1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. */
4 Maintained by Valerie Henson <val_henson@linux.intel.com>
5 Copyright 2000,2001 The Linux Kernel Team
6 Written/copyright 1994-2001 by Donald Becker.
8 This software may be used and distributed according to the terms
9 of the GNU General Public License, incorporated herein by reference.
11 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
12 for more information on this driver, or visit the project
13 Web page at http://sourceforge.net/projects/tulip/
18 #define DRV_NAME "tulip"
19 #ifdef CONFIG_TULIP_NAPI
20 #define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
22 #define DRV_VERSION "1.1.15"
24 #define DRV_RELDATE "Feb 27, 2007"
27 #include <linux/module.h>
28 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/etherdevice.h>
32 #include <linux/delay.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/crc32.h>
36 #include <asm/unaligned.h>
37 #include <asm/uaccess.h>
43 static char version[] __devinitdata =
44 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
47 /* A few user-configurable values. */
49 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
50 static unsigned int max_interrupt_work = 25;
53 /* Used to pass the full-duplex flag, etc. */
54 static int full_duplex[MAX_UNITS];
55 static int options[MAX_UNITS];
56 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
58 /* The possible media types that can be set in options[] are: */
59 const char * const medianame[32] = {
60 "10baseT", "10base2", "AUI", "100baseTx",
61 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
62 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
63 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
64 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
65 "","","","", "","","","", "","","","Transceiver reset",
68 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
69 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
70 || defined(CONFIG_SPARC) || defined(__ia64__) \
71 || defined(__sh__) || defined(__mips__)
72 static int rx_copybreak = 1518;
74 static int rx_copybreak = 100;
78 Set the bus performance register.
79 Typical: Set 16 longword cache alignment, no burst limit.
80 Cache alignment bits 15:14 Burst length 13:8
81 0000 No alignment 0x00000000 unlimited 0800 8 longwords
82 4000 8 longwords 0100 1 longword 1000 16 longwords
83 8000 16 longwords 0200 2 longwords 2000 32 longwords
84 C000 32 longwords 0400 4 longwords
85 Warning: many older 486 systems are broken and require setting 0x00A04800
86 8 longword cache alignment, 8 longword burst.
87 ToDo: Non-Intel setting could be better.
90 #if defined(__alpha__) || defined(__ia64__)
91 static int csr0 = 0x01A00000 | 0xE000;
92 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
93 static int csr0 = 0x01A00000 | 0x8000;
94 #elif defined(CONFIG_SPARC) || defined(__hppa__)
95 /* The UltraSparc PCI controllers will disconnect at every 64-byte
96 * crossing anyways so it makes no sense to tell Tulip to burst
99 static int csr0 = 0x01A00000 | 0x9000;
100 #elif defined(__arm__) || defined(__sh__)
101 static int csr0 = 0x01A00000 | 0x4800;
102 #elif defined(__mips__)
103 static int csr0 = 0x00200000 | 0x4000;
105 #warning Processor architecture undefined!
106 static int csr0 = 0x00A00000 | 0x4800;
109 /* Operational parameters that usually are not changed. */
110 /* Time in jiffies before concluding the transmitter is hung. */
111 #define TX_TIMEOUT (4*HZ)
114 MODULE_AUTHOR("The Linux Kernel Team");
115 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
116 MODULE_LICENSE("GPL");
117 MODULE_VERSION(DRV_VERSION);
118 module_param(tulip_debug, int, 0);
119 module_param(max_interrupt_work, int, 0);
120 module_param(rx_copybreak, int, 0);
121 module_param(csr0, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
125 #define PFX DRV_NAME ": "
128 int tulip_debug = TULIP_DEBUG;
133 static void tulip_timer(unsigned long data)
135 struct net_device *dev = (struct net_device *)data;
136 struct tulip_private *tp = netdev_priv(dev);
138 if (netif_running(dev))
139 schedule_work(&tp->media_work);
143 * This table use during operation for capabilities and media timer.
