1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
42 #ifdef CONFIG_IPW2200_DEBUG
48 #ifdef CONFIG_IPW2200_MONITOR
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
60 #ifdef CONFIG_IPW2200_RADIOTAP
66 #ifdef CONFIG_IPW2200_QOS
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION IPW2200_VERSION
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
84 static int cmdlog = 0;
86 static int channel = 0;
89 static u32 ipw_debug_level;
91 static int auto_create = 1;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116 QOS_TX3_CW_MIN_OFDM},
117 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118 QOS_TX3_CW_MAX_OFDM},
119 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133 QOS_TX3_TXOP_LIMIT_CCK}
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138 DEF_TX3_CW_MIN_OFDM},
139 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140 DEF_TX3_CW_MAX_OFDM},
141 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155 DEF_TX3_TXOP_LIMIT_CCK}
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160 static int from_priority_to_tx_queue[] = {
161 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171 #endif /* CONFIG_IPW2200_QOS */
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
183 static void ipw_tx_queue_free(struct ipw_priv *);
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
198 static int snprint_line(char *buf, size_t count,
199 const u8 * data, u32 len, u32 ofs)
204 out = snprintf(buf, count, "%08X", ofs);
206 for (l = 0, i = 0; i < 2; i++) {
207 out += snprintf(buf + out, count - out, " ");
208 for (j = 0; j < 8 && l < len; j++, l++)
209 out += snprintf(buf + out, count - out, "%02X ",
212 out += snprintf(buf + out, count - out, " ");
215 out += snprintf(buf + out, count - out, " ");
216 for (l = 0, i = 0; i < 2; i++) {
217 out += snprintf(buf + out, count - out, " ");
218 for (j = 0; j < 8 && l < len; j++, l++) {
219 c = data[(i * 8 + j)];
220 if (!isascii(c) || !isprint(c))
223 out += snprintf(buf + out, count - out, "%c", c);
227 out += snprintf(buf + out, count - out, " ");
233 static void printk_buf(int level, const u8 * data, u32 len)
237 if (!(ipw_debug_level & level))
241 snprint_line(line, sizeof(line), &data[ofs],
243 printk(KERN_DEBUG "%s\n", line);
245 len -= min(len, 16U);
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
255 while (size && len) {
256 out = snprint_line(output, size, &data[ofs],
257 min_t(size_t, len, 16U), ofs);
262 len -= min_t(size_t, len, 16U);
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281 __LINE__, (u32) (b), (u32) (c));
282 _ipw_write_reg8(a, b, c);
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290 __LINE__, (u32) (b), (u32) (c));
291 _ipw_write_reg16(a, b, c);
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299 __LINE__, (u32) (b), (u32) (c));
300 _ipw_write_reg32(a, b, c);
303 /* 8-bit direct write (low 4K) */
304 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
307 writeb(val, ipw->hw_base + ofs);
310 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
311 #define ipw_write8(ipw, ofs, val) do { \
312 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
313 __LINE__, (u32)(ofs), (u32)(val)); \
314 _ipw_write8(ipw, ofs, val); \
317 /* 16-bit direct write (low 4K) */
318 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
321 writew(val, ipw->hw_base + ofs);
324 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
325 #define ipw_write16(ipw, ofs, val) do { \
326 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
327 __LINE__, (u32)(ofs), (u32)(val)); \
328 _ipw_write16(ipw, ofs, val); \
331 /* 32-bit direct write (low 4K) */
332 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
335 writel(val, ipw->hw_base + ofs);
338 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_write32(ipw, ofs, val) do { \
340 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
341 __LINE__, (u32)(ofs), (u32)(val)); \
342 _ipw_write32(ipw, ofs, val); \
345 /* 8-bit direct read (low 4K) */
346 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
348 return readb(ipw->hw_base + ofs);
351 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read8(ipw, ofs) ({ \
353 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
355 _ipw_read8(ipw, ofs); \
358 /* 16-bit direct read (low 4K) */
359 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
361 return readw(ipw->hw_base + ofs);
364 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read16(ipw, ofs) ({ \
366 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
368 _ipw_read16(ipw, ofs); \
371 /* 32-bit direct read (low 4K) */
372 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
374 return readl(ipw->hw_base + ofs);
377 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read32(ipw, ofs) ({ \
379 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
381 _ipw_read32(ipw, ofs); \
384 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
385 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
386 #define ipw_read_indirect(a, b, c, d) ({ \
387 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
388 __LINE__, (u32)(b), (u32)(d)); \
389 _ipw_read_indirect(a, b, c, d); \
392 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
393 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
395 #define ipw_write_indirect(a, b, c, d) do { \
396 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
397 __LINE__, (u32)(b), (u32)(d)); \
398 _ipw_write_indirect(a, b, c, d); \
401 /* 32-bit indirect write (above 4K) */
402 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
404 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
405 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
406 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
409 /* 8-bit indirect write (above 4K) */
410 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
412 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
413 u32 dif_len = reg - aligned_addr;
415 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
416 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
417 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
420 /* 16-bit indirect write (above 4K) */
421 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
423 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
424 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
426 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
427 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
428 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
431 /* 8-bit indirect read (above 4K) */
432 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
435 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
436 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
437 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
438 return (word >> ((reg & 0x3) * 8)) & 0xff;
441 /* 32-bit indirect read (above 4K) */
442 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
446 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
448 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
449 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
450 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
454 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
455 /* for area above 1st 4K of SRAM/reg space */
456 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
459 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
460 u32 dif_len = addr - aligned_addr;
463 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
469 /* Read the first dword (or portion) byte by byte */
470 if (unlikely(dif_len)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 /* Start reading at aligned_addr + dif_len */
473 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
474 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
478 /* Read all of the middle dwords as dwords, with auto-increment */
479 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
480 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
481 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
483 /* Read the last dword (or portion) byte by byte */
485 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
486 for (i = 0; num > 0; i++, num--)
487 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
491 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
492 /* for area above 1st 4K of SRAM/reg space */
493 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
496 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
497 u32 dif_len = addr - aligned_addr;
500 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
506 /* Write the first dword (or portion) byte by byte */
507 if (unlikely(dif_len)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 /* Start writing at aligned_addr + dif_len */
510 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
511 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
515 /* Write all of the middle dwords as dwords, with auto-increment */
516 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
517 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
518 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
520 /* Write the last dword (or portion) byte by byte */
522 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
523 for (i = 0; num > 0; i++, num--, buf++)
524 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
528 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
529 /* for 1st 4K of SRAM/regs space */
530 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
533 memcpy_toio((priv->hw_base + addr), buf, num);
536 /* Set bit(s) in low 4K of SRAM/regs */
537 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
539 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
542 /* Clear bit(s) in low 4K of SRAM/regs */
543 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
545 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
548 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
550 if (priv->status & STATUS_INT_ENABLED)
552 priv->status |= STATUS_INT_ENABLED;
553 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
556 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
558 if (!(priv->status & STATUS_INT_ENABLED))
560 priv->status &= ~STATUS_INT_ENABLED;
561 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
564 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
568 spin_lock_irqsave(&priv->irq_lock, flags);
569 __ipw_enable_interrupts(priv);
570 spin_unlock_irqrestore(&priv->irq_lock, flags);
573 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
577 spin_lock_irqsave(&priv->irq_lock, flags);
578 __ipw_disable_interrupts(priv);
579 spin_unlock_irqrestore(&priv->irq_lock, flags);
582 static char *ipw_error_desc(u32 val)
585 case IPW_FW_ERROR_OK:
587 case IPW_FW_ERROR_FAIL:
589 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
590 return "MEMORY_UNDERFLOW";
591 case IPW_FW_ERROR_MEMORY_OVERFLOW:
592 return "MEMORY_OVERFLOW";
593 case IPW_FW_ERROR_BAD_PARAM:
595 case IPW_FW_ERROR_BAD_CHECKSUM:
596 return "BAD_CHECKSUM";
597 case IPW_FW_ERROR_NMI_INTERRUPT:
598 return "NMI_INTERRUPT";
599 case IPW_FW_ERROR_BAD_DATABASE:
600 return "BAD_DATABASE";
601 case IPW_FW_ERROR_ALLOC_FAIL:
603 case IPW_FW_ERROR_DMA_UNDERRUN:
604 return "DMA_UNDERRUN";
605 case IPW_FW_ERROR_DMA_STATUS:
607 case IPW_FW_ERROR_DINO_ERROR:
609 case IPW_FW_ERROR_EEPROM_ERROR:
610 return "EEPROM_ERROR";
611 case IPW_FW_ERROR_SYSASSERT:
613 case IPW_FW_ERROR_FATAL_ERROR:
614 return "FATAL_ERROR";
616 return "UNKNOWN_ERROR";
620 static void ipw_dump_error_log(struct ipw_priv *priv,
621 struct ipw_fw_error *error)
626 IPW_ERROR("Error allocating and capturing error log. "
627 "Nothing to dump.\n");
631 IPW_ERROR("Start IPW Error Log Dump:\n");
632 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
633 error->status, error->config);
635 for (i = 0; i < error->elem_len; i++)
636 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
637 ipw_error_desc(error->elem[i].desc),
639 error->elem[i].blink1,
640 error->elem[i].blink2,
641 error->elem[i].link1,
642 error->elem[i].link2, error->elem[i].data);
643 for (i = 0; i < error->log_len; i++)
644 IPW_ERROR("%i\t0x%08x\t%i\n",
646 error->log[i].data, error->log[i].event);
649 static inline int ipw_is_init(struct ipw_priv *priv)
651 return (priv->status & STATUS_INIT) ? 1 : 0;
654 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
656 u32 addr, field_info, field_len, field_count, total_len;
658 IPW_DEBUG_ORD("ordinal = %i\n", ord);
660 if (!priv || !val || !len) {
661 IPW_DEBUG_ORD("Invalid argument\n");
665 /* verify device ordinal tables have been initialized */
666 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
667 IPW_DEBUG_ORD("Access ordinals before initialization\n");
671 switch (IPW_ORD_TABLE_ID_MASK & ord) {
672 case IPW_ORD_TABLE_0_MASK:
674 * TABLE 0: Direct access to a table of 32 bit values
676 * This is a very simple table with the data directly
677 * read from the table
680 /* remove the table id from the ordinal */
681 ord &= IPW_ORD_TABLE_VALUE_MASK;
684 if (ord > priv->table0_len) {
685 IPW_DEBUG_ORD("ordinal value (%i) longer then "
686 "max (%i)\n", ord, priv->table0_len);
690 /* verify we have enough room to store the value */
691 if (*len < sizeof(u32)) {
692 IPW_DEBUG_ORD("ordinal buffer length too small, "
693 "need %zd\n", sizeof(u32));
697 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
698 ord, priv->table0_addr + (ord << 2));
702 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
705 case IPW_ORD_TABLE_1_MASK:
707 * TABLE 1: Indirect access to a table of 32 bit values
709 * This is a fairly large table of u32 values each
710 * representing starting addr for the data (which is
714 /* remove the table id from the ordinal */
715 ord &= IPW_ORD_TABLE_VALUE_MASK;
718 if (ord > priv->table1_len) {
719 IPW_DEBUG_ORD("ordinal value too long\n");
723 /* verify we have enough room to store the value */
724 if (*len < sizeof(u32)) {
725 IPW_DEBUG_ORD("ordinal buffer length too small, "
726 "need %zd\n", sizeof(u32));
731 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
735 case IPW_ORD_TABLE_2_MASK:
737 * TABLE 2: Indirect access to a table of variable sized values
739 * This table consist of six values, each containing
740 * - dword containing the starting offset of the data
741 * - dword containing the lengh in the first 16bits
742 * and the count in the second 16bits
745 /* remove the table id from the ordinal */
746 ord &= IPW_ORD_TABLE_VALUE_MASK;
749 if (ord > priv->table2_len) {
750 IPW_DEBUG_ORD("ordinal value too long\n");
754 /* get the address of statistic */
755 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
757 /* get the second DW of statistics ;
758 * two 16-bit words - first is length, second is count */
761 priv->table2_addr + (ord << 3) +
764 /* get each entry length */
765 field_len = *((u16 *) & field_info);
767 /* get number of entries */
768 field_count = *(((u16 *) & field_info) + 1);
770 /* abort if not enought memory */
771 total_len = field_len * field_count;
772 if (total_len > *len) {
781 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
782 "field_info = 0x%08x\n",
783 addr, total_len, field_info);
784 ipw_read_indirect(priv, addr, val, total_len);
788 IPW_DEBUG_ORD("Invalid ordinal!\n");
796 static void ipw_init_ordinals(struct ipw_priv *priv)
798 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
799 priv->table0_len = ipw_read32(priv, priv->table0_addr);
801 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
802 priv->table0_addr, priv->table0_len);
804 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
805 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
807 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
808 priv->table1_addr, priv->table1_len);
810 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
811 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
812 priv->table2_len &= 0x0000ffff; /* use first two bytes */
814 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
815 priv->table2_addr, priv->table2_len);
819 static u32 ipw_register_toggle(u32 reg)
821 reg &= ~IPW_START_STANDBY;
822 if (reg & IPW_GATE_ODMA)
823 reg &= ~IPW_GATE_ODMA;
824 if (reg & IPW_GATE_IDMA)
825 reg &= ~IPW_GATE_IDMA;
826 if (reg & IPW_GATE_ADMA)
827 reg &= ~IPW_GATE_ADMA;
833 * - On radio ON, turn on any LEDs that require to be on during start
834 * - On initialization, start unassociated blink
835 * - On association, disable unassociated blink
836 * - On disassociation, start unassociated blink
837 * - On radio OFF, turn off any LEDs started during radio on
840 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
841 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
842 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
844 static void ipw_led_link_on(struct ipw_priv *priv)
849 /* If configured to not use LEDs, or nic_type is 1,
850 * then we don't toggle a LINK led */
851 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
854 spin_lock_irqsave(&priv->lock, flags);
856 if (!(priv->status & STATUS_RF_KILL_MASK) &&
857 !(priv->status & STATUS_LED_LINK_ON)) {
858 IPW_DEBUG_LED("Link LED On\n");
859 led = ipw_read_reg32(priv, IPW_EVENT_REG);
860 led |= priv->led_association_on;
862 led = ipw_register_toggle(led);
864 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
865 ipw_write_reg32(priv, IPW_EVENT_REG, led);
867 priv->status |= STATUS_LED_LINK_ON;
869 /* If we aren't associated, schedule turning the LED off */
870 if (!(priv->status & STATUS_ASSOCIATED))
871 queue_delayed_work(priv->workqueue,
876 spin_unlock_irqrestore(&priv->lock, flags);
879 static void ipw_bg_led_link_on(struct work_struct *work)
881 struct ipw_priv *priv =
882 container_of(work, struct ipw_priv, led_link_on.work);
883 mutex_lock(&priv->mutex);
884 ipw_led_link_on(priv);
885 mutex_unlock(&priv->mutex);
888 static void ipw_led_link_off(struct ipw_priv *priv)
893 /* If configured not to use LEDs, or nic type is 1,
894 * then we don't goggle the LINK led. */
895 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
898 spin_lock_irqsave(&priv->lock, flags);
900 if (priv->status & STATUS_LED_LINK_ON) {
901 led = ipw_read_reg32(priv, IPW_EVENT_REG);
902 led &= priv->led_association_off;
903 led = ipw_register_toggle(led);
905 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
906 ipw_write_reg32(priv, IPW_EVENT_REG, led);
908 IPW_DEBUG_LED("Link LED Off\n");
910 priv->status &= ~STATUS_LED_LINK_ON;
912 /* If we aren't associated and the radio is on, schedule
913 * turning the LED on (blink while unassociated) */
914 if (!(priv->status & STATUS_RF_KILL_MASK) &&
915 !(priv->status & STATUS_ASSOCIATED))
916 queue_delayed_work(priv->workqueue, &priv->led_link_on,
921 spin_unlock_irqrestore(&priv->lock, flags);
924 static void ipw_bg_led_link_off(struct work_struct *work)
926 struct ipw_priv *priv =
927 container_of(work, struct ipw_priv, led_link_off.work);
928 mutex_lock(&priv->mutex);
929 ipw_led_link_off(priv);
930 mutex_unlock(&priv->mutex);
933 static void __ipw_led_activity_on(struct ipw_priv *priv)
937 if (priv->config & CFG_NO_LED)
940 if (priv->status & STATUS_RF_KILL_MASK)
943 if (!(priv->status & STATUS_LED_ACT_ON)) {
944 led = ipw_read_reg32(priv, IPW_EVENT_REG);
945 led |= priv->led_activity_on;
947 led = ipw_register_toggle(led);
949 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
950 ipw_write_reg32(priv, IPW_EVENT_REG, led);
952 IPW_DEBUG_LED("Activity LED On\n");
954 priv->status |= STATUS_LED_ACT_ON;
956 cancel_delayed_work(&priv->led_act_off);
957 queue_delayed_work(priv->workqueue, &priv->led_act_off,
960 /* Reschedule LED off for full time period */
961 cancel_delayed_work(&priv->led_act_off);
962 queue_delayed_work(priv->workqueue, &priv->led_act_off,
968 void ipw_led_activity_on(struct ipw_priv *priv)
971 spin_lock_irqsave(&priv->lock, flags);
972 __ipw_led_activity_on(priv);
973 spin_unlock_irqrestore(&priv->lock, flags);
977 static void ipw_led_activity_off(struct ipw_priv *priv)
982 if (priv->config & CFG_NO_LED)
985 spin_lock_irqsave(&priv->lock, flags);
987 if (priv->status & STATUS_LED_ACT_ON) {
988 led = ipw_read_reg32(priv, IPW_EVENT_REG);
989 led &= priv->led_activity_off;
991 led = ipw_register_toggle(led);
993 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
994 ipw_write_reg32(priv, IPW_EVENT_REG, led);
996 IPW_DEBUG_LED("Activity LED Off\n");
998 priv->status &= ~STATUS_LED_ACT_ON;
1001 spin_unlock_irqrestore(&priv->lock, flags);
1004 static void ipw_bg_led_activity_off(struct work_struct *work)
1006 struct ipw_priv *priv =
1007 container_of(work, struct ipw_priv, led_act_off.work);
1008 mutex_lock(&priv->mutex);
1009 ipw_led_activity_off(priv);
1010 mutex_unlock(&priv->mutex);
1013 static void ipw_led_band_on(struct ipw_priv *priv)
1015 unsigned long flags;
1018 /* Only nic type 1 supports mode LEDs */
1019 if (priv->config & CFG_NO_LED ||
1020 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1023 spin_lock_irqsave(&priv->lock, flags);
1025 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1026 if (priv->assoc_network->mode == IEEE_A) {
1027 led |= priv->led_ofdm_on;
1028 led &= priv->led_association_off;
1029 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1030 } else if (priv->assoc_network->mode == IEEE_G) {
1031 led |= priv->led_ofdm_on;
1032 led |= priv->led_association_on;
1033 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1035 led &= priv->led_ofdm_off;
1036 led |= priv->led_association_on;
1037 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1040 led = ipw_register_toggle(led);
1042 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1043 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1045 spin_unlock_irqrestore(&priv->lock, flags);
1048 static void ipw_led_band_off(struct ipw_priv *priv)
1050 unsigned long flags;
1053 /* Only nic type 1 supports mode LEDs */
1054 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1057 spin_lock_irqsave(&priv->lock, flags);
1059 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1060 led &= priv->led_ofdm_off;
1061 led &= priv->led_association_off;
1063 led = ipw_register_toggle(led);
1065 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1066 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1068 spin_unlock_irqrestore(&priv->lock, flags);
1071 static void ipw_led_radio_on(struct ipw_priv *priv)
1073 ipw_led_link_on(priv);
1076 static void ipw_led_radio_off(struct ipw_priv *priv)
1078 ipw_led_activity_off(priv);
1079 ipw_led_link_off(priv);
1082 static void ipw_led_link_up(struct ipw_priv *priv)
1084 /* Set the Link Led on for all nic types */
1085 ipw_led_link_on(priv);
1088 static void ipw_led_link_down(struct ipw_priv *priv)
1090 ipw_led_activity_off(priv);
1091 ipw_led_link_off(priv);
1093 if (priv->status & STATUS_RF_KILL_MASK)
1094 ipw_led_radio_off(priv);
1097 static void ipw_led_init(struct ipw_priv *priv)
1099 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1101 /* Set the default PINs for the link and activity leds */
1102 priv->led_activity_on = IPW_ACTIVITY_LED;
1103 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1105 priv->led_association_on = IPW_ASSOCIATED_LED;
1106 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1108 /* Set the default PINs for the OFDM leds */
1109 priv->led_ofdm_on = IPW_OFDM_LED;
1110 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1112 switch (priv->nic_type) {
1113 case EEPROM_NIC_TYPE_1:
1114 /* In this NIC type, the LEDs are reversed.... */
1115 priv->led_activity_on = IPW_ASSOCIATED_LED;
1116 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1117 priv->led_association_on = IPW_ACTIVITY_LED;
1118 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1120 if (!(priv->config & CFG_NO_LED))
1121 ipw_led_band_on(priv);
1123 /* And we don't blink link LEDs for this nic, so
1124 * just return here */
1127 case EEPROM_NIC_TYPE_3:
1128 case EEPROM_NIC_TYPE_2:
1129 case EEPROM_NIC_TYPE_4:
1130 case EEPROM_NIC_TYPE_0:
1134 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1136 priv->nic_type = EEPROM_NIC_TYPE_0;
1140 if (!(priv->config & CFG_NO_LED)) {
1141 if (priv->status & STATUS_ASSOCIATED)
1142 ipw_led_link_on(priv);
1144 ipw_led_link_off(priv);
1148 static void ipw_led_shutdown(struct ipw_priv *priv)
1150 ipw_led_activity_off(priv);
1151 ipw_led_link_off(priv);
1152 ipw_led_band_off(priv);
1153 cancel_delayed_work(&priv->led_link_on);
1154 cancel_delayed_work(&priv->led_link_off);
1155 cancel_delayed_work(&priv->led_act_off);
1159 * The following adds a new attribute to the sysfs representation
1160 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1161 * used for controling the debug level.
1163 * See the level definitions in ipw for details.
1165 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1167 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1170 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1173 char *p = (char *)buf;
1176 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1178 if (p[0] == 'x' || p[0] == 'X')
1180 val = simple_strtoul(p, &p, 16);
1182 val = simple_strtoul(p, &p, 10);
1184 printk(KERN_INFO DRV_NAME
1185 ": %s is not in hex or decimal form.\n", buf);
1187 ipw_debug_level = val;
1189 return strnlen(buf, count);
1192 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1193 show_debug_level, store_debug_level);
1195 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1197 /* length = 1st dword in log */
1198 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1201 static void ipw_capture_event_log(struct ipw_priv *priv,
1202 u32 log_len, struct ipw_event *log)
1207 base = ipw_read32(priv, IPW_EVENT_LOG);
1208 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1209 (u8 *) log, sizeof(*log) * log_len);
1213 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1215 struct ipw_fw_error *error;
1216 u32 log_len = ipw_get_event_log_len(priv);
1217 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1218 u32 elem_len = ipw_read_reg32(priv, base);
1220 error = kmalloc(sizeof(*error) +
1221 sizeof(*error->elem) * elem_len +
1222 sizeof(*error->log) * log_len, GFP_ATOMIC);
1224 IPW_ERROR("Memory allocation for firmware error log "
1228 error->jiffies = jiffies;
1229 error->status = priv->status;
1230 error->config = priv->config;
1231 error->elem_len = elem_len;
1232 error->log_len = log_len;
1233 error->elem = (struct ipw_error_elem *)error->payload;
1234 error->log = (struct ipw_event *)(error->elem + elem_len);
1236 ipw_capture_event_log(priv, log_len, error->log);
1239 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240 sizeof(*error->elem) * elem_len);
1245 static ssize_t show_event_log(struct device *d,
1246 struct device_attribute *attr, char *buf)
1248 struct ipw_priv *priv = dev_get_drvdata(d);
1249 u32 log_len = ipw_get_event_log_len(priv);
1251 struct ipw_event *log;
1254 /* not using min() because of its strict type checking */
1255 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256 sizeof(*log) * log_len : PAGE_SIZE;
1257 log = kzalloc(log_size, GFP_KERNEL);
1259 IPW_ERROR("Unable to allocate memory for log\n");
1262 log_len = log_size / sizeof(*log);
1263 ipw_capture_event_log(priv, log_len, log);
1265 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266 for (i = 0; i < log_len; i++)
1267 len += snprintf(buf + len, PAGE_SIZE - len,
1269 log[i].time, log[i].event, log[i].data);
1270 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1275 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1277 static ssize_t show_error(struct device *d,
1278 struct device_attribute *attr, char *buf)
1280 struct ipw_priv *priv = dev_get_drvdata(d);
1284 len += snprintf(buf + len, PAGE_SIZE - len,
1285 "%08lX%08X%08X%08X",
1286 priv->error->jiffies,
1287 priv->error->status,
1288 priv->error->config, priv->error->elem_len);
1289 for (i = 0; i < priv->error->elem_len; i++)
1290 len += snprintf(buf + len, PAGE_SIZE - len,
1291 "\n%08X%08X%08X%08X%08X%08X%08X",
1292 priv->error->elem[i].time,
1293 priv->error->elem[i].desc,
1294 priv->error->elem[i].blink1,
1295 priv->error->elem[i].blink2,
1296 priv->error->elem[i].link1,
1297 priv->error->elem[i].link2,
1298 priv->error->elem[i].data);
1300 len += snprintf(buf + len, PAGE_SIZE - len,
1301 "\n%08X", priv->error->log_len);
1302 for (i = 0; i < priv->error->log_len; i++)
1303 len += snprintf(buf + len, PAGE_SIZE - len,
1305 priv->error->log[i].time,
1306 priv->error->log[i].event,
1307 priv->error->log[i].data);
1308 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1312 static ssize_t clear_error(struct device *d,
1313 struct device_attribute *attr,
1314 const char *buf, size_t count)
1316 struct ipw_priv *priv = dev_get_drvdata(d);
1323 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1325 static ssize_t show_cmd_log(struct device *d,
1326 struct device_attribute *attr, char *buf)
1328 struct ipw_priv *priv = dev_get_drvdata(d);
1332 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1334 i = (i + 1) % priv->cmdlog_len) {
1336 snprintf(buf + len, PAGE_SIZE - len,
1337 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339 priv->cmdlog[i].cmd.len);
1341 snprintk_buf(buf + len, PAGE_SIZE - len,
1342 (u8 *) priv->cmdlog[i].cmd.param,
1343 priv->cmdlog[i].cmd.len);
1344 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1346 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1350 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1352 #ifdef CONFIG_IPW2200_PROMISCUOUS
1353 static void ipw_prom_free(struct ipw_priv *priv);
1354 static int ipw_prom_alloc(struct ipw_priv *priv);
1355 static ssize_t store_rtap_iface(struct device *d,
1356 struct device_attribute *attr,
1357 const char *buf, size_t count)
1359 struct ipw_priv *priv = dev_get_drvdata(d);
1370 if (netif_running(priv->prom_net_dev)) {
1371 IPW_WARNING("Interface is up. Cannot unregister.\n");
1375 ipw_prom_free(priv);
1383 rc = ipw_prom_alloc(priv);
1393 IPW_ERROR("Failed to register promiscuous network "
1394 "device (error %d).\n", rc);
1400 static ssize_t show_rtap_iface(struct device *d,
1401 struct device_attribute *attr,
1404 struct ipw_priv *priv = dev_get_drvdata(d);
1406 return sprintf(buf, "%s", priv->prom_net_dev->name);
1415 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1418 static ssize_t store_rtap_filter(struct device *d,
1419 struct device_attribute *attr,
1420 const char *buf, size_t count)
1422 struct ipw_priv *priv = dev_get_drvdata(d);
1424 if (!priv->prom_priv) {
1425 IPW_ERROR("Attempting to set filter without "
1426 "rtap_iface enabled.\n");
1430 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1432 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1433 BIT_ARG16(priv->prom_priv->filter));
1438 static ssize_t show_rtap_filter(struct device *d,
1439 struct device_attribute *attr,
1442 struct ipw_priv *priv = dev_get_drvdata(d);
1443 return sprintf(buf, "0x%04X",
1444 priv->prom_priv ? priv->prom_priv->filter : 0);
1447 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1451 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1454 struct ipw_priv *priv = dev_get_drvdata(d);
1455 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1458 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1459 const char *buf, size_t count)
1461 struct ipw_priv *priv = dev_get_drvdata(d);
1462 struct net_device *dev = priv->net_dev;
1463 char buffer[] = "00000000";
1465 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1469 IPW_DEBUG_INFO("enter\n");
1471 strncpy(buffer, buf, len);
1474 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1476 if (p[0] == 'x' || p[0] == 'X')
1478 val = simple_strtoul(p, &p, 16);
1480 val = simple_strtoul(p, &p, 10);
1482 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1484 priv->ieee->scan_age = val;
1485 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1488 IPW_DEBUG_INFO("exit\n");
1492 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1494 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1497 struct ipw_priv *priv = dev_get_drvdata(d);
1498 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1501 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1502 const char *buf, size_t count)
1504 struct ipw_priv *priv = dev_get_drvdata(d);
1506 IPW_DEBUG_INFO("enter\n");
1512 IPW_DEBUG_LED("Disabling LED control.\n");
1513 priv->config |= CFG_NO_LED;
1514 ipw_led_shutdown(priv);
1516 IPW_DEBUG_LED("Enabling LED control.\n");
1517 priv->config &= ~CFG_NO_LED;
1521 IPW_DEBUG_INFO("exit\n");
1525 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1527 static ssize_t show_status(struct device *d,
1528 struct device_attribute *attr, char *buf)
1530 struct ipw_priv *p = d->driver_data;
1531 return sprintf(buf, "0x%08x\n", (int)p->status);
1534 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1539 struct ipw_priv *p = d->driver_data;
1540 return sprintf(buf, "0x%08x\n", (int)p->config);
1543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1545 static ssize_t show_nic_type(struct device *d,
1546 struct device_attribute *attr, char *buf)
1548 struct ipw_priv *priv = d->driver_data;
1549 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1552 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1554 static ssize_t show_ucode_version(struct device *d,
1555 struct device_attribute *attr, char *buf)
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1563 return sprintf(buf, "0x%08x\n", tmp);
1566 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1568 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1571 u32 len = sizeof(u32), tmp = 0;
1572 struct ipw_priv *p = d->driver_data;
1574 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1577 return sprintf(buf, "0x%08x\n", tmp);
1580 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1583 * Add a device attribute to view/control the delay between eeprom
1586 static ssize_t show_eeprom_delay(struct device *d,
1587 struct device_attribute *attr, char *buf)
1589 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1590 return sprintf(buf, "%i\n", n);
1592 static ssize_t store_eeprom_delay(struct device *d,
1593 struct device_attribute *attr,
1594 const char *buf, size_t count)
1596 struct ipw_priv *p = d->driver_data;
1597 sscanf(buf, "%i", &p->eeprom_delay);
1598 return strnlen(buf, count);
1601 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1602 show_eeprom_delay, store_eeprom_delay);
1604 static ssize_t show_command_event_reg(struct device *d,
1605 struct device_attribute *attr, char *buf)
1608 struct ipw_priv *p = d->driver_data;
1610 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1611 return sprintf(buf, "0x%08x\n", reg);
1613 static ssize_t store_command_event_reg(struct device *d,
1614 struct device_attribute *attr,
1615 const char *buf, size_t count)
1618 struct ipw_priv *p = d->driver_data;
1620 sscanf(buf, "%x", ®);
1621 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1622 return strnlen(buf, count);
1625 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1626 show_command_event_reg, store_command_event_reg);
1628 static ssize_t show_mem_gpio_reg(struct device *d,
1629 struct device_attribute *attr, char *buf)
1632 struct ipw_priv *p = d->driver_data;
1634 reg = ipw_read_reg32(p, 0x301100);
1635 return sprintf(buf, "0x%08x\n", reg);
1637 static ssize_t store_mem_gpio_reg(struct device *d,
1638 struct device_attribute *attr,
1639 const char *buf, size_t count)
1642 struct ipw_priv *p = d->driver_data;
1644 sscanf(buf, "%x", ®);
1645 ipw_write_reg32(p, 0x301100, reg);
1646 return strnlen(buf, count);
1649 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1650 show_mem_gpio_reg, store_mem_gpio_reg);
1652 static ssize_t show_indirect_dword(struct device *d,
1653 struct device_attribute *attr, char *buf)
1656 struct ipw_priv *priv = d->driver_data;
1658 if (priv->status & STATUS_INDIRECT_DWORD)
1659 reg = ipw_read_reg32(priv, priv->indirect_dword);
1663 return sprintf(buf, "0x%08x\n", reg);
1665 static ssize_t store_indirect_dword(struct device *d,
1666 struct device_attribute *attr,
1667 const char *buf, size_t count)
1669 struct ipw_priv *priv = d->driver_data;
1671 sscanf(buf, "%x", &priv->indirect_dword);
1672 priv->status |= STATUS_INDIRECT_DWORD;
1673 return strnlen(buf, count);
1676 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1677 show_indirect_dword, store_indirect_dword);
1679 static ssize_t show_indirect_byte(struct device *d,
1680 struct device_attribute *attr, char *buf)
1683 struct ipw_priv *priv = d->driver_data;
1685 if (priv->status & STATUS_INDIRECT_BYTE)
1686 reg = ipw_read_reg8(priv, priv->indirect_byte);
1690 return sprintf(buf, "0x%02x\n", reg);
1692 static ssize_t store_indirect_byte(struct device *d,
1693 struct device_attribute *attr,
1694 const char *buf, size_t count)
1696 struct ipw_priv *priv = d->driver_data;
1698 sscanf(buf, "%x", &priv->indirect_byte);
1699 priv->status |= STATUS_INDIRECT_BYTE;
1700 return strnlen(buf, count);
1703 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1704 show_indirect_byte, store_indirect_byte);
1706 static ssize_t show_direct_dword(struct device *d,
1707 struct device_attribute *attr, char *buf)
1710 struct ipw_priv *priv = d->driver_data;
1712 if (priv->status & STATUS_DIRECT_DWORD)
1713 reg = ipw_read32(priv, priv->direct_dword);
1717 return sprintf(buf, "0x%08x\n", reg);
1719 static ssize_t store_direct_dword(struct device *d,
1720 struct device_attribute *attr,
1721 const char *buf, size_t count)
1723 struct ipw_priv *priv = d->driver_data;
1725 sscanf(buf, "%x", &priv->direct_dword);
1726 priv->status |= STATUS_DIRECT_DWORD;
1727 return strnlen(buf, count);
1730 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1731 show_direct_dword, store_direct_dword);
1733 static int rf_kill_active(struct ipw_priv *priv)
1735 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1736 priv->status |= STATUS_RF_KILL_HW;
