqueue:
11747         destroy_workqueue(priv->workqueue);
11748         priv->workqueue = NULL;
11749       out_iounmap:
11750         iounmap(priv->hw_base);
11751       out_pci_release_regions:
11752         pci_release_regions(pdev);
11753       out_pci_disable_device:
11754         pci_disable_device(pdev);
11755         pci_set_drvdata(pdev, NULL);
11756       out_free_ieee80211:
11757         free_ieee80211(priv->net_dev);
11758       out:
11759         return err;
11760 }
11761
11762 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11763 {
11764         struct ipw_priv *priv = pci_get_drvdata(pdev);
11765         struct list_head *p, *q;
11766         int i;
11767
11768         if (!priv)
11769                 return;
11770
11771         mutex_lock(&priv->mutex);
11772
11773         priv->status |= STATUS_EXIT_PENDING;
11774         ipw_down(priv);
11775         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11776
11777         mutex_unlock(&priv->mutex);
11778
11779         unregister_netdev(priv->net_dev);
11780
11781         if (priv->rxq) {
11782                 ipw_rx_queue_free(priv, priv->rxq);
11783                 priv->rxq = NULL;
11784         }
11785         ipw_tx_queue_free(priv);
11786
11787         if (priv->cmdlog) {
11788                 kfree(priv->cmdlog);
11789                 priv->cmdlog = NULL;
11790         }
11791         /* ipw_down will ensure that there is no more pending work
11792          * in the workqueue's, so we can safely remove them now. */
11793         cancel_delayed_work(&priv->adhoc_check);
11794         cancel_delayed_work(&priv->gather_stats);
11795         cancel_delayed_work(&priv->request_scan);
11796         cancel_delayed_work(&priv->request_direct_scan);
11797         cancel_delayed_work(&priv->request_passive_scan);
11798         cancel_delayed_work(&priv->scan_event);
11799         cancel_delayed_work(&priv->rf_kill);
11800         cancel_delayed_work(&priv->scan_check);
11801         destroy_workqueue(priv->workqueue);
11802         priv->workqueue = NULL;
11803
11804         /* Free MAC hash list for ADHOC */
11805         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11806                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11807                         list_del(p);
11808                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11809                 }
11810         }
11811
11812         kfree(priv->error);
11813         priv->error = NULL;
11814
11815 #ifdef CONFIG_IPW2200_PROMISCUOUS
11816         ipw_prom_free(priv);
11817 #endif
11818
11819         free_irq(pdev->irq, priv);
11820         iounmap(priv->hw_base);
11821         pci_release_regions(pdev);
11822         pci_disable_device(pdev);
11823         pci_set_drvdata(pdev, NULL);
11824         free_ieee80211(priv->net_dev);
11825         free_firmware();
11826 }
11827
11828 #ifdef CONFIG_PM
11829 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11830 {
11831         struct ipw_priv *priv = pci_get_drvdata(pdev);
11832         struct net_device *dev = priv->net_dev;
11833
11834         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11835
11836         /* Take down the device; powers it off, etc. */
11837         ipw_down(priv);
11838
11839         /* Remove the PRESENT state of the device */
11840         netif_device_detach(dev);
11841
11842         pci_save_state(pdev);
11843         pci_disable_device(pdev);
11844         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11845
11846         priv->suspend_at = get_seconds();
11847
11848         return 0;
11849 }
11850
11851 static int ipw_pci_resume(struct pci_dev *pdev)
11852 {
11853         struct ipw_priv *priv = pci_get_drvdata(pdev);
11854         struct net_device *dev = priv->net_dev;
11855         int err;
11856         u32 val;
11857
11858         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11859
11860         pci_set_power_state(pdev, PCI_D0);
11861         err = pci_enable_device(pdev);
11862         if (err) {
11863                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11864                        dev->name);
11865                 return err;
11866         }
11867         pci_restore_state(pdev);
11868
11869         /*
11870          * Suspend/Resume resets the PCI configuration space, so we have to
11871          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11872          * from interfering with C3 CPU state. pci_restore_state won't help
11873          * here since it only restores the first 64 bytes pci config header.