145 * It is indexed via the values in 'enum chips'
148 struct tulip_chip_table tulip_tbl[] = {
149 { }, /* placeholder for array, slot unused currently */
150 { }, /* placeholder for array, slot unused currently */
153 { "Digital DS21140 Tulip", 128, 0x0001ebef,
154 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
157 /* DC21142, DC21143 */
158 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
159 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
160 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
163 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
164 HAS_MII | HAS_PNICNWAY, pnic_timer, },
167 { "Macronix 98713 PMAC", 128, 0x0001ebef,
168 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
171 { "Macronix 98715 PMAC", 256, 0x0001ebef,
172 HAS_MEDIA_TABLE, mxic_timer, },
175 { "Macronix 98725 PMAC", 256, 0x0001ebef,
176 HAS_MEDIA_TABLE, mxic_timer, },
179 { "ASIX AX88140", 128, 0x0001fbff,
180 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
181 | IS_ASIX, tulip_timer, tulip_media_task },
184 { "Lite-On PNIC-II", 256, 0x0801fbff,
185 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
188 { "ADMtek Comet", 256, 0x0001abef,
189 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
192 { "Compex 9881 PMAC", 128, 0x0001ebef,
193 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
196 { "Intel DS21145 Tulip", 128, 0x0801fbff,
197 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
198 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
201 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
202 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
203 tulip_timer, tulip_media_task },
206 { "Conexant LANfinity", 256, 0x0001ebef,
207 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
212 static struct pci_device_id tulip_pci_tbl[] = {
213 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
214 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
215 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
216 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
217 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
218 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
219 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
220 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
221 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
230 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
231 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
232 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
233 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
234 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
235 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
237 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
240 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
242 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
245 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
246 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
247 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
248 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
249 { } /* terminate list */
251 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
254 /* A full-duplex map for media types. */
255 const char tulip_media_cap[32] =
256 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
258 static void tulip_tx_timeout(struct net_device *dev);
259 static void tulip_init_ring(struct net_device *dev);
260 static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
261 static int tulip_open(struct net_device *dev);
262 static int tulip_close(struct net_device *dev);
263 static void tulip_up(struct net_device *dev);
264 static void tulip_down(struct net_device *dev);
265 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
266 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
267 static void set_rx_mode(struct net_device *dev);
268 #ifdef CONFIG_NET_POLL_CONTROLLER
269 static void poll_tulip(struct net_device *dev);
272 static void tulip_set_power_state (struct tulip_private *tp,
273 int sleep, int snooze)
275 if (tp->flags & HAS_ACPI) {
277 pci_read_config_dword (tp->pdev, CFDD, &tmp);
278 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
280 newtmp |= CFDD_Sleep;
282 newtmp |= CFDD_Snooze;
284 pci_write_config_dword (tp->pdev, CFDD, newtmp);
290 static void tulip_up(struct net_device *dev)
292 struct tulip_private *tp = netdev_priv(dev);
293 void __iomem *ioaddr = tp->base_addr;
294 int next_tick = 3*HZ;
297 #ifdef CONFIG_TULIP_NAPI
298 napi_enable(&tp->napi);
301 /* Wake the chip from sleep/snooze mode. */
302 tulip_set_power_state (tp, 0, 0);
304 /* On some chip revs we must set the MII/SYM port before the reset!? */
305 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
306 iowrite32(0x00040000, ioaddr + CSR6);
308 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
309 iowrite32(0x00000001, ioaddr + CSR0);
310 pci_read_config_dword(tp->pdev, PCI_COMMAND, &i); /* flush write */
314 Wait the specified 50 PCI cycles after a reset by initializing
315 Tx and Rx queues and the address filter list. */
316 iowrite32(tp->csr0, ioaddr + CSR0);
317 pci_read_config_dword(tp->pdev, PCI_COMMAND, &i); /* flush write */
321 printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
323 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
324 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
325 tp->cur_rx = tp->cur_tx = 0;
326 tp->dirty_rx = tp->dirty_tx = 0;
328 if (tp->flags & MC_HASH_ONLY) {
329 u32 addr_low = le32_to_cpu(get_unaligned((__le32 *)dev->dev_addr));
330 u32 addr_high = le16_to_cpu(get_unaligned((__le16 *)(dev->dev_addr+4)));
331 if (tp->chip_id == AX88140) {
332 iowrite32(0, ioaddr + CSR13);
333 iowrite32(addr_low, ioaddr + CSR14);
334 iowrite32(1, ioaddr + CSR13);
335 iowrite32(addr_high, ioaddr + CSR14);
336 } else if (tp->flags & COMET_MAC_ADDR) {
337 iowrite32(addr_low, ioaddr + 0xA4);
338 iowrite32(addr_high, ioaddr + 0xA8);
339 iowrite32(0, ioaddr + 0xAC);
340 iowrite32(0, ioaddr + 0xB0);
343 /* This is set_rx_mode(), but without starting the transmitter. */
344 u16 *eaddrs = (u16 *)dev->dev_addr;
345 u16 *setup_frm = &tp->setup_frame[15*6];
348 /* 21140 bug: you must add the broadcast address. */
349 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
350 /* Fill the final entry of the table with our physical address. */
351 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
352 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
353 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
355 mapping = pci_map_single(tp->pdev, tp->setup_frame,
356 sizeof(tp->setup_frame),
358 tp->tx_buffers[tp->cur_tx].skb = NULL;
359 tp->tx_buffers[tp->cur_tx].mapping = mapping;
361 /* Put the setup frame on the Tx list. */
362 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
363 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
364 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
369 tp->saved_if_port = dev->if_port;
370 if (dev->if_port == 0)
371 dev->if_port = tp->default_port;
373 /* Allow selecting a default media. */