1738 priv->status &= ~STATUS_RF_KILL_HW;
1740 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1743 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1746 /* 0 - RF kill not enabled
1747 1 - SW based RF kill active (sysfs)
1748 2 - HW based RF kill active
1749 3 - Both HW and SW baed RF kill active */
1750 struct ipw_priv *priv = d->driver_data;
1751 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1752 (rf_kill_active(priv) ? 0x2 : 0x0);
1753 return sprintf(buf, "%i\n", val);
1756 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1758 if ((disable_radio ? 1 : 0) ==
1759 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1762 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1763 disable_radio ? "OFF" : "ON");
1765 if (disable_radio) {
1766 priv->status |= STATUS_RF_KILL_SW;
1768 if (priv->workqueue) {
1769 cancel_delayed_work(&priv->request_scan);
1770 cancel_delayed_work(&priv->request_direct_scan);
1771 cancel_delayed_work(&priv->request_passive_scan);
1772 cancel_delayed_work(&priv->scan_event);
1774 queue_work(priv->workqueue, &priv->down);
1776 priv->status &= ~STATUS_RF_KILL_SW;
1777 if (rf_kill_active(priv)) {
1778 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1779 "disabled by HW switch\n");
1780 /* Make sure the RF_KILL check timer is running */
1781 cancel_delayed_work(&priv->rf_kill);
1782 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1783 round_jiffies_relative(2 * HZ));
1785 queue_work(priv->workqueue, &priv->up);
1791 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1792 const char *buf, size_t count)
1794 struct ipw_priv *priv = d->driver_data;
1796 ipw_radio_kill_sw(priv, buf[0] == '1');
1801 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1803 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1806 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1807 int pos = 0, len = 0;
1808 if (priv->config & CFG_SPEED_SCAN) {
1809 while (priv->speed_scan[pos] != 0)
1810 len += sprintf(&buf[len], "%d ",
1811 priv->speed_scan[pos++]);
1812 return len + sprintf(&buf[len], "\n");
1815 return sprintf(buf, "0\n");
1818 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1819 const char *buf, size_t count)
1821 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1822 int channel, pos = 0;
1823 const char *p = buf;
1825 /* list of space separated channels to scan, optionally ending with 0 */
1826 while ((channel = simple_strtol(p, NULL, 0))) {
1827 if (pos == MAX_SPEED_SCAN - 1) {
1828 priv->speed_scan[pos] = 0;
1832 if (ieee80211_is_valid_channel(priv->ieee, channel))
1833 priv->speed_scan[pos++] = channel;
1835 IPW_WARNING("Skipping invalid channel request: %d\n",
1840 while (*p == ' ' || *p == '\t')
1845 priv->config &= ~CFG_SPEED_SCAN;
1847 priv->speed_scan_pos = 0;
1848 priv->config |= CFG_SPEED_SCAN;
1854 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1857 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1860 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1861 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1864 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1865 const char *buf, size_t count)
1867 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1869 priv->config |= CFG_NET_STATS;
1871 priv->config &= ~CFG_NET_STATS;
1876 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1877 show_net_stats, store_net_stats);
1879 static ssize_t show_channels(struct device *d,
1880 struct device_attribute *attr,
1883 struct ipw_priv *priv = dev_get_drvdata(d);
1884 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1887 len = sprintf(&buf[len],
1888 "Displaying %d channels in 2.4Ghz band "
1889 "(802.11bg):\n", geo->bg_channels);
1891 for (i = 0; i < geo->bg_channels; i++) {
1892 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1894 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1895 " (radar spectrum)" : "",
1896 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1897 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1899 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1900 "passive only" : "active/passive",
1901 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1905 len += sprintf(&buf[len],
1906 "Displaying %d channels in 5.2Ghz band "
1907 "(802.11a):\n", geo->a_channels);
1908 for (i = 0; i < geo->a_channels; i++) {
1909 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1911 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1912 " (radar spectrum)" : "",
1913 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1914 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1916 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1917 "passive only" : "active/passive");
1923 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1925 static void notify_wx_assoc_event(struct ipw_priv *priv)
1927 union iwreq_data wrqu;
1928 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1929 if (priv->status & STATUS_ASSOCIATED)
1930 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1932 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1933 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1936 static void ipw_irq_tasklet(struct ipw_priv *priv)
1938 u32 inta, inta_mask, handled = 0;
1939 unsigned long flags;
1942 spin_lock_irqsave(&priv->irq_lock, flags);
1944 inta = ipw_read32(priv, IPW_INTA_RW);
1945 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1946 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1948 /* Add any cached INTA values that need to be handled */
1949 inta |= priv->isr_inta;
1951 spin_unlock_irqrestore(&priv->irq_lock, flags);
1953 spin_lock_irqsave(&priv->lock, flags);
1955 /* handle all the justifications for the interrupt */
1956 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1958 handled |= IPW_INTA_BIT_RX_TRANSFER;
1961 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1962 IPW_DEBUG_HC("Command completed.\n");
1963 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1964 priv->status &= ~STATUS_HCMD_ACTIVE;
1965 wake_up_interruptible(&priv->wait_command_queue);
1966 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1969 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1970 IPW_DEBUG_TX("TX_QUEUE_1\n");
1971 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1972 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1975 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1976 IPW_DEBUG_TX("TX_QUEUE_2\n");
1977 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1978 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1981 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1982 IPW_DEBUG_TX("TX_QUEUE_3\n");
1983 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1984 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1987 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1988 IPW_DEBUG_TX("TX_QUEUE_4\n");
1989 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1990 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1993 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1994 IPW_WARNING("STATUS_CHANGE\n");
1995 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1998 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1999 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2000 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2003 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2004 IPW_WARNING("HOST_CMD_DONE\n");
2005 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2008 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2009 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2010 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2013 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2014 IPW_WARNING("PHY_OFF_DONE\n");
2015 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2018 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2019 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2020 priv->status |= STATUS_RF_KILL_HW;
2021 wake_up_interruptible(&priv->wait_command_queue);
2022 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2023 cancel_delayed_work(&priv->request_scan);
2024 cancel_delayed_work(&priv->request_direct_scan);
2025 cancel_delayed_work(&priv->request_passive_scan);
2026 cancel_delayed_work(&priv->scan_event);
2027 schedule_work(&priv->link_down);
2028 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2029 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2032 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2033 IPW_WARNING("Firmware error detected. Restarting.\n");
2035 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2036 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2037 struct ipw_fw_error *error =
2038 ipw_alloc_error_log(priv);
2039 ipw_dump_error_log(priv, error);
2043 priv->error = ipw_alloc_error_log(priv);
2045 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2047 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2049 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2050 ipw_dump_error_log(priv, priv->error);
2053 /* XXX: If hardware encryption is for WPA/WPA2,
2054 * we have to notify the supplicant. */
2055 if (priv->ieee->sec.encrypt) {
2056 priv->status &= ~STATUS_ASSOCIATED;
2057 notify_wx_assoc_event(priv);
2060 /* Keep the restart process from trying to send host
2061 * commands by clearing the INIT status bit */
2062 priv->status &= ~STATUS_INIT;
2064 /* Cancel currently queued command. */
2065 priv->status &= ~STATUS_HCMD_ACTIVE;
2066 wake_up_interruptible(&priv->wait_command_queue);
2068 queue_work(priv->workqueue, &priv->adapter_restart);
2069 handled |= IPW_INTA_BIT_FATAL_ERROR;
2072 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2073 IPW_ERROR("Parity error\n");
2074 handled |= IPW_INTA_BIT_PARITY_ERROR;
2077 if (handled != inta) {
2078 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2081 spin_unlock_irqrestore(&priv->lock, flags);
2083 /* enable all interrupts */
2084 ipw_enable_interrupts(priv);
2087 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2088 static char *get_cmd_string(u8 cmd)
2091 IPW_CMD(HOST_COMPLETE);
2092 IPW_CMD(POWER_DOWN);
2093 IPW_CMD(SYSTEM_CONFIG);
2094 IPW_CMD(MULTICAST_ADDRESS);
2096 IPW_CMD(ADAPTER_ADDRESS);
2098 IPW_CMD(RTS_THRESHOLD);
2099 IPW_CMD(FRAG_THRESHOLD);
2100 IPW_CMD(POWER_MODE);
2102 IPW_CMD(TGI_TX_KEY);
2103 IPW_CMD(SCAN_REQUEST);
2104 IPW_CMD(SCAN_REQUEST_EXT);
2106 IPW_CMD(SUPPORTED_RATES);
2107 IPW_CMD(SCAN_ABORT);
2109 IPW_CMD(QOS_PARAMETERS);
2110 IPW_CMD(DINO_CONFIG);
2111 IPW_CMD(RSN_CAPABILITIES);
2113 IPW_CMD(CARD_DISABLE);
2114 IPW_CMD(SEED_NUMBER);
2116 IPW_CMD(COUNTRY_INFO);
2117 IPW_CMD(AIRONET_INFO);
2118 IPW_CMD(AP_TX_POWER);
2120 IPW_CMD(CCX_VER_INFO);
2121 IPW_CMD(SET_CALIBRATION);
2122 IPW_CMD(SENSITIVITY_CALIB);
2123 IPW_CMD(RETRY_LIMIT);
2124 IPW_CMD(IPW_PRE_POWER_DOWN);
2125 IPW_CMD(VAP_BEACON_TEMPLATE);
2126 IPW_CMD(VAP_DTIM_PERIOD);
2127 IPW_CMD(EXT_SUPPORTED_RATES);
2128 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2129 IPW_CMD(VAP_QUIET_INTERVALS);
2130 IPW_CMD(VAP_CHANNEL_SWITCH);
2131 IPW_CMD(VAP_MANDATORY_CHANNELS);
2132 IPW_CMD(VAP_CELL_PWR_LIMIT);
2133 IPW_CMD(VAP_CF_PARAM_SET);
2134 IPW_CMD(VAP_SET_BEACONING_STATE);
2135 IPW_CMD(MEASUREMENT);
2136 IPW_CMD(POWER_CAPABILITY);
2137 IPW_CMD(SUPPORTED_CHANNELS);
2138 IPW_CMD(TPC_REPORT);
2140 IPW_CMD(PRODUCTION_COMMAND);
2146 #define HOST_COMPLETE_TIMEOUT HZ
2148 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2151 unsigned long flags;
2153 spin_lock_irqsave(&priv->lock, flags);
2154 if (priv->status & STATUS_HCMD_ACTIVE) {
2155 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2156 get_cmd_string(cmd->cmd));
2157 spin_unlock_irqrestore(&priv->lock, flags);
2161 priv->status |= STATUS_HCMD_ACTIVE;
2164 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2165 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2166 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2167 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2169 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2172 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2173 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2176 #ifndef DEBUG_CMD_WEP_KEY
2177 if (cmd->cmd == IPW_CMD_WEP_KEY)
2178 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2181 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2183 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2185 priv->status &= ~STATUS_HCMD_ACTIVE;
2186 IPW_ERROR("Failed to send %s: Reason %d\n",
2187 get_cmd_string(cmd->cmd), rc);
2188 spin_unlock_irqrestore(&priv->lock, flags);
2191 spin_unlock_irqrestore(&priv->lock, flags);
2193 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2195 status & STATUS_HCMD_ACTIVE),
2196 HOST_COMPLETE_TIMEOUT);
2198 spin_lock_irqsave(&priv->lock, flags);
2199 if (priv->status & STATUS_HCMD_ACTIVE) {
2200 IPW_ERROR("Failed to send %s: Command timed out.\n",
2201 get_cmd_string(cmd->cmd));
2202 priv->status &= ~STATUS_HCMD_ACTIVE;
2203 spin_unlock_irqrestore(&priv->lock, flags);
2207 spin_unlock_irqrestore(&priv->lock, flags);
2211 if (priv->status & STATUS_RF_KILL_HW) {
2212 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2213 get_cmd_string(cmd->cmd));
2220 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2221 priv->cmdlog_pos %= priv->cmdlog_len;
2226 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2228 struct host_cmd cmd = {
2232 return __ipw_send_cmd(priv, &cmd);
2235 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2238 struct host_cmd cmd = {
2244 return __ipw_send_cmd(priv, &cmd);
2247 static int ipw_send_host_complete(struct ipw_priv *priv)
2250 IPW_ERROR("Invalid args\n");
2254 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2257 static int ipw_send_system_config(struct ipw_priv *priv)
2259 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2260 sizeof(priv->sys_config),
2264 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2266 if (!priv || !ssid) {
2267 IPW_ERROR("Invalid args\n");
2271 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2275 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2277 if (!priv || !mac) {
2278 IPW_ERROR("Invalid args\n");
2282 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2283 priv->net_dev->name, mac);
2285 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2289 * NOTE: This must be executed from our workqueue as it results in udelay
2290 * being called which may corrupt the keyboard if executed on default
2293 static void ipw_adapter_restart(void *adapter)
2295 struct ipw_priv *priv = adapter;
2297 if (priv->status & STATUS_RF_KILL_MASK)
2302 if (priv->assoc_network &&
2303 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2304 ipw_remove_current_network(priv);
2307 IPW_ERROR("Failed to up device\n");
2312 static void ipw_bg_adapter_restart(struct work_struct *work)
2314 struct ipw_priv *priv =
2315 container_of(work, struct ipw_priv, adapter_restart);
2316 mutex_lock(&priv->mutex);
2317 ipw_adapter_restart(priv);
2318 mutex_unlock(&priv->mutex);
2321 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2323 static void ipw_scan_check(void *data)
2325 struct ipw_priv *priv = data;
2326 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2327 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2328 "adapter after (%dms).\n",
2329 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2330 queue_work(priv->workqueue, &priv->adapter_restart);
2334 static void ipw_bg_scan_check(struct work_struct *work)
2336 struct ipw_priv *priv =
2337 container_of(work, struct ipw_priv, scan_check.work);
2338 mutex_lock(&priv->mutex);
2339 ipw_scan_check(priv);
2340 mutex_unlock(&priv->mutex);
2343 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2344 struct ipw_scan_request_ext *request)
2346 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2347 sizeof(*request), request);
2350 static int ipw_send_scan_abort(struct ipw_priv *priv)
2353 IPW_ERROR("Invalid args\n");
2357 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2360 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2362 struct ipw_sensitivity_calib calib = {
2363 .beacon_rssi_raw = cpu_to_le16(sens),
2366 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2370 static int ipw_send_associate(struct ipw_priv *priv,
2371 struct ipw_associate *associate)
2373 if (!priv || !associate) {
2374 IPW_ERROR("Invalid args\n");
2378 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2382 static int ipw_send_supported_rates(struct ipw_priv *priv,
2383 struct ipw_supported_rates *rates)
2385 if (!priv || !rates) {
2386 IPW_ERROR("Invalid args\n");
2390 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2394 static int ipw_set_random_seed(struct ipw_priv *priv)
2399 IPW_ERROR("Invalid args\n");
2403 get_random_bytes(&val, sizeof(val));
2405 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2408 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2410 __le32 v = cpu_to_le32(phy_off);
2412 IPW_ERROR("Invalid args\n");
2416 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2419 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2421 if (!priv || !power) {
2422 IPW_ERROR("Invalid args\n");
2426 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2429 static int ipw_set_tx_power(struct ipw_priv *priv)
2431 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2432 struct ipw_tx_power tx_power;
2436 memset(&tx_power, 0, sizeof(tx_power));
2438 /* configure device for 'G' band */
2439 tx_power.ieee_mode = IPW_G_MODE;
2440 tx_power.num_channels = geo->bg_channels;
2441 for (i = 0; i < geo->bg_channels; i++) {
2442 max_power = geo->bg[i].max_power;
2443 tx_power.channels_tx_power[i].channel_number =
2445 tx_power.channels_tx_power[i].tx_power = max_power ?
2446 min(max_power, priv->tx_power) : priv->tx_power;
2448 if (ipw_send_tx_power(priv, &tx_power))
2451 /* configure device to also handle 'B' band */
2452 tx_power.ieee_mode = IPW_B_MODE;
2453 if (ipw_send_tx_power(priv, &tx_power))
2456 /* configure device to also handle 'A' band */
2457 if (priv->ieee->abg_true) {
2458 tx_power.ieee_mode = IPW_A_MODE;
2459 tx_power.num_channels = geo->a_channels;
2460 for (i = 0; i < tx_power.num_channels; i++) {
2461 max_power = geo->a[i].max_power;
2462 tx_power.channels_tx_power[i].channel_number =
2464 tx_power.channels_tx_power[i].tx_power = max_power ?
2465 min(max_power, priv->tx_power) : priv->tx_power;
2467 if (ipw_send_tx_power(priv, &tx_power))
2473 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2475 struct ipw_rts_threshold rts_threshold = {
2476 .rts_threshold = cpu_to_le16(rts),
2480 IPW_ERROR("Invalid args\n");
2484 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2485 sizeof(rts_threshold), &rts_threshold);
2488 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2490 struct ipw_frag_threshold frag_threshold = {
2491 .frag_threshold = cpu_to_le16(frag),
2495 IPW_ERROR("Invalid args\n");
2499 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2500 sizeof(frag_threshold), &frag_threshold);
2503 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2508 IPW_ERROR("Invalid args\n");
2512 /* If on battery, set to 3, if AC set to CAM, else user
2515 case IPW_POWER_BATTERY:
2516 param = cpu_to_le32(IPW_POWER_INDEX_3);
2519 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2522 param = cpu_to_le32(mode);
2526 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2530 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2532 struct ipw_retry_limit retry_limit = {
2533 .short_retry_limit = slimit,
2534 .long_retry_limit = llimit
2538 IPW_ERROR("Invalid args\n");
2542 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2547 * The IPW device contains a Microwire compatible EEPROM that stores
2548 * various data like the MAC address. Usually the firmware has exclusive
2549 * access to the eeprom, but during device initialization (before the
2550 * device driver has sent the HostComplete command to the firmware) the
2551 * device driver has read access to the EEPROM by way of indirect addressing
2552 * through a couple of memory mapped registers.
2554 * The following is a simplified implementation for pulling data out of the
2555 * the eeprom, along with some helper functions to find information in
2556 * the per device private data's copy of the eeprom.
2558 * NOTE: To better understand how these functions work (i.e what is a chip
2559 * select and why do have to keep driving the eeprom clock?), read
2560 * just about any data sheet for a Microwire compatible EEPROM.
2563 /* write a 32 bit value into the indirect accessor register */
2564 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2566 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2568 /* the eeprom requires some time to complete the operation */
2569 udelay(p->eeprom_delay);
2574 /* perform a chip select operation */
2575 static void eeprom_cs(struct ipw_priv *priv)
2577 eeprom_write_reg(priv, 0);
2578 eeprom_write_reg(priv, EEPROM_BIT_CS);
2579 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2580 eeprom_write_reg(priv, EEPROM_BIT_CS);
2583 /* perform a chip select operation */
2584 static void eeprom_disable_cs(struct ipw_priv *priv)
2586 eeprom_write_reg(priv, EEPROM_BIT_CS);
2587 eeprom_write_reg(priv, 0);
2588 eeprom_write_reg(priv, EEPROM_BIT_SK);
2591 /* push a single bit down to the eeprom */
2592 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2594 int d = (bit ? EEPROM_BIT_DI : 0);
2595 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2596 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2599 /* push an opcode followed by an address down to the eeprom */
2600 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2605 eeprom_write_bit(priv, 1);
2606 eeprom_write_bit(priv, op & 2);
2607 eeprom_write_bit(priv, op & 1);
2608 for (i = 7; i >= 0; i--) {
2609 eeprom_write_bit(priv, addr & (1 << i));
2613 /* pull 16 bits off the eeprom, one bit at a time */
2614 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2619 /* Send READ Opcode */
2620 eeprom_op(priv, EEPROM_CMD_READ, addr);
2622 /* Send dummy bit */
2623 eeprom_write_reg(priv, EEPROM_BIT_CS);
2625 /* Read the byte off the eeprom one bit at a time */
2626 for (i = 0; i < 16; i++) {
2628 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2629 eeprom_write_reg(priv, EEPROM_BIT_CS);
2630 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2631 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2634 /* Send another dummy bit */
2635 eeprom_write_reg(priv, 0);
2636 eeprom_disable_cs(priv);
2641 /* helper function for pulling the mac address out of the private */
2642 /* data's copy of the eeprom data */
2643 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2645 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2649 * Either the device driver (i.e. the host) or the firmware can
2650 * load eeprom data into the designated region in SRAM. If neither
2651 * happens then the FW will shutdown with a fatal error.
2653 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2654 * bit needs region of shared SRAM needs to be non-zero.
2656 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2659 __le16 *eeprom = (__le16 *) priv->eeprom;
2661 IPW_DEBUG_TRACE(">>\n");
2663 /* read entire contents of eeprom into private buffer */
2664 for (i = 0; i < 128; i++)
2665 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2668 If the data looks correct, then copy it to our private
2669 copy. Otherwise let the firmware know to perform the operation
2672 if (priv->eeprom[EEPROM_VERSION] != 0) {
2673 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2675 /* write the eeprom data to sram */
2676 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2677 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2679 /* Do not load eeprom data on fatal error or suspend */
2680 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2682 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2684 /* Load eeprom data on fatal error or suspend */
2685 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2688 IPW_DEBUG_TRACE("<<\n");
2691 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2696 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2698 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2701 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2703 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2704 CB_NUMBER_OF_ELEMENTS_SMALL *
2705 sizeof(struct command_block));
2708 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2709 { /* start dma engine but no transfers yet */
2711 IPW_DEBUG_FW(">> : \n");
2714 ipw_fw_dma_reset_command_blocks(priv);
2716 /* Write CB base address */
2717 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2719 IPW_DEBUG_FW("<< : \n");
2723 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2727 IPW_DEBUG_FW(">> :\n");
2729 /* set the Stop and Abort bit */
2730 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2731 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2732 priv->sram_desc.last_cb_index = 0;
2734 IPW_DEBUG_FW("<< \n");
2737 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2738 struct command_block *cb)
2741 IPW_SHARED_SRAM_DMA_CONTROL +
2742 (sizeof(struct command_block) * index);
2743 IPW_DEBUG_FW(">> :\n");
2745 ipw_write_indirect(priv, address, (u8 *) cb,
2746 (int)sizeof(struct command_block));
2748 IPW_DEBUG_FW("<< :\n");
2753 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2758 IPW_DEBUG_FW(">> :\n");
2760 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2761 ipw_fw_dma_write_command_block(priv, index,
2762 &priv->sram_desc.cb_list[index]);
2764 /* Enable the DMA in the CSR register */
2765 ipw_clear_bit(priv, IPW_RESET_REG,
2766 IPW_RESET_REG_MASTER_DISABLED |
2767 IPW_RESET_REG_STOP_MASTER);
2769 /* Set the Start bit. */
2770 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2771 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2773 IPW_DEBUG_FW("<< :\n");
2777 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2780 u32 register_value = 0;
2781 u32 cb_fields_address = 0;
2783 IPW_DEBUG_FW(">> :\n");
2784 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2785 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2787 /* Read the DMA Controlor register */
2788 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2789 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2791 /* Print the CB values */
2792 cb_fields_address = address;
2793 register_value = ipw_read_reg32(priv, cb_fields_address);
2794 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2796 cb_fields_address += sizeof(u32);
2797 register_value = ipw_read_reg32(priv, cb_fields_address);
2798 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2800 cb_fields_address += sizeof(u32);
2801 register_value = ipw_read_reg32(priv, cb_fields_address);
2802 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2805 cb_fields_address += sizeof(u32);
2806 register_value = ipw_read_reg32(priv, cb_fields_address);
2807 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2809 IPW_DEBUG_FW(">> :\n");
2812 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2814 u32 current_cb_address = 0;
2815 u32 current_cb_index = 0;
2817 IPW_DEBUG_FW("<< :\n");
2818 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2820 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2821 sizeof(struct command_block);
2823 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2824 current_cb_index, current_cb_address);
2826 IPW_DEBUG_FW(">> :\n");
2827 return current_cb_index;
2831 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2835 int interrupt_enabled, int is_last)
2838 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2839 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2841 struct command_block *cb;
2842 u32 last_cb_element = 0;
2844 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2845 src_address, dest_address, length);
2847 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2850 last_cb_element = priv->sram_desc.last_cb_index;
2851 cb = &priv->sram_desc.cb_list[last_cb_element];
2852 priv->sram_desc.last_cb_index++;
2854 /* Calculate the new CB control word */
2855 if (interrupt_enabled)
2856 control |= CB_INT_ENABLED;
2859 control |= CB_LAST_VALID;
2863 /* Calculate the CB Element's checksum value */
2864 cb->status = control ^ src_address ^ dest_address;
2866 /* Copy the Source and Destination addresses */
2867 cb->dest_addr = dest_address;
2868 cb->source_addr = src_address;
2870 /* Copy the Control Word last */
2871 cb->control = control;
2876 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2877 u32 src_phys, u32 dest_address, u32 length)
2879 u32 bytes_left = length;
2881 u32 dest_offset = 0;
2883 IPW_DEBUG_FW(">> \n");
2884 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2885 src_phys, dest_address, length);
2886 while (bytes_left > CB_MAX_LENGTH) {
2887 status = ipw_fw_dma_add_command_block(priv,
2888 src_phys + src_offset,
2891 CB_MAX_LENGTH, 0, 0);
2893 IPW_DEBUG_FW_INFO(": Failed\n");
2896 IPW_DEBUG_FW_INFO(": Added new cb\n");
2898 src_offset += CB_MAX_LENGTH;
2899 dest_offset += CB_MAX_LENGTH;
2900 bytes_left -= CB_MAX_LENGTH;
2903 /* add the buffer tail */
2904 if (bytes_left > 0) {
2906 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2907 dest_address + dest_offset,
2910 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2914 (": Adding new cb - the buffer tail\n");
2917 IPW_DEBUG_FW("<< \n");
2921 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2923 u32 current_index = 0, previous_index;
2926 IPW_DEBUG_FW(">> : \n");
2928 current_index = ipw_fw_dma_command_block_index(priv);
2929 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2930 (int)priv->sram_desc.last_cb_index);
2932 while (current_index < priv->sram_desc.last_cb_index) {
2934 previous_index = current_index;
2935 current_index = ipw_fw_dma_command_block_index(priv);
2937 if (previous_index < current_index) {
2941 if (++watchdog > 400) {
2942 IPW_DEBUG_FW_INFO("Timeout\n");
2943 ipw_fw_dma_dump_command_block(priv);
2944 ipw_fw_dma_abort(priv);
2949 ipw_fw_dma_abort(priv);
2951 /*Disable the DMA in the CSR register */
2952 ipw_set_bit(priv, IPW_RESET_REG,
2953 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2955 IPW_DEBUG_FW("<< dmaWaitSync \n");
2959 static void ipw_remove_current_network(struct ipw_priv *priv)
2961 struct list_head *element, *safe;
2962 struct ieee80211_network *network = NULL;
2963 unsigned long flags;
2965 spin_lock_irqsave(&priv->ieee->lock, flags);
2966 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2967 network = list_entry(element, struct ieee80211_network, list);
2968 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2970 list_add_tail(&network->list,
2971 &priv->ieee->network_free_list);
2974 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2978 * Check that card is still alive.
2979 * Reads debug register from domain0.
2980 * If card is present, pre-defined value should
2984 * @return 1 if card is present, 0 otherwise
2986 static inline int ipw_alive(struct ipw_priv *priv)
2988 return ipw_read32(priv, 0x90) == 0xd55555d5;
2991 /* timeout in msec, attempted in 10-msec quanta */
2992 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2998 if ((ipw_read32(priv, addr) & mask) == mask)
3002 } while (i < timeout);
3007 /* These functions load the firmware and micro code for the operation of
3008 * the ipw hardware. It assumes the buffer has all the bits for the
3009 * image and the caller is handling the memory allocation and clean up.
3012 static int ipw_stop_master(struct ipw_priv *priv)
3016 IPW_DEBUG_TRACE(">> \n");
3017 /* stop master. typical delay - 0 */
3018 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3020 /* timeout is in msec, polled in 10-msec quanta */
3021 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3022 IPW_RESET_REG_MASTER_DISABLED, 100);
3024 IPW_ERROR("wait for stop master failed after 100ms\n");
3028 IPW_DEBUG_INFO("stop master %dms\n", rc);
3033 static void ipw_arc_release(struct ipw_priv *priv)
3035 IPW_DEBUG_TRACE(">> \n");
3038 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3040 /* no one knows timing, for safety add some delay */
3049 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3051 int rc = 0, i, addr;
3055 image = (__le16 *) data;
3057 IPW_DEBUG_TRACE(">> \n");
3059 rc = ipw_stop_master(priv);
3064 for (addr = IPW_SHARED_LOWER_BOUND;
3065 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3066 ipw_write32(priv, addr, 0);
3069 /* no ucode (yet) */
3070 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3071 /* destroy DMA queues */
3072 /* reset sequence */
3074 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3075 ipw_arc_release(priv);
3076 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3080 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3083 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3086 /* enable ucode store */
3087 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3088 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3094 * Do NOT set indirect address register once and then
3095 * store data to indirect data register in the loop.
3096 * It seems very reasonable, but in this case DINO do not
3097 * accept ucode. It is essential to set address each time.
3099 /* load new ipw uCode */
3100 for (i = 0; i < len / 2; i++)
3101 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3102 le16_to_cpu(image[i]));
3105 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3106 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3108 /* this is where the igx / win driver deveates from the VAP driver. */
3110 /* wait for alive response */
3111 for (i = 0; i < 100; i++) {
3112 /* poll for incoming data */
3113 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3114 if (cr & DINO_RXFIFO_DATA)
3119 if (cr & DINO_RXFIFO_DATA) {
3120 /* alive_command_responce size is NOT multiple of 4 */
3121 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3123 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3124 response_buffer[i] =
3125 cpu_to_le32(ipw_read_reg32(priv,
3126 IPW_BASEBAND_RX_FIFO_READ));
3127 memcpy(&priv->dino_alive, response_buffer,
3128 sizeof(priv->dino_alive));
3129 if (priv->dino_alive.alive_command == 1
3130 && priv->dino_alive.ucode_valid == 1) {
3133 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3134 "of %02d/%02d/%02d %02d:%02d\n",
3135 priv->dino_alive.software_revision,
3136 priv->dino_alive.software_revision,
3137 priv->dino_alive.device_identifier,
3138 priv->dino_alive.device_identifier,
3139 priv->dino_alive.time_stamp[0],
3140 priv->dino_alive.time_stamp[1],
3141 priv->dino_alive.time_stamp[2],
3142 priv->dino_alive.time_stamp[3],
3143 priv->dino_alive.time_stamp[4]);
3145 IPW_DEBUG_INFO("Microcode is not alive\n");
3149 IPW_DEBUG_INFO("No alive response from DINO\n");
3153 /* disable DINO, otherwise for some reason
3154 firmware have problem getting alive resp. */
3155 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3160 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3164 struct fw_chunk *chunk;
3165 dma_addr_t shared_phys;
3168 IPW_DEBUG_TRACE("<< : \n");
3169 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3174 memmove(shared_virt, data, len);
3177 rc = ipw_fw_dma_enable(priv);
3179 if (priv->sram_desc.last_cb_index > 0) {
3180 /* the DMA is already ready this would be a bug. */
3186 chunk = (struct fw_chunk *)(data + offset);
3187 offset += sizeof(struct fw_chunk);
3188 /* build DMA packet and queue up for sending */
3189 /* dma to chunk->address, the chunk->length bytes from data +
3192 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3193 le32_to_cpu(chunk->address),
3194 le32_to_cpu(chunk->length));
3196 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3200 offset += le32_to_cpu(chunk->length);
3201 } while (offset < len);
3203 /* Run the DMA and wait for the answer */
3204 rc = ipw_fw_dma_kick(priv);
3206 IPW_ERROR("dmaKick Failed\n");
3210 rc = ipw_fw_dma_wait(priv);
3212 IPW_ERROR("dmaWaitSync Failed\n");
3216 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3221 static int ipw_stop_nic(struct ipw_priv *priv)
3226 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3228 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3229 IPW_RESET_REG_MASTER_DISABLED, 500);
3231 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3235 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3240 static void ipw_start_nic(struct ipw_priv *priv)
3242 IPW_DEBUG_TRACE(">>\n");
3244 /* prvHwStartNic release ARC */
3245 ipw_clear_bit(priv, IPW_RESET_REG,
3246 IPW_RESET_REG_MASTER_DISABLED |
3247 IPW_RESET_REG_STOP_MASTER |
3248 CBD_RESET_REG_PRINCETON_RESET);
3250 /* enable power management */
3251 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3252 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3254 IPW_DEBUG_TRACE("<<\n");
3257 static int ipw_init_nic(struct ipw_priv *priv)
3261 IPW_DEBUG_TRACE(">>\n");
3264 /* set "initialization complete" bit to move adapter to D0 state */
3265 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3267 /* low-level PLL activation */
3268 ipw_write32(priv, IPW_READ_INT_REGISTER,
3269 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3271 /* wait for clock stabilization */
3272 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3273 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3275 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3277 /* assert SW reset */
3278 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3282 /* set "initialization complete" bit to move adapter to D0 state */
3283 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3285 IPW_DEBUG_TRACE(">>\n");
3289 /* Call this function from process context, it will sleep in request_firmware.