11874          */
11875         pci_read_config_dword(pdev, 0x40, &val);
11876         if ((val & 0x0000ff00) != 0)
11877                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11878
11879         /* Set the device back into the PRESENT state; this will also wake
11880          * the queue of needed */
11881         netif_device_attach(dev);
11882
11883         priv->suspend_time = get_seconds() - priv->suspend_at;
11884
11885         /* Bring the device back up */
11886         queue_work(priv->workqueue, &priv->up);
11887
11888         return 0;
11889 }
11890 #endif
11891
11892 static void ipw_pci_shutdown(struct pci_dev *pdev)
11893 {
11894         struct ipw_priv *priv = pci_get_drvdata(pdev);
11895
11896         /* Take down the device; powers it off, etc. */
11897         ipw_down(priv);
11898
11899         pci_disable_device(pdev);
11900 }
11901
11902 /* driver initialization stuff */
11903 static struct pci_driver ipw_driver = {
11904         .name = DRV_NAME,
11905         .id_table = card_ids,
11906         .probe = ipw_pci_probe,
11907         .remove = __devexit_p(ipw_pci_remove),
11908 #ifdef CONFIG_PM
11909         .suspend = ipw_pci_suspend,
11910         .resume = ipw_pci_resume,
11911 #endif
11912         .shutdown = ipw_pci_shutdown,
11913 };
11914
11915 static int __init ipw_init(void)
11916 {
11917         int ret;
11918
11919         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11920         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11921
11922         ret = pci_register_driver(&ipw_driver);
11923         if (ret) {
11924                 IPW_ERROR("Unable to initialize PCI module\n");
11925                 return ret;
11926         }
11927
11928         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11929         if (ret) {
11930                 IPW_ERROR("Unable to create driver sysfs file\n");
11931                 pci_unregister_driver(&ipw_driver);
11932                 return ret;
11933         }
11934
11935         return ret;
11936 }
11937
11938 static void __exit ipw_exit(void)
11939 {
11940         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11941         pci_unregister_driver(&ipw_driver);
11942 }
11943
11944 module_param(disable, int, 0444);
11945 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11946
11947 module_param(associate, int, 0444);
11948 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11949
11950 module_param(auto_create, int, 0444);
11951 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11952
11953 module_param(led, int, 0444);
11954 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11955
11956 module_param(debug, int, 0444);
11957 MODULE_PARM_DESC(debug, "debug output mask");
11958
11959 module_param(channel, int, 0444);
11960 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11961
11962 #ifdef CONFIG_IPW2200_PROMISCUOUS
11963 module_param(rtap_iface, int, 0444);
11964 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11965 #endif
11966
11967 #ifdef CONFIG_IPW2200_QOS
11968 module_param(qos_enable, int, 0444);
11969 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11970
11971 module_param(qos_burst_enable, int, 0444);
11972 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11973
11974 module_param(qos_no_ack_mask, int, 0444);
11975 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11976
11977 module_param(burst_duration_CCK, int, 0444);
11978 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11979
11980 module_param(burst_duration_OFDM, int, 0444);
11981 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11982 #endif                          /* CONFIG_IPW2200_QOS */
11983
11984 #ifdef CONFIG_IPW2200_MONITOR
11985 module_param(mode, int, 0444);
11986 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11987 #else
11988 module_param(mode, int, 0444);
11989 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11990 #endif
11991
11992 module_param(bt_coexist, int, 0444);
11993 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11994
11995 module_param(hwcrypto, int, 0444);
11996 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11997
11998 module_param(cmdlog, int, 0444);
11999 MODULE_PARM_DESC(cmdlog,
12000                  "allocate a ring buffer for logging firmware commands");
12001
12002 module_param(roaming, int, 0444);
12003 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12004
12005 module_param(antenna, int, 0444);
12006 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12007
12008 module_exit(ipw_exit);
12009 module_init(ipw_init);