375 if (tp->mtable == NULL)
378 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
379 (dev->if_port == 12 ? 0 : dev->if_port);
380 for (i = 0; i < tp->mtable->leafcount; i++)
381 if (tp->mtable->mleaf[i].media == looking_for) {
382 printk(KERN_INFO "%s: Using user-specified media %s.\n",
383 dev->name, medianame[dev->if_port]);
387 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
388 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
389 for (i = 0; i < tp->mtable->leafcount; i++)
390 if (tp->mtable->mleaf[i].media == looking_for) {
391 printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
392 dev->name, medianame[looking_for]);
396 /* Start sensing first non-full-duplex media. */
397 for (i = tp->mtable->leafcount - 1;
398 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
407 if (tp->chip_id == DC21143 &&
408 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
409 /* We must reset the media CSRs when we force-select MII mode. */
410 iowrite32(0x0000, ioaddr + CSR13);
411 iowrite32(0x0000, ioaddr + CSR14);
412 iowrite32(0x0008, ioaddr + CSR15);
414 tulip_select_media(dev, 1);
415 } else if (tp->chip_id == DC21142) {
417 tulip_select_media(dev, 1);
419 printk(KERN_INFO "%s: Using MII transceiver %d, status "
421 dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
422 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
423 tp->csr6 = csr6_mask_hdcap;
425 iowrite32(0x0000, ioaddr + CSR13);
426 iowrite32(0x0000, ioaddr + CSR14);
428 t21142_start_nway(dev);
429 } else if (tp->chip_id == PNIC2) {
430 /* for initial startup advertise 10/100 Full and Half */
431 tp->sym_advertise = 0x01E0;
432 /* enable autonegotiate end interrupt */
433 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
434 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
435 pnic2_start_nway(dev);
436 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
439 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
440 iowrite32(0x0001, ioaddr + CSR15);
441 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
444 /* Start with 10mbps to do autonegotiation. */
445 iowrite32(0x32, ioaddr + CSR12);
446 tp->csr6 = 0x00420000;
447 iowrite32(0x0001B078, ioaddr + 0xB8);
448 iowrite32(0x0201B078, ioaddr + 0xB8);
451 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
452 && ! tp->medialock) {
454 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
455 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
456 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
457 /* Provided by BOLO, Macronix - 12/10/1998. */
459 tp->csr6 = 0x01a80200;
460 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
461 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
462 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
463 /* Enable automatic Tx underrun recovery. */
464 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
465 dev->if_port = tp->mii_cnt ? 11 : 0;
466 tp->csr6 = 0x00040000;
467 } else if (tp->chip_id == AX88140) {
468 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
470 tulip_select_media(dev, 1);
472 /* Start the chip's Tx to process setup frame. */
476 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
478 /* Enable interrupts by setting the interrupt mask. */
479 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
480 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
481 tulip_start_rxtx(tp);
482 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
484 if (tulip_debug > 2) {
485 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
486 dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
487 ioread32(ioaddr + CSR6));
490 /* Set the timer to switch to check for link beat and perhaps switch
491 to an alternate media type. */
492 tp->timer.expires = RUN_AT(next_tick);
493 add_timer(&tp->timer);
494 #ifdef CONFIG_TULIP_NAPI
495 init_timer(&tp->oom_timer);
496 tp->oom_timer.data = (unsigned long)dev;
497 tp->oom_timer.function = oom_timer;
502 tulip_open(struct net_device *dev)
506 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev)))
509 tulip_init_ring (dev);
513 netif_start_queue (dev);
519 static void tulip_tx_timeout(struct net_device *dev)
521 struct tulip_private *tp = netdev_priv(dev);
522 void __iomem *ioaddr = tp->base_addr;
525 spin_lock_irqsave (&tp->lock, flags);
527 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
528 /* Do nothing -- the media monitor should handle this. */
530 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
532 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
533 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
534 || tp->chip_id == DM910X) {
535 printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
536 "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
537 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
538 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
539 tp->timeout_recovery = 1;
540 schedule_work(&tp->media_work);
542 } else if (tp->chip_id == PNIC2) {
543 printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
544 "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
545 dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
546 (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
548 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
549 "%8.8x, resetting...\n",
550 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
554 #if defined(way_too_many_messages)
555 if (tulip_debug > 3) {
557 for (i = 0; i < RX_RING_SIZE; i++) {
558 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
560 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
561 "%2.2x %2.2x %2.2x.\n",
562 i, (unsigned int)tp->rx_ring[i].status,
563 (unsigned int)tp->rx_ring[i].length,
564 (unsigned int)tp->rx_ring[i].buffer1,
565 (unsigned int)tp->rx_ring[i].buffer2,
566 buf[0], buf[1], buf[2]);
567 for (j = 0; buf[j] != 0xee && j < 1600; j++)
568 if (j < 100) printk(" %2.2x", buf[j]);
569 printk(" j=%d.\n", j);
571 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
572 for (i = 0; i < RX_RING_SIZE; i++)
573 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
574 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
575 for (i = 0; i < TX_RING_SIZE; i++)
576 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
581 tulip_tx_timeout_complete(tp, ioaddr);
584 spin_unlock_irqrestore (&tp->lock, flags);
585 dev->trans_start = jiffies;
586 netif_wake_queue (dev);
590 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
591 static void tulip_init_ring(struct net_device *dev)
593 struct tulip_private *tp = netdev_priv(dev);
600 for (i = 0; i < RX_RING_SIZE; i++) {
601 tp->rx_ring[i].status = 0x00000000;
602 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
603 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
604 tp->rx_buffers[i].skb = NULL;
605 tp->rx_buffers[i].mapping = 0;
607 /* Mark the last entry as wrapping the ring. */
608 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
609 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
611 for (i = 0; i < RX_RING_SIZE; i++) {
614 /* Note the receive buffer must be longword aligned.