3290 * Probe is an ok place to call this from.
3292 static int ipw_reset_nic(struct ipw_priv *priv)
3295 unsigned long flags;
3297 IPW_DEBUG_TRACE(">>\n");
3299 rc = ipw_init_nic(priv);
3301 spin_lock_irqsave(&priv->lock, flags);
3302 /* Clear the 'host command active' bit... */
3303 priv->status &= ~STATUS_HCMD_ACTIVE;
3304 wake_up_interruptible(&priv->wait_command_queue);
3305 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3306 wake_up_interruptible(&priv->wait_state);
3307 spin_unlock_irqrestore(&priv->lock, flags);
3309 IPW_DEBUG_TRACE("<<\n");
3322 static int ipw_get_fw(struct ipw_priv *priv,
3323 const struct firmware **raw, const char *name)
3328 /* ask firmware_class module to get the boot firmware off disk */
3329 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3331 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3335 if ((*raw)->size < sizeof(*fw)) {
3336 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3340 fw = (void *)(*raw)->data;
3342 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3343 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3344 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3345 name, (*raw)->size);
3349 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3351 le32_to_cpu(fw->ver) >> 16,
3352 le32_to_cpu(fw->ver) & 0xff,
3353 (*raw)->size - sizeof(*fw));
3357 #define IPW_RX_BUF_SIZE (3000)
3359 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3360 struct ipw_rx_queue *rxq)
3362 unsigned long flags;
3365 spin_lock_irqsave(&rxq->lock, flags);
3367 INIT_LIST_HEAD(&rxq->rx_free);
3368 INIT_LIST_HEAD(&rxq->rx_used);
3370 /* Fill the rx_used queue with _all_ of the Rx buffers */
3371 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3372 /* In the reset function, these buffers may have been allocated
3373 * to an SKB, so we need to unmap and free potential storage */
3374 if (rxq->pool[i].skb != NULL) {
3375 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3376 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3377 dev_kfree_skb(rxq->pool[i].skb);
3378 rxq->pool[i].skb = NULL;
3380 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3383 /* Set us so that we have processed and used all buffers, but have
3384 * not restocked the Rx queue with fresh buffers */
3385 rxq->read = rxq->write = 0;
3386 rxq->free_count = 0;
3387 spin_unlock_irqrestore(&rxq->lock, flags);
3391 static int fw_loaded = 0;
3392 static const struct firmware *raw = NULL;
3394 static void free_firmware(void)
3397 release_firmware(raw);
3403 #define free_firmware() do {} while (0)
3406 static int ipw_load(struct ipw_priv *priv)
3409 const struct firmware *raw = NULL;
3412 u8 *boot_img, *ucode_img, *fw_img;
3414 int rc = 0, retries = 3;
3416 switch (priv->ieee->iw_mode) {
3418 name = "ipw2200-ibss.fw";
3420 #ifdef CONFIG_IPW2200_MONITOR
3421 case IW_MODE_MONITOR:
3422 name = "ipw2200-sniffer.fw";
3426 name = "ipw2200-bss.fw";
3438 rc = ipw_get_fw(priv, &raw, name);
3445 fw = (void *)raw->data;
3446 boot_img = &fw->data[0];
3447 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3448 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3449 le32_to_cpu(fw->ucode_size)];
3455 priv->rxq = ipw_rx_queue_alloc(priv);
3457 ipw_rx_queue_reset(priv, priv->rxq);
3459 IPW_ERROR("Unable to initialize Rx queue\n");
3464 /* Ensure interrupts are disabled */
3465 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3466 priv->status &= ~STATUS_INT_ENABLED;
3468 /* ack pending interrupts */
3469 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3473 rc = ipw_reset_nic(priv);
3475 IPW_ERROR("Unable to reset NIC\n");
3479 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3480 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3482 /* DMA the initial boot firmware into the device */
3483 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3485 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3489 /* kick start the device */
3490 ipw_start_nic(priv);
3492 /* wait for the device to finish its initial startup sequence */
3493 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3494 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3496 IPW_ERROR("device failed to boot initial fw image\n");
3499 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3501 /* ack fw init done interrupt */
3502 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3504 /* DMA the ucode into the device */
3505 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3507 IPW_ERROR("Unable to load ucode: %d\n", rc);
3514 /* DMA bss firmware into the device */
3515 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3517 IPW_ERROR("Unable to load firmware: %d\n", rc);
3524 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3526 rc = ipw_queue_reset(priv);
3528 IPW_ERROR("Unable to initialize queues\n");
3532 /* Ensure interrupts are disabled */
3533 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3534 /* ack pending interrupts */
3535 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3537 /* kick start the device */
3538 ipw_start_nic(priv);
3540 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3542 IPW_WARNING("Parity error. Retrying init.\n");
3547 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3552 /* wait for the device */
3553 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3554 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3556 IPW_ERROR("device failed to start within 500ms\n");
3559 IPW_DEBUG_INFO("device response after %dms\n", rc);
3561 /* ack fw init done interrupt */
3562 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3564 /* read eeprom data and initialize the eeprom region of sram */
3565 priv->eeprom_delay = 1;
3566 ipw_eeprom_init_sram(priv);
3568 /* enable interrupts */
3569 ipw_enable_interrupts(priv);
3571 /* Ensure our queue has valid packets */
3572 ipw_rx_queue_replenish(priv);
3574 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3576 /* ack pending interrupts */
3577 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3580 release_firmware(raw);
3586 ipw_rx_queue_free(priv, priv->rxq);
3589 ipw_tx_queue_free(priv);
3591 release_firmware(raw);
3603 * Theory of operation
3605 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3606 * 2 empty entries always kept in the buffer to protect from overflow.
3608 * For Tx queue, there are low mark and high mark limits. If, after queuing
3609 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3610 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3613 * The IPW operates with six queues, one receive queue in the device's
3614 * sram, one transmit queue for sending commands to the device firmware,
3615 * and four transmit queues for data.
3617 * The four transmit queues allow for performing quality of service (qos)
3618 * transmissions as per the 802.11 protocol. Currently Linux does not
3619 * provide a mechanism to the user for utilizing prioritized queues, so
3620 * we only utilize the first data transmit queue (queue1).
3624 * Driver allocates buffers of this size for Rx
3628 * ipw_rx_queue_space - Return number of free slots available in queue.
3630 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3632 int s = q->read - q->write;
3635 /* keep some buffer to not confuse full and empty queue */
3642 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3644 int s = q->last_used - q->first_empty;
3647 s -= 2; /* keep some reserve to not confuse empty and full situations */
3653 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3655 return (++index == n_bd) ? 0 : index;
3659 * Initialize common DMA queue structure
3661 * @param q queue to init
3662 * @param count Number of BD's to allocate. Should be power of 2
3663 * @param read_register Address for 'read' register
3664 * (not offset within BAR, full address)
3665 * @param write_register Address for 'write' register
3666 * (not offset within BAR, full address)
3667 * @param base_register Address for 'base' register
3668 * (not offset within BAR, full address)
3669 * @param size Address for 'size' register
3670 * (not offset within BAR, full address)
3672 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3673 int count, u32 read, u32 write, u32 base, u32 size)
3677 q->low_mark = q->n_bd / 4;
3678 if (q->low_mark < 4)
3681 q->high_mark = q->n_bd / 8;
3682 if (q->high_mark < 2)
3685 q->first_empty = q->last_used = 0;
3689 ipw_write32(priv, base, q->dma_addr);
3690 ipw_write32(priv, size, count);
3691 ipw_write32(priv, read, 0);
3692 ipw_write32(priv, write, 0);
3694 _ipw_read32(priv, 0x90);
3697 static int ipw_queue_tx_init(struct ipw_priv *priv,
3698 struct clx2_tx_queue *q,
3699 int count, u32 read, u32 write, u32 base, u32 size)
3701 struct pci_dev *dev = priv->pci_dev;
3703 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3705 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3710 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3712 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3713 sizeof(q->bd[0]) * count);
3719 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3724 * Free one TFD, those at index [txq->q.last_used].
3725 * Do NOT advance any indexes
3730 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3731 struct clx2_tx_queue *txq)
3733 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3734 struct pci_dev *dev = priv->pci_dev;
3738 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3739 /* nothing to cleanup after for host commands */
3743 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3744 IPW_ERROR("Too many chunks: %i\n",
3745 le32_to_cpu(bd->u.data.num_chunks));
3746 /** @todo issue fatal error, it is quite serious situation */
3750 /* unmap chunks if any */
3751 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3752 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3753 le16_to_cpu(bd->u.data.chunk_len[i]),
3755 if (txq->txb[txq->q.last_used]) {
3756 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3757 txq->txb[txq->q.last_used] = NULL;
3763 * Deallocate DMA queue.
3765 * Empty queue by removing and destroying all BD's.
3771 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3773 struct clx2_queue *q = &txq->q;
3774 struct pci_dev *dev = priv->pci_dev;
3779 /* first, empty all BD's */
3780 for (; q->first_empty != q->last_used;
3781 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3782 ipw_queue_tx_free_tfd(priv, txq);
3785 /* free buffers belonging to queue itself */
3786 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3790 /* 0 fill whole structure */
3791 memset(txq, 0, sizeof(*txq));
3795 * Destroy all DMA queues and structures
3799 static void ipw_tx_queue_free(struct ipw_priv *priv)
3802 ipw_queue_tx_free(priv, &priv->txq_cmd);
3805 ipw_queue_tx_free(priv, &priv->txq[0]);
3806 ipw_queue_tx_free(priv, &priv->txq[1]);
3807 ipw_queue_tx_free(priv, &priv->txq[2]);
3808 ipw_queue_tx_free(priv, &priv->txq[3]);
3811 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3813 /* First 3 bytes are manufacturer */
3814 bssid[0] = priv->mac_addr[0];
3815 bssid[1] = priv->mac_addr[1];
3816 bssid[2] = priv->mac_addr[2];
3818 /* Last bytes are random */
3819 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3821 bssid[0] &= 0xfe; /* clear multicast bit */
3822 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3825 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3827 struct ipw_station_entry entry;
3830 for (i = 0; i < priv->num_stations; i++) {
3831 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3832 /* Another node is active in network */
3833 priv->missed_adhoc_beacons = 0;
3834 if (!(priv->config & CFG_STATIC_CHANNEL))
3835 /* when other nodes drop out, we drop out */
3836 priv->config &= ~CFG_ADHOC_PERSIST;
3842 if (i == MAX_STATIONS)
3843 return IPW_INVALID_STATION;
3845 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3848 entry.support_mode = 0;
3849 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3850 memcpy(priv->stations[i], bssid, ETH_ALEN);
3851 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3852 &entry, sizeof(entry));
3853 priv->num_stations++;
3858 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3862 for (i = 0; i < priv->num_stations; i++)
3863 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3866 return IPW_INVALID_STATION;
3869 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3873 if (priv->status & STATUS_ASSOCIATING) {
3874 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3875 queue_work(priv->workqueue, &priv->disassociate);
3879 if (!(priv->status & STATUS_ASSOCIATED)) {
3880 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3884 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3886 priv->assoc_request.bssid,
3887 priv->assoc_request.channel);
3889 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3890 priv->status |= STATUS_DISASSOCIATING;
3893 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3895 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3897 err = ipw_send_associate(priv, &priv->assoc_request);
3899 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3906 static int ipw_disassociate(void *data)
3908 struct ipw_priv *priv = data;
3909 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3911 ipw_send_disassociate(data, 0);
3912 netif_carrier_off(priv->net_dev);
3916 static void ipw_bg_disassociate(struct work_struct *work)
3918 struct ipw_priv *priv =
3919 container_of(work, struct ipw_priv, disassociate);
3920 mutex_lock(&priv->mutex);
3921 ipw_disassociate(priv);
3922 mutex_unlock(&priv->mutex);
3925 static void ipw_system_config(struct work_struct *work)
3927 struct ipw_priv *priv =
3928 container_of(work, struct ipw_priv, system_config);
3930 #ifdef CONFIG_IPW2200_PROMISCUOUS
3931 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3932 priv->sys_config.accept_all_data_frames = 1;
3933 priv->sys_config.accept_non_directed_frames = 1;
3934 priv->sys_config.accept_all_mgmt_bcpr = 1;
3935 priv->sys_config.accept_all_mgmt_frames = 1;
3939 ipw_send_system_config(priv);
3942 struct ipw_status_code {
3947 static const struct ipw_status_code ipw_status_codes[] = {
3948 {0x00, "Successful"},
3949 {0x01, "Unspecified failure"},
3950 {0x0A, "Cannot support all requested capabilities in the "
3951 "Capability information field"},
3952 {0x0B, "Reassociation denied due to inability to confirm that "
3953 "association exists"},
3954 {0x0C, "Association denied due to reason outside the scope of this "
3957 "Responding station does not support the specified authentication "
3960 "Received an Authentication frame with authentication sequence "
3961 "transaction sequence number out of expected sequence"},
3962 {0x0F, "Authentication rejected because of challenge failure"},
3963 {0x10, "Authentication rejected due to timeout waiting for next "
3964 "frame in sequence"},
3965 {0x11, "Association denied because AP is unable to handle additional "
3966 "associated stations"},
3968 "Association denied due to requesting station not supporting all "
3969 "of the datarates in the BSSBasicServiceSet Parameter"},
3971 "Association denied due to requesting station not supporting "
3972 "short preamble operation"},
3974 "Association denied due to requesting station not supporting "
3977 "Association denied due to requesting station not supporting "
3980 "Association denied due to requesting station not supporting "
3981 "short slot operation"},
3983 "Association denied due to requesting station not supporting "
3984 "DSSS-OFDM operation"},
3985 {0x28, "Invalid Information Element"},
3986 {0x29, "Group Cipher is not valid"},
3987 {0x2A, "Pairwise Cipher is not valid"},
3988 {0x2B, "AKMP is not valid"},
3989 {0x2C, "Unsupported RSN IE version"},
3990 {0x2D, "Invalid RSN IE Capabilities"},
3991 {0x2E, "Cipher suite is rejected per security policy"},
3994 static const char *ipw_get_status_code(u16 status)
3997 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3998 if (ipw_status_codes[i].status == (status & 0xff))
3999 return ipw_status_codes[i].reason;
4000 return "Unknown status value.";
4003 static void inline average_init(struct average *avg)
4005 memset(avg, 0, sizeof(*avg));
4008 #define DEPTH_RSSI 8
4009 #define DEPTH_NOISE 16
4010 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4012 return ((depth-1)*prev_avg + val)/depth;
4015 static void average_add(struct average *avg, s16 val)
4017 avg->sum -= avg->entries[avg->pos];
4019 avg->entries[avg->pos++] = val;
4020 if (unlikely(avg->pos == AVG_ENTRIES)) {
4026 static s16 average_value(struct average *avg)
4028 if (!unlikely(avg->init)) {
4030 return avg->sum / avg->pos;
4034 return avg->sum / AVG_ENTRIES;
4037 static void ipw_reset_stats(struct ipw_priv *priv)
4039 u32 len = sizeof(u32);
4043 average_init(&priv->average_missed_beacons);
4044 priv->exp_avg_rssi = -60;
4045 priv->exp_avg_noise = -85 + 0x100;
4047 priv->last_rate = 0;
4048 priv->last_missed_beacons = 0;
4049 priv->last_rx_packets = 0;
4050 priv->last_tx_packets = 0;
4051 priv->last_tx_failures = 0;
4053 /* Firmware managed, reset only when NIC is restarted, so we have to
4054 * normalize on the current value */
4055 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4056 &priv->last_rx_err, &len);
4057 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4058 &priv->last_tx_failures, &len);
4060 /* Driver managed, reset with each association */
4061 priv->missed_adhoc_beacons = 0;
4062 priv->missed_beacons = 0;
4063 priv->tx_packets = 0;
4064 priv->rx_packets = 0;
4068 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4071 u32 mask = priv->rates_mask;
4072 /* If currently associated in B mode, restrict the maximum
4073 * rate match to B rates */
4074 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4075 mask &= IEEE80211_CCK_RATES_MASK;
4077 /* TODO: Verify that the rate is supported by the current rates
4080 while (i && !(mask & i))
4083 case IEEE80211_CCK_RATE_1MB_MASK:
4085 case IEEE80211_CCK_RATE_2MB_MASK:
4087 case IEEE80211_CCK_RATE_5MB_MASK:
4089 case IEEE80211_OFDM_RATE_6MB_MASK:
4091 case IEEE80211_OFDM_RATE_9MB_MASK:
4093 case IEEE80211_CCK_RATE_11MB_MASK:
4095 case IEEE80211_OFDM_RATE_12MB_MASK:
4097 case IEEE80211_OFDM_RATE_18MB_MASK:
4099 case IEEE80211_OFDM_RATE_24MB_MASK:
4101 case IEEE80211_OFDM_RATE_36MB_MASK:
4103 case IEEE80211_OFDM_RATE_48MB_MASK:
4105 case IEEE80211_OFDM_RATE_54MB_MASK:
4109 if (priv->ieee->mode == IEEE_B)
4115 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4117 u32 rate, len = sizeof(rate);
4120 if (!(priv->status & STATUS_ASSOCIATED))
4123 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4124 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4127 IPW_DEBUG_INFO("failed querying ordinals.\n");
4131 return ipw_get_max_rate(priv);
4134 case IPW_TX_RATE_1MB:
4136 case IPW_TX_RATE_2MB:
4138 case IPW_TX_RATE_5MB:
4140 case IPW_TX_RATE_6MB:
4142 case IPW_TX_RATE_9MB:
4144 case IPW_TX_RATE_11MB:
4146 case IPW_TX_RATE_12MB:
4148 case IPW_TX_RATE_18MB:
4150 case IPW_TX_RATE_24MB:
4152 case IPW_TX_RATE_36MB:
4154 case IPW_TX_RATE_48MB:
4156 case IPW_TX_RATE_54MB:
4163 #define IPW_STATS_INTERVAL (2 * HZ)
4164 static void ipw_gather_stats(struct ipw_priv *priv)
4166 u32 rx_err, rx_err_delta, rx_packets_delta;
4167 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4168 u32 missed_beacons_percent, missed_beacons_delta;
4170 u32 len = sizeof(u32);
4172 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4176 if (!(priv->status & STATUS_ASSOCIATED)) {
4181 /* Update the statistics */
4182 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4183 &priv->missed_beacons, &len);
4184 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4185 priv->last_missed_beacons = priv->missed_beacons;
4186 if (priv->assoc_request.beacon_interval) {
4187 missed_beacons_percent = missed_beacons_delta *
4188 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4189 (IPW_STATS_INTERVAL * 10);
4191 missed_beacons_percent = 0;
4193 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4195 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4196 rx_err_delta = rx_err - priv->last_rx_err;
4197 priv->last_rx_err = rx_err;
4199 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4200 tx_failures_delta = tx_failures - priv->last_tx_failures;
4201 priv->last_tx_failures = tx_failures;
4203 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4204 priv->last_rx_packets = priv->rx_packets;
4206 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4207 priv->last_tx_packets = priv->tx_packets;
4209 /* Calculate quality based on the following:
4211 * Missed beacon: 100% = 0, 0% = 70% missed
4212 * Rate: 60% = 1Mbs, 100% = Max
4213 * Rx and Tx errors represent a straight % of total Rx/Tx
4214 * RSSI: 100% = > -50, 0% = < -80
4215 * Rx errors: 100% = 0, 0% = 50% missed
4217 * The lowest computed quality is used.
4220 #define BEACON_THRESHOLD 5
4221 beacon_quality = 100 - missed_beacons_percent;
4222 if (beacon_quality < BEACON_THRESHOLD)
4225 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4226 (100 - BEACON_THRESHOLD);
4227 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4228 beacon_quality, missed_beacons_percent);
4230 priv->last_rate = ipw_get_current_rate(priv);
4231 max_rate = ipw_get_max_rate(priv);
4232 rate_quality = priv->last_rate * 40 / max_rate + 60;
4233 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4234 rate_quality, priv->last_rate / 1000000);
4236 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4237 rx_quality = 100 - (rx_err_delta * 100) /
4238 (rx_packets_delta + rx_err_delta);
4241 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4242 rx_quality, rx_err_delta, rx_packets_delta);
4244 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4245 tx_quality = 100 - (tx_failures_delta * 100) /
4246 (tx_packets_delta + tx_failures_delta);
4249 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4250 tx_quality, tx_failures_delta, tx_packets_delta);
4252 rssi = priv->exp_avg_rssi;
4255 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4256 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4257 (priv->ieee->perfect_rssi - rssi) *
4258 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4259 62 * (priv->ieee->perfect_rssi - rssi))) /
4260 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4261 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4262 if (signal_quality > 100)
4263 signal_quality = 100;
4264 else if (signal_quality < 1)
4267 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4268 signal_quality, rssi);
4270 quality = min(beacon_quality,
4272 min(tx_quality, min(rx_quality, signal_quality))));
4273 if (quality == beacon_quality)
4274 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4276 if (quality == rate_quality)
4277 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4279 if (quality == tx_quality)
4280 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4282 if (quality == rx_quality)
4283 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4285 if (quality == signal_quality)
4286 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4289 priv->quality = quality;
4291 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4292 IPW_STATS_INTERVAL);
4295 static void ipw_bg_gather_stats(struct work_struct *work)
4297 struct ipw_priv *priv =
4298 container_of(work, struct ipw_priv, gather_stats.work);
4299 mutex_lock(&priv->mutex);
4300 ipw_gather_stats(priv);
4301 mutex_unlock(&priv->mutex);
4304 /* Missed beacon behavior:
4305 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4306 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4307 * Above disassociate threshold, give up and stop scanning.
4308 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4309 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4312 priv->notif_missed_beacons = missed_count;
4314 if (missed_count > priv->disassociate_threshold &&
4315 priv->status & STATUS_ASSOCIATED) {
4316 /* If associated and we've hit the missed
4317 * beacon threshold, disassociate, turn
4318 * off roaming, and abort any active scans */
4319 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4320 IPW_DL_STATE | IPW_DL_ASSOC,
4321 "Missed beacon: %d - disassociate\n", missed_count);
4322 priv->status &= ~STATUS_ROAMING;
4323 if (priv->status & STATUS_SCANNING) {
4324 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4326 "Aborting scan with missed beacon.\n");
4327 queue_work(priv->workqueue, &priv->abort_scan);
4330 queue_work(priv->workqueue, &priv->disassociate);
4334 if (priv->status & STATUS_ROAMING) {
4335 /* If we are currently roaming, then just
4336 * print a debug statement... */
4337 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4338 "Missed beacon: %d - roam in progress\n",
4344 (missed_count > priv->roaming_threshold &&
4345 missed_count <= priv->disassociate_threshold)) {
4346 /* If we are not already roaming, set the ROAM
4347 * bit in the status and kick off a scan.
4348 * This can happen several times before we reach
4349 * disassociate_threshold. */
4350 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4351 "Missed beacon: %d - initiate "
4352 "roaming\n", missed_count);
4353 if (!(priv->status & STATUS_ROAMING)) {
4354 priv->status |= STATUS_ROAMING;
4355 if (!(priv->status & STATUS_SCANNING))
4356 queue_delayed_work(priv->workqueue,
4357 &priv->request_scan, 0);
4362 if (priv->status & STATUS_SCANNING &&
4363 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4364 /* Stop scan to keep fw from getting
4365 * stuck (only if we aren't roaming --
4366 * otherwise we'll never scan more than 2 or 3
4368 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4369 "Aborting scan with missed beacon.\n");
4370 queue_work(priv->workqueue, &priv->abort_scan);
4373 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4376 static void ipw_scan_event(struct work_struct *work)
4378 union iwreq_data wrqu;
4380 struct ipw_priv *priv =
4381 container_of(work, struct ipw_priv, scan_event.work);
4383 wrqu.data.length = 0;
4384 wrqu.data.flags = 0;
4385 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4388 static void handle_scan_event(struct ipw_priv *priv)
4390 /* Only userspace-requested scan completion events go out immediately */
4391 if (!priv->user_requested_scan) {
4392 if (!delayed_work_pending(&priv->scan_event))
4393 queue_delayed_work(priv->workqueue, &priv->scan_event,
4394 round_jiffies_relative(msecs_to_jiffies(4000)));
4396 union iwreq_data wrqu;
4398 priv->user_requested_scan = 0;
4399 cancel_delayed_work(&priv->scan_event);
4401 wrqu.data.length = 0;
4402 wrqu.data.flags = 0;
4403 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4408 * Handle host notification packet.
4409 * Called from interrupt routine
4411 static void ipw_rx_notification(struct ipw_priv *priv,
4412 struct ipw_rx_notification *notif)
4414 DECLARE_SSID_BUF(ssid);
4415 u16 size = le16_to_cpu(notif->size);
4416 notif->size = le16_to_cpu(notif->size);
4418 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4420 switch (notif->subtype) {
4421 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4422 struct notif_association *assoc = ¬if->u.assoc;
4424 switch (assoc->state) {
4425 case CMAS_ASSOCIATED:{
4426 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4428 "associated: '%s' %pM \n",
4429 print_ssid(ssid, priv->essid,
4433 switch (priv->ieee->iw_mode) {
4435 memcpy(priv->ieee->bssid,
4436 priv->bssid, ETH_ALEN);
4440 memcpy(priv->ieee->bssid,
4441 priv->bssid, ETH_ALEN);
4443 /* clear out the station table */
4444 priv->num_stations = 0;
4447 ("queueing adhoc check\n");
4448 queue_delayed_work(priv->
4458 priv->status &= ~STATUS_ASSOCIATING;
4459 priv->status |= STATUS_ASSOCIATED;
4460 queue_work(priv->workqueue,
4461 &priv->system_config);
4463 #ifdef CONFIG_IPW2200_QOS
4464 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4465 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4466 if ((priv->status & STATUS_AUTH) &&
4467 (IPW_GET_PACKET_STYPE(¬if->u.raw)
4468 == IEEE80211_STYPE_ASSOC_RESP)) {
4471 ieee80211_assoc_response)
4473 && (size <= 2314)) {
4483 ieee80211_rx_mgt(priv->
4488 ¬if->u.raw, &stats);
4493 schedule_work(&priv->link_up);
4498 case CMAS_AUTHENTICATED:{
4500 status & (STATUS_ASSOCIATED |
4502 struct notif_authenticate *auth
4504 IPW_DEBUG(IPW_DL_NOTIF |
4507 "deauthenticated: '%s' "
4509 ": (0x%04X) - %s \n",
4516 le16_to_cpu(auth->status),
4522 ~(STATUS_ASSOCIATING |
4526 schedule_work(&priv->link_down);
4530 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4532 "authenticated: '%s' %pM\n",
4533 print_ssid(ssid, priv->essid,
4540 if (priv->status & STATUS_AUTH) {
4542 ieee80211_assoc_response
4546 ieee80211_assoc_response
4548 IPW_DEBUG(IPW_DL_NOTIF |
4551 "association failed (0x%04X): %s\n",
4552 le16_to_cpu(resp->status),
4558 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4560 "disassociated: '%s' %pM \n",
4561 print_ssid(ssid, priv->essid,
4566 ~(STATUS_DISASSOCIATING |
4567 STATUS_ASSOCIATING |
4568 STATUS_ASSOCIATED | STATUS_AUTH);
4569 if (priv->assoc_network
4570 && (priv->assoc_network->
4572 WLAN_CAPABILITY_IBSS))
4573 ipw_remove_current_network
4576 schedule_work(&priv->link_down);
4581 case CMAS_RX_ASSOC_RESP:
4585 IPW_ERROR("assoc: unknown (%d)\n",
4593 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4594 struct notif_authenticate *auth = ¬if->u.auth;
4595 switch (auth->state) {
4596 case CMAS_AUTHENTICATED:
4597 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4598 "authenticated: '%s' %pM \n",
4599 print_ssid(ssid, priv->essid,
4602 priv->status |= STATUS_AUTH;
4606 if (priv->status & STATUS_AUTH) {
4607 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4609 "authentication failed (0x%04X): %s\n",
4610 le16_to_cpu(auth->status),
4611 ipw_get_status_code(le16_to_cpu
4615 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4617 "deauthenticated: '%s' %pM\n",
4618 print_ssid(ssid, priv->essid,
4622 priv->status &= ~(STATUS_ASSOCIATING |
4626 schedule_work(&priv->link_down);
4629 case CMAS_TX_AUTH_SEQ_1:
4630 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4633 case CMAS_RX_AUTH_SEQ_2:
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4637 case CMAS_AUTH_SEQ_1_PASS:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4641 case CMAS_AUTH_SEQ_1_FAIL:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4645 case CMAS_TX_AUTH_SEQ_3:
4646 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4649 case CMAS_RX_AUTH_SEQ_4:
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4653 case CMAS_AUTH_SEQ_2_PASS:
4654 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4657 case CMAS_AUTH_SEQ_2_FAIL:
4658 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4659 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4662 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663 IPW_DL_ASSOC, "TX_ASSOC\n");
4665 case CMAS_RX_ASSOC_RESP:
4666 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4667 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4670 case CMAS_ASSOCIATED:
4671 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4672 IPW_DL_ASSOC, "ASSOCIATED\n");
4675 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4682 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4683 struct notif_channel_result *x =
4684 ¬if->u.channel_result;
4686 if (size == sizeof(*x)) {
4687 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4690 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4691 "(should be %zd)\n",
4697 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4698 struct notif_scan_complete *x = ¬if->u.scan_complete;
4699 if (size == sizeof(*x)) {
4701 ("Scan completed: type %d, %d channels, "
4702 "%d status\n", x->scan_type,
4703 x->num_channels, x->status);
4705 IPW_ERROR("Scan completed of wrong size %d "
4706 "(should be %zd)\n",
4711 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4713 wake_up_interruptible(&priv->wait_state);
4714 cancel_delayed_work(&priv->scan_check);
4716 if (priv->status & STATUS_EXIT_PENDING)
4719 priv->ieee->scans++;
4721 #ifdef CONFIG_IPW2200_MONITOR
4722 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4723 priv->status |= STATUS_SCAN_FORCED;
4724 queue_delayed_work(priv->workqueue,
4725 &priv->request_scan, 0);
4728 priv->status &= ~STATUS_SCAN_FORCED;
4729 #endif /* CONFIG_IPW2200_MONITOR */
4731 /* Do queued direct scans first */
4732 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4733 queue_delayed_work(priv->workqueue,
4734 &priv->request_direct_scan, 0);
4737 if (!(priv->status & (STATUS_ASSOCIATED |
4738 STATUS_ASSOCIATING |
4740 STATUS_DISASSOCIATING)))
4741 queue_work(priv->workqueue, &priv->associate);
4742 else if (priv->status & STATUS_ROAMING) {
4743 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4744 /* If a scan completed and we are in roam mode, then
4745 * the scan that completed was the one requested as a
4746 * result of entering roam... so, schedule the
4748 queue_work(priv->workqueue,
4751 /* Don't schedule if we aborted the scan */
4752 priv->status &= ~STATUS_ROAMING;
4753 } else if (priv->status & STATUS_SCAN_PENDING)
4754 queue_delayed_work(priv->workqueue,
4755 &priv->request_scan, 0);
4756 else if (priv->config & CFG_BACKGROUND_SCAN
4757 && priv->status & STATUS_ASSOCIATED)
4758 queue_delayed_work(priv->workqueue,
4759 &priv->request_scan,
4760 round_jiffies_relative(HZ));
4762 /* Send an empty event to user space.
4763 * We don't send the received data on the event because
4764 * it would require us to do complex transcoding, and
4765 * we want to minimise the work done in the irq handler
4766 * Use a request to extract the data.
4767 * Also, we generate this even for any scan, regardless
4768 * on how the scan was initiated. User space can just
4769 * sync on periodic scan to get fresh data...
4771 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4772 handle_scan_event(priv);
4776 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4777 struct notif_frag_length *x = ¬if->u.frag_len;
4779 if (size == sizeof(*x))
4780 IPW_ERROR("Frag length: %d\n",
4781 le16_to_cpu(x->frag_length));
4783 IPW_ERROR("Frag length of wrong size %d "
4784 "(should be %zd)\n",
4789 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4790 struct notif_link_deterioration *x =
4791 ¬if->u.link_deterioration;
4793 if (size == sizeof(*x)) {
4794 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4795 "link deterioration: type %d, cnt %d\n",
4796 x->silence_notification_type,
4798 memcpy(&priv->last_link_deterioration, x,
4801 IPW_ERROR("Link Deterioration of wrong size %d "
4802 "(should be %zd)\n",
4808 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4809 IPW_ERROR("Dino config\n");
4811 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4812 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4817 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4818 struct notif_beacon_state *x = ¬if->u.beacon_state;
4819 if (size != sizeof(*x)) {
4821 ("Beacon state of wrong size %d (should "
4822 "be %zd)\n", size, sizeof(*x));
4826 if (le32_to_cpu(x->state) ==
4827 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4828 ipw_handle_missed_beacon(priv,
4835 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4836 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
4837 if (size == sizeof(*x)) {
4838 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4839 "0x%02x station %d\n",
4840 x->key_state, x->security_type,
4846 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4851 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4852 struct notif_calibration *x = ¬if->u.calibration;
4854 if (size == sizeof(*x)) {
4855 memcpy(&priv->calib, x, sizeof(*x));
4856 IPW_DEBUG_INFO("TODO: Calibration\n");
4861 ("Calibration of wrong size %d (should be %zd)\n",
4866 case HOST_NOTIFICATION_NOISE_STATS:{
4867 if (size == sizeof(u32)) {
4868 priv->exp_avg_noise =
4869 exponential_average(priv->exp_avg_noise,
4870 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4876 ("Noise stat is wrong size %d (should be %zd)\n",
4882 IPW_DEBUG_NOTIF("Unknown notification: "
4883 "subtype=%d,flags=0x%2x,size=%d\n",
4884 notif->subtype, notif->flags, size);
4889 * Destroys all DMA structures and initialise them again
4892 * @return error code
4894 static int ipw_queue_reset(struct ipw_priv *priv)
4897 /** @todo customize queue sizes */
4898 int nTx = 64, nTxCmd = 8;
4899 ipw_tx_queue_free(priv);
4901 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4902 IPW_TX_CMD_QUEUE_READ_INDEX,
4903 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4904 IPW_TX_CMD_QUEUE_BD_BASE,
4905 IPW_TX_CMD_QUEUE_BD_SIZE);
4907 IPW_ERROR("Tx Cmd queue init failed\n");
4911 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4912 IPW_TX_QUEUE_0_READ_INDEX,
4913 IPW_TX_QUEUE_0_WRITE_INDEX,
4914 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4916 IPW_ERROR("Tx 0 queue init failed\n");
4919 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4920 IPW_TX_QUEUE_1_READ_INDEX,
4921 IPW_TX_QUEUE_1_WRITE_INDEX,
4922 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4924 IPW_ERROR("Tx 1 queue init failed\n");
4927 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4928 IPW_TX_QUEUE_2_READ_INDEX,
4929 IPW_TX_QUEUE_2_WRITE_INDEX,
4930 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4932 IPW_ERROR("Tx 2 queue init failed\n");
4935 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4936 IPW_TX_QUEUE_3_READ_INDEX,
4937 IPW_TX_QUEUE_3_WRITE_INDEX,
4938 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4940 IPW_ERROR("Tx 3 queue init failed\n");
4944 priv->rx_bufs_min = 0;
4945 priv->rx_pend_max = 0;
4949 ipw_tx_queue_free(priv);
4954 * Reclaim Tx queue entries no more used by NIC.