615 dev_alloc_skb() provides 16 byte alignment. But do *not*
616 use skb_reserve() to align the IP header! */
617 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
618 tp->rx_buffers[i].skb = skb;
621 mapping = pci_map_single(tp->pdev, skb->data,
622 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
623 tp->rx_buffers[i].mapping = mapping;
624 skb->dev = dev; /* Mark as being used by this device. */
625 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
626 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
628 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
630 /* The Tx buffer descriptor is filled in as needed, but we
631 do need to clear the ownership bit. */
632 for (i = 0; i < TX_RING_SIZE; i++) {
633 tp->tx_buffers[i].skb = NULL;
634 tp->tx_buffers[i].mapping = 0;
635 tp->tx_ring[i].status = 0x00000000;
636 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
638 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
642 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
644 struct tulip_private *tp = netdev_priv(dev);
649 spin_lock_irq(&tp->lock);
651 /* Calculate the next Tx descriptor entry. */
652 entry = tp->cur_tx % TX_RING_SIZE;
654 tp->tx_buffers[entry].skb = skb;
655 mapping = pci_map_single(tp->pdev, skb->data,
656 skb->len, PCI_DMA_TODEVICE);
657 tp->tx_buffers[entry].mapping = mapping;
658 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
660 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
661 flag = 0x60000000; /* No interrupt */
662 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
663 flag = 0xe0000000; /* Tx-done intr. */
664 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
665 flag = 0x60000000; /* No Tx-done intr. */
666 } else { /* Leave room for set_rx_mode() to fill entries. */
667 flag = 0xe0000000; /* Tx-done intr. */
668 netif_stop_queue(dev);
670 if (entry == TX_RING_SIZE-1)
671 flag = 0xe0000000 | DESC_RING_WRAP;
673 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
674 /* if we were using Transmit Automatic Polling, we would need a
676 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
681 /* Trigger an immediate transmit demand. */
682 iowrite32(0, tp->base_addr + CSR1);
684 spin_unlock_irq(&tp->lock);
686 dev->trans_start = jiffies;
691 static void tulip_clean_tx_ring(struct tulip_private *tp)
693 unsigned int dirty_tx;
695 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
697 int entry = dirty_tx % TX_RING_SIZE;
698 int status = le32_to_cpu(tp->tx_ring[entry].status);
701 tp->stats.tx_errors++; /* It wasn't Txed */
702 tp->tx_ring[entry].status = 0;
705 /* Check for Tx filter setup frames. */
706 if (tp->tx_buffers[entry].skb == NULL) {
707 /* test because dummy frames not mapped */
708 if (tp->tx_buffers[entry].mapping)
709 pci_unmap_single(tp->pdev,
710 tp->tx_buffers[entry].mapping,
711 sizeof(tp->setup_frame),
716 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
717 tp->tx_buffers[entry].skb->len,
720 /* Free the original skb. */
721 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
722 tp->tx_buffers[entry].skb = NULL;
723 tp->tx_buffers[entry].mapping = 0;
727 static void tulip_down (struct net_device *dev)
729 struct tulip_private *tp = netdev_priv(dev);
730 void __iomem *ioaddr = tp->base_addr;
733 flush_scheduled_work();
735 #ifdef CONFIG_TULIP_NAPI
736 napi_disable(&tp->napi);
739 del_timer_sync (&tp->timer);
740 #ifdef CONFIG_TULIP_NAPI
741 del_timer_sync (&tp->oom_timer);
743 spin_lock_irqsave (&tp->lock, flags);
745 /* Disable interrupts by clearing the interrupt mask. */
746 iowrite32 (0x00000000, ioaddr + CSR7);
748 /* Stop the Tx and Rx processes. */
751 /* prepare receive buffers */
752 tulip_refill_rx(dev);
754 /* release any unconsumed transmit buffers */
755 tulip_clean_tx_ring(tp);
757 if (ioread32 (ioaddr + CSR6) != 0xffffffff)
758 tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
760 spin_unlock_irqrestore (&tp->lock, flags);
762 init_timer(&tp->timer);
763 tp->timer.data = (unsigned long)dev;
764 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
766 dev->if_port = tp->saved_if_port;
768 /* Leave the driver in snooze, not sleep, mode. */
769 tulip_set_power_state (tp, 0, 1);
773 static int tulip_close (struct net_device *dev)
775 struct tulip_private *tp = netdev_priv(dev);
776 void __iomem *ioaddr = tp->base_addr;
779 netif_stop_queue (dev);
784 printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
785 dev->name, ioread32 (ioaddr + CSR5));
787 free_irq (dev->irq, dev);
789 /* Free all the skbuffs in the Rx queue. */
790 for (i = 0; i < RX_RING_SIZE; i++) {
791 struct sk_buff *skb = tp->rx_buffers[i].skb;
792 dma_addr_t mapping = tp->rx_buffers[i].mapping;
794 tp->rx_buffers[i].skb = NULL;
795 tp->rx_buffers[i].mapping = 0;
797 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
798 tp->rx_ring[i].length = 0;
799 tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
801 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
806 for (i = 0; i < TX_RING_SIZE; i++) {
807 struct sk_buff *skb = tp->tx_buffers[i].skb;
810 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
811 skb->len, PCI_DMA_TODEVICE);
814 tp->tx_buffers[i].skb = NULL;
815 tp->tx_buffers[i].mapping = 0;
821 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
823 struct tulip_private *tp = netdev_priv(dev);
824 void __iomem *ioaddr = tp->base_addr;
826 if (netif_running(dev)) {
829 spin_lock_irqsave (&tp->lock, flags);
831 tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
833 spin_unlock_irqrestore(&tp->lock, flags);
840 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
842 struct tulip_private *np = netdev_priv(dev);
843 strcpy(info->driver, DRV_NAME);
844 strcpy(info->version, DRV_VERSION);
845 strcpy(info->bus_info, pci_name(np->pdev));
848 static const struct ethtool_ops ops = {
849 .get_drvinfo = tulip_get_drvinfo
852 /* Provide ioctl() calls to examine the MII xcvr state. */
853 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
855 struct tulip_private *tp = netdev_priv(dev);
856 void __iomem *ioaddr = tp->base_addr;
857 struct mii_ioctl_data *data = if_mii(rq);
858 const unsigned int phy_idx = 0;
859 int phy = tp->phys[phy_idx] & 0x1f;
860 unsigned int regnum = data->reg_num;
863 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
866 else if (tp->flags & HAS_NWAY)
868 else if (tp->chip_id == COMET)
873 case SIOCGMIIREG: /* Read MII PHY register. */
874 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
875 int csr12 = ioread32 (ioaddr + CSR12);
876 int csr14 = ioread32 (ioaddr + CSR14);
879 if (((csr14<<5) & 0x1000) ||
880 (dev->if_port == 5 && tp->nwayset))
881 data->val_out = 0x1000;
883 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
884 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
889 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
890 ((csr12&0x06) == 6 ? 0 : 4);
891 data->val_out |= 0x6048;
894 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
896 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
897 ((csr14 >> 1) & 0x20) + 1;
898 data->val_out |= ((csr14 >> 9) & 0x03C0);
900 case 5: data->val_out = tp->lpar; break;
901 default: data->val_out = 0; break;
904 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
908 case SIOCSMIIREG: /* Write MII PHY register. */
909 if (!capable (CAP_NET_ADMIN))
913 if (data->phy_id == phy) {
914 u16 value = data->val_in;
916 case 0: /* Check for autonegotiation on or reset. */
917 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
918 if (tp->full_duplex_lock)
919 tp->full_duplex = (value & 0x0100) ? 1 : 0;
922 tp->advertising[phy_idx] =
923 tp->mii_advertise = data->val_in;
927 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
928 u16 value = data->val_in;
930 if ((value & 0x1200) == 0x1200) {
931 if (tp->chip_id == PNIC2) {
932 pnic2_start_nway (dev);
934 t21142_start_nway (dev);
937 } else if (regnum == 4)
938 tp->sym_advertise = value;
940 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
951 /* Set or clear the multicast filter for this adaptor.