4956 * When FW advances 'R' index, all entries between old and
4957 * new 'R' index need to be reclaimed. As result, some free space
4958 * forms. If there is enough free space (> low mark), wake Tx queue.
4960 * @note Need to protect against garbage in 'R' index
4964 * @return Number of used entries remains in the queue
4966 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4967 struct clx2_tx_queue *txq, int qindex)
4971 struct clx2_queue *q = &txq->q;
4973 hw_tail = ipw_read32(priv, q->reg_r);
4974 if (hw_tail >= q->n_bd) {
4976 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4980 for (; q->last_used != hw_tail;
4981 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4982 ipw_queue_tx_free_tfd(priv, txq);
4986 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4988 netif_wake_queue(priv->net_dev);
4989 used = q->first_empty - q->last_used;
4996 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4999 struct clx2_tx_queue *txq = &priv->txq_cmd;
5000 struct clx2_queue *q = &txq->q;
5001 struct tfd_frame *tfd;
5003 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5004 IPW_ERROR("No space for Tx\n");
5008 tfd = &txq->bd[q->first_empty];
5009 txq->txb[q->first_empty] = NULL;
5011 memset(tfd, 0, sizeof(*tfd));
5012 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5013 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5015 tfd->u.cmd.index = hcmd;
5016 tfd->u.cmd.length = len;
5017 memcpy(tfd->u.cmd.payload, buf, len);
5018 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5019 ipw_write32(priv, q->reg_w, q->first_empty);
5020 _ipw_read32(priv, 0x90);
5026 * Rx theory of operation
5028 * The host allocates 32 DMA target addresses and passes the host address
5029 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5033 * The host/firmware share two index registers for managing the Rx buffers.
5035 * The READ index maps to the first position that the firmware may be writing
5036 * to -- the driver can read up to (but not including) this position and get
5038 * The READ index is managed by the firmware once the card is enabled.
5040 * The WRITE index maps to the last position the driver has read from -- the
5041 * position preceding WRITE is the last slot the firmware can place a packet.
5043 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5046 * During initialization the host sets up the READ queue position to the first
5047 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5049 * When the firmware places a packet in a buffer it will advance the READ index
5050 * and fire the RX interrupt. The driver can then query the READ index and
5051 * process as many packets as possible, moving the WRITE index forward as it
5052 * resets the Rx queue buffers with new memory.
5054 * The management in the driver is as follows:
5055 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5056 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5057 * to replensish the ipw->rxq->rx_free.
5058 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5059 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5060 * 'processed' and 'read' driver indexes as well)
5061 * + A received packet is processed and handed to the kernel network stack,
5062 * detached from the ipw->rxq. The driver 'processed' index is updated.
5063 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5064 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5065 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5066 * were enough free buffers and RX_STALLED is set it is cleared.
5071 * ipw_rx_queue_alloc() Allocates rx_free
5072 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5073 * ipw_rx_queue_restock
5074 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5075 * queue, updates firmware pointers, and updates
5076 * the WRITE index. If insufficient rx_free buffers
5077 * are available, schedules ipw_rx_queue_replenish
5079 * -- enable interrupts --
5080 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5081 * READ INDEX, detaching the SKB from the pool.
5082 * Moves the packet buffer from queue to rx_used.
5083 * Calls ipw_rx_queue_restock to refill any empty
5090 * If there are slots in the RX queue that need to be restocked,
5091 * and we have free pre-allocated buffers, fill the ranks as much
5092 * as we can pulling from rx_free.
5094 * This moves the 'write' index forward to catch up with 'processed', and
5095 * also updates the memory address in the firmware to reference the new
5098 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5100 struct ipw_rx_queue *rxq = priv->rxq;
5101 struct list_head *element;
5102 struct ipw_rx_mem_buffer *rxb;
5103 unsigned long flags;
5106 spin_lock_irqsave(&rxq->lock, flags);
5108 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5109 element = rxq->rx_free.next;
5110 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5113 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5115 rxq->queue[rxq->write] = rxb;
5116 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5119 spin_unlock_irqrestore(&rxq->lock, flags);
5121 /* If the pre-allocated buffer pool is dropping low, schedule to
5123 if (rxq->free_count <= RX_LOW_WATERMARK)
5124 queue_work(priv->workqueue, &priv->rx_replenish);
5126 /* If we've added more space for the firmware to place data, tell it */
5127 if (write != rxq->write)
5128 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5132 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5133 * Also restock the Rx queue via ipw_rx_queue_restock.
5135 * This is called as a scheduled work item (except for during intialization)
5137 static void ipw_rx_queue_replenish(void *data)
5139 struct ipw_priv *priv = data;
5140 struct ipw_rx_queue *rxq = priv->rxq;
5141 struct list_head *element;
5142 struct ipw_rx_mem_buffer *rxb;
5143 unsigned long flags;
5145 spin_lock_irqsave(&rxq->lock, flags);
5146 while (!list_empty(&rxq->rx_used)) {
5147 element = rxq->rx_used.next;
5148 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5149 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5151 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5152 priv->net_dev->name);
5153 /* We don't reschedule replenish work here -- we will
5154 * call the restock method and if it still needs
5155 * more buffers it will schedule replenish */
5161 pci_map_single(priv->pci_dev, rxb->skb->data,
5162 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5164 list_add_tail(&rxb->list, &rxq->rx_free);
5167 spin_unlock_irqrestore(&rxq->lock, flags);
5169 ipw_rx_queue_restock(priv);
5172 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5174 struct ipw_priv *priv =
5175 container_of(work, struct ipw_priv, rx_replenish);
5176 mutex_lock(&priv->mutex);
5177 ipw_rx_queue_replenish(priv);
5178 mutex_unlock(&priv->mutex);
5181 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5182 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5183 * This free routine walks the list of POOL entries and if SKB is set to
5184 * non NULL it is unmapped and freed
5186 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5193 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5194 if (rxq->pool[i].skb != NULL) {
5195 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5196 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5197 dev_kfree_skb(rxq->pool[i].skb);
5204 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5206 struct ipw_rx_queue *rxq;
5209 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5210 if (unlikely(!rxq)) {
5211 IPW_ERROR("memory allocation failed\n");
5214 spin_lock_init(&rxq->lock);
5215 INIT_LIST_HEAD(&rxq->rx_free);
5216 INIT_LIST_HEAD(&rxq->rx_used);
5218 /* Fill the rx_used queue with _all_ of the Rx buffers */
5219 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5220 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5222 /* Set us so that we have processed and used all buffers, but have
5223 * not restocked the Rx queue with fresh buffers */
5224 rxq->read = rxq->write = 0;
5225 rxq->free_count = 0;
5230 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5232 rate &= ~IEEE80211_BASIC_RATE_MASK;
5233 if (ieee_mode == IEEE_A) {
5235 case IEEE80211_OFDM_RATE_6MB:
5236 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5238 case IEEE80211_OFDM_RATE_9MB:
5239 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5241 case IEEE80211_OFDM_RATE_12MB:
5243 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5244 case IEEE80211_OFDM_RATE_18MB:
5246 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5247 case IEEE80211_OFDM_RATE_24MB:
5249 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5250 case IEEE80211_OFDM_RATE_36MB:
5252 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5253 case IEEE80211_OFDM_RATE_48MB:
5255 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5256 case IEEE80211_OFDM_RATE_54MB:
5258 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5266 case IEEE80211_CCK_RATE_1MB:
5267 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5268 case IEEE80211_CCK_RATE_2MB:
5269 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5270 case IEEE80211_CCK_RATE_5MB:
5271 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5272 case IEEE80211_CCK_RATE_11MB:
5273 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5276 /* If we are limited to B modulations, bail at this point */
5277 if (ieee_mode == IEEE_B)
5282 case IEEE80211_OFDM_RATE_6MB:
5283 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5284 case IEEE80211_OFDM_RATE_9MB:
5285 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5286 case IEEE80211_OFDM_RATE_12MB:
5287 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5288 case IEEE80211_OFDM_RATE_18MB:
5289 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5290 case IEEE80211_OFDM_RATE_24MB:
5291 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5292 case IEEE80211_OFDM_RATE_36MB:
5293 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5294 case IEEE80211_OFDM_RATE_48MB:
5295 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5296 case IEEE80211_OFDM_RATE_54MB:
5297 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5303 static int ipw_compatible_rates(struct ipw_priv *priv,
5304 const struct ieee80211_network *network,
5305 struct ipw_supported_rates *rates)
5309 memset(rates, 0, sizeof(*rates));
5310 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5311 rates->num_rates = 0;
5312 for (i = 0; i < num_rates; i++) {
5313 if (!ipw_is_rate_in_mask(priv, network->mode,
5314 network->rates[i])) {
5316 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5317 IPW_DEBUG_SCAN("Adding masked mandatory "
5320 rates->supported_rates[rates->num_rates++] =
5325 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5326 network->rates[i], priv->rates_mask);
5330 rates->supported_rates[rates->num_rates++] = network->rates[i];
5333 num_rates = min(network->rates_ex_len,
5334 (u8) (IPW_MAX_RATES - num_rates));
5335 for (i = 0; i < num_rates; i++) {
5336 if (!ipw_is_rate_in_mask(priv, network->mode,
5337 network->rates_ex[i])) {
5338 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5339 IPW_DEBUG_SCAN("Adding masked mandatory "
5341 network->rates_ex[i]);
5342 rates->supported_rates[rates->num_rates++] =
5347 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5348 network->rates_ex[i], priv->rates_mask);
5352 rates->supported_rates[rates->num_rates++] =
5353 network->rates_ex[i];
5359 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5360 const struct ipw_supported_rates *src)
5363 for (i = 0; i < src->num_rates; i++)
5364 dest->supported_rates[i] = src->supported_rates[i];
5365 dest->num_rates = src->num_rates;
5368 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5369 * mask should ever be used -- right now all callers to add the scan rates are
5370 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5371 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5372 u8 modulation, u32 rate_mask)
5374 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5375 IEEE80211_BASIC_RATE_MASK : 0;
5377 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5378 rates->supported_rates[rates->num_rates++] =
5379 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5381 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5382 rates->supported_rates[rates->num_rates++] =
5383 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5385 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5386 rates->supported_rates[rates->num_rates++] = basic_mask |
5387 IEEE80211_CCK_RATE_5MB;
5389 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5390 rates->supported_rates[rates->num_rates++] = basic_mask |
5391 IEEE80211_CCK_RATE_11MB;
5394 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5395 u8 modulation, u32 rate_mask)
5397 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5398 IEEE80211_BASIC_RATE_MASK : 0;
5400 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5401 rates->supported_rates[rates->num_rates++] = basic_mask |
5402 IEEE80211_OFDM_RATE_6MB;
5404 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5405 rates->supported_rates[rates->num_rates++] =
5406 IEEE80211_OFDM_RATE_9MB;
5408 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5409 rates->supported_rates[rates->num_rates++] = basic_mask |
5410 IEEE80211_OFDM_RATE_12MB;
5412 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5413 rates->supported_rates[rates->num_rates++] =
5414 IEEE80211_OFDM_RATE_18MB;
5416 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5417 rates->supported_rates[rates->num_rates++] = basic_mask |
5418 IEEE80211_OFDM_RATE_24MB;
5420 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5421 rates->supported_rates[rates->num_rates++] =
5422 IEEE80211_OFDM_RATE_36MB;
5424 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5425 rates->supported_rates[rates->num_rates++] =
5426 IEEE80211_OFDM_RATE_48MB;
5428 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5429 rates->supported_rates[rates->num_rates++] =
5430 IEEE80211_OFDM_RATE_54MB;
5433 struct ipw_network_match {
5434 struct ieee80211_network *network;
5435 struct ipw_supported_rates rates;
5438 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5439 struct ipw_network_match *match,
5440 struct ieee80211_network *network,
5443 struct ipw_supported_rates rates;
5444 DECLARE_SSID_BUF(ssid);
5446 /* Verify that this network's capability is compatible with the
5447 * current mode (AdHoc or Infrastructure) */
5448 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5449 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5450 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5451 "capability mismatch.\n",
5452 print_ssid(ssid, network->ssid,
5458 if (unlikely(roaming)) {
5459 /* If we are roaming, then ensure check if this is a valid
5460 * network to try and roam to */
5461 if ((network->ssid_len != match->network->ssid_len) ||
5462 memcmp(network->ssid, match->network->ssid,
5463 network->ssid_len)) {
5464 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5465 "because of non-network ESSID.\n",
5466 print_ssid(ssid, network->ssid,
5472 /* If an ESSID has been configured then compare the broadcast
5474 if ((priv->config & CFG_STATIC_ESSID) &&
5475 ((network->ssid_len != priv->essid_len) ||
5476 memcmp(network->ssid, priv->essid,
5477 min(network->ssid_len, priv->essid_len)))) {
5478 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5481 print_ssid(ssid, network->ssid,
5484 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5485 "because of ESSID mismatch: '%s'.\n",
5486 escaped, network->bssid,
5487 print_ssid(ssid, priv->essid,
5493 /* If the old network rate is better than this one, don't bother
5494 * testing everything else. */
5496 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5497 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5498 "current network.\n",
5499 print_ssid(ssid, match->network->ssid,
5500 match->network->ssid_len));
5502 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5503 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5504 "current network.\n",
5505 print_ssid(ssid, match->network->ssid,
5506 match->network->ssid_len));
5510 /* Now go through and see if the requested network is valid... */
5511 if (priv->ieee->scan_age != 0 &&
5512 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5513 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5514 "because of age: %ums.\n",
5515 print_ssid(ssid, network->ssid,
5518 jiffies_to_msecs(jiffies -
5519 network->last_scanned));
5523 if ((priv->config & CFG_STATIC_CHANNEL) &&
5524 (network->channel != priv->channel)) {
5525 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5526 "because of channel mismatch: %d != %d.\n",
5527 print_ssid(ssid, network->ssid,
5530 network->channel, priv->channel);
5534 /* Verify privacy compatability */
5535 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5536 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5537 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5538 "because of privacy mismatch: %s != %s.\n",
5539 print_ssid(ssid, network->ssid,
5543 capability & CAP_PRIVACY_ON ? "on" : "off",
5545 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5550 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5551 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5552 "because of the same BSSID match: %pM"
5553 ".\n", print_ssid(ssid, network->ssid,
5560 /* Filter out any incompatible freq / mode combinations */
5561 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5562 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5563 "because of invalid frequency/mode "
5565 print_ssid(ssid, network->ssid,
5571 /* Ensure that the rates supported by the driver are compatible with
5572 * this AP, including verification of basic rates (mandatory) */
5573 if (!ipw_compatible_rates(priv, network, &rates)) {
5574 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5575 "because configured rate mask excludes "
5576 "AP mandatory rate.\n",
5577 print_ssid(ssid, network->ssid,
5583 if (rates.num_rates == 0) {
5584 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5585 "because of no compatible rates.\n",
5586 print_ssid(ssid, network->ssid,
5592 /* TODO: Perform any further minimal comparititive tests. We do not
5593 * want to put too much policy logic here; intelligent scan selection
5594 * should occur within a generic IEEE 802.11 user space tool. */
5596 /* Set up 'new' AP to this network */
5597 ipw_copy_rates(&match->rates, &rates);
5598 match->network = network;
5599 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5600 print_ssid(ssid, network->ssid, network->ssid_len),
5606 static void ipw_merge_adhoc_network(struct work_struct *work)
5608 DECLARE_SSID_BUF(ssid);
5609 struct ipw_priv *priv =
5610 container_of(work, struct ipw_priv, merge_networks);
5611 struct ieee80211_network *network = NULL;
5612 struct ipw_network_match match = {
5613 .network = priv->assoc_network
5616 if ((priv->status & STATUS_ASSOCIATED) &&
5617 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5618 /* First pass through ROAM process -- look for a better
5620 unsigned long flags;
5622 spin_lock_irqsave(&priv->ieee->lock, flags);
5623 list_for_each_entry(network, &priv->ieee->network_list, list) {
5624 if (network != priv->assoc_network)
5625 ipw_find_adhoc_network(priv, &match, network,
5628 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5630 if (match.network == priv->assoc_network) {
5631 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5636 mutex_lock(&priv->mutex);
5637 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5638 IPW_DEBUG_MERGE("remove network %s\n",
5639 print_ssid(ssid, priv->essid,
5641 ipw_remove_current_network(priv);
5644 ipw_disassociate(priv);
5645 priv->assoc_network = match.network;
5646 mutex_unlock(&priv->mutex);
5651 static int ipw_best_network(struct ipw_priv *priv,
5652 struct ipw_network_match *match,
5653 struct ieee80211_network *network, int roaming)
5655 struct ipw_supported_rates rates;
5656 DECLARE_SSID_BUF(ssid);
5658 /* Verify that this network's capability is compatible with the
5659 * current mode (AdHoc or Infrastructure) */
5660 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5661 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5662 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5663 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5664 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5665 "capability mismatch.\n",
5666 print_ssid(ssid, network->ssid,
5672 if (unlikely(roaming)) {
5673 /* If we are roaming, then ensure check if this is a valid
5674 * network to try and roam to */
5675 if ((network->ssid_len != match->network->ssid_len) ||
5676 memcmp(network->ssid, match->network->ssid,
5677 network->ssid_len)) {
5678 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5679 "because of non-network ESSID.\n",
5680 print_ssid(ssid, network->ssid,
5686 /* If an ESSID has been configured then compare the broadcast
5688 if ((priv->config & CFG_STATIC_ESSID) &&
5689 ((network->ssid_len != priv->essid_len) ||
5690 memcmp(network->ssid, priv->essid,
5691 min(network->ssid_len, priv->essid_len)))) {
5692 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5694 print_ssid(ssid, network->ssid,
5697 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5698 "because of ESSID mismatch: '%s'.\n",
5699 escaped, network->bssid,
5700 print_ssid(ssid, priv->essid,
5706 /* If the old network rate is better than this one, don't bother
5707 * testing everything else. */
5708 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5709 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5711 print_ssid(ssid, network->ssid, network->ssid_len),
5713 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5714 "'%s (%pM)' has a stronger signal.\n",
5715 escaped, network->bssid,
5716 print_ssid(ssid, match->network->ssid,
5717 match->network->ssid_len),
5718 match->network->bssid);
5722 /* If this network has already had an association attempt within the
5723 * last 3 seconds, do not try and associate again... */
5724 if (network->last_associate &&
5725 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5726 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5727 "because of storming (%ums since last "
5728 "assoc attempt).\n",
5729 print_ssid(ssid, network->ssid,
5732 jiffies_to_msecs(jiffies -
5733 network->last_associate));
5737 /* Now go through and see if the requested network is valid... */
5738 if (priv->ieee->scan_age != 0 &&
5739 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5740 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5741 "because of age: %ums.\n",
5742 print_ssid(ssid, network->ssid,
5745 jiffies_to_msecs(jiffies -
5746 network->last_scanned));
5750 if ((priv->config & CFG_STATIC_CHANNEL) &&
5751 (network->channel != priv->channel)) {
5752 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5753 "because of channel mismatch: %d != %d.\n",
5754 print_ssid(ssid, network->ssid,
5757 network->channel, priv->channel);
5761 /* Verify privacy compatability */
5762 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5763 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5764 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5765 "because of privacy mismatch: %s != %s.\n",
5766 print_ssid(ssid, network->ssid,
5769 priv->capability & CAP_PRIVACY_ON ? "on" :
5771 network->capability &
5772 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5776 if ((priv->config & CFG_STATIC_BSSID) &&
5777 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5778 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5779 "because of BSSID mismatch: %pM.\n",
5780 print_ssid(ssid, network->ssid,
5782 network->bssid, priv->bssid);
5786 /* Filter out any incompatible freq / mode combinations */
5787 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5788 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5789 "because of invalid frequency/mode "
5791 print_ssid(ssid, network->ssid,
5797 /* Filter out invalid channel in current GEO */
5798 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5799 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5800 "because of invalid channel in current GEO\n",
5801 print_ssid(ssid, network->ssid,
5807 /* Ensure that the rates supported by the driver are compatible with
5808 * this AP, including verification of basic rates (mandatory) */
5809 if (!ipw_compatible_rates(priv, network, &rates)) {
5810 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5811 "because configured rate mask excludes "
5812 "AP mandatory rate.\n",
5813 print_ssid(ssid, network->ssid,
5819 if (rates.num_rates == 0) {
5820 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5821 "because of no compatible rates.\n",
5822 print_ssid(ssid, network->ssid,
5828 /* TODO: Perform any further minimal comparititive tests. We do not
5829 * want to put too much policy logic here; intelligent scan selection
5830 * should occur within a generic IEEE 802.11 user space tool. */
5832 /* Set up 'new' AP to this network */
5833 ipw_copy_rates(&match->rates, &rates);
5834 match->network = network;
5836 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5837 print_ssid(ssid, network->ssid, network->ssid_len),
5843 static void ipw_adhoc_create(struct ipw_priv *priv,
5844 struct ieee80211_network *network)
5846 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5850 * For the purposes of scanning, we can set our wireless mode
5851 * to trigger scans across combinations of bands, but when it
5852 * comes to creating a new ad-hoc network, we have tell the FW
5853 * exactly which band to use.
5855 * We also have the possibility of an invalid channel for the
5856 * chossen band. Attempting to create a new ad-hoc network
5857 * with an invalid channel for wireless mode will trigger a
5861 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5862 case IEEE80211_52GHZ_BAND:
5863 network->mode = IEEE_A;
5864 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5866 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5867 IPW_WARNING("Overriding invalid channel\n");
5868 priv->channel = geo->a[0].channel;
5872 case IEEE80211_24GHZ_BAND:
5873 if (priv->ieee->mode & IEEE_G)
5874 network->mode = IEEE_G;
5876 network->mode = IEEE_B;
5877 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5879 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5880 IPW_WARNING("Overriding invalid channel\n");
5881 priv->channel = geo->bg[0].channel;
5886 IPW_WARNING("Overriding invalid channel\n");
5887 if (priv->ieee->mode & IEEE_A) {
5888 network->mode = IEEE_A;
5889 priv->channel = geo->a[0].channel;
5890 } else if (priv->ieee->mode & IEEE_G) {
5891 network->mode = IEEE_G;
5892 priv->channel = geo->bg[0].channel;
5894 network->mode = IEEE_B;
5895 priv->channel = geo->bg[0].channel;
5900 network->channel = priv->channel;
5901 priv->config |= CFG_ADHOC_PERSIST;
5902 ipw_create_bssid(priv, network->bssid);
5903 network->ssid_len = priv->essid_len;
5904 memcpy(network->ssid, priv->essid, priv->essid_len);
5905 memset(&network->stats, 0, sizeof(network->stats));
5906 network->capability = WLAN_CAPABILITY_IBSS;
5907 if (!(priv->config & CFG_PREAMBLE_LONG))
5908 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5909 if (priv->capability & CAP_PRIVACY_ON)
5910 network->capability |= WLAN_CAPABILITY_PRIVACY;
5911 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5912 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5913 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5914 memcpy(network->rates_ex,
5915 &priv->rates.supported_rates[network->rates_len],
5916 network->rates_ex_len);
5917 network->last_scanned = 0;
5919 network->last_associate = 0;
5920 network->time_stamp[0] = 0;
5921 network->time_stamp[1] = 0;
5922 network->beacon_interval = 100; /* Default */
5923 network->listen_interval = 10; /* Default */
5924 network->atim_window = 0; /* Default */
5925 network->wpa_ie_len = 0;
5926 network->rsn_ie_len = 0;
5929 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5931 struct ipw_tgi_tx_key key;
5933 if (!(priv->ieee->sec.flags & (1 << index)))
5937 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5938 key.security_type = type;
5939 key.station_index = 0; /* always 0 for BSS */
5941 /* 0 for new key; previous value of counter (after fatal error) */
5942 key.tx_counter[0] = cpu_to_le32(0);
5943 key.tx_counter[1] = cpu_to_le32(0);
5945 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5948 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5950 struct ipw_wep_key key;
5953 key.cmd_id = DINO_CMD_WEP_KEY;
5956 /* Note: AES keys cannot be set for multiple times.
5957 * Only set it at the first time. */
5958 for (i = 0; i < 4; i++) {
5959 key.key_index = i | type;
5960 if (!(priv->ieee->sec.flags & (1 << i))) {
5965 key.key_size = priv->ieee->sec.key_sizes[i];
5966 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5968 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5972 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5974 if (priv->ieee->host_encrypt)
5979 priv->sys_config.disable_unicast_decryption = 0;
5980 priv->ieee->host_decrypt = 0;
5983 priv->sys_config.disable_unicast_decryption = 1;
5984 priv->ieee->host_decrypt = 1;
5987 priv->sys_config.disable_unicast_decryption = 0;
5988 priv->ieee->host_decrypt = 0;
5991 priv->sys_config.disable_unicast_decryption = 1;
5998 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6000 if (priv->ieee->host_encrypt)
6005 priv->sys_config.disable_multicast_decryption = 0;
6008 priv->sys_config.disable_multicast_decryption = 1;
6011 priv->sys_config.disable_multicast_decryption = 0;
6014 priv->sys_config.disable_multicast_decryption = 1;
6021 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6023 switch (priv->ieee->sec.level) {
6025 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6026 ipw_send_tgi_tx_key(priv,
6027 DCT_FLAG_EXT_SECURITY_CCM,
6028 priv->ieee->sec.active_key);
6030 if (!priv->ieee->host_mc_decrypt)
6031 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6034 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6035 ipw_send_tgi_tx_key(priv,
6036 DCT_FLAG_EXT_SECURITY_TKIP,
6037 priv->ieee->sec.active_key);
6040 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6041 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6042 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6050 static void ipw_adhoc_check(void *data)
6052 struct ipw_priv *priv = data;
6054 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6055 !(priv->config & CFG_ADHOC_PERSIST)) {
6056 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6057 IPW_DL_STATE | IPW_DL_ASSOC,
6058 "Missed beacon: %d - disassociate\n",
6059 priv->missed_adhoc_beacons);
6060 ipw_remove_current_network(priv);
6061 ipw_disassociate(priv);
6065 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6066 le16_to_cpu(priv->assoc_request.beacon_interval));
6069 static void ipw_bg_adhoc_check(struct work_struct *work)
6071 struct ipw_priv *priv =
6072 container_of(work, struct ipw_priv, adhoc_check.work);
6073 mutex_lock(&priv->mutex);
6074 ipw_adhoc_check(priv);
6075 mutex_unlock(&priv->mutex);
6078 static void ipw_debug_config(struct ipw_priv *priv)
6080 DECLARE_SSID_BUF(ssid);
6081 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6082 "[CFG 0x%08X]\n", priv->config);
6083 if (priv->config & CFG_STATIC_CHANNEL)
6084 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6086 IPW_DEBUG_INFO("Channel unlocked.\n");
6087 if (priv->config & CFG_STATIC_ESSID)
6088 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6089 print_ssid(ssid, priv->essid, priv->essid_len));
6091 IPW_DEBUG_INFO("ESSID unlocked.\n");
6092 if (priv->config & CFG_STATIC_BSSID)
6093 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6095 IPW_DEBUG_INFO("BSSID unlocked.\n");
6096 if (priv->capability & CAP_PRIVACY_ON)
6097 IPW_DEBUG_INFO("PRIVACY on\n");
6099 IPW_DEBUG_INFO("PRIVACY off\n");
6100 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6103 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6105 /* TODO: Verify that this works... */
6106 struct ipw_fixed_rate fr = {
6107 .tx_rates = priv->rates_mask
6112 /* Identify 'current FW band' and match it with the fixed
6115 switch (priv->ieee->freq_band) {
6116 case IEEE80211_52GHZ_BAND: /* A only */
6118 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6119 /* Invalid fixed rate mask */
6121 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6126 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6129 default: /* 2.4Ghz or Mixed */
6131 if (mode == IEEE_B) {
6132 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6133 /* Invalid fixed rate mask */
6135 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6142 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6143 IEEE80211_OFDM_RATES_MASK)) {
6144 /* Invalid fixed rate mask */
6146 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6151 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6152 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6153 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6156 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6157 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6158 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6161 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6162 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6163 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6166 fr.tx_rates |= mask;
6170 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6171 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6174 static void ipw_abort_scan(struct ipw_priv *priv)
6178 if (priv->status & STATUS_SCAN_ABORTING) {
6179 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6182 priv->status |= STATUS_SCAN_ABORTING;
6184 err = ipw_send_scan_abort(priv);
6186 IPW_DEBUG_HC("Request to abort scan failed.\n");
6189 static void ipw_add_scan_channels(struct ipw_priv *priv,
6190 struct ipw_scan_request_ext *scan,
6193 int channel_index = 0;
6194 const struct ieee80211_geo *geo;
6197 geo = ieee80211_get_geo(priv->ieee);
6199 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6200 int start = channel_index;
6201 for (i = 0; i < geo->a_channels; i++) {
6202 if ((priv->status & STATUS_ASSOCIATED) &&
6203 geo->a[i].channel == priv->channel)
6206 scan->channels_list[channel_index] = geo->a[i].channel;
6207 ipw_set_scan_type(scan, channel_index,
6209 flags & IEEE80211_CH_PASSIVE_ONLY ?
6210 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6214 if (start != channel_index) {
6215 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6216 (channel_index - start);
6221 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6222 int start = channel_index;
6223 if (priv->config & CFG_SPEED_SCAN) {
6225 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6226 /* nop out the list */
6231 while (channel_index < IPW_SCAN_CHANNELS) {
6233 priv->speed_scan[priv->speed_scan_pos];
6235 priv->speed_scan_pos = 0;
6236 channel = priv->speed_scan[0];
6238 if ((priv->status & STATUS_ASSOCIATED) &&
6239 channel == priv->channel) {
6240 priv->speed_scan_pos++;
6244 /* If this channel has already been
6245 * added in scan, break from loop
6246 * and this will be the first channel
6249 if (channels[channel - 1] != 0)
6252 channels[channel - 1] = 1;
6253 priv->speed_scan_pos++;
6255 scan->channels_list[channel_index] = channel;
6257 ieee80211_channel_to_index(priv->ieee, channel);
6258 ipw_set_scan_type(scan, channel_index,
6261 IEEE80211_CH_PASSIVE_ONLY ?
6262 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6266 for (i = 0; i < geo->bg_channels; i++) {
6267 if ((priv->status & STATUS_ASSOCIATED) &&
6268 geo->bg[i].channel == priv->channel)
6271 scan->channels_list[channel_index] =
6273 ipw_set_scan_type(scan, channel_index,
6276 IEEE80211_CH_PASSIVE_ONLY ?
6277 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6282 if (start != channel_index) {
6283 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6284 (channel_index - start);
6289 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6291 /* staying on passive channels longer than the DTIM interval during a
6292 * scan, while associated, causes the firmware to cancel the scan
6293 * without notification. Hence, don't stay on passive channels longer
6294 * than the beacon interval.