952 Note that we only use exclusion around actually queueing the
953 new frame, not around filling tp->setup_frame. This is non-deterministic
954 when re-entered but still correct. */
957 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
959 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
961 struct tulip_private *tp = netdev_priv(dev);
963 struct dev_mc_list *mclist;
967 memset(hash_table, 0, sizeof(hash_table));
968 set_bit_le(255, hash_table); /* Broadcast entry */
969 /* This should work on big-endian machines as well. */
970 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
971 i++, mclist = mclist->next) {
972 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
974 set_bit_le(index, hash_table);
977 for (i = 0; i < 32; i++) {
978 *setup_frm++ = hash_table[i];
979 *setup_frm++ = hash_table[i];
981 setup_frm = &tp->setup_frame[13*6];
983 /* Fill the final entry with our physical address. */
984 eaddrs = (u16 *)dev->dev_addr;
985 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
986 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
987 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
990 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
992 struct tulip_private *tp = netdev_priv(dev);
993 struct dev_mc_list *mclist;
997 /* We have <= 14 addresses so we can use the wonderful
998 16 address perfect filtering of the Tulip. */
999 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
1000 i++, mclist = mclist->next) {
1001 eaddrs = (u16 *)mclist->dmi_addr;
1002 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1003 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1004 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1006 /* Fill the unused entries with the broadcast address. */
1007 memset(setup_frm, 0xff, (15-i)*12);
1008 setup_frm = &tp->setup_frame[15*6];
1010 /* Fill the final entry with our physical address. */
1011 eaddrs = (u16 *)dev->dev_addr;
1012 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1013 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1014 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1018 static void set_rx_mode(struct net_device *dev)
1020 struct tulip_private *tp = netdev_priv(dev);
1021 void __iomem *ioaddr = tp->base_addr;
1024 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1026 tp->csr6 &= ~0x00D5;
1027 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1028 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1029 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1030 } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1031 /* Too many to filter well -- accept all multicasts. */
1032 tp->csr6 |= AcceptAllMulticast;
1033 csr6 |= AcceptAllMulticast;
1034 } else if (tp->flags & MC_HASH_ONLY) {
1035 /* Some work-alikes have only a 64-entry hash filter table. */
1036 /* Should verify correctness on big-endian/__powerpc__ */
1037 struct dev_mc_list *mclist;
1039 if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
1040 tp->csr6 |= AcceptAllMulticast;
1041 csr6 |= AcceptAllMulticast;
1043 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1045 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1046 i++, mclist = mclist->next) {
1047 if (tp->flags & COMET_MAC_ADDR)
1048 filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
1050 filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1052 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1053 if (tulip_debug > 2) {
1054 DECLARE_MAC_BUF(mac);
1055 printk(KERN_INFO "%s: Added filter for %s"
1057 dev->name, print_mac(mac, mclist->dmi_addr),
1058 ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
1061 if (mc_filter[0] == tp->mc_filter[0] &&
1062 mc_filter[1] == tp->mc_filter[1])
1064 else if (tp->flags & IS_ASIX) {
1065 iowrite32(2, ioaddr + CSR13);
1066 iowrite32(mc_filter[0], ioaddr + CSR14);
1067 iowrite32(3, ioaddr + CSR13);
1068 iowrite32(mc_filter[1], ioaddr + CSR14);
1069 } else if (tp->flags & COMET_MAC_ADDR) {
1070 iowrite32(mc_filter[0], ioaddr + 0xAC);
1071 iowrite32(mc_filter[1], ioaddr + 0xB0);
1073 tp->mc_filter[0] = mc_filter[0];
1074 tp->mc_filter[1] = mc_filter[1];
1077 unsigned long flags;
1078 u32 tx_flags = 0x08000000 | 192;
1080 /* Note that only the low-address shortword of setup_frame is valid!
1081 The values are doubled for big-endian architectures. */
1082 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1083 build_setup_frame_hash(tp->setup_frame, dev);
1084 tx_flags = 0x08400000 | 192;
1086 build_setup_frame_perfect(tp->setup_frame, dev);
1089 spin_lock_irqsave(&tp->lock, flags);
1091 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1092 /* Same setup recently queued, we need not add it. */
1097 /* Now add this frame to the Tx list. */
1099 entry = tp->cur_tx++ % TX_RING_SIZE;
1102 /* Avoid a chip errata by prefixing a dummy entry. */
1103 tp->tx_buffers[entry].skb = NULL;
1104 tp->tx_buffers[entry].mapping = 0;
1105 tp->tx_ring[entry].length =
1106 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1107 tp->tx_ring[entry].buffer1 = 0;
1108 /* Must set DescOwned later to avoid race with chip */
1110 entry = tp->cur_tx++ % TX_RING_SIZE;
1114 tp->tx_buffers[entry].skb = NULL;
1115 tp->tx_buffers[entry].mapping =
1116 pci_map_single(tp->pdev, tp->setup_frame,
1117 sizeof(tp->setup_frame),
1119 /* Put the setup frame on the Tx list. */
1120 if (entry == TX_RING_SIZE-1)
1121 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1122 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1123 tp->tx_ring[entry].buffer1 =
1124 cpu_to_le32(tp->tx_buffers[entry].mapping);
1125 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1127 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1128 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1129 netif_stop_queue(dev);
1131 /* Trigger an immediate transmit demand. */
1132 iowrite32(0, ioaddr + CSR1);
1135 spin_unlock_irqrestore(&tp->lock, flags);
1138 iowrite32(csr6, ioaddr + CSR6);
1141 #ifdef CONFIG_TULIP_MWI
1142 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1143 struct net_device *dev)
1145 struct tulip_private *tp = netdev_priv(dev);
1150 if (tulip_debug > 3)
1151 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1153 tp->csr0 = csr0 = 0;
1155 /* if we have any cache line size at all, we can do MRM */
1158 /* ...and barring hardware bugs, MWI */
1159 if (!(tp->chip_id == DC21143 && tp->revision == 65))
1162 /* set or disable MWI in the standard PCI command bit.
1163 * Check for the case where mwi is desired but not available
1165 if (csr0 & MWI) pci_try_set_mwi(pdev);
1166 else pci_clear_mwi(pdev);
1168 /* read result from hardware (in case bit refused to enable) */
1169 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1170 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1173 /* if cache line size hardwired to zero, no MWI */
1174 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1175 if ((csr0 & MWI) && (cache == 0)) {
1177 pci_clear_mwi(pdev);
1180 /* assign per-cacheline-size cache alignment and
1181 * burst length values
1185 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1188 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1191 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1198 /* if we have a good cache line size, we by now have a good
1199 * csr0, so save it and exit
1204 /* we don't have a good csr0 or cache line size, disable MWI */
1206 pci_clear_mwi(pdev);
1210 /* sane defaults for burst length and cache alignment
1211 * originally from de4x5 driver
1213 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1217 if (tulip_debug > 2)
1218 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1219 pci_name(pdev), cache, csr0);
1224 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1225 * is the DM910X and the on chip ULi devices
1228 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1230 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1235 static int __devinit tulip_init_one (struct pci_dev *pdev,
1236 const struct pci_device_id *ent)
1238 struct tulip_private *tp;
1239 /* See note below on the multiport cards. */
1240 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1241 static struct pci_device_id early_486_chipsets[] = {
1242 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1243 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1246 static int last_irq;
1247 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1250 unsigned char *ee_data;
1251 struct net_device *dev;
1252 void __iomem *ioaddr;
1253 static int board_idx = -1;
1254 int chip_idx = ent->driver_data;
1255 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1256 unsigned int eeprom_missing = 0;
1257 unsigned int force_csr0 = 0;
1258 DECLARE_MAC_BUF(mac);
1261 static int did_version; /* Already printed version info. */
1262 if (tulip_debug > 0 && did_version++ == 0)
1263 printk (KERN_INFO "%s", version);
1269 * Lan media wire a tulip chip to a wan interface. Needs a very
1270 * different driver (lmc driver)
1273 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1274 printk (KERN_ERR PFX "skipping LMC card.\n");
1279 * Early DM9100's need software CRC and the DMFE driver
1282 if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
1284 /* Read Chip revision */
1285 if (pdev->revision < 0x30)
1287 printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1293 * Looks for early PCI chipsets where people report hangs
1294 * without the workarounds being on.
1297 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1298 aligned. Aries might need this too. The Saturn errata are not
1299 pretty reading but thankfully it's an old 486 chipset.
1301 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1305 if (pci_dev_present(early_486_chipsets)) {
1306 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1310 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1311 if (chip_idx == AX88140) {
1312 if ((csr0 & 0x3f00) == 0)
1316 /* PNIC doesn't have MWI/MRL/MRM... */
1317 if (chip_idx == LC82C168)
1318 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1320 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1321 if (tulip_uli_dm_quirk(pdev)) {
1322 csr0 &= ~0x01f100ff;
1323 #if defined(CONFIG_SPARC)
1324 csr0 = (csr0 & ~0xff00) | 0xe000;
1328 * And back to business
1331 i = pci_enable_device(pdev);
1333 printk (KERN_ERR PFX
1334 "Cannot enable tulip board #%d, aborting\n",
1341 /* alloc_etherdev ensures aligned and zeroed private structures */
1342 dev = alloc_etherdev (sizeof (*tp));
1344 printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
1348 SET_NETDEV_DEV(dev, &pdev->dev);
1349 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1350 printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
1351 "aborting\n", pci_name(pdev),
1352 (unsigned long long)pci_resource_len (pdev, 0),
1353 (unsigned long long)pci_resource_start (pdev, 0));
1354 goto err_out_free_netdev;
1357 /* grab all resources from both PIO and MMIO regions, as we
1358 * don't want anyone else messing around with our hardware */
1359 if (pci_request_regions (pdev, "tulip"))
1360 goto err_out_free_netdev;
1362 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1365 goto err_out_free_res;
1368 * initialize private data structure 'tp'
1369 * it is zeroed and aligned in alloc_etherdev
1371 tp = netdev_priv(dev);
1374 tp->rx_ring = pci_alloc_consistent(pdev,
1375 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1376 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1379 goto err_out_mtable;
1380 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1381 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1383 tp->chip_id = chip_idx;
1384 tp->flags = tulip_tbl[chip_idx].flags;