6296 if (priv->status & STATUS_ASSOCIATED
6297 && priv->assoc_network->beacon_interval > 10)
6298 return priv->assoc_network->beacon_interval - 10;
6303 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6305 struct ipw_scan_request_ext scan;
6306 int err = 0, scan_type;
6308 if (!(priv->status & STATUS_INIT) ||
6309 (priv->status & STATUS_EXIT_PENDING))
6312 mutex_lock(&priv->mutex);
6314 if (direct && (priv->direct_scan_ssid_len == 0)) {
6315 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6316 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6320 if (priv->status & STATUS_SCANNING) {
6321 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6322 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6323 STATUS_SCAN_PENDING;
6327 if (!(priv->status & STATUS_SCAN_FORCED) &&
6328 priv->status & STATUS_SCAN_ABORTING) {
6329 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6330 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6331 STATUS_SCAN_PENDING;
6335 if (priv->status & STATUS_RF_KILL_MASK) {
6336 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6337 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6338 STATUS_SCAN_PENDING;
6342 memset(&scan, 0, sizeof(scan));
6343 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6345 if (type == IW_SCAN_TYPE_PASSIVE) {
6346 IPW_DEBUG_WX("use passive scanning\n");
6347 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6348 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6349 cpu_to_le16(ipw_passive_dwell_time(priv));
6350 ipw_add_scan_channels(priv, &scan, scan_type);
6354 /* Use active scan by default. */
6355 if (priv->config & CFG_SPEED_SCAN)
6356 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6359 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6362 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6365 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6366 cpu_to_le16(ipw_passive_dwell_time(priv));
6367 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6369 #ifdef CONFIG_IPW2200_MONITOR
6370 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6374 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6375 case IEEE80211_52GHZ_BAND:
6376 band = (u8) (IPW_A_MODE << 6) | 1;
6377 channel = priv->channel;
6380 case IEEE80211_24GHZ_BAND:
6381 band = (u8) (IPW_B_MODE << 6) | 1;
6382 channel = priv->channel;
6386 band = (u8) (IPW_B_MODE << 6) | 1;
6391 scan.channels_list[0] = band;
6392 scan.channels_list[1] = channel;
6393 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6395 /* NOTE: The card will sit on this channel for this time
6396 * period. Scan aborts are timing sensitive and frequently
6397 * result in firmware restarts. As such, it is best to
6398 * set a small dwell_time here and just keep re-issuing
6399 * scans. Otherwise fast channel hopping will not actually
6402 * TODO: Move SPEED SCAN support to all modes and bands */
6403 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6406 #endif /* CONFIG_IPW2200_MONITOR */
6407 /* Honor direct scans first, otherwise if we are roaming make
6408 * this a direct scan for the current network. Finally,
6409 * ensure that every other scan is a fast channel hop scan */
6411 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6412 priv->direct_scan_ssid_len);
6414 IPW_DEBUG_HC("Attempt to send SSID command "
6419 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6420 } else if ((priv->status & STATUS_ROAMING)
6421 || (!(priv->status & STATUS_ASSOCIATED)
6422 && (priv->config & CFG_STATIC_ESSID)
6423 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6424 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6426 IPW_DEBUG_HC("Attempt to send SSID command "
6431 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6433 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6435 ipw_add_scan_channels(priv, &scan, scan_type);
6436 #ifdef CONFIG_IPW2200_MONITOR
6441 err = ipw_send_scan_request_ext(priv, &scan);
6443 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6447 priv->status |= STATUS_SCANNING;
6449 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6450 priv->direct_scan_ssid_len = 0;
6452 priv->status &= ~STATUS_SCAN_PENDING;
6454 queue_delayed_work(priv->workqueue, &priv->scan_check,
6455 IPW_SCAN_CHECK_WATCHDOG);
6457 mutex_unlock(&priv->mutex);
6461 static void ipw_request_passive_scan(struct work_struct *work)
6463 struct ipw_priv *priv =
6464 container_of(work, struct ipw_priv, request_passive_scan.work);
6465 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6468 static void ipw_request_scan(struct work_struct *work)
6470 struct ipw_priv *priv =
6471 container_of(work, struct ipw_priv, request_scan.work);
6472 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6475 static void ipw_request_direct_scan(struct work_struct *work)
6477 struct ipw_priv *priv =
6478 container_of(work, struct ipw_priv, request_direct_scan.work);
6479 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6482 static void ipw_bg_abort_scan(struct work_struct *work)
6484 struct ipw_priv *priv =
6485 container_of(work, struct ipw_priv, abort_scan);
6486 mutex_lock(&priv->mutex);
6487 ipw_abort_scan(priv);
6488 mutex_unlock(&priv->mutex);
6491 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6493 /* This is called when wpa_supplicant loads and closes the driver
6495 priv->ieee->wpa_enabled = value;
6499 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6501 struct ieee80211_device *ieee = priv->ieee;
6502 struct ieee80211_security sec = {
6503 .flags = SEC_AUTH_MODE,
6507 if (value & IW_AUTH_ALG_SHARED_KEY) {
6508 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6510 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6511 sec.auth_mode = WLAN_AUTH_OPEN;
6513 } else if (value & IW_AUTH_ALG_LEAP) {
6514 sec.auth_mode = WLAN_AUTH_LEAP;
6519 if (ieee->set_security)
6520 ieee->set_security(ieee->dev, &sec);
6527 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6530 /* make sure WPA is enabled */
6531 ipw_wpa_enable(priv, 1);
6534 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6535 char *capabilities, int length)
6537 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6539 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6548 static int ipw_wx_set_genie(struct net_device *dev,
6549 struct iw_request_info *info,
6550 union iwreq_data *wrqu, char *extra)
6552 struct ipw_priv *priv = ieee80211_priv(dev);
6553 struct ieee80211_device *ieee = priv->ieee;
6557 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6558 (wrqu->data.length && extra == NULL))
6561 if (wrqu->data.length) {
6562 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6568 memcpy(buf, extra, wrqu->data.length);
6569 kfree(ieee->wpa_ie);
6571 ieee->wpa_ie_len = wrqu->data.length;
6573 kfree(ieee->wpa_ie);
6574 ieee->wpa_ie = NULL;
6575 ieee->wpa_ie_len = 0;
6578 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6584 static int ipw_wx_get_genie(struct net_device *dev,
6585 struct iw_request_info *info,
6586 union iwreq_data *wrqu, char *extra)
6588 struct ipw_priv *priv = ieee80211_priv(dev);
6589 struct ieee80211_device *ieee = priv->ieee;
6592 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6593 wrqu->data.length = 0;
6597 if (wrqu->data.length < ieee->wpa_ie_len) {
6602 wrqu->data.length = ieee->wpa_ie_len;
6603 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6609 static int wext_cipher2level(int cipher)
6612 case IW_AUTH_CIPHER_NONE:
6614 case IW_AUTH_CIPHER_WEP40:
6615 case IW_AUTH_CIPHER_WEP104:
6617 case IW_AUTH_CIPHER_TKIP:
6619 case IW_AUTH_CIPHER_CCMP:
6627 static int ipw_wx_set_auth(struct net_device *dev,
6628 struct iw_request_info *info,
6629 union iwreq_data *wrqu, char *extra)
6631 struct ipw_priv *priv = ieee80211_priv(dev);
6632 struct ieee80211_device *ieee = priv->ieee;
6633 struct iw_param *param = &wrqu->param;
6634 struct lib80211_crypt_data *crypt;
6635 unsigned long flags;
6638 switch (param->flags & IW_AUTH_INDEX) {
6639 case IW_AUTH_WPA_VERSION:
6641 case IW_AUTH_CIPHER_PAIRWISE:
6642 ipw_set_hw_decrypt_unicast(priv,
6643 wext_cipher2level(param->value));
6645 case IW_AUTH_CIPHER_GROUP:
6646 ipw_set_hw_decrypt_multicast(priv,
6647 wext_cipher2level(param->value));
6649 case IW_AUTH_KEY_MGMT:
6651 * ipw2200 does not use these parameters
6655 case IW_AUTH_TKIP_COUNTERMEASURES:
6656 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6657 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6660 flags = crypt->ops->get_flags(crypt->priv);
6663 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6665 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6667 crypt->ops->set_flags(flags, crypt->priv);
6671 case IW_AUTH_DROP_UNENCRYPTED:{
6674 * wpa_supplicant calls set_wpa_enabled when the driver
6675 * is loaded and unloaded, regardless of if WPA is being
6676 * used. No other calls are made which can be used to
6677 * determine if encryption will be used or not prior to
6678 * association being expected. If encryption is not being
6679 * used, drop_unencrypted is set to false, else true -- we
6680 * can use this to determine if the CAP_PRIVACY_ON bit should
6683 struct ieee80211_security sec = {
6684 .flags = SEC_ENABLED,
6685 .enabled = param->value,
6687 priv->ieee->drop_unencrypted = param->value;
6688 /* We only change SEC_LEVEL for open mode. Others
6689 * are set by ipw_wpa_set_encryption.
6691 if (!param->value) {
6692 sec.flags |= SEC_LEVEL;
6693 sec.level = SEC_LEVEL_0;
6695 sec.flags |= SEC_LEVEL;
6696 sec.level = SEC_LEVEL_1;
6698 if (priv->ieee->set_security)
6699 priv->ieee->set_security(priv->ieee->dev, &sec);
6703 case IW_AUTH_80211_AUTH_ALG:
6704 ret = ipw_wpa_set_auth_algs(priv, param->value);
6707 case IW_AUTH_WPA_ENABLED:
6708 ret = ipw_wpa_enable(priv, param->value);
6709 ipw_disassociate(priv);
6712 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6713 ieee->ieee802_1x = param->value;
6716 case IW_AUTH_PRIVACY_INVOKED:
6717 ieee->privacy_invoked = param->value;
6727 static int ipw_wx_get_auth(struct net_device *dev,
6728 struct iw_request_info *info,
6729 union iwreq_data *wrqu, char *extra)
6731 struct ipw_priv *priv = ieee80211_priv(dev);
6732 struct ieee80211_device *ieee = priv->ieee;
6733 struct lib80211_crypt_data *crypt;
6734 struct iw_param *param = &wrqu->param;
6737 switch (param->flags & IW_AUTH_INDEX) {
6738 case IW_AUTH_WPA_VERSION:
6739 case IW_AUTH_CIPHER_PAIRWISE:
6740 case IW_AUTH_CIPHER_GROUP:
6741 case IW_AUTH_KEY_MGMT:
6743 * wpa_supplicant will control these internally
6748 case IW_AUTH_TKIP_COUNTERMEASURES:
6749 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6750 if (!crypt || !crypt->ops->get_flags)
6753 param->value = (crypt->ops->get_flags(crypt->priv) &
6754 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6758 case IW_AUTH_DROP_UNENCRYPTED:
6759 param->value = ieee->drop_unencrypted;
6762 case IW_AUTH_80211_AUTH_ALG:
6763 param->value = ieee->sec.auth_mode;
6766 case IW_AUTH_WPA_ENABLED:
6767 param->value = ieee->wpa_enabled;
6770 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6771 param->value = ieee->ieee802_1x;
6774 case IW_AUTH_ROAMING_CONTROL:
6775 case IW_AUTH_PRIVACY_INVOKED:
6776 param->value = ieee->privacy_invoked;
6785 /* SIOCSIWENCODEEXT */
6786 static int ipw_wx_set_encodeext(struct net_device *dev,
6787 struct iw_request_info *info,
6788 union iwreq_data *wrqu, char *extra)
6790 struct ipw_priv *priv = ieee80211_priv(dev);
6791 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6794 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6795 /* IPW HW can't build TKIP MIC,
6796 host decryption still needed */
6797 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6798 priv->ieee->host_mc_decrypt = 1;
6800 priv->ieee->host_encrypt = 0;
6801 priv->ieee->host_encrypt_msdu = 1;
6802 priv->ieee->host_decrypt = 1;
6805 priv->ieee->host_encrypt = 0;
6806 priv->ieee->host_encrypt_msdu = 0;
6807 priv->ieee->host_decrypt = 0;
6808 priv->ieee->host_mc_decrypt = 0;
6812 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6815 /* SIOCGIWENCODEEXT */
6816 static int ipw_wx_get_encodeext(struct net_device *dev,
6817 struct iw_request_info *info,
6818 union iwreq_data *wrqu, char *extra)
6820 struct ipw_priv *priv = ieee80211_priv(dev);
6821 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6825 static int ipw_wx_set_mlme(struct net_device *dev,
6826 struct iw_request_info *info,
6827 union iwreq_data *wrqu, char *extra)
6829 struct ipw_priv *priv = ieee80211_priv(dev);
6830 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6833 reason = cpu_to_le16(mlme->reason_code);
6835 switch (mlme->cmd) {
6836 case IW_MLME_DEAUTH:
6837 /* silently ignore */
6840 case IW_MLME_DISASSOC:
6841 ipw_disassociate(priv);
6850 #ifdef CONFIG_IPW2200_QOS
6854 * get the modulation type of the current network or
6855 * the card current mode
6857 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6861 if (priv->status & STATUS_ASSOCIATED) {
6862 unsigned long flags;
6864 spin_lock_irqsave(&priv->ieee->lock, flags);
6865 mode = priv->assoc_network->mode;
6866 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6868 mode = priv->ieee->mode;
6870 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6875 * Handle management frame beacon and probe response
6877 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6879 struct ieee80211_network *network)
6881 u32 size = sizeof(struct ieee80211_qos_parameters);
6883 if (network->capability & WLAN_CAPABILITY_IBSS)
6884 network->qos_data.active = network->qos_data.supported;
6886 if (network->flags & NETWORK_HAS_QOS_MASK) {
6887 if (active_network &&
6888 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6889 network->qos_data.active = network->qos_data.supported;
6891 if ((network->qos_data.active == 1) && (active_network == 1) &&
6892 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6893 (network->qos_data.old_param_count !=
6894 network->qos_data.param_count)) {
6895 network->qos_data.old_param_count =
6896 network->qos_data.param_count;
6897 schedule_work(&priv->qos_activate);
6898 IPW_DEBUG_QOS("QoS parameters change call "
6902 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6903 memcpy(&network->qos_data.parameters,
6904 &def_parameters_CCK, size);
6906 memcpy(&network->qos_data.parameters,
6907 &def_parameters_OFDM, size);
6909 if ((network->qos_data.active == 1) && (active_network == 1)) {
6910 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6911 schedule_work(&priv->qos_activate);
6914 network->qos_data.active = 0;
6915 network->qos_data.supported = 0;
6917 if ((priv->status & STATUS_ASSOCIATED) &&
6918 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6919 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6920 if (network->capability & WLAN_CAPABILITY_IBSS)
6921 if ((network->ssid_len ==
6922 priv->assoc_network->ssid_len) &&
6923 !memcmp(network->ssid,
6924 priv->assoc_network->ssid,
6925 network->ssid_len)) {
6926 queue_work(priv->workqueue,
6927 &priv->merge_networks);
6935 * This function set up the firmware to support QoS. It sends
6936 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6938 static int ipw_qos_activate(struct ipw_priv *priv,
6939 struct ieee80211_qos_data *qos_network_data)
6942 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6943 struct ieee80211_qos_parameters *active_one = NULL;
6944 u32 size = sizeof(struct ieee80211_qos_parameters);
6949 type = ipw_qos_current_mode(priv);
6951 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6952 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6953 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6954 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6956 if (qos_network_data == NULL) {
6957 if (type == IEEE_B) {
6958 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6959 active_one = &def_parameters_CCK;
6961 active_one = &def_parameters_OFDM;
6963 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6964 burst_duration = ipw_qos_get_burst_duration(priv);
6965 for (i = 0; i < QOS_QUEUE_NUM; i++)
6966 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6967 cpu_to_le16(burst_duration);
6968 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6969 if (type == IEEE_B) {
6970 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6972 if (priv->qos_data.qos_enable == 0)
6973 active_one = &def_parameters_CCK;
6975 active_one = priv->qos_data.def_qos_parm_CCK;
6977 if (priv->qos_data.qos_enable == 0)
6978 active_one = &def_parameters_OFDM;
6980 active_one = priv->qos_data.def_qos_parm_OFDM;
6982 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6984 unsigned long flags;
6987 spin_lock_irqsave(&priv->ieee->lock, flags);
6988 active_one = &(qos_network_data->parameters);
6989 qos_network_data->old_param_count =
6990 qos_network_data->param_count;
6991 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6992 active = qos_network_data->supported;
6993 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6996 burst_duration = ipw_qos_get_burst_duration(priv);
6997 for (i = 0; i < QOS_QUEUE_NUM; i++)
6998 qos_parameters[QOS_PARAM_SET_ACTIVE].
6999 tx_op_limit[i] = cpu_to_le16(burst_duration);
7003 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7004 err = ipw_send_qos_params_command(priv,
7005 (struct ieee80211_qos_parameters *)
7006 &(qos_parameters[0]));
7008 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7014 * send IPW_CMD_WME_INFO to the firmware
7016 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7019 struct ieee80211_qos_information_element qos_info;
7024 qos_info.elementID = QOS_ELEMENT_ID;
7025 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7027 qos_info.version = QOS_VERSION_1;
7028 qos_info.ac_info = 0;
7030 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7031 qos_info.qui_type = QOS_OUI_TYPE;
7032 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7034 ret = ipw_send_qos_info_command(priv, &qos_info);
7036 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7042 * Set the QoS parameter with the association request structure
7044 static int ipw_qos_association(struct ipw_priv *priv,
7045 struct ieee80211_network *network)
7048 struct ieee80211_qos_data *qos_data = NULL;
7049 struct ieee80211_qos_data ibss_data = {
7054 switch (priv->ieee->iw_mode) {
7056 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7058 qos_data = &ibss_data;
7062 qos_data = &network->qos_data;
7070 err = ipw_qos_activate(priv, qos_data);
7072 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7076 if (priv->qos_data.qos_enable && qos_data->supported) {
7077 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7078 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7079 return ipw_qos_set_info_element(priv);
7086 * handling the beaconing responses. if we get different QoS setting
7087 * off the network from the associated setting, adjust the QoS
7090 static int ipw_qos_association_resp(struct ipw_priv *priv,
7091 struct ieee80211_network *network)
7094 unsigned long flags;
7095 u32 size = sizeof(struct ieee80211_qos_parameters);
7096 int set_qos_param = 0;
7098 if ((priv == NULL) || (network == NULL) ||
7099 (priv->assoc_network == NULL))
7102 if (!(priv->status & STATUS_ASSOCIATED))
7105 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7108 spin_lock_irqsave(&priv->ieee->lock, flags);
7109 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7110 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7111 sizeof(struct ieee80211_qos_data));
7112 priv->assoc_network->qos_data.active = 1;
7113 if ((network->qos_data.old_param_count !=
7114 network->qos_data.param_count)) {
7116 network->qos_data.old_param_count =
7117 network->qos_data.param_count;
7121 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7122 memcpy(&priv->assoc_network->qos_data.parameters,
7123 &def_parameters_CCK, size);
7125 memcpy(&priv->assoc_network->qos_data.parameters,
7126 &def_parameters_OFDM, size);
7127 priv->assoc_network->qos_data.active = 0;
7128 priv->assoc_network->qos_data.supported = 0;
7132 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7134 if (set_qos_param == 1)
7135 schedule_work(&priv->qos_activate);
7140 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7147 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7148 ret = priv->qos_data.burst_duration_CCK;
7150 ret = priv->qos_data.burst_duration_OFDM;
7156 * Initialize the setting of QoS global
7158 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7159 int burst_enable, u32 burst_duration_CCK,
7160 u32 burst_duration_OFDM)
7162 priv->qos_data.qos_enable = enable;
7164 if (priv->qos_data.qos_enable) {
7165 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7166 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7167 IPW_DEBUG_QOS("QoS is enabled\n");
7169 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7170 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7171 IPW_DEBUG_QOS("QoS is not enabled\n");
7174 priv->qos_data.burst_enable = burst_enable;
7177 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7178 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7180 priv->qos_data.burst_duration_CCK = 0;
7181 priv->qos_data.burst_duration_OFDM = 0;
7186 * map the packet priority to the right TX Queue
7188 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7190 if (priority > 7 || !priv->qos_data.qos_enable)
7193 return from_priority_to_tx_queue[priority] - 1;
7196 static int ipw_is_qos_active(struct net_device *dev,
7197 struct sk_buff *skb)
7199 struct ipw_priv *priv = ieee80211_priv(dev);
7200 struct ieee80211_qos_data *qos_data = NULL;
7201 int active, supported;
7202 u8 *daddr = skb->data + ETH_ALEN;
7203 int unicast = !is_multicast_ether_addr(daddr);
7205 if (!(priv->status & STATUS_ASSOCIATED))
7208 qos_data = &priv->assoc_network->qos_data;
7210 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7212 qos_data->active = 0;
7214 qos_data->active = qos_data->supported;
7216 active = qos_data->active;
7217 supported = qos_data->supported;
7218 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7220 priv->qos_data.qos_enable, active, supported, unicast);
7221 if (active && priv->qos_data.qos_enable)
7228 * add QoS parameter to the TX command
7230 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7232 struct tfd_data *tfd)
7234 int tx_queue_id = 0;
7237 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7238 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7240 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7241 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7242 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7248 * background support to run QoS activate functionality
7250 static void ipw_bg_qos_activate(struct work_struct *work)
7252 struct ipw_priv *priv =
7253 container_of(work, struct ipw_priv, qos_activate);
7258 mutex_lock(&priv->mutex);
7260 if (priv->status & STATUS_ASSOCIATED)
7261 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7263 mutex_unlock(&priv->mutex);
7266 static int ipw_handle_probe_response(struct net_device *dev,
7267 struct ieee80211_probe_response *resp,
7268 struct ieee80211_network *network)
7270 struct ipw_priv *priv = ieee80211_priv(dev);
7271 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7272 (network == priv->assoc_network));
7274 ipw_qos_handle_probe_response(priv, active_network, network);
7279 static int ipw_handle_beacon(struct net_device *dev,
7280 struct ieee80211_beacon *resp,
7281 struct ieee80211_network *network)
7283 struct ipw_priv *priv = ieee80211_priv(dev);
7284 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7285 (network == priv->assoc_network));
7287 ipw_qos_handle_probe_response(priv, active_network, network);
7292 static int ipw_handle_assoc_response(struct net_device *dev,
7293 struct ieee80211_assoc_response *resp,
7294 struct ieee80211_network *network)
7296 struct ipw_priv *priv = ieee80211_priv(dev);
7297 ipw_qos_association_resp(priv, network);
7301 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7304 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7305 sizeof(*qos_param) * 3, qos_param);
7308 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7311 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7315 #endif /* CONFIG_IPW2200_QOS */
7317 static int ipw_associate_network(struct ipw_priv *priv,
7318 struct ieee80211_network *network,
7319 struct ipw_supported_rates *rates, int roaming)
7322 DECLARE_SSID_BUF(ssid);
7324 if (priv->config & CFG_FIXED_RATE)
7325 ipw_set_fixed_rate(priv, network->mode);
7327 if (!(priv->config & CFG_STATIC_ESSID)) {
7328 priv->essid_len = min(network->ssid_len,
7329 (u8) IW_ESSID_MAX_SIZE);
7330 memcpy(priv->essid, network->ssid, priv->essid_len);
7333 network->last_associate = jiffies;
7335 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7336 priv->assoc_request.channel = network->channel;
7337 priv->assoc_request.auth_key = 0;
7339 if ((priv->capability & CAP_PRIVACY_ON) &&
7340 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7341 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7342 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7344 if (priv->ieee->sec.level == SEC_LEVEL_1)
7345 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7347 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7348 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7349 priv->assoc_request.auth_type = AUTH_LEAP;
7351 priv->assoc_request.auth_type = AUTH_OPEN;
7353 if (priv->ieee->wpa_ie_len) {
7354 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7355 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7356 priv->ieee->wpa_ie_len);
7360 * It is valid for our ieee device to support multiple modes, but
7361 * when it comes to associating to a given network we have to choose
7364 if (network->mode & priv->ieee->mode & IEEE_A)
7365 priv->assoc_request.ieee_mode = IPW_A_MODE;
7366 else if (network->mode & priv->ieee->mode & IEEE_G)
7367 priv->assoc_request.ieee_mode = IPW_G_MODE;
7368 else if (network->mode & priv->ieee->mode & IEEE_B)
7369 priv->assoc_request.ieee_mode = IPW_B_MODE;
7371 priv->assoc_request.capability = cpu_to_le16(network->capability);
7372 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7373 && !(priv->config & CFG_PREAMBLE_LONG)) {
7374 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7376 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7378 /* Clear the short preamble if we won't be supporting it */
7379 priv->assoc_request.capability &=
7380 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7383 /* Clear capability bits that aren't used in Ad Hoc */
7384 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7385 priv->assoc_request.capability &=
7386 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7388 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7389 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7390 roaming ? "Rea" : "A",
7391 print_ssid(ssid, priv->essid, priv->essid_len),
7393 ipw_modes[priv->assoc_request.ieee_mode],
7395 (priv->assoc_request.preamble_length ==
7396 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7397 network->capability &
7398 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7399 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7400 priv->capability & CAP_PRIVACY_ON ?
7401 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7403 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7404 priv->capability & CAP_PRIVACY_ON ?
7405 '1' + priv->ieee->sec.active_key : '.',
7406 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7408 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7409 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7410 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7411 priv->assoc_request.assoc_type = HC_IBSS_START;
7412 priv->assoc_request.assoc_tsf_msw = 0;
7413 priv->assoc_request.assoc_tsf_lsw = 0;
7415 if (unlikely(roaming))
7416 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7418 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7419 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7420 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7423 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7425 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7426 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7427 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7429 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7430 priv->assoc_request.atim_window = 0;
7433 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7435 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7437 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7441 rates->ieee_mode = priv->assoc_request.ieee_mode;
7442 rates->purpose = IPW_RATE_CONNECT;
7443 ipw_send_supported_rates(priv, rates);
7445 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7446 priv->sys_config.dot11g_auto_detection = 1;
7448 priv->sys_config.dot11g_auto_detection = 0;
7450 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7451 priv->sys_config.answer_broadcast_ssid_probe = 1;
7453 priv->sys_config.answer_broadcast_ssid_probe = 0;
7455 err = ipw_send_system_config(priv);
7457 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7461 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7462 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7464 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7469 * If preemption is enabled, it is possible for the association
7470 * to complete before we return from ipw_send_associate. Therefore
7471 * we have to be sure and update our priviate data first.
7473 priv->channel = network->channel;
7474 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7475 priv->status |= STATUS_ASSOCIATING;
7476 priv->status &= ~STATUS_SECURITY_UPDATED;
7478 priv->assoc_network = network;
7480 #ifdef CONFIG_IPW2200_QOS
7481 ipw_qos_association(priv, network);
7484 err = ipw_send_associate(priv, &priv->assoc_request);
7486 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7490 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7491 print_ssid(ssid, priv->essid, priv->essid_len),
7497 static void ipw_roam(void *data)
7499 struct ipw_priv *priv = data;
7500 struct ieee80211_network *network = NULL;
7501 struct ipw_network_match match = {
7502 .network = priv->assoc_network
7505 /* The roaming process is as follows:
7507 * 1. Missed beacon threshold triggers the roaming process by
7508 * setting the status ROAM bit and requesting a scan.
7509 * 2. When the scan completes, it schedules the ROAM work
7510 * 3. The ROAM work looks at all of the known networks for one that
7511 * is a better network than the currently associated. If none
7512 * found, the ROAM process is over (ROAM bit cleared)
7513 * 4. If a better network is found, a disassociation request is
7515 * 5. When the disassociation completes, the roam work is again
7516 * scheduled. The second time through, the driver is no longer
7517 * associated, and the newly selected network is sent an
7518 * association request.
7519 * 6. At this point ,the roaming process is complete and the ROAM
7520 * status bit is cleared.
7523 /* If we are no longer associated, and the roaming bit is no longer
7524 * set, then we are not actively roaming, so just return */
7525 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7528 if (priv->status & STATUS_ASSOCIATED) {
7529 /* First pass through ROAM process -- look for a better
7531 unsigned long flags;
7532 u8 rssi = priv->assoc_network->stats.rssi;
7533 priv->assoc_network->stats.rssi = -128;
7534 spin_lock_irqsave(&priv->ieee->lock, flags);
7535 list_for_each_entry(network, &priv->ieee->network_list, list) {
7536 if (network != priv->assoc_network)
7537 ipw_best_network(priv, &match, network, 1);
7539 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7540 priv->assoc_network->stats.rssi = rssi;
7542 if (match.network == priv->assoc_network) {
7543 IPW_DEBUG_ASSOC("No better APs in this network to "
7545 priv->status &= ~STATUS_ROAMING;
7546 ipw_debug_config(priv);
7550 ipw_send_disassociate(priv, 1);
7551 priv->assoc_network = match.network;
7556 /* Second pass through ROAM process -- request association */
7557 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7558 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7559 priv->status &= ~STATUS_ROAMING;
7562 static void ipw_bg_roam(struct work_struct *work)
7564 struct ipw_priv *priv =
7565 container_of(work, struct ipw_priv, roam);
7566 mutex_lock(&priv->mutex);
7568 mutex_unlock(&priv->mutex);
7571 static int ipw_associate(void *data)
7573 struct ipw_priv *priv = data;
7575 struct ieee80211_network *network = NULL;
7576 struct ipw_network_match match = {
7579 struct ipw_supported_rates *rates;
7580 struct list_head *element;
7581 unsigned long flags;
7582 DECLARE_SSID_BUF(ssid);
7584 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7585 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7589 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7590 IPW_DEBUG_ASSOC("Not attempting association (already in "
7595 if (priv->status & STATUS_DISASSOCIATING) {
7596 IPW_DEBUG_ASSOC("Not attempting association (in "
7597 "disassociating)\n ");
7598 queue_work(priv->workqueue, &priv->associate);
7602 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7603 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7608 if (!(priv->config & CFG_ASSOCIATE) &&
7609 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7610 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7614 /* Protect our use of the network_list */
7615 spin_lock_irqsave(&priv->ieee->lock, flags);
7616 list_for_each_entry(network, &priv->ieee->network_list, list)
7617 ipw_best_network(priv, &match, network, 0);
7619 network = match.network;
7620 rates = &match.rates;
7622 if (network == NULL &&
7623 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7624 priv->config & CFG_ADHOC_CREATE &&
7625 priv->config & CFG_STATIC_ESSID &&
7626 priv->config & CFG_STATIC_CHANNEL) {
7627 /* Use oldest network if the free list is empty */
7628 if (list_empty(&priv->ieee->network_free_list)) {
7629 struct ieee80211_network *oldest = NULL;
7630 struct ieee80211_network *target;
7632 list_for_each_entry(target, &priv->ieee->network_list, list) {
7633 if ((oldest == NULL) ||
7634 (target->last_scanned < oldest->last_scanned))
7638 /* If there are no more slots, expire the oldest */
7639 list_del(&oldest->list);
7641 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7643 print_ssid(ssid, target->ssid,
7646 list_add_tail(&target->list,
7647 &priv->ieee->network_free_list);
7650 element = priv->ieee->network_free_list.next;
7651 network = list_entry(element, struct ieee80211_network, list);
7652 ipw_adhoc_create(priv, network);
7653 rates = &priv->rates;
7655 list_add_tail(&network->list, &priv->ieee->network_list);
7657 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7659 /* If we reached the end of the list, then we don't have any valid
7662 ipw_debug_config(priv);
7664 if (!(priv->status & STATUS_SCANNING)) {
7665 if (!(priv->config & CFG_SPEED_SCAN))
7666 queue_delayed_work(priv->workqueue,
7667 &priv->request_scan,
7670 queue_delayed_work(priv->workqueue,
7671 &priv->request_scan, 0);
7677 ipw_associate_network(priv, network, rates, 0);
7682 static void ipw_bg_associate(struct work_struct *work)
7684 struct ipw_priv *priv =
7685 container_of(work, struct ipw_priv, associate);
7686 mutex_lock(&priv->mutex);
7687 ipw_associate(priv);
7688 mutex_unlock(&priv->mutex);
7691 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7692 struct sk_buff *skb)
7694 struct ieee80211_hdr *hdr;
7697 hdr = (struct ieee80211_hdr *)skb->data;
7698 fc = le16_to_cpu(hdr->frame_control);
7699 if (!(fc & IEEE80211_FCTL_PROTECTED))
7702 fc &= ~IEEE80211_FCTL_PROTECTED;
7703 hdr->frame_control = cpu_to_le16(fc);
7704 switch (priv->ieee->sec.level) {
7706 /* Remove CCMP HDR */
7707 memmove(skb->data + IEEE80211_3ADDR_LEN,
7708 skb->data + IEEE80211_3ADDR_LEN + 8,
7709 skb->len - IEEE80211_3ADDR_LEN - 8);
7710 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7716 memmove(skb->data + IEEE80211_3ADDR_LEN,
7717 skb->data + IEEE80211_3ADDR_LEN + 4,
7718 skb->len - IEEE80211_3ADDR_LEN - 4);
7719 skb_trim(skb, skb->len - 8); /* IV + ICV */
7724 printk(KERN_ERR "Unknow security level %d\n",
7725 priv->ieee->sec.level);
7730 static void ipw_handle_data_packet(struct ipw_priv *priv,
7731 struct ipw_rx_mem_buffer *rxb,
7732 struct ieee80211_rx_stats *stats)
7734 struct net_device *dev = priv->net_dev;
7735 struct ieee80211_hdr_4addr *hdr;
7736 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7738 /* We received data from the HW, so stop the watchdog */
7739 dev->trans_start = jiffies;
7741 /* We only process data packets if the
7742 * interface is open */
7743 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7744 skb_tailroom(rxb->skb))) {
7745 dev->stats.rx_errors++;
7746 priv->wstats.discard.misc++;
7747 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7749 } else if (unlikely(!netif_running(priv->net_dev))) {
7750 dev->stats.rx_dropped++;
7751 priv->wstats.discard.misc++;
7752 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7756 /* Advance skb->data to the start of the actual payload */
7757 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7759 /* Set the size of the skb to the size of the frame */
7760 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7762 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7764 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7765 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7766 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7767 (is_multicast_ether_addr(hdr->addr1) ?
7768 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7769 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7771 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7772 dev->stats.rx_errors++;
7773 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7775 __ipw_led_activity_on(priv);
7779 #ifdef CONFIG_IPW2200_RADIOTAP
7780 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7781 struct ipw_rx_mem_buffer *rxb,
7782 struct ieee80211_rx_stats *stats)
7784 struct net_device *dev = priv->net_dev;
7785 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7786 struct ipw_rx_frame *frame = &pkt->u.frame;
7788 /* initial pull of some data */
7789 u16 received_channel = frame->received_channel;
7790 u8 antennaAndPhy = frame->antennaAndPhy;
7791 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7792 u16 pktrate = frame->rate;
7794 /* Magic struct that slots into the radiotap header -- no reason
7795 * to build this manually element by element, we can write it much
7796 * more efficiently than we can parse it. ORDER MATTERS HERE */
7797 struct ipw_rt_hdr *ipw_rt;
7799 short len = le16_to_cpu(pkt->u.frame.length);
7801 /* We received data from the HW, so stop the watchdog */
7802 dev->trans_start = jiffies;
7804 /* We only process data packets if the
7805 * interface is open */
7806 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7807 skb_tailroom(rxb->skb))) {
7808 dev->stats.rx_errors++;
7809 priv->wstats.discard.misc++;
7810 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7812 } else if (unlikely(!netif_running(priv->net_dev))) {
7813 dev->stats.rx_dropped++;
7814 priv->wstats.discard.misc++;
7815 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7819 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7821 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7822 /* FIXME: Should alloc bigger skb instead */
7823 dev->stats.rx_dropped++;
7824 priv->wstats.discard.misc++;
7825 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7829 /* copy the frame itself */
7830 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7831 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7833 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7835 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7836 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7837 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7839 /* Big bitfield of all the fields we provide in radiotap */
7840 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7841 (1 << IEEE80211_RADIOTAP_TSFT) |
7842 (1 << IEEE80211_RADIOTAP_FLAGS) |
7843 (1 << IEEE80211_RADIOTAP_RATE) |
7844 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7845 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7846 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7847 (1 << IEEE80211_RADIOTAP_ANTENNA));
7849 /* Zero the flags, we'll add to them as we go */
7850 ipw_rt->rt_flags = 0;
7851 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7852 frame->parent_tsf[2] << 16 |
7853 frame->parent_tsf[1] << 8 |
7854 frame->parent_tsf[0]);
7856 /* Convert signal to DBM */
7857 ipw_rt->rt_dbmsignal = antsignal;
7858 ipw_rt->rt_dbmnoise = frame->noise;
7860 /* Convert the channel data and set the flags */
7861 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7862 if (received_channel > 14) { /* 802.11a */
7863 ipw_rt->rt_chbitmask =
7864 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7865 } else if (antennaAndPhy & 32) { /* 802.11b */
7866 ipw_rt->rt_chbitmask =
7867 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7868 } else { /* 802.11g */
7869 ipw_rt->rt_chbitmask =
7870 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7873 /* set the rate in multiples of 500k/s */
7875 case IPW_TX_RATE_1MB:
7876 ipw_rt->rt_rate = 2;
7878 case IPW_TX_RATE_2MB:
7879 ipw_rt->rt_rate = 4;
7881 case IPW_TX_RATE_5MB:
7882 ipw_rt->rt_rate = 10;
7884 case IPW_TX_RATE_6MB:
7885 ipw_rt->rt_rate = 12;
7887 case IPW_TX_RATE_9MB:
7888 ipw_rt->rt_rate = 18;
7890 case IPW_TX_RATE_11MB:
7891 ipw_rt->rt_rate = 22;
7893 case IPW_TX_RATE_12MB:
7894 ipw_rt->rt_rate = 24;
7896 case IPW_TX_RATE_18MB:
7897 ipw_rt->rt_rate = 36;
7899 case IPW_TX_RATE_24MB:
7900 ipw_rt->rt_rate = 48;
7902 case IPW_TX_RATE_36MB:
7903 ipw_rt->rt_rate = 72;
7905 case IPW_TX_RATE_48MB:
7906 ipw_rt->rt_rate = 96;
7908 case IPW_TX_RATE_54MB:
7909 ipw_rt->rt_rate = 108;
7912 ipw_rt->rt_rate = 0;
7916 /* antenna number */
7917 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7919 /* set the preamble flag if we have it */
7920 if ((antennaAndPhy & 64))
7921 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7923 /* Set the size of the skb to the size of the frame */
7924 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7926 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7928 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7929 dev->stats.rx_errors++;
7930 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7932 /* no LED during capture */
7937 #ifdef CONFIG_IPW2200_PROMISCUOUS
7938 #define ieee80211_is_probe_response(fc) \
7939 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7940 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7942 #define ieee80211_is_management(fc) \
7943 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7945 #define ieee80211_is_control(fc) \
7946 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7948 #define ieee80211_is_data(fc) \
7949 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7951 #define ieee80211_is_assoc_request(fc) \
7952 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7954 #define ieee80211_is_reassoc_request(fc) \
7955 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7957 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7958 struct ipw_rx_mem_buffer *rxb,
7959 struct ieee80211_rx_stats *stats)
7961 struct net_device *dev = priv->prom_net_dev;
7962 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7963 struct ipw_rx_frame *frame = &pkt->u.frame;
7964 struct ipw_rt_hdr *ipw_rt;
7966 /* First cache any information we need before we overwrite
7967 * the information provided in the skb from the hardware */
7968 struct ieee80211_hdr *hdr;
7969 u16 channel = frame->received_channel;
7970 u8 phy_flags = frame->antennaAndPhy;
7971 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7972 s8 noise = frame->noise;
7973 u8 rate = frame->rate;
7974 short len = le16_to_cpu(pkt->u.frame.length);
7975 struct sk_buff *skb;
7977 u16 filter = priv->prom_priv->filter;
7979 /* If the filter is set to not include Rx frames then return */
7980 if (filter & IPW_PROM_NO_RX)
7983 /* We received data from the HW, so stop the watchdog */
7984 dev->trans_start = jiffies;
7986 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7987 dev->stats.rx_errors++;
7988 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7992 /* We only process data packets if the interface is open */
7993 if (unlikely(!netif_running(dev))) {
7994 dev->stats.rx_dropped++;
7995 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7999 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8001 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8002 /* FIXME: Should alloc bigger skb instead */
8003 dev->stats.rx_dropped++;
8004 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8008 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8009 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
8010 if (filter & IPW_PROM_NO_MGMT)
8012 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8014 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
8015 if (filter & IPW_PROM_NO_CTL)
8017 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8019 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
8020 if (filter & IPW_PROM_NO_DATA)
8022 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8026 /* Copy the SKB since this is for the promiscuous side */
8027 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8029 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8033 /* copy the frame data to write after where the radiotap header goes */
8034 ipw_rt = (void *)skb->data;
8037 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8039 memcpy(ipw_rt->payload, hdr, len);
8041 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8042 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8043 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8045 /* Set the size of the skb to the size of the frame */
8046 skb_put(skb, sizeof(*ipw_rt) + len);
8048 /* Big bitfield of all the fields we provide in radiotap */
8049 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8050 (1 << IEEE80211_RADIOTAP_TSFT) |
8051 (1 << IEEE80211_RADIOTAP_FLAGS) |
8052 (1 << IEEE80211_RADIOTAP_RATE) |
8053 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8054 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8055 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8056 (1 << IEEE80211_RADIOTAP_ANTENNA));
8058 /* Zero the flags, we'll add to them as we go */
8059 ipw_rt->rt_flags = 0;
8060 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8061 frame->parent_tsf[2] << 16 |
8062 frame->parent_tsf[1] << 8 |
8063 frame->parent_tsf[0]);
8065 /* Convert to DBM */
8066 ipw_rt->rt_dbmsignal = signal;
8067 ipw_rt->rt_dbmnoise = noise;
8069 /* Convert the channel data and set the flags */
8070 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8071 if (channel > 14) { /* 802.11a */
8072 ipw_rt->rt_chbitmask =
8073 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8074 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8075 ipw_rt->rt_chbitmask =
8076 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8077 } else { /* 802.11g */
8078 ipw_rt->rt_chbitmask =
8079 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8082 /* set the rate in multiples of 500k/s */
8084 case IPW_TX_RATE_1MB:
8085 ipw_rt->rt_rate = 2;
8087 case IPW_TX_RATE_2MB:
8088 ipw_rt->rt_rate = 4;
8090 case IPW_TX_RATE_5MB:
8091 ipw_rt->rt_rate = 10;
8093 case IPW_TX_RATE_6MB:
8094 ipw_rt->rt_rate = 12;
8096 case IPW_TX_RATE_9MB:
8097 ipw_rt->rt_rate = 18;
8099 case IPW_TX_RATE_11MB:
8100 ipw_rt->rt_rate = 22;
8102 case IPW_TX_RATE_12MB:
8103 ipw_rt->rt_rate = 24;
8105 case IPW_TX_RATE_18MB:
8106 ipw_rt->rt_rate = 36;
8108 case IPW_TX_RATE_24MB:
8109 ipw_rt->rt_rate = 48;
8111 case IPW_TX_RATE_36MB:
8112 ipw_rt->rt_rate = 72;
8114 case IPW_TX_RATE_48MB:
8115 ipw_rt->rt_rate = 96;
8117 case IPW_TX_RATE_54MB:
8118 ipw_rt->rt_rate = 108;
8121 ipw_rt->rt_rate = 0;
8125 /* antenna number */
8126 ipw_rt->rt_antenna = (phy_flags & 3);
8128 /* set the preamble flag if we have it */
8129 if (phy_flags & (1 << 6))
8130 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8132 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8134 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8135 dev->stats.rx_errors++;
8136 dev_kfree_skb_any(skb);
8141 static int is_network_packet(struct ipw_priv *priv,
8142 struct ieee80211_hdr_4addr *header)
8144 /* Filter incoming packets to determine if they are targetted toward
8145 * this network, discarding packets coming from ourselves */
8146 switch (priv->ieee->iw_mode) {
8147 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8148 /* packets from our adapter are dropped (echo) */
8149 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8152 /* {broad,multi}cast packets to our BSSID go through */
8153 if (is_multicast_ether_addr(header->addr1))
8154 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8156 /* packets to our adapter go through */
8157 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8160 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8161 /* packets from our adapter are dropped (echo) */
8162 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8165 /* {broad,multi}cast packets to our BSS go through */
8166 if (is_multicast_ether_addr(header->addr1))
8167 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8169 /* packets to our adapter go through */
8170 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8177 #define IPW_PACKET_RETRY_TIME HZ
8179 static int is_duplicate_packet(struct ipw_priv *priv,
8180 struct ieee80211_hdr_4addr *header)
8182 u16 sc = le16_to_cpu(header->seq_ctl);
8183 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8184 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8185 u16 *last_seq, *last_frag;
8186 unsigned long *last_time;
8188 switch (priv->ieee->iw_mode) {
8191 struct list_head *p;
8192 struct ipw_ibss_seq *entry = NULL;
8193 u8 *mac = header->addr2;
8194 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8196 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8198 list_entry(p, struct ipw_ibss_seq, list);
8199 if (!memcmp(entry->mac, mac, ETH_ALEN))
8202 if (p == &priv->ibss_mac_hash[index]) {
8203 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8206 ("Cannot malloc new mac entry\n");
8209 memcpy(entry->mac, mac, ETH_ALEN);
8210 entry->seq_num = seq;
8211 entry->frag_num = frag;
8212 entry->packet_time = jiffies;
8213 list_add(&entry->list,
8214 &priv->ibss_mac_hash[index]);
8217 last_seq = &entry->seq_num;
8218 last_frag = &entry->frag_num;
8219 last_time = &entry->packet_time;
8223 last_seq = &priv->last_seq_num;
8224 last_frag = &priv->last_frag_num;
8225 last_time = &priv->last_packet_time;
8230 if ((*last_seq == seq) &&
8231 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8232 if (*last_frag == frag)
8234 if (*last_frag + 1 != frag)
8235 /* out-of-order fragment */
8241 *last_time = jiffies;
8245 /* Comment this line now since we observed the card receives
8246 * duplicate packets but the FCTL_RETRY bit is not set in the
8247 * IBSS mode with fragmentation enabled.
8248 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8252 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8253 struct ipw_rx_mem_buffer *rxb,
8254 struct ieee80211_rx_stats *stats)
8256 struct sk_buff *skb = rxb->skb;
8257 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8258 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8259 (skb->data + IPW_RX_FRAME_SIZE);
8261 ieee80211_rx_mgt(priv->ieee, header, stats);
8263 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8264 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8265 IEEE80211_STYPE_PROBE_RESP) ||
8266 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8267 IEEE80211_STYPE_BEACON))) {
8268 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8269 ipw_add_station(priv, header->addr2);
8272 if (priv->config & CFG_NET_STATS) {
8273 IPW_DEBUG_HC("sending stat packet\n");
8275 /* Set the size of the skb to the size of the full
8276 * ipw header and 802.11 frame */
8277 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8280 /* Advance past the ipw packet header to the 802.11 frame */
8281 skb_pull(skb, IPW_RX_FRAME_SIZE);
8283 /* Push the ieee80211_rx_stats before the 802.11 frame */
8284 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8286 skb->dev = priv->ieee->dev;
8288 /* Point raw at the ieee80211_stats */
8289 skb_reset_mac_header(skb);
8291 skb->pkt_type = PACKET_OTHERHOST;
8292 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8293 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8300 * Main entry function for recieving a packet with 80211 headers. This
8301 * should be called when ever the FW has notified us that there is a new
8302 * skb in the recieve queue.
8304 static void ipw_rx(struct ipw_priv *priv)
8306 struct ipw_rx_mem_buffer *rxb;
8307 struct ipw_rx_packet *pkt;
8308 struct ieee80211_hdr_4addr *header;
8313 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8314 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8315 i = priv->rxq->read;
8317 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8321 rxb = priv->rxq->queue[i];
8322 if (unlikely(rxb == NULL)) {
8323 printk(KERN_CRIT "Queue not allocated!\n");
8326 priv->rxq->queue[i] = NULL;
8328 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8330 PCI_DMA_FROMDEVICE);
8332 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8333 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8334 pkt->header.message_type,
8335 pkt->header.rx_seq_num, pkt->header.control_bits);
8337 switch (pkt->header.message_type) {
8338 case RX_FRAME_TYPE: /* 802.11 frame */ {
8339 struct ieee80211_rx_stats stats = {
8340 .rssi = pkt->u.frame.rssi_dbm -
8343 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8344 IPW_RSSI_TO_DBM + 0x100,
8346 le16_to_cpu(pkt->u.frame.noise),
8347 .rate = pkt->u.frame.rate,
8348 .mac_time = jiffies,
8350 pkt->u.frame.received_channel,
8353 control & (1 << 0)) ?
8354 IEEE80211_24GHZ_BAND :
8355 IEEE80211_52GHZ_BAND,
8356 .len = le16_to_cpu(pkt->u.frame.length),
8359 if (stats.rssi != 0)
8360 stats.mask |= IEEE80211_STATMASK_RSSI;
8361 if (stats.signal != 0)
8362 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8363 if (stats.noise != 0)
8364 stats.mask |= IEEE80211_STATMASK_NOISE;
8365 if (stats.rate != 0)
8366 stats.mask |= IEEE80211_STATMASK_RATE;
8370 #ifdef CONFIG_IPW2200_PROMISCUOUS
8371 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8372 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8375 #ifdef CONFIG_IPW2200_MONITOR
8376 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8377 #ifdef CONFIG_IPW2200_RADIOTAP
8379 ipw_handle_data_packet_monitor(priv,
8383 ipw_handle_data_packet(priv, rxb,
8391 (struct ieee80211_hdr_4addr *)(rxb->skb->
8394 /* TODO: Check Ad-Hoc dest/source and make sure
8395 * that we are actually parsing these packets
8396 * correctly -- we should probably use the
8397 * frame control of the packet and disregard
8398 * the current iw_mode */
8401 is_network_packet(priv, header);
8402 if (network_packet && priv->assoc_network) {
8403 priv->assoc_network->stats.rssi =
8405 priv->exp_avg_rssi =
8406 exponential_average(priv->exp_avg_rssi,
8407 stats.rssi, DEPTH_RSSI);
8410 IPW_DEBUG_RX("Frame: len=%u\n",
8411 le16_to_cpu(pkt->u.frame.length));
8413 if (le16_to_cpu(pkt->u.frame.length) <
8414 ieee80211_get_hdrlen(le16_to_cpu(
8415 header->frame_ctl))) {
8417 ("Received packet is too small. "
8419 priv->net_dev->stats.rx_errors++;
8420 priv->wstats.discard.misc++;
8424 switch (WLAN_FC_GET_TYPE
8425 (le16_to_cpu(header->frame_ctl))) {
8427 case IEEE80211_FTYPE_MGMT:
8428 ipw_handle_mgmt_packet(priv, rxb,
8432 case IEEE80211_FTYPE_CTL:
8435 case IEEE80211_FTYPE_DATA:
8436 if (unlikely(!network_packet ||
8437 is_duplicate_packet(priv,
8440 IPW_DEBUG_DROP("Dropping: "
8450 ipw_handle_data_packet(priv, rxb,
8458 case RX_HOST_NOTIFICATION_TYPE:{
8460 ("Notification: subtype=%02X flags=%02X size=%d\n",
8461 pkt->u.notification.subtype,
8462 pkt->u.notification.flags,
8463 le16_to_cpu(pkt->u.notification.size));
8464 ipw_rx_notification(priv, &pkt->u.notification);
8469 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8470 pkt->header.message_type);
8474 /* For now we just don't re-use anything. We can tweak this
8475 * later to try and re-use notification packets and SKBs that
8476 * fail to Rx correctly */
8477 if (rxb->skb != NULL) {
8478 dev_kfree_skb_any(rxb->skb);
8482 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8483 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8484 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8486 i = (i + 1) % RX_QUEUE_SIZE;
8488 /* If there are a lot of unsued frames, restock the Rx queue
8489 * so the ucode won't assert */
8491 priv->rxq->read = i;
8492 ipw_rx_queue_replenish(priv);
8496 /* Backtrack one entry */
8497 priv->rxq->read = i;
8498 ipw_rx_queue_restock(priv);
8501 #define DEFAULT_RTS_THRESHOLD 2304U
8502 #define MIN_RTS_THRESHOLD 1U
8503 #define MAX_RTS_THRESHOLD 2304U
8504 #define DEFAULT_BEACON_INTERVAL 100U
8505 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8506 #define DEFAULT_LONG_RETRY_LIMIT 4U
8510 * @option: options to control different reset behaviour
8511 * 0 = reset everything except the 'disable' module_param
8512 * 1 = reset everything and print out driver info (for probe only)
8513 * 2 = reset everything
8515 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8517 int band, modulation;
8518 int old_mode = priv->ieee->iw_mode;
8520 /* Initialize module parameter values here */
8523 /* We default to disabling the LED code as right now it causes
8524 * too many systems to lock up... */
8526 priv->config |= CFG_NO_LED;
8529 priv->config |= CFG_ASSOCIATE;
8531 IPW_DEBUG_INFO("Auto associate disabled.\n");
8534 priv->config |= CFG_ADHOC_CREATE;
8536 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8538 priv->config &= ~CFG_STATIC_ESSID;
8539 priv->essid_len = 0;
8540 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8542 if (disable && option) {
8543 priv->status |= STATUS_RF_KILL_SW;
8544 IPW_DEBUG_INFO("Radio disabled.\n");
8548 priv->config |= CFG_STATIC_CHANNEL;
8549 priv->channel = channel;
8550 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8551 /* TODO: Validate that provided channel is in range */
8553 #ifdef CONFIG_IPW2200_QOS
8554 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8555 burst_duration_CCK, burst_duration_OFDM);
8556 #endif /* CONFIG_IPW2200_QOS */
8560 priv->ieee->iw_mode = IW_MODE_ADHOC;
8561 priv->net_dev->type = ARPHRD_ETHER;
8564 #ifdef CONFIG_IPW2200_MONITOR
8566 priv->ieee->iw_mode = IW_MODE_MONITOR;
8567 #ifdef CONFIG_IPW2200_RADIOTAP
8568 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8570 priv->net_dev->type = ARPHRD_IEEE80211;
8576 priv->net_dev->type = ARPHRD_ETHER;
8577 priv->ieee->iw_mode = IW_MODE_INFRA;
8582 priv->ieee->host_encrypt = 0;
8583 priv->ieee->host_encrypt_msdu = 0;
8584 priv->ieee->host_decrypt = 0;
8585 priv->ieee->host_mc_decrypt = 0;
8587 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8589 /* IPW2200/2915 is abled to do hardware fragmentation. */
8590 priv->ieee->host_open_frag = 0;
8592 if ((priv->pci_dev->device == 0x4223) ||
8593 (priv->pci_dev->device == 0x4224)) {
8595 printk(KERN_INFO DRV_NAME
8596 ": Detected Intel PRO/Wireless 2915ABG Network "
8598 priv->ieee->abg_true = 1;
8599 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8600 modulation = IEEE80211_OFDM_MODULATION |
8601 IEEE80211_CCK_MODULATION;
8602 priv->adapter = IPW_2915ABG;
8603 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8606 printk(KERN_INFO DRV_NAME
8607 ": Detected Intel PRO/Wireless 2200BG Network "
8610 priv->ieee->abg_true = 0;
8611 band = IEEE80211_24GHZ_BAND;
8612 modulation = IEEE80211_OFDM_MODULATION |
8613 IEEE80211_CCK_MODULATION;
8614 priv->adapter = IPW_2200BG;
8615 priv->ieee->mode = IEEE_G | IEEE_B;
8618 priv->ieee->freq_band = band;
8619 priv->ieee->modulation = modulation;
8621 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8623 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8624 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8626 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8627 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8628 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8630 /* If power management is turned on, default to AC mode */
8631 priv->power_mode = IPW_POWER_AC;
8632 priv->tx_power = IPW_TX_POWER_DEFAULT;
8634 return old_mode == priv->ieee->iw_mode;
8638 * This file defines the Wireless Extension handlers. It does not
8639 * define any methods of hardware manipulation and relies on the
8640 * functions defined in ipw_main to provide the HW interaction.
8642 * The exception to this is the use of the ipw_get_ordinal()
8643 * function used to poll the hardware vs. making unecessary calls.
8647 static int ipw_wx_get_name(struct net_device *dev,
8648 struct iw_request_info *info,
8649 union iwreq_data *wrqu, char *extra)
8651 struct ipw_priv *priv = ieee80211_priv(dev);
8652 mutex_lock(&priv->mutex);
8653 if (priv->status & STATUS_RF_KILL_MASK)
8654 strcpy(wrqu->name, "radio off");
8655 else if (!(priv->status & STATUS_ASSOCIATED))
8656 strcpy(wrqu->name, "unassociated");
8658 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8659 ipw_modes[priv->assoc_request.ieee_mode]);
8660 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8661 mutex_unlock(&priv->mutex);
8665 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8668 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8669 priv->config &= ~CFG_STATIC_CHANNEL;
8670 IPW_DEBUG_ASSOC("Attempting to associate with new "
8672 ipw_associate(priv);
8676 priv->config |= CFG_STATIC_CHANNEL;
8678 if (priv->channel == channel) {
8679 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8684 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8685 priv->channel = channel;
8687 #ifdef CONFIG_IPW2200_MONITOR
8688 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8690 if (priv->status & STATUS_SCANNING) {
8691 IPW_DEBUG_SCAN("Scan abort triggered due to "
8692 "channel change.\n");
8693 ipw_abort_scan(priv);
8696 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8699 if (priv->status & STATUS_SCANNING)
8700 IPW_DEBUG_SCAN("Still scanning...\n");
8702 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8707 #endif /* CONFIG_IPW2200_MONITOR */
8709 /* Network configuration changed -- force [re]association */
8710 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8711 if (!ipw_disassociate(priv))
8712 ipw_associate(priv);
8717 static int ipw_wx_set_freq(struct net_device *dev,
8718 struct iw_request_info *info,
8719 union iwreq_data *wrqu, char *extra)
8721 struct ipw_priv *priv = ieee80211_priv(dev);
8722 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8723 struct iw_freq *fwrq = &wrqu->freq;
8729 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8730 mutex_lock(&priv->mutex);
8731 ret = ipw_set_channel(priv, 0);
8732 mutex_unlock(&priv->mutex);
8735 /* if setting by freq convert to channel */
8737 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8743 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8746 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8747 i = ieee80211_channel_to_index(priv->ieee, channel);
8751 flags = (band == IEEE80211_24GHZ_BAND) ?
8752 geo->bg[i].flags : geo->a[i].flags;
8753 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8754 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8759 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8760 mutex_lock(&priv->mutex);
8761 ret = ipw_set_channel(priv, channel);
8762 mutex_unlock(&priv->mutex);
8766 static int ipw_wx_get_freq(struct net_device *dev,
8767 struct iw_request_info *info,
8768 union iwreq_data *wrqu, char *extra)
8770 struct ipw_priv *priv = ieee80211_priv(dev);
8774 /* If we are associated, trying to associate, or have a statically
8775 * configured CHANNEL then return that; otherwise return ANY */
8776 mutex_lock(&priv->mutex);
8777 if (priv->config & CFG_STATIC_CHANNEL ||
8778 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8781 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8785 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8786 case IEEE80211_52GHZ_BAND:
8787 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8790 case IEEE80211_24GHZ_BAND:
8791 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8800 mutex_unlock(&priv->mutex);
8801 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8805 static int ipw_wx_set_mode(struct net_device *dev,
8806 struct iw_request_info *info,
8807 union iwreq_data *wrqu, char *extra)
8809 struct ipw_priv *priv = ieee80211_priv(dev);
8812 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8814 switch (wrqu->mode) {
8815 #ifdef CONFIG_IPW2200_MONITOR
8816 case IW_MODE_MONITOR:
8822 wrqu->mode = IW_MODE_INFRA;
8827 if (wrqu->mode == priv->ieee->iw_mode)
8830 mutex_lock(&priv->mutex);
8832 ipw_sw_reset(priv, 0);
8834 #ifdef CONFIG_IPW2200_MONITOR
8835 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8836 priv->net_dev->type = ARPHRD_ETHER;
8838 if (wrqu->mode == IW_MODE_MONITOR)
8839 #ifdef CONFIG_IPW2200_RADIOTAP
8840 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8842 priv->net_dev->type = ARPHRD_IEEE80211;
8844 #endif /* CONFIG_IPW2200_MONITOR */
8846 /* Free the existing firmware and reset the fw_loaded
8847 * flag so ipw_load() will bring in the new firmawre */
8850 priv->ieee->iw_mode = wrqu->mode;
8852 queue_work(priv->workqueue, &priv->adapter_restart);
8853 mutex_unlock(&priv->mutex);
8857 static int ipw_wx_get_mode(struct net_device *dev,
8858 struct iw_request_info *info,
8859 union iwreq_data *wrqu, char *extra)
8861 struct ipw_priv *priv = ieee80211_priv(dev);
8862 mutex_lock(&priv->mutex);
8863 wrqu->mode = priv->ieee->iw_mode;
8864 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8865 mutex_unlock(&priv->mutex);
8869 /* Values are in microsecond */
8870 static const s32 timeout_duration[] = {
8878 static const s32 period_duration[] = {
8886 static int ipw_wx_get_range(struct net_device *dev,
8887 struct iw_request_info *info,
8888 union iwreq_data *wrqu, char *extra)
8890 struct ipw_priv *priv = ieee80211_priv(dev);
8891 struct iw_range *range = (struct iw_range *)extra;
8892 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8895 wrqu->data.length = sizeof(*range);
8896 memset(range, 0, sizeof(*range));
8898 /* 54Mbs == ~27 Mb/s real (802.11g) */
8899 range->throughput = 27 * 1000 * 1000;
8901 range->max_qual.qual = 100;
8902 /* TODO: Find real max RSSI and stick here */
8903 range->max_qual.level = 0;
8904 range->max_qual.noise = 0;
8905 range->max_qual.updated = 7; /* Updated all three */
8907 range->avg_qual.qual = 70;
8908 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8909 range->avg_qual.level = 0; /* FIXME to real average level */
8910 range->avg_qual.noise = 0;
8911 range->avg_qual.updated = 7; /* Updated all three */
8912 mutex_lock(&priv->mutex);
8913 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8915 for (i = 0; i < range->num_bitrates; i++)
8916 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8919 range->max_rts = DEFAULT_RTS_THRESHOLD;
8920 range->min_frag = MIN_FRAG_THRESHOLD;
8921 range->max_frag = MAX_FRAG_THRESHOLD;
8923 range->encoding_size[0] = 5;
8924 range->encoding_size[1] = 13;
8925 range->num_encoding_sizes = 2;
8926 range->max_encoding_tokens = WEP_KEYS;
8928 /* Set the Wireless Extension versions */
8929 range->we_version_compiled = WIRELESS_EXT;
8930 range->we_version_source = 18;
8933 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8934 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8935 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8936 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8939 range->freq[i].i = geo->bg[j].channel;
8940 range->freq[i].m = geo->bg[j].freq * 100000;
8941 range->freq[i].e = 1;
8946 if (priv->ieee->mode & IEEE_A) {
8947 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8948 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8949 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8952 range->freq[i].i = geo->a[j].channel;
8953 range->freq[i].m = geo->a[j].freq * 100000;
8954 range->freq[i].e = 1;
8959 range->num_channels = i;
8960 range->num_frequency = i;
8962 mutex_unlock(&priv->mutex);
8964 /* Event capability (kernel + driver) */
8965 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8966 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8967 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8968 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8969 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8971 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8972 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8974 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8976 IPW_DEBUG_WX("GET Range\n");
8980 static int ipw_wx_set_wap(struct net_device *dev,
8981 struct iw_request_info *info,
8982 union iwreq_data *wrqu, char *extra)
8984 struct ipw_priv *priv = ieee80211_priv(dev);
8986 static const unsigned char any[] = {
8987 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8989 static const unsigned char off[] = {
8990 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8993 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8995 mutex_lock(&priv->mutex);
8996 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8997 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8998 /* we disable mandatory BSSID association */
8999 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9000 priv->config &= ~CFG_STATIC_BSSID;
9001 IPW_DEBUG_ASSOC("Attempting to associate with new "
9003 ipw_associate(priv);
9004 mutex_unlock(&priv->mutex);
9008 priv->config |= CFG_STATIC_BSSID;
9009 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9010 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9011 mutex_unlock(&priv->mutex);
9015 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9016 wrqu->ap_addr.sa_data);
9018 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9020 /* Network configuration changed -- force [re]association */
9021 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9022 if (!ipw_disassociate(priv))
9023 ipw_associate(priv);
9025 mutex_unlock(&priv->mutex);
9029 static int ipw_wx_get_wap(struct net_device *dev,
9030 struct iw_request_info *info,
9031 union iwreq_data *wrqu, char *extra)
9033 struct ipw_priv *priv = ieee80211_priv(dev);
9035 /* If we are associated, trying to associate, or have a statically
9036 * configured BSSID then return that; otherwise return ANY */
9037 mutex_lock(&priv->mutex);
9038 if (priv->config & CFG_STATIC_BSSID ||
9039 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9040 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9041 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9043 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9045 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9046 wrqu->ap_addr.sa_data);
9047 mutex_unlock(&priv->mutex);
9051 static int ipw_wx_set_essid(struct net_device *dev,
9052 struct iw_request_info *info,
9053 union iwreq_data *wrqu, char *extra)
9055 struct ipw_priv *priv = ieee80211_priv(dev);
9057 DECLARE_SSID_BUF(ssid);
9059 mutex_lock(&priv->mutex);
9061 if (!wrqu->essid.flags)
9063 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9064 ipw_disassociate(priv);
9065 priv->config &= ~CFG_STATIC_ESSID;
9066 ipw_associate(priv);
9067 mutex_unlock(&priv->mutex);
9071 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9073 priv->config |= CFG_STATIC_ESSID;
9075 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9076 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9077 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9078 mutex_unlock(&priv->mutex);
9082 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9083 print_ssid(ssid, extra, length), length);
9085 priv->essid_len = length;
9086 memcpy(priv->essid, extra, priv->essid_len);
9088 /* Network configuration changed -- force [re]association */
9089 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9090 if (!ipw_disassociate(priv))
9091 ipw_associate(priv);
9093 mutex_unlock(&priv->mutex);
9097 static int ipw_wx_get_essid(struct net_device *dev,
9098 struct iw_request_info *info,
9099 union iwreq_data *wrqu, char *extra)
9101 struct ipw_priv *priv = ieee80211_priv(dev);
9102 DECLARE_SSID_BUF(ssid);
9104 /* If we are associated, trying to associate, or have a statically
9105 * configured ESSID then return that; otherwise return ANY */
9106 mutex_lock(&priv->mutex);
9107 if (priv->config & CFG_STATIC_ESSID ||
9108 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9109 IPW_DEBUG_WX("Getting essid: '%s'\n",
9110 print_ssid(ssid, priv->essid, priv->essid_len));
9111 memcpy(extra, priv->essid, priv->essid_len);
9112 wrqu->essid.length = priv->essid_len;
9113 wrqu->essid.flags = 1; /* active */
9115 IPW_DEBUG_WX("Getting essid: ANY\n");
9116 wrqu->essid.length = 0;
9117 wrqu->essid.flags = 0; /* active */
9119 mutex_unlock(&priv->mutex);
9123 static int ipw_wx_set_nick(struct net_device *dev,
9124 struct iw_request_info *info,
9125 union iwreq_data *wrqu, char *extra)
9127 struct ipw_priv *priv = ieee80211_priv(dev);
9129 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9130 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9132 mutex_lock(&priv->mutex);
9133 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9134 memset(priv->nick, 0, sizeof(priv->nick));
9135 memcpy(priv->nick, extra, wrqu->data.length);
9136 IPW_DEBUG_TRACE("<<\n");
9137 mutex_unlock(&priv->mutex);
9142 static int ipw_wx_get_nick(struct net_device *dev,
9143 struct iw_request_info *info,
9144 union iwreq_data *wrqu, char *extra)
9146 struct ipw_priv *priv = ieee80211_priv(dev);
9147 IPW_DEBUG_WX("Getting nick\n");
9148 mutex_lock(&priv->mutex);
9149 wrqu->data.length = strlen(priv->nick);
9150 memcpy(extra, priv->nick, wrqu->data.length);
9151 wrqu->data.flags = 1; /* active */
9152 mutex_unlock(&priv->mutex);
9156 static int ipw_wx_set_sens(struct net_device *dev,
9157 struct iw_request_info *info,
9158 union iwreq_data *wrqu, char *extra)
9160 struct ipw_priv *priv = ieee80211_priv(dev);
9163 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9164 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9165 mutex_lock(&priv->mutex);
9167 if (wrqu->sens.fixed == 0)
9169 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9170 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9173 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9174 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9179 priv->roaming_threshold = wrqu->sens.value;
9180 priv->disassociate_threshold = 3*wrqu->sens.value;
9182 mutex_unlock(&priv->mutex);
9186 static int ipw_wx_get_sens(struct net_device *dev,
9187 struct iw_request_info *info,
9188 union iwreq_data *wrqu, char *extra)
9190 struct ipw_priv *priv = ieee80211_priv(dev);
9191 mutex_lock(&priv->mutex);
9192 wrqu->sens.fixed = 1;
9193 wrqu->sens.value = priv->roaming_threshold;
9194 mutex_unlock(&priv->mutex);
9196 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9197 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9202 static int ipw_wx_set_rate(struct net_device *dev,
9203 struct iw_request_info *info,
9204 union iwreq_data *wrqu, char *extra)
9206 /* TODO: We should use semaphores or locks for access to priv */
9207 struct ipw_priv *priv = ieee80211_priv(dev);
9208 u32 target_rate = wrqu->bitrate.value;
9211 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9212 /* value = X, fixed = 1 means only rate X */
9213 /* value = X, fixed = 0 means all rates lower equal X */
9215 if (target_rate == -1) {
9217 mask = IEEE80211_DEFAULT_RATES_MASK;
9218 /* Now we should reassociate */
9223 fixed = wrqu->bitrate.fixed;
9225 if (target_rate == 1000000 || !fixed)
9226 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9227 if (target_rate == 1000000)
9230 if (target_rate == 2000000 || !fixed)
9231 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9232 if (target_rate == 2000000)
9235 if (target_rate == 5500000 || !fixed)
9236 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9237 if (target_rate == 5500000)
9240 if (target_rate == 6000000 || !fixed)
9241 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9242 if (target_rate == 6000000)
9245 if (target_rate == 9000000 || !fixed)
9246 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9247 if (target_rate == 9000000)
9250 if (target_rate == 11000000 || !fixed)
9251 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9252 if (target_rate == 11000000)
9255 if (target_rate == 12000000 || !fixed)
9256 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9257 if (target_rate == 12000000)
9260 if (target_rate == 18000000 || !fixed)
9261 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9262 if (target_rate == 18000000)
9265 if (target_rate == 24000000 || !fixed)
9266 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9267 if (target_rate == 24000000)
9270 if (target_rate == 36000000 || !fixed)
9271 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9272 if (target_rate == 36000000)
9275 if (target_rate == 48000000 || !fixed)
9276 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9277 if (target_rate == 48000000)
9280 if (target_rate == 54000000 || !fixed)
9281 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9282 if (target_rate == 54000000)
9285 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9289 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9290 mask, fixed ? "fixed" : "sub-rates");
9291 mutex_lock(&priv->mutex);
9292 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9293 priv->config &= ~CFG_FIXED_RATE;
9294 ipw_set_fixed_rate(priv, priv->ieee->mode);
9296 priv->config |= CFG_FIXED_RATE;
9298 if (priv->rates_mask == mask) {
9299 IPW_DEBUG_WX("Mask set to current mask.\n");
9300 mutex_unlock(&priv->mutex);
9304 priv->rates_mask = mask;
9306 /* Network configuration changed -- force [re]association */
9307 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9308 if (!ipw_disassociate(priv))
9309 ipw_associate(priv);
9311 mutex_unlock(&priv->mutex);
9315 static int ipw_wx_get_rate(struct net_device *dev,
9316 struct iw_request_info *info,
9317 union iwreq_data *wrqu, char *extra)
9319 struct ipw_priv *priv = ieee80211_priv(dev);
9320 mutex_lock(&priv->mutex);
9321 wrqu->bitrate.value = priv->last_rate;
9322 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9323 mutex_unlock(&priv->mutex);
9324 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9328 static int ipw_wx_set_rts(struct net_device *dev,
9329 struct iw_request_info *info,
9330 union iwreq_data *wrqu, char *extra)
9332 struct ipw_priv *priv = ieee80211_priv(dev);
9333 mutex_lock(&priv->mutex);
9334 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9335 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9337 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9338 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9339 mutex_unlock(&priv->mutex);
9342 priv->rts_threshold = wrqu->rts.value;
9345 ipw_send_rts_threshold(priv, priv->rts_threshold);
9346 mutex_unlock(&priv->mutex);
9347 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9351 static int ipw_wx_get_rts(struct net_device *dev,
9352 struct iw_request_info *info,
9353 union iwreq_data *wrqu, char *extra)
9355 struct ipw_priv *priv = ieee80211_priv(dev);
9356 mutex_lock(&priv->mutex);
9357 wrqu->rts.value = priv->rts_threshold;
9358 wrqu->rts.fixed = 0; /* no auto select */
9359 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9360 mutex_unlock(&priv->mutex);
9361 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9365 static int ipw_wx_set_txpow(struct net_device *dev,
9366 struct iw_request_info *info,
9367 union iwreq_data *wrqu, char *extra)
9369 struct ipw_priv *priv = ieee80211_priv(dev);
9372 mutex_lock(&priv->mutex);
9373 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9378 if (!wrqu->power.fixed)
9379 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9381 if (wrqu->power.flags != IW_TXPOW_DBM) {
9386 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9387 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9392 priv->tx_power = wrqu->power.value;
9393 err = ipw_set_tx_power(priv);
9395 mutex_unlock(&priv->mutex);
9399 static int ipw_wx_get_txpow(struct net_device *dev,
9400 struct iw_request_info *info,
9401 union iwreq_data *wrqu, char *extra)
9403 struct ipw_priv *priv = ieee80211_priv(dev);
9404 mutex_lock(&priv->mutex);
9405 wrqu->power.value = priv->tx_power;
9406 wrqu->power.fixed = 1;
9407 wrqu->power.flags = IW_TXPOW_DBM;
9408 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9409 mutex_unlock(&priv->mutex);
9411 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9412 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9417 static int ipw_wx_set_frag(struct net_device *dev,
9418 struct iw_request_info *info,
9419 union iwreq_data *wrqu, char *extra)
9421 struct ipw_priv *priv = ieee80211_priv(dev);
9422 mutex_lock(&priv->mutex);
9423 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9424 priv->ieee->fts = DEFAULT_FTS;
9426 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9427 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9428 mutex_unlock(&priv->mutex);
9432 priv->ieee->fts = wrqu->frag.value & ~0x1;
9435 ipw_send_frag_threshold(priv, wrqu->frag.value);
9436 mutex_unlock(&priv->mutex);
9437 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9441 static int ipw_wx_get_frag(struct net_device *dev,
9442 struct iw_request_info *info,
9443 union iwreq_data *wrqu, char *extra)
9445 struct ipw_priv *priv = ieee80211_priv(dev);
9446 mutex_lock(&priv->mutex);
9447 wrqu->frag.value = priv->ieee->fts;
9448 wrqu->frag.fixed = 0; /* no auto select */
9449 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9450 mutex_unlock(&priv->mutex);
9451 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9456 static int ipw_wx_set_retry(struct net_device *dev,
9457 struct iw_request_info *info,
9458 union iwreq_data *wrqu, char *extra)
9460 struct ipw_priv *priv = ieee80211_priv(dev);
9462 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9465 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9468 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9471 mutex_lock(&priv->mutex);
9472 if (wrqu->retry.flags & IW_RETRY_SHORT)
9473 priv->short_retry_limit = (u8) wrqu->retry.value;
9474 else if (wrqu->retry.flags & IW_RETRY_LONG)
9475 priv->long_retry_limit = (u8) wrqu->retry.value;
9477 priv->short_retry_limit = (u8) wrqu->retry.value;
9478 priv->long_retry_limit = (u8) wrqu->retry.value;
9481 ipw_send_retry_limit(priv, priv->short_retry_limit,
9482 priv->long_retry_limit);
9483 mutex_unlock(&priv->mutex);
9484 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9485 priv->short_retry_limit, priv->long_retry_limit);
9489 static int ipw_wx_get_retry(struct net_device *dev,
9490 struct iw_request_info *info,
9491 union iwreq_data *wrqu, char *extra)
9493 struct ipw_priv *priv = ieee80211_priv(dev);
9495 mutex_lock(&priv->mutex);
9496 wrqu->retry.disabled = 0;
9498 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9499 mutex_unlock(&priv->mutex);
9503 if (wrqu->retry.flags & IW_RETRY_LONG) {
9504 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9505 wrqu->retry.value = priv->long_retry_limit;
9506 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9507 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9508 wrqu->retry.value = priv->short_retry_limit;
9510 wrqu->retry.flags = IW_RETRY_LIMIT;
9511 wrqu->retry.value = priv->short_retry_limit;
9513 mutex_unlock(&priv->mutex);
9515 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9520 static int ipw_wx_set_scan(struct net_device *dev,
9521 struct iw_request_info *info,
9522 union iwreq_data *wrqu, char *extra)
9524 struct ipw_priv *priv = ieee80211_priv(dev);
9525 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9526 struct delayed_work *work = NULL;
9528 mutex_lock(&priv->mutex);
9530 priv->user_requested_scan = 1;
9532 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9533 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9534 int len = min((int)req->essid_len,
9535 (int)sizeof(priv->direct_scan_ssid));
9536 memcpy(priv->direct_scan_ssid, req->essid, len);
9537 priv->direct_scan_ssid_len = len;
9538 work = &priv->request_direct_scan;
9539 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9540 work = &priv->request_passive_scan;
9543 /* Normal active broadcast scan */
9544 work = &priv->request_scan;
9547 mutex_unlock(&priv->mutex);
9549 IPW_DEBUG_WX("Start scan\n");
9551 queue_delayed_work(priv->workqueue, work, 0);
9556 static int ipw_wx_get_scan(struct net_device *dev,
9557 struct iw_request_info *info,
9558 union iwreq_data *wrqu, char *extra)
9560 struct ipw_priv *priv = ieee80211_priv(dev);
9561 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9564 static int ipw_wx_set_encode(struct net_device *dev,
9565 struct iw_request_info *info,
9566 union iwreq_data *wrqu, char *key)
9568 struct ipw_priv *priv = ieee80211_priv(dev);
9570 u32 cap = priv->capability;
9572 mutex_lock(&priv->mutex);
9573 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9575 /* In IBSS mode, we need to notify the firmware to update
9576 * the beacon info after we changed the capability. */
9577 if (cap != priv->capability &&
9578 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9579 priv->status & STATUS_ASSOCIATED)
9580 ipw_disassociate(priv);
9582 mutex_unlock(&priv->mutex);
9586 static int ipw_wx_get_encode(struct net_device *dev,
9587 struct iw_request_info *info,
9588 union iwreq_data *wrqu, char *key)
9590 struct ipw_priv *priv = ieee80211_priv(dev);
9591 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9594 static int ipw_wx_set_power(struct net_device *dev,
9595 struct iw_request_info *info,
9596 union iwreq_data *wrqu, char *extra)
9598 struct ipw_priv *priv = ieee80211_priv(dev);
9600 mutex_lock(&priv->mutex);
9601 if (wrqu->power.disabled) {
9602 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9603 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9605 IPW_DEBUG_WX("failed setting power mode.\n");
9606 mutex_unlock(&priv->mutex);
9609 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9610 mutex_unlock(&priv->mutex);
9614 switch (wrqu->power.flags & IW_POWER_MODE) {
9615 case IW_POWER_ON: /* If not specified */
9616 case IW_POWER_MODE: /* If set all mask */
9617 case IW_POWER_ALL_R: /* If explicitly state all */
9619 default: /* Otherwise we don't support it */
9620 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9622 mutex_unlock(&priv->mutex);
9626 /* If the user hasn't specified a power management mode yet, default
9628 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9629 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9631 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9633 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9635 IPW_DEBUG_WX("failed setting power mode.\n");
9636 mutex_unlock(&priv->mutex);
9640 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9641 mutex_unlock(&priv->mutex);
9645 static int ipw_wx_get_power(struct net_device *dev,
9646 struct iw_request_info *info,
9647 union iwreq_data *wrqu, char *extra)
9649 struct ipw_priv *priv = ieee80211_priv(dev);
9650 mutex_lock(&priv->mutex);
9651 if (!(priv->power_mode & IPW_POWER_ENABLED))
9652 wrqu->power.disabled = 1;
9654 wrqu->power.disabled = 0;
9656 mutex_unlock(&priv->mutex);
9657 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9662 static int ipw_wx_set_powermode(struct net_device *dev,
9663 struct iw_request_info *info,
9664 union iwreq_data *wrqu, char *extra)
9666 struct ipw_priv *priv = ieee80211_priv(dev);
9667 int mode = *(int *)extra;
9670 mutex_lock(&priv->mutex);
9671 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9672 mode = IPW_POWER_AC;
9674 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9675 err = ipw_send_power_mode(priv, mode);
9677 IPW_DEBUG_WX("failed setting power mode.\n");
9678 mutex_unlock(&priv->mutex);
9681 priv->power_mode = IPW_POWER_ENABLED | mode;
9683 mutex_unlock(&priv->mutex);
9687 #define MAX_WX_STRING 80
9688 static int ipw_wx_get_powermode(struct net_device *dev,
9689 struct iw_request_info *info,
9690 union iwreq_data *wrqu, char *extra)
9692 struct ipw_priv *priv = ieee80211_priv(dev);
9693 int level = IPW_POWER_LEVEL(priv->power_mode);
9696 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9700 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9702 case IPW_POWER_BATTERY:
9703 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9706 p += snprintf(p, MAX_WX_STRING - (p - extra),
9707 "(Timeout %dms, Period %dms)",
9708 timeout_duration[level - 1] / 1000,
9709 period_duration[level - 1] / 1000);
9712 if (!(priv->power_mode & IPW_POWER_ENABLED))
9713 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9715 wrqu->data.length = p - extra + 1;
9720 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9721 struct iw_request_info *info,
9722 union iwreq_data *wrqu, char *extra)
9724 struct ipw_priv *priv = ieee80211_priv(dev);
9725 int mode = *(int *)extra;
9726 u8 band = 0, modulation = 0;
9728 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9729 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9732 mutex_lock(&priv->mutex);
9733 if (priv->adapter == IPW_2915ABG) {
9734 priv->ieee->abg_true = 1;
9735 if (mode & IEEE_A) {
9736 band |= IEEE80211_52GHZ_BAND;
9737 modulation |= IEEE80211_OFDM_MODULATION;
9739 priv->ieee->abg_true = 0;
9741 if (mode & IEEE_A) {
9742 IPW_WARNING("Attempt to set 2200BG into "
9744 mutex_unlock(&priv->mutex);
9748 priv->ieee->abg_true = 0;
9751 if (mode & IEEE_B) {
9752 band |= IEEE80211_24GHZ_BAND;
9753 modulation |= IEEE80211_CCK_MODULATION;
9755 priv->ieee->abg_true = 0;
9757 if (mode & IEEE_G) {
9758 band |= IEEE80211_24GHZ_BAND;
9759 modulation |= IEEE80211_OFDM_MODULATION;
9761 priv->ieee->abg_true = 0;
9763 priv->ieee->mode = mode;
9764 priv->ieee->freq_band = band;
9765 priv->ieee->modulation = modulation;
9766 init_supported_rates(priv, &priv->rates);
9768 /* Network configuration changed -- force [re]association */
9769 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9770 if (!ipw_disassociate(priv)) {
9771 ipw_send_supported_rates(priv, &priv->rates);
9772 ipw_associate(priv);
9775 /* Update the band LEDs */
9776 ipw_led_band_on(priv);
9778 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9779 mode & IEEE_A ? 'a' : '.',
9780 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9781 mutex_unlock(&priv->mutex);
9785 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9786 struct iw_request_info *info,
9787 union iwreq_data *wrqu, char *extra)
9789 struct ipw_priv *priv = ieee80211_priv(dev);
9790 mutex_lock(&priv->mutex);
9791 switch (priv->ieee->mode) {
9793 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9796 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9798 case IEEE_A | IEEE_B:
9799 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9802 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9804 case IEEE_A | IEEE_G:
9805 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9807 case IEEE_B | IEEE_G:
9808 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9810 case IEEE_A | IEEE_B | IEEE_G:
9811 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9814 strncpy(extra, "unknown", MAX_WX_STRING);
9818 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9820 wrqu->data.length = strlen(extra) + 1;
9821 mutex_unlock(&priv->mutex);
9826 static int ipw_wx_set_preamble(struct net_device *dev,
9827 struct iw_request_info *info,
9828 union iwreq_data *wrqu, char *extra)
9830 struct ipw_priv *priv = ieee80211_priv(dev);
9831 int mode = *(int *)extra;
9832 mutex_lock(&priv->mutex);
9833 /* Switching from SHORT -> LONG requires a disassociation */
9835 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9836 priv->config |= CFG_PREAMBLE_LONG;
9838 /* Network configuration changed -- force [re]association */
9840 ("[re]association triggered due to preamble change.\n");
9841 if (!ipw_disassociate(priv))
9842 ipw_associate(priv);
9848 priv->config &= ~CFG_PREAMBLE_LONG;
9851 mutex_unlock(&priv->mutex);
9855 mutex_unlock(&priv->mutex);
9859 static int ipw_wx_get_preamble(struct net_device *dev,
9860 struct iw_request_info *info,
9861 union iwreq_data *wrqu, char *extra)
9863 struct ipw_priv *priv = ieee80211_priv(dev);
9864 mutex_lock(&priv->mutex);
9865 if (priv->config & CFG_PREAMBLE_LONG)
9866 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9868 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9869 mutex_unlock(&priv->mutex);
9873 #ifdef CONFIG_IPW2200_MONITOR
9874 static int ipw_wx_set_monitor(struct net_device *dev,
9875 struct iw_request_info *info,
9876 union iwreq_data *wrqu, char *extra)
9878 struct ipw_priv *priv = ieee80211_priv(dev);
9879 int *parms = (int *)extra;
9880 int enable = (parms[0] > 0);
9881 mutex_lock(&priv->mutex);
9882 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9884 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9885 #ifdef CONFIG_IPW2200_RADIOTAP
9886 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9888 priv->net_dev->type = ARPHRD_IEEE80211;
9890 queue_work(priv->workqueue, &priv->adapter_restart);
9893 ipw_set_channel(priv, parms[1]);
9895 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9896 mutex_unlock(&priv->mutex);
9899 priv->net_dev->type = ARPHRD_ETHER;
9900 queue_work(priv->workqueue, &priv->adapter_restart);
9902 mutex_unlock(&priv->mutex);
9906 #endif /* CONFIG_IPW2200_MONITOR */
9908 static int ipw_wx_reset(struct net_device *dev,
9909 struct iw_request_info *info,
9910 union iwreq_data *wrqu, char *extra)
9912 struct ipw_priv *priv = ieee80211_priv(dev);
9913 IPW_DEBUG_WX("RESET\n");
9914 queue_work(priv->workqueue, &priv->adapter_restart);
9918 static int ipw_wx_sw_reset(struct net_device *dev,
9919 struct iw_request_info *info,
9920 union iwreq_data *wrqu, char *extra)
9922 struct ipw_priv *priv = ieee80211_priv(dev);
9923 union iwreq_data wrqu_sec = {
9925 .flags = IW_ENCODE_DISABLED,
9930 IPW_DEBUG_WX("SW_RESET\n");
9932 mutex_lock(&priv->mutex);
9934 ret = ipw_sw_reset(priv, 2);
9937 ipw_adapter_restart(priv);
9940 /* The SW reset bit might have been toggled on by the 'disable'
9941 * module parameter, so take appropriate action */
9942 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9944 mutex_unlock(&priv->mutex);
9945 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9946 mutex_lock(&priv->mutex);
9948 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9949 /* Configuration likely changed -- force [re]association */
9950 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9952 if (!ipw_disassociate(priv))
9953 ipw_associate(priv);
9956 mutex_unlock(&priv->mutex);
9961 /* Rebase the WE IOCTLs to zero for the handler array */
9962 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9963 static iw_handler ipw_wx_handlers[] = {
9964 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9965 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9966 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9967 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9968 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9969 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9970 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9971 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9972 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9973 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9974 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9975 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9976 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9977 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9978 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9979 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9980 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9981 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9982 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9983 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9984 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9985 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9986 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9987 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9988 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9989 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9990 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9991 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9992 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9993 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9994 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9995 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9996 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9997 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9998 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9999 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10000 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10001 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10002 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10003 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10004 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10008 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10009 IPW_PRIV_GET_POWER,
10012 IPW_PRIV_SET_PREAMBLE,
10013 IPW_PRIV_GET_PREAMBLE,
10016 #ifdef CONFIG_IPW2200_MONITOR
10017 IPW_PRIV_SET_MONITOR,
10021 static struct iw_priv_args ipw_priv_args[] = {
10023 .cmd = IPW_PRIV_SET_POWER,
10024 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10025 .name = "set_power"},
10027 .cmd = IPW_PRIV_GET_POWER,
10028 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10029 .name = "get_power"},
10031 .cmd = IPW_PRIV_SET_MODE,
10032 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10033 .name = "set_mode"},
10035 .cmd = IPW_PRIV_GET_MODE,
10036 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10037 .name = "get_mode"},
10039 .cmd = IPW_PRIV_SET_PREAMBLE,
10040 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10041 .name = "set_preamble"},
10043 .cmd = IPW_PRIV_GET_PREAMBLE,
10044 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10045 .name = "get_preamble"},
10048 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10051 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10052 #ifdef CONFIG_IPW2200_MONITOR
10054 IPW_PRIV_SET_MONITOR,
10055 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10056 #endif /* CONFIG_IPW2200_MONITOR */
10059 static iw_handler ipw_priv_handler[] = {
10060 ipw_wx_set_powermode,
10061 ipw_wx_get_powermode,
10062 ipw_wx_set_wireless_mode,
10063 ipw_wx_get_wireless_mode,
10064 ipw_wx_set_preamble,
10065 ipw_wx_get_preamble,
10068 #ifdef CONFIG_IPW2200_MONITOR
10069 ipw_wx_set_monitor,
10073 static struct iw_handler_def ipw_wx_handler_def = {
10074 .standard = ipw_wx_handlers,
10075 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10076 .num_private = ARRAY_SIZE(ipw_priv_handler),
10077 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10078 .private = ipw_priv_handler,
10079 .private_args = ipw_priv_args,
10080 .get_wireless_stats = ipw_get_wireless_stats,
10084 * Get wireless statistics.
10085 * Called by /proc/net/wireless
10086 * Also called by SIOCGIWSTATS
10088 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10090 struct ipw_priv *priv = ieee80211_priv(dev);
10091 struct iw_statistics *wstats;
10093 wstats = &priv->wstats;
10095 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10096 * netdev->get_wireless_stats seems to be called before fw is
10097 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10098 * and associated; if not associcated, the values are all meaningless
10099 * anyway, so set them all to NULL and INVALID */
10100 if (!(priv->status & STATUS_ASSOCIATED)) {
10101 wstats->miss.beacon = 0;
10102 wstats->discard.retries = 0;
10103 wstats->qual.qual = 0;
10104 wstats->qual.level = 0;
10105 wstats->qual.noise = 0;
10106 wstats->qual.updated = 7;
10107 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10108 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10112 wstats->qual.qual = priv->quality;
10113 wstats->qual.level = priv->exp_avg_rssi;
10114 wstats->qual.noise = priv->exp_avg_noise;
10115 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10116 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10118 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10119 wstats->discard.retries = priv->last_tx_failures;
10120 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10122 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10123 goto fail_get_ordinal;
10124 wstats->discard.retries += tx_retry; */
10129 /* net device stuff */
10131 static void init_sys_config(struct ipw_sys_config *sys_config)
10133 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10134 sys_config->bt_coexistence = 0;
10135 sys_config->answer_broadcast_ssid_probe = 0;
10136 sys_config->accept_all_data_frames = 0;
10137 sys_config->accept_non_directed_frames = 1;
10138 sys_config->exclude_unicast_unencrypted = 0;
10139 sys_config->disable_unicast_decryption = 1;
10140 sys_config->exclude_multicast_unencrypted = 0;
10141 sys_config->disable_multicast_decryption = 1;
10142 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10143 antenna = CFG_SYS_ANTENNA_BOTH;
10144 sys_config->antenna_diversity = antenna;
10145 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10146 sys_config->dot11g_auto_detection = 0;
10147 sys_config->enable_cts_to_self = 0;
10148 sys_config->bt_coexist_collision_thr = 0;
10149 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10150 sys_config->silence_threshold = 0x1e;
10153 static int ipw_net_open(struct net_device *dev)
10155 IPW_DEBUG_INFO("dev->open\n");
10156 netif_start_queue(dev);
10160 static int ipw_net_stop(struct net_device *dev)
10162 IPW_DEBUG_INFO("dev->close\n");
10163 netif_stop_queue(dev);
10170 modify to send one tfd per fragment instead of using chunking. otherwise
10171 we need to heavily modify the ieee80211_skb_to_txb.
10174 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10177 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10178 txb->fragments[0]->data;
10180 struct tfd_frame *tfd;
10181 #ifdef CONFIG_IPW2200_QOS
10182 int tx_id = ipw_get_tx_queue_number(priv, pri);
10183 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10185 struct clx2_tx_queue *txq = &priv->txq[0];
10187 struct clx2_queue *q = &txq->q;
10188 u8 id, hdr_len, unicast;
10189 u16 remaining_bytes;
10192 if (!(priv->status & STATUS_ASSOCIATED))
10195 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10196 switch (priv->ieee->iw_mode) {
10197 case IW_MODE_ADHOC:
10198 unicast = !is_multicast_ether_addr(hdr->addr1);
10199 id = ipw_find_station(priv, hdr->addr1);
10200 if (id == IPW_INVALID_STATION) {
10201 id = ipw_add_station(priv, hdr->addr1);
10202 if (id == IPW_INVALID_STATION) {
10203 IPW_WARNING("Attempt to send data to "
10204 "invalid cell: %pM\n",
10211 case IW_MODE_INFRA:
10213 unicast = !is_multicast_ether_addr(hdr->addr3);
10218 tfd = &txq->bd[q->first_empty];
10219 txq->txb[q->first_empty] = txb;
10220 memset(tfd, 0, sizeof(*tfd));
10221 tfd->u.data.station_number = id;
10223 tfd->control_flags.message_type = TX_FRAME_TYPE;
10224 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10226 tfd->u.data.cmd_id = DINO_CMD_TX;
10227 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10228 remaining_bytes = txb->payload_size;
10230 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10231 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10233 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10235 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10236 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10238 fc = le16_to_cpu(hdr->frame_ctl);
10239 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10241 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10243 if (likely(unicast))
10244 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10246 if (txb->encrypted && !priv->ieee->host_encrypt) {
10247 switch (priv->ieee->sec.level) {
10249 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10250 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10251 /* XXX: ACK flag must be set for CCMP even if it
10252 * is a multicast/broadcast packet, because CCMP
10253 * group communication encrypted by GTK is
10254 * actually done by the AP. */
10256 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10258 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10259 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10260 tfd->u.data.key_index = 0;
10261 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10264 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10265 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10266 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10267 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10268 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10271 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10272 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10273 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10274 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10276 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10278 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10283 printk(KERN_ERR "Unknow security level %d\n",
10284 priv->ieee->sec.level);
10288 /* No hardware encryption */
10289 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10291 #ifdef CONFIG_IPW2200_QOS
10292 if (fc & IEEE80211_STYPE_QOS_DATA)
10293 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10294 #endif /* CONFIG_IPW2200_QOS */
10297 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10299 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10300 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10301 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10302 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10303 i, le32_to_cpu(tfd->u.data.num_chunks),
10304 txb->fragments[i]->len - hdr_len);
10305 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10306 i, tfd->u.data.num_chunks,
10307 txb->fragments[i]->len - hdr_len);
10308 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10309 txb->fragments[i]->len - hdr_len);
10311 tfd->u.data.chunk_ptr[i] =
10312 cpu_to_le32(pci_map_single
10314 txb->fragments[i]->data + hdr_len,
10315 txb->fragments[i]->len - hdr_len,
10316 PCI_DMA_TODEVICE));
10317 tfd->u.data.chunk_len[i] =
10318 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10321 if (i != txb->nr_frags) {
10322 struct sk_buff *skb;
10323 u16 remaining_bytes = 0;
10326 for (j = i; j < txb->nr_frags; j++)
10327 remaining_bytes += txb->fragments[j]->len - hdr_len;
10329 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10331 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10333 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10334 for (j = i; j < txb->nr_frags; j++) {
10335 int size = txb->fragments[j]->len - hdr_len;
10337 printk(KERN_INFO "Adding frag %d %d...\n",
10339 memcpy(skb_put(skb, size),
10340 txb->fragments[j]->data + hdr_len, size);
10342 dev_kfree_skb_any(txb->fragments[i]);
10343 txb->fragments[i] = skb;
10344 tfd->u.data.chunk_ptr[i] =
10345 cpu_to_le32(pci_map_single
10346 (priv->pci_dev, skb->data,
10348 PCI_DMA_TODEVICE));
10350 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10355 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10356 ipw_write32(priv, q->reg_w, q->first_empty);
10358 if (ipw_tx_queue_space(q) < q->high_mark)
10359 netif_stop_queue(priv->net_dev);
10361 return NETDEV_TX_OK;
10364 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10365 ieee80211_txb_free(txb);
10366 return NETDEV_TX_OK;
10369 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10371 struct ipw_priv *priv = ieee80211_priv(dev);
10372 #ifdef CONFIG_IPW2200_QOS
10373 int tx_id = ipw_get_tx_queue_number(priv, pri);
10374 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10376 struct clx2_tx_queue *txq = &priv->txq[0];
10377 #endif /* CONFIG_IPW2200_QOS */
10379 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10385 #ifdef CONFIG_IPW2200_PROMISCUOUS
10386 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10387 struct ieee80211_txb *txb)
10389 struct ieee80211_rx_stats dummystats;
10390 struct ieee80211_hdr *hdr;
10392 u16 filter = priv->prom_priv->filter;
10395 if (filter & IPW_PROM_NO_TX)
10398 memset(&dummystats, 0, sizeof(dummystats));
10400 /* Filtering of fragment chains is done agains the first fragment */
10401 hdr = (void *)txb->fragments[0]->data;
10402 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10403 if (filter & IPW_PROM_NO_MGMT)
10405 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10407 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10408 if (filter & IPW_PROM_NO_CTL)
10410 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10412 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10413 if (filter & IPW_PROM_NO_DATA)
10415 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10419 for(n=0; n<txb->nr_frags; ++n) {
10420 struct sk_buff *src = txb->fragments[n];
10421 struct sk_buff *dst;
10422 struct ieee80211_radiotap_header *rt_hdr;
10426 hdr = (void *)src->data;
10427 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10431 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10435 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10437 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10438 rt_hdr->it_pad = 0;
10439 rt_hdr->it_present = 0; /* after all, it's just an idea */
10440 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10442 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10443 ieee80211chan2mhz(priv->channel));
10444 if (priv->channel > 14) /* 802.11a */
10445 *(__le16*)skb_put(dst, sizeof(u16)) =
10446 cpu_to_le16(IEEE80211_CHAN_OFDM |
10447 IEEE80211_CHAN_5GHZ);
10448 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10449 *(__le16*)skb_put(dst, sizeof(u16)) =
10450 cpu_to_le16(IEEE80211_CHAN_CCK |
10451 IEEE80211_CHAN_2GHZ);
10453 *(__le16*)skb_put(dst, sizeof(u16)) =
10454 cpu_to_le16(IEEE80211_CHAN_OFDM |
10455 IEEE80211_CHAN_2GHZ);
10457 rt_hdr->it_len = cpu_to_le16(dst->len);
10459 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10461 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10462 dev_kfree_skb_any(dst);
10467 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10468 struct net_device *dev, int pri)
10470 struct ipw_priv *priv = ieee80211_priv(dev);
10471 unsigned long flags;
10474 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10475 spin_lock_irqsave(&priv->lock, flags);
10477 #ifdef CONFIG_IPW2200_PROMISCUOUS
10478 if (rtap_iface && netif_running(priv->prom_net_dev))
10479 ipw_handle_promiscuous_tx(priv, txb);
10482 ret = ipw_tx_skb(priv, txb, pri);
10483 if (ret == NETDEV_TX_OK)
10484 __ipw_led_activity_on(priv);
10485 spin_unlock_irqrestore(&priv->lock, flags);
10490 static void ipw_net_set_multicast_list(struct net_device *dev)
10495 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10497 struct ipw_priv *priv = ieee80211_priv(dev);
10498 struct sockaddr *addr = p;
10500 if (!is_valid_ether_addr(addr->sa_data))
10501 return -EADDRNOTAVAIL;
10502 mutex_lock(&priv->mutex);
10503 priv->config |= CFG_CUSTOM_MAC;
10504 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10505 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10506 priv->net_dev->name, priv->mac_addr);
10507 queue_work(priv->workqueue, &priv->adapter_restart);
10508 mutex_unlock(&priv->mutex);
10512 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10513 struct ethtool_drvinfo *info)
10515 struct ipw_priv *p = ieee80211_priv(dev);
10520 strcpy(info->driver, DRV_NAME);
10521 strcpy(info->version, DRV_VERSION);
10523 len = sizeof(vers);
10524 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10525 len = sizeof(date);
10526 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10528 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10530 strcpy(info->bus_info, pci_name(p->pci_dev));
10531 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10534 static u32 ipw_ethtool_get_link(struct net_device *dev)
10536 struct ipw_priv *priv = ieee80211_priv(dev);
10537 return (priv->status & STATUS_ASSOCIATED) != 0;
10540 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10542 return IPW_EEPROM_IMAGE_SIZE;
10545 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10546 struct ethtool_eeprom *eeprom, u8 * bytes)
10548 struct ipw_priv *p = ieee80211_priv(dev);
10550 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10552 mutex_lock(&p->mutex);
10553 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10554 mutex_unlock(&p->mutex);
10558 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10559 struct ethtool_eeprom *eeprom, u8 * bytes)
10561 struct ipw_priv *p = ieee80211_priv(dev);
10564 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10566 mutex_lock(&p->mutex);
10567 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10568 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10569 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10570 mutex_unlock(&p->mutex);
10574 static const struct ethtool_ops ipw_ethtool_ops = {
10575 .get_link = ipw_ethtool_get_link,
10576 .get_drvinfo = ipw_ethtool_get_drvinfo,
10577 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10578 .get_eeprom = ipw_ethtool_get_eeprom,
10579 .set_eeprom = ipw_ethtool_set_eeprom,
10582 static irqreturn_t ipw_isr(int irq, void *data)
10584 struct ipw_priv *priv = data;
10585 u32 inta, inta_mask;
10590 spin_lock(&priv->irq_lock);
10592 if (!(priv->status & STATUS_INT_ENABLED)) {
10593 /* IRQ is disabled */
10597 inta = ipw_read32(priv, IPW_INTA_RW);
10598 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10600 if (inta == 0xFFFFFFFF) {
10601 /* Hardware disappeared */
10602 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10606 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10607 /* Shared interrupt */
10611 /* tell the device to stop sending interrupts */
10612 __ipw_disable_interrupts(priv);
10614 /* ack current interrupts */
10615 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10616 ipw_write32(priv, IPW_INTA_RW, inta);
10618 /* Cache INTA value for our tasklet */
10619 priv->isr_inta = inta;
10621 tasklet_schedule(&priv->irq_tasklet);
10623 spin_unlock(&priv->irq_lock);
10625 return IRQ_HANDLED;
10627 spin_unlock(&priv->irq_lock);
10631 static void ipw_rf_kill(void *adapter)
10633 struct ipw_priv *priv = adapter;
10634 unsigned long flags;
10636 spin_lock_irqsave(&priv->lock, flags);
10638 if (rf_kill_active(priv)) {
10639 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10640 if (priv->workqueue)
10641 queue_delayed_work(priv->workqueue,
10642 &priv->rf_kill, 2 * HZ);
10646 /* RF Kill is now disabled, so bring the device back up */
10648 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10649 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10652 /* we can not do an adapter restart while inside an irq lock */
10653 queue_work(priv->workqueue, &priv->adapter_restart);
10655 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10659 spin_unlock_irqrestore(&priv->lock, flags);
10662 static void ipw_bg_rf_kill(struct work_struct *work)
10664 struct ipw_priv *priv =
10665 container_of(work, struct ipw_priv, rf_kill.work);
10666 mutex_lock(&priv->mutex);
10668 mutex_unlock(&priv->mutex);
10671 static void ipw_link_up(struct ipw_priv *priv)
10673 priv->last_seq_num = -1;
10674 priv->last_frag_num = -1;
10675 priv->last_packet_time = 0;
10677 netif_carrier_on(priv->net_dev);
10679 cancel_delayed_work(&priv->request_scan);
10680 cancel_delayed_work(&priv->request_direct_scan);
10681 cancel_delayed_work(&priv->request_passive_scan);
10682 cancel_delayed_work(&priv->scan_event);
10683 ipw_reset_stats(priv);
10684 /* Ensure the rate is updated immediately */
10685 priv->last_rate = ipw_get_current_rate(priv);
10686 ipw_gather_stats(priv);
10687 ipw_led_link_up(priv);
10688 notify_wx_assoc_event(priv);
10690 if (priv->config & CFG_BACKGROUND_SCAN)
10691 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10694 static void ipw_bg_link_up(struct work_struct *work)
10696 struct ipw_priv *priv =
10697 container_of(work, struct ipw_priv, link_up);
10698 mutex_lock(&priv->mutex);
10700 mutex_unlock(&priv->mutex);
10703 static void ipw_link_down(struct ipw_priv *priv)
10705 ipw_led_link_down(priv);
10706 netif_carrier_off(priv->net_dev);
10707 notify_wx_assoc_event(priv);
10709 /* Cancel any queued work ... */
10710 cancel_delayed_work(&priv->request_scan);
10711 cancel_delayed_work(&priv->request_direct_scan);
10712 cancel_delayed_work(&priv->request_passive_scan);
10713 cancel_delayed_work(&priv->adhoc_check);
10714 cancel_delayed_work(&priv->gather_stats);
10716 ipw_reset_stats(priv);
10718 if (!(priv->status & STATUS_EXIT_PENDING)) {
10719 /* Queue up another scan... */
10720 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10722 cancel_delayed_work(&priv->scan_event);
10725 static void ipw_bg_link_down(struct work_struct *work)
10727 struct ipw_priv *priv =
10728 container_of(work, struct ipw_priv, link_down);
10729 mutex_lock(&priv->mutex);
10730 ipw_link_down(priv);
10731 mutex_unlock(&priv->mutex);
10734 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10738 priv->workqueue = create_workqueue(DRV_NAME);
10739 init_waitqueue_head(&priv->wait_command_queue);
10740 init_waitqueue_head(&priv->wait_state);
10742 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10743 INIT_WORK(&priv->associate, ipw_bg_associate);
10744 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10745 INIT_WORK(&priv->system_config, ipw_system_config);
10746 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10747 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10748 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10749 INIT_WORK(&priv->up, ipw_bg_up);
10750 INIT_WORK(&priv->down, ipw_bg_down);
10751 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10752 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10753 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10754 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10755 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10756 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10757 INIT_WORK(&priv->roam, ipw_bg_roam);
10758 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10759 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10760 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10761 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10762 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10763 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10764 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10766 #ifdef CONFIG_IPW2200_QOS
10767 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10768 #endif /* CONFIG_IPW2200_QOS */
10770 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10771 ipw_irq_tasklet, (unsigned long)priv);
10776 static void shim__set_security(struct net_device *dev,
10777 struct ieee80211_security *sec)
10779 struct ipw_priv *priv = ieee80211_priv(dev);
10781 for (i = 0; i < 4; i++) {
10782 if (sec->flags & (1 << i)) {
10783 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10784 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10785 if (sec->key_sizes[i] == 0)
10786 priv->ieee->sec.flags &= ~(1 << i);
10788 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10789 sec->key_sizes[i]);
10790 priv->ieee->sec.flags |= (1 << i);
10792 priv->status |= STATUS_SECURITY_UPDATED;
10793 } else if (sec->level != SEC_LEVEL_1)
10794 priv->ieee->sec.flags &= ~(1 << i);
10797 if (sec->flags & SEC_ACTIVE_KEY) {
10798 if (sec->active_key <= 3) {
10799 priv->ieee->sec.active_key = sec->active_key;
10800 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10802 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10803 priv->status |= STATUS_SECURITY_UPDATED;
10805 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10807 if ((sec->flags & SEC_AUTH_MODE) &&
10808 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10809 priv->ieee->sec.auth_mode = sec->auth_mode;
10810 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10811 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10812 priv->capability |= CAP_SHARED_KEY;
10814 priv->capability &= ~CAP_SHARED_KEY;
10815 priv->status |= STATUS_SECURITY_UPDATED;
10818 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10819 priv->ieee->sec.flags |= SEC_ENABLED;
10820 priv->ieee->sec.enabled = sec->enabled;
10821 priv->status |= STATUS_SECURITY_UPDATED;
10823 priv->capability |= CAP_PRIVACY_ON;
10825 priv->capability &= ~CAP_PRIVACY_ON;
10828 if (sec->flags & SEC_ENCRYPT)
10829 priv->ieee->sec.encrypt = sec->encrypt;
10831 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10832 priv->ieee->sec.level = sec->level;
10833 priv->ieee->sec.flags |= SEC_LEVEL;
10834 priv->status |= STATUS_SECURITY_UPDATED;
10837 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10838 ipw_set_hwcrypto_keys(priv);
10840 /* To match current functionality of ipw2100 (which works well w/
10841 * various supplicants, we don't force a disassociate if the
10842 * privacy capability changes ... */
10844 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10845 (((priv->assoc_request.capability &
10846 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10847 (!(priv->assoc_request.capability &
10848 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10849 IPW_DEBUG_ASSOC("Disassociating due to capability "
10851 ipw_disassociate(priv);
10856 static int init_supported_rates(struct ipw_priv *priv,
10857 struct ipw_supported_rates *rates)
10859 /* TODO: Mask out rates based on priv->rates_mask */
10861 memset(rates, 0, sizeof(*rates));
10862 /* configure supported rates */
10863 switch (priv->ieee->freq_band) {
10864 case IEEE80211_52GHZ_BAND:
10865 rates->ieee_mode = IPW_A_MODE;
10866 rates->purpose = IPW_RATE_CAPABILITIES;
10867 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10868 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10871 default: /* Mixed or 2.4Ghz */
10872 rates->ieee_mode = IPW_G_MODE;
10873 rates->purpose = IPW_RATE_CAPABILITIES;
10874 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10875 IEEE80211_CCK_DEFAULT_RATES_MASK);
10876 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10877 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10878 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10886 static int ipw_config(struct ipw_priv *priv)
10888 /* This is only called from ipw_up, which resets/reloads the firmware
10889 so, we don't need to first disable the card before we configure
10891 if (ipw_set_tx_power(priv))
10894 /* initialize adapter address */
10895 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10898 /* set basic system config settings */
10899 init_sys_config(&priv->sys_config);
10901 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10902 * Does not support BT priority yet (don't abort or defer our Tx) */
10904 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10906 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10907 priv->sys_config.bt_coexistence
10908 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10909 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10910 priv->sys_config.bt_coexistence
10911 |= CFG_BT_COEXISTENCE_OOB;
10914 #ifdef CONFIG_IPW2200_PROMISCUOUS
10915 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10916 priv->sys_config.accept_all_data_frames = 1;
10917 priv->sys_config.accept_non_directed_frames = 1;
10918 priv->sys_config.accept_all_mgmt_bcpr = 1;
10919 priv->sys_config.accept_all_mgmt_frames = 1;
10923 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10924 priv->sys_config.answer_broadcast_ssid_probe = 1;
10926 priv->sys_config.answer_broadcast_ssid_probe = 0;
10928 if (ipw_send_system_config(priv))
10931 init_supported_rates(priv, &priv->rates);
10932 if (ipw_send_supported_rates(priv, &priv->rates))
10935 /* Set request-to-send threshold */
10936 if (priv->rts_threshold) {
10937 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10940 #ifdef CONFIG_IPW2200_QOS
10941 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10942 ipw_qos_activate(priv, NULL);
10943 #endif /* CONFIG_IPW2200_QOS */
10945 if (ipw_set_random_seed(priv))
10948 /* final state transition to the RUN state */
10949 if (ipw_send_host_complete(priv))
10952 priv->status |= STATUS_INIT;
10954 ipw_led_init(priv);
10955 ipw_led_radio_on(priv);
10956 priv->notif_missed_beacons = 0;
10958 /* Set hardware WEP key if it is configured. */
10959 if ((priv->capability & CAP_PRIVACY_ON) &&
10960 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10961 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10962 ipw_set_hwcrypto_keys(priv);
10973 * These tables have been tested in conjunction with the
10974 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10976 * Altering this values, using it on other hardware, or in geographies
10977 * not intended for resale of the above mentioned Intel adapters has
10980 * Remember to update the table in README.ipw2200 when changing this
10984 static const struct ieee80211_geo ipw_geos[] = {
10988 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10989 {2427, 4}, {2432, 5}, {2437, 6},
10990 {2442, 7}, {2447, 8}, {2452, 9},
10991 {2457, 10}, {2462, 11}},
10994 { /* Custom US/Canada */
10997 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10998 {2427, 4}, {2432, 5}, {2437, 6},
10999 {2442, 7}, {2447, 8}, {2452, 9},
11000 {2457, 10}, {2462, 11}},
11006 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11007 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11008 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11009 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11012 { /* Rest of World */
11015 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11016 {2427, 4}, {2432, 5}, {2437, 6},
11017 {2442, 7}, {2447, 8}, {2452, 9},
11018 {2457, 10}, {2462, 11}, {2467, 12},
11022 { /* Custom USA & Europe & High */
11025 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11026 {2427, 4}, {2432, 5}, {2437, 6},
11027 {2442, 7}, {2447, 8}, {2452, 9},
11028 {2457, 10}, {2462, 11}},
11034 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11035 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11036 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11037 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11045 { /* Custom NA & Europe */
11048 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11049 {2427, 4}, {2432, 5}, {2437, 6},
11050 {2442, 7}, {2447, 8}, {2452, 9},
11051 {2457, 10}, {2462, 11}},
11057 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11058 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11059 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11060 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11061 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11062 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11063 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11064 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11065 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11068 { /* Custom Japan */
11071 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11072 {2427, 4}, {2432, 5}, {2437, 6},
11073 {2442, 7}, {2447, 8}, {2452, 9},
11074 {2457, 10}, {2462, 11}},
11076 .a = {{5170, 34}, {5190, 38},
11077 {5210, 42}, {5230, 46}},
11083 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11084 {2427, 4}, {2432, 5}, {2437, 6},
11085 {2442, 7}, {2447, 8}, {2452, 9},
11086 {2457, 10}, {2462, 11}},
11092 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11093 {2427, 4}, {2432, 5}, {2437, 6},
11094 {2442, 7}, {2447, 8}, {2452, 9},
11095 {2457, 10}, {2462, 11}, {2467, 12},
11102 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11103 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11104 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11105 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11106 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11107 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11108 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11109 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11110 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11111 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11112 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11113 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11114 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11115 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11116 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11119 { /* Custom Japan */
11122 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11123 {2427, 4}, {2432, 5}, {2437, 6},
11124 {2442, 7}, {2447, 8}, {2452, 9},
11125 {2457, 10}, {2462, 11}, {2467, 12},
11126 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11128 .a = {{5170, 34}, {5190, 38},
11129 {5210, 42}, {5230, 46}},
11132 { /* Rest of World */
11135 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11136 {2427, 4}, {2432, 5}, {2437, 6},
11137 {2442, 7}, {2447, 8}, {2452, 9},
11138 {2457, 10}, {2462, 11}, {2467, 12},
11139 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11140 IEEE80211_CH_PASSIVE_ONLY}},
11146 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11147 {2427, 4}, {2432, 5}, {2437, 6},
11148 {2442, 7}, {2447, 8}, {2452, 9},
11149 {2457, 10}, {2462, 11},
11150 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11151 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11153 .a = {{5745, 149}, {5765, 153},
11154 {5785, 157}, {5805, 161}},
11157 { /* Custom Europe */
11160 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11161 {2427, 4}, {2432, 5}, {2437, 6},
11162 {2442, 7}, {2447, 8}, {2452, 9},
11163 {2457, 10}, {2462, 11},
11164 {2467, 12}, {2472, 13}},
11166 .a = {{5180, 36}, {5200, 40},
11167 {5220, 44}, {5240, 48}},
11173 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11174 {2427, 4}, {2432, 5}, {2437, 6},
11175 {2442, 7}, {2447, 8}, {2452, 9},
11176 {2457, 10}, {2462, 11},
11177 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11178 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11180 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11181 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11182 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11183 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11184 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11185 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11186 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11187 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11188 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11189 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11190 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11191 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11192 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11193 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11194 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11195 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11196 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11197 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11198 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11199 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11200 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11201 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11202 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11203 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11209 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11210 {2427, 4}, {2432, 5}, {2437, 6},
11211 {2442, 7}, {2447, 8}, {2452, 9},
11212 {2457, 10}, {2462, 11}},
11214 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11215 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11216 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11217 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11218 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11219 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11220 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11221 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11222 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11223 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11224 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11225 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11226 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11230 #define MAX_HW_RESTARTS 5
11231 static int ipw_up(struct ipw_priv *priv)
11235 /* Age scan list entries found before suspend */
11236 if (priv->suspend_time) {
11237 ieee80211_networks_age(priv->ieee, priv->suspend_time);
11238 priv->suspend_time = 0;
11241 if (priv->status & STATUS_EXIT_PENDING)
11244 if (cmdlog && !priv->cmdlog) {
11245 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11247 if (priv->cmdlog == NULL) {
11248 IPW_ERROR("Error allocating %d command log entries.\n",
11252 priv->cmdlog_len = cmdlog;
11256 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11257 /* Load the microcode, firmware, and eeprom.
11258 * Also start the clocks. */
11259 rc = ipw_load(priv);
11261 IPW_ERROR("Unable to load firmware: %d\n", rc);
11265 ipw_init_ordinals(priv);
11266 if (!(priv->config & CFG_CUSTOM_MAC))
11267 eeprom_parse_mac(priv, priv->mac_addr);
11268 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11270 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11271 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11272 ipw_geos[j].name, 3))
11275 if (j == ARRAY_SIZE(ipw_geos)) {
11276 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11277 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11278 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11279 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11282 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11283 IPW_WARNING("Could not set geography.");
11287 if (priv->status & STATUS_RF_KILL_SW) {
11288 IPW_WARNING("Radio disabled by module parameter.\n");
11290 } else if (rf_kill_active(priv)) {
11291 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11292 "Kill switch must be turned off for "
11293 "wireless networking to work.\n");
11294 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11299 rc = ipw_config(priv);
11301 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11303 /* If configure to try and auto-associate, kick
11305 queue_delayed_work(priv->workqueue,
11306 &priv->request_scan, 0);
11311 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11312 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11313 i, MAX_HW_RESTARTS);
11315 /* We had an error bringing up the hardware, so take it
11316 * all the way back down so we can try again */
11320 /* tried to restart and config the device for as long as our
11321 * patience could withstand */
11322 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11327 static void ipw_bg_up(struct work_struct *work)
11329 struct ipw_priv *priv =
11330 container_of(work, struct ipw_priv, up);
11331 mutex_lock(&priv->mutex);
11333 mutex_unlock(&priv->mutex);
11336 static void ipw_deinit(struct ipw_priv *priv)
11340 if (priv->status & STATUS_SCANNING) {
11341 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11342 ipw_abort_scan(priv);
11345 if (priv->status & STATUS_ASSOCIATED) {
11346 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11347 ipw_disassociate(priv);
11350 ipw_led_shutdown(priv);
11352 /* Wait up to 1s for status to change to not scanning and not
11353 * associated (disassociation can take a while for a ful 802.11
11355 for (i = 1000; i && (priv->status &
11356 (STATUS_DISASSOCIATING |
11357 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11360 if (priv->status & (STATUS_DISASSOCIATING |
11361 STATUS_ASSOCIATED | STATUS_SCANNING))
11362 IPW_DEBUG_INFO("Still associated or scanning...\n");
11364 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11366 /* Attempt to disable the card */
11367 ipw_send_card_disable(priv, 0);
11369 priv->status &= ~STATUS_INIT;
11372 static void ipw_down(struct ipw_priv *priv)
11374 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11376 priv->status |= STATUS_EXIT_PENDING;
11378 if (ipw_is_init(priv))
11381 /* Wipe out the EXIT_PENDING status bit if we are not actually
11382 * exiting the module */
11384 priv->status &= ~STATUS_EXIT_PENDING;
11386 /* tell the device to stop sending interrupts */
11387 ipw_disable_interrupts(priv);
11389 /* Clear all bits but the RF Kill */
11390 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11391 netif_carrier_off(priv->net_dev);
11393 ipw_stop_nic(priv);
11395 ipw_led_radio_off(priv);
11398 static void ipw_bg_down(struct work_struct *work)
11400 struct ipw_priv *priv =
11401 container_of(work, struct ipw_priv, down);
11402 mutex_lock(&priv->mutex);
11404 mutex_unlock(&priv->mutex);
11407 /* Called by register_netdev() */
11408 static int ipw_net_init(struct net_device *dev)
11410 struct ipw_priv *priv = ieee80211_priv(dev);
11411 mutex_lock(&priv->mutex);
11413 if (ipw_up(priv)) {
11414 mutex_unlock(&priv->mutex);
11418 mutex_unlock(&priv->mutex);
11422 /* PCI driver stuff */
11423 static struct pci_device_id card_ids[] = {
11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11425 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11426 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11427 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11428 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11429 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11430 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11431 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11432 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11433 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11434 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11435 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11436 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11437 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11438 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11439 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11440 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11441 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11442 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11443 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11444 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11445 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11447 /* required last entry */
11451 MODULE_DEVICE_TABLE(pci, card_ids);
11453 static struct attribute *ipw_sysfs_entries[] = {
11454 &dev_attr_rf_kill.attr,
11455 &dev_attr_direct_dword.attr,
11456 &dev_attr_indirect_byte.attr,
11457 &dev_attr_indirect_dword.attr,
11458 &dev_attr_mem_gpio_reg.attr,
11459 &dev_attr_command_event_reg.attr,
11460 &dev_attr_nic_type.attr,
11461 &dev_attr_status.attr,
11462 &dev_attr_cfg.attr,
11463 &dev_attr_error.attr,
11464 &dev_attr_event_log.attr,
11465 &dev_attr_cmd_log.attr,
11466 &dev_attr_eeprom_delay.attr,
11467 &dev_attr_ucode_version.attr,
11468 &dev_attr_rtc.attr,
11469 &dev_attr_scan_age.attr,
11470 &dev_attr_led.attr,
11471 &dev_attr_speed_scan.attr,
11472 &dev_attr_net_stats.attr,
11473 &dev_attr_channels.attr,
11474 #ifdef CONFIG_IPW2200_PROMISCUOUS
11475 &dev_attr_rtap_iface.attr,
11476 &dev_attr_rtap_filter.attr,
11481 static struct attribute_group ipw_attribute_group = {
11482 .name = NULL, /* put in device directory */
11483 .attrs = ipw_sysfs_entries,
11486 #ifdef CONFIG_IPW2200_PROMISCUOUS
11487 static int ipw_prom_open(struct net_device *dev)
11489 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11490 struct ipw_priv *priv = prom_priv->priv;
11492 IPW_DEBUG_INFO("prom dev->open\n");
11493 netif_carrier_off(dev);
11495 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11496 priv->sys_config.accept_all_data_frames = 1;
11497 priv->sys_config.accept_non_directed_frames = 1;
11498 priv->sys_config.accept_all_mgmt_bcpr = 1;
11499 priv->sys_config.accept_all_mgmt_frames = 1;
11501 ipw_send_system_config(priv);
11507 static int ipw_prom_stop(struct net_device *dev)
11509 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11510 struct ipw_priv *priv = prom_priv->priv;
11512 IPW_DEBUG_INFO("prom dev->stop\n");
11514 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11515 priv->sys_config.accept_all_data_frames = 0;
11516 priv->sys_config.accept_non_directed_frames = 0;
11517 priv->sys_config.accept_all_mgmt_bcpr = 0;
11518 priv->sys_config.accept_all_mgmt_frames = 0;
11520 ipw_send_system_config(priv);
11526 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11528 IPW_DEBUG_INFO("prom dev->xmit\n");
11529 return -EOPNOTSUPP;
11532 static const struct net_device_ops ipw_prom_netdev_ops = {
11533 .ndo_open = ipw_prom_open,
11534 .ndo_stop = ipw_prom_stop,
11535 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11536 .ndo_change_mtu = ieee80211_change_mtu,
11537 .ndo_set_mac_address = eth_mac_addr,
11538 .ndo_validate_addr = eth_validate_addr,
11541 static int ipw_prom_alloc(struct ipw_priv *priv)
11545 if (priv->prom_net_dev)
11548 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11549 if (priv->prom_net_dev == NULL)
11552 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11553 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11554 priv->prom_priv->priv = priv;
11556 strcpy(priv->prom_net_dev->name, "rtap%d");
11557 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11559 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11560 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11562 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11563 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11565 rc = register_netdev(priv->prom_net_dev);
11567 free_ieee80211(priv->prom_net_dev);
11568 priv->prom_net_dev = NULL;
11575 static void ipw_prom_free(struct ipw_priv *priv)
11577 if (!priv->prom_net_dev)
11580 unregister_netdev(priv->prom_net_dev);
11581 free_ieee80211(priv->prom_net_dev);
11583 priv->prom_net_dev = NULL;
11588 static const struct net_device_ops ipw_netdev_ops = {
11589 .ndo_init = ipw_net_init,
11590 .ndo_open = ipw_net_open,
11591 .ndo_stop = ipw_net_stop,
11592 .ndo_set_multicast_list = ipw_net_set_multicast_list,
11593 .ndo_set_mac_address = ipw_net_set_mac_address,
11594 .ndo_start_xmit = ieee80211_xmit,
11595 .ndo_change_mtu = ieee80211_change_mtu,
11596 .ndo_validate_addr = eth_validate_addr,
11599 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11600 const struct pci_device_id *ent)
11603 struct net_device *net_dev;
11604 void __iomem *base;
11606 struct ipw_priv *priv;
11609 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11610 if (net_dev == NULL) {
11615 priv = ieee80211_priv(net_dev);
11616 priv->ieee = netdev_priv(net_dev);
11618 priv->net_dev = net_dev;
11619 priv->pci_dev = pdev;
11620 ipw_debug_level = debug;
11621 spin_lock_init(&priv->irq_lock);
11622 spin_lock_init(&priv->lock);
11623 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11624 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11626 mutex_init(&priv->mutex);
11627 if (pci_enable_device(pdev)) {
11629 goto out_free_ieee80211;
11632 pci_set_master(pdev);
11634 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11636 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11638 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11639 goto out_pci_disable_device;
11642 pci_set_drvdata(pdev, priv);
11644 err = pci_request_regions(pdev, DRV_NAME);
11646 goto out_pci_disable_device;
11648 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11649 * PCI Tx retries from interfering with C3 CPU state */
11650 pci_read_config_dword(pdev, 0x40, &val);
11651 if ((val & 0x0000ff00) != 0)
11652 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11654 length = pci_resource_len(pdev, 0);
11655 priv->hw_len = length;
11657 base = pci_ioremap_bar(pdev, 0);
11660 goto out_pci_release_regions;
11663 priv->hw_base = base;
11664 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11665 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11667 err = ipw_setup_deferred_work(priv);
11669 IPW_ERROR("Unable to setup deferred work\n");
11673 ipw_sw_reset(priv, 1);
11675 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11677 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11678 goto out_destroy_workqueue;
11681 SET_NETDEV_DEV(net_dev, &pdev->dev);
11683 mutex_lock(&priv->mutex);
11685 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11686 priv->ieee->set_security = shim__set_security;
11687 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11689 #ifdef CONFIG_IPW2200_QOS
11690 priv->ieee->is_qos_active = ipw_is_qos_active;
11691 priv->ieee->handle_probe_response = ipw_handle_beacon;
11692 priv->ieee->handle_beacon = ipw_handle_probe_response;
11693 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11694 #endif /* CONFIG_IPW2200_QOS */
11696 priv->ieee->perfect_rssi = -20;
11697 priv->ieee->worst_rssi = -85;
11699 net_dev->netdev_ops = &ipw_netdev_ops;
11700 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11701 net_dev->wireless_data = &priv->wireless_data;
11702 net_dev->wireless_handlers = &ipw_wx_handler_def;
11703 net_dev->ethtool_ops = &ipw_ethtool_ops;
11704 net_dev->irq = pdev->irq;
11705 net_dev->base_addr = (unsigned long)priv->hw_base;
11706 net_dev->mem_start = pci_resource_start(pdev, 0);
11707 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11709 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11711 IPW_ERROR("failed to create sysfs device attributes\n");
11712 mutex_unlock(&priv->mutex);
11713 goto out_release_irq;
11716 mutex_unlock(&priv->mutex);
11717 err = register_netdev(net_dev);
11719 IPW_ERROR("failed to register network device\n");
11720 goto out_remove_sysfs;
11723 #ifdef CONFIG_IPW2200_PROMISCUOUS
11725 err = ipw_prom_alloc(priv);
11727 IPW_ERROR("Failed to register promiscuous network "
11728 "device (error %d).\n", err);
11729 unregister_netdev(priv->net_dev);
11730 goto out_remove_sysfs;
11735 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11736 "channels, %d 802.11a channels)\n",
11737 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11738 priv->ieee->geo.a_channels);
11743 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11745 free_irq(pdev->irq, priv);
11746 out_destroy_workqueue:
11747 destroy_workqueue(priv->workqueue);
11748 priv->workqueue = NULL;
11750 iounmap(priv->hw_base);
11751 out_pci_release_regions:
11752 pci_release_regions(pdev);
11753 out_pci_disable_device:
11754 pci_disable_device(pdev);
11755 pci_set_drvdata(pdev, NULL);
11756 out_free_ieee80211:
11757 free_ieee80211(priv->net_dev);
11762 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11764 struct ipw_priv *priv = pci_get_drvdata(pdev);
11765 struct list_head *p, *q;
11771 mutex_lock(&priv->mutex);
11773 priv->status |= STATUS_EXIT_PENDING;
11775 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11777 mutex_unlock(&priv->mutex);
11779 unregister_netdev(priv->net_dev);
11782 ipw_rx_queue_free(priv, priv->rxq);
11785 ipw_tx_queue_free(priv);
11787 if (priv->cmdlog) {
11788 kfree(priv->cmdlog);
11789 priv->cmdlog = NULL;
11791 /* ipw_down will ensure that there is no more pending work
11792 * in the workqueue's, so we can safely remove them now. */
11793 cancel_delayed_work(&priv->adhoc_check);
11794 cancel_delayed_work(&priv->gather_stats);
11795 cancel_delayed_work(&priv->request_scan);
11796 cancel_delayed_work(&priv->request_direct_scan);
11797 cancel_delayed_work(&priv->request_passive_scan);
11798 cancel_delayed_work(&priv->scan_event);
11799 cancel_delayed_work(&priv->rf_kill);
11800 cancel_delayed_work(&priv->scan_check);
11801 destroy_workqueue(priv->workqueue);
11802 priv->workqueue = NULL;
11804 /* Free MAC hash list for ADHOC */
11805 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11806 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11808 kfree(list_entry(p, struct ipw_ibss_seq, list));
11812 kfree(priv->error);
11813 priv->error = NULL;
11815 #ifdef CONFIG_IPW2200_PROMISCUOUS
11816 ipw_prom_free(priv);
11819 free_irq(pdev->irq, priv);
11820 iounmap(priv->hw_base);
11821 pci_release_regions(pdev);
11822 pci_disable_device(pdev);
11823 pci_set_drvdata(pdev, NULL);
11824 free_ieee80211(priv->net_dev);
11829 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11831 struct ipw_priv *priv = pci_get_drvdata(pdev);
11832 struct net_device *dev = priv->net_dev;
11834 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11836 /* Take down the device; powers it off, etc. */
11839 /* Remove the PRESENT state of the device */
11840 netif_device_detach(dev);
11842 pci_save_state(pdev);
11843 pci_disable_device(pdev);
11844 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11846 priv->suspend_at = get_seconds();
11851 static int ipw_pci_resume(struct pci_dev *pdev)
11853 struct ipw_priv *priv = pci_get_drvdata(pdev);
11854 struct net_device *dev = priv->net_dev;
11858 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11860 pci_set_power_state(pdev, PCI_D0);
11861 err = pci_enable_device(pdev);
11863 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11867 pci_restore_state(pdev);
11870 * Suspend/Resume resets the PCI configuration space, so we have to
11871 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11872 * from interfering with C3 CPU state. pci_restore_state won't help
11873 * here since it only restores the first 64 bytes pci config header.
11875 pci_read_config_dword(pdev, 0x40, &val);
11876 if ((val & 0x0000ff00) != 0)
11877 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11879 /* Set the device back into the PRESENT state; this will also wake
11880 * the queue of needed */
11881 netif_device_attach(dev);
11883 priv->suspend_time = get_seconds() - priv->suspend_at;
11885 /* Bring the device back up */
11886 queue_work(priv->workqueue, &priv->up);
11892 static void ipw_pci_shutdown(struct pci_dev *pdev)
11894 struct ipw_priv *priv = pci_get_drvdata(pdev);
11896 /* Take down the device; powers it off, etc. */
11899 pci_disable_device(pdev);
11902 /* driver initialization stuff */
11903 static struct pci_driver ipw_driver = {
11905 .id_table = card_ids,
11906 .probe = ipw_pci_probe,
11907 .remove = __devexit_p(ipw_pci_remove),
11909 .suspend = ipw_pci_suspend,
11910 .resume = ipw_pci_resume,
11912 .shutdown = ipw_pci_shutdown,
11915 static int __init ipw_init(void)
11919 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11920 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11922 ret = pci_register_driver(&ipw_driver);
11924 IPW_ERROR("Unable to initialize PCI module\n");
11928 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11930 IPW_ERROR("Unable to create driver sysfs file\n");
11931 pci_unregister_driver(&ipw_driver);
11938 static void __exit ipw_exit(void)
11940 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11941 pci_unregister_driver(&ipw_driver);
11944 module_param(disable, int, 0444);
11945 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11947 module_param(associate, int, 0444);
11948 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11950 module_param(auto_create, int, 0444);
11951 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11953 module_param(led, int, 0444);
11954 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11956 module_param(debug, int, 0444);
11957 MODULE_PARM_DESC(debug, "debug output mask");
11959 module_param(channel, int, 0444);
11960 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11962 #ifdef CONFIG_IPW2200_PROMISCUOUS
11963 module_param(rtap_iface, int, 0444);
11964 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11967 #ifdef CONFIG_IPW2200_QOS
11968 module_param(qos_enable, int, 0444);
11969 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11971 module_param(qos_burst_enable, int, 0444);
11972 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11974 module_param(qos_no_ack_mask, int, 0444);
11975 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11977 module_param(burst_duration_CCK, int, 0444);
11978 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11980 module_param(burst_duration_OFDM, int, 0444);
11981 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11982 #endif /* CONFIG_IPW2200_QOS */
11984 #ifdef CONFIG_IPW2200_MONITOR
11985 module_param(mode, int, 0444);
11986 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11988 module_param(mode, int, 0444);
11989 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11992 module_param(bt_coexist, int, 0444);
11993 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11995 module_param(hwcrypto, int, 0444);
11996 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11998 module_param(cmdlog, int, 0444);
11999 MODULE_PARM_DESC(cmdlog,
12000 "allocate a ring buffer for logging firmware commands");
12002 module_param(roaming, int, 0444);
12003 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12005 module_param(antenna, int, 0444);
12006 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12008 module_exit(ipw_exit);
12009 module_init(ipw_init);