1386 tp->base_addr = ioaddr;
1387 tp->revision = pdev->revision;
1389 spin_lock_init(&tp->lock);
1390 spin_lock_init(&tp->mii_lock);
1391 init_timer(&tp->timer);
1392 tp->timer.data = (unsigned long)dev;
1393 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1395 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1397 dev->base_addr = (unsigned long)ioaddr;
1399 #ifdef CONFIG_TULIP_MWI
1400 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1401 tulip_mwi_config (pdev, dev);
1403 /* MWI is broken for DC21143 rev 65... */
1404 if (chip_idx == DC21143 && pdev->revision == 65)
1408 /* Stop the chip's Tx and Rx processes. */
1409 tulip_stop_rxtx(tp);
1411 pci_set_master(pdev);
1414 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1415 switch (pdev->subsystem_device) {
1424 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1425 chip_name = "GSC DS21140 Tulip";
1430 /* Clear the missed-packet counter. */
1431 ioread32(ioaddr + CSR8);
1433 /* The station address ROM is read byte serially. The register must
1434 be polled, waiting for the value to be read bit serially from the
1437 ee_data = tp->eeprom;
1439 if (chip_idx == LC82C168) {
1440 for (i = 0; i < 3; i++) {
1441 int value, boguscnt = 100000;
1442 iowrite32(0x600 | i, ioaddr + 0x98);
1444 value = ioread32(ioaddr + CSR9);
1445 while (value < 0 && --boguscnt > 0);
1446 put_unaligned(cpu_to_le16(value), ((__le16*)dev->dev_addr) + i);
1447 sum += value & 0xffff;
1449 } else if (chip_idx == COMET) {
1450 /* No need to read the EEPROM. */
1451 put_unaligned(cpu_to_le32(ioread32(ioaddr + 0xA4)), (__le32 *)dev->dev_addr);
1452 put_unaligned(cpu_to_le16(ioread32(ioaddr + 0xA8)), (__le16 *)(dev->dev_addr + 4));
1453 for (i = 0; i < 6; i ++)
1454 sum += dev->dev_addr[i];
1456 /* A serial EEPROM interface, we read now and sort it out later. */
1458 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1460 for (i = 0; i < sizeof(tp->eeprom); i+=2) {
1461 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1462 ee_data[i] = data & 0xff;
1463 ee_data[i + 1] = data >> 8;
1466 /* DEC now has a specification (see Notes) but early board makers
1467 just put the address in the first EEPROM locations. */
1468 /* This does memcmp(ee_data, ee_data+16, 8) */
1469 for (i = 0; i < 8; i ++)
1470 if (ee_data[i] != ee_data[16+i])
1472 if (chip_idx == CONEXANT) {
1473 /* Check that the tuple type and length is correct. */
1474 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1476 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1478 sa_offset = 2; /* Grrr, damn Matrox boards. */
1481 #ifdef CONFIG_MIPS_COBALT
1482 if ((pdev->bus->number == 0) &&
1483 ((PCI_SLOT(pdev->devfn) == 7) ||
1484 (PCI_SLOT(pdev->devfn) == 12))) {
1485 /* Cobalt MAC address in first EEPROM locations. */
1487 /* Ensure our media table fixup get's applied */
1488 memcpy(ee_data + 16, ee_data, 8);
1492 /* Check to see if we have a broken srom */
1493 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1494 /* pci_vendor_id and subsystem_id are swapped */
1495 ee_data[0] = ee_data[2];
1496 ee_data[1] = ee_data[3];
1500 /* HSC-PCI boards need to be byte-swaped and shifted
1501 * up 1 word. This shift needs to happen at the end
1502 * of the MAC first because of the 2 byte overlap.
1504 for (i = 4; i >= 0; i -= 2) {
1505 ee_data[17 + i + 3] = ee_data[17 + i];
1506 ee_data[16 + i + 5] = ee_data[16 + i];
1511 for (i = 0; i < 6; i ++) {
1512 dev->dev_addr[i] = ee_data[i + sa_offset];
1513 sum += ee_data[i + sa_offset];
1516 /* Lite-On boards have the address byte-swapped. */
1517 if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
1518 && dev->dev_addr[1] == 0x00)
1519 for (i = 0; i < 6; i+=2) {
1520 char tmp = dev->dev_addr[i];
1521 dev->dev_addr[i] = dev->dev_addr[i+1];
1522 dev->dev_addr[i+1] = tmp;
1524 /* On the Zynx 315 Etherarray and other multiport boards only the
1525 first Tulip has an EEPROM.
1526 On Sparc systems the mac address is held in the OBP property
1527 "local-mac-address".
1528 The addresses of the subsequent ports are derived from the first.
1529 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1530 that here as well. */
1531 if (sum == 0 || sum == 6*0xff) {
1532 #if defined(CONFIG_SPARC)
1533 struct device_node *dp = pci_device_to_OF_node(pdev);
1534 const unsigned char *addr;
1538 for (i = 0; i < 5; i++)
1539 dev->dev_addr[i] = last_phys_addr[i];
1540 dev->dev_addr[i] = last_phys_addr[i] + 1;
1541 #if defined(CONFIG_SPARC)
1542 addr = of_get_property(dp, "local-mac-address", &len);
1543 if (addr && len == 6)
1544 memcpy(dev->dev_addr, addr, 6);
1546 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1552 for (i = 0; i < 6; i++)
1553 last_phys_addr[i] = dev->dev_addr[i];
1557 /* The lower four bits are the media type. */
1558 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1559 if (options[board_idx] & MEDIA_MASK)
1560 tp->default_port = options[board_idx] & MEDIA_MASK;
1561 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1562 tp->full_duplex = 1;
1563 if (mtu[board_idx] > 0)
1564 dev->mtu = mtu[board_idx];
1566 if (dev->mem_start & MEDIA_MASK)
1567 tp->default_port = dev->mem_start & MEDIA_MASK;
1568 if (tp->default_port) {
1569 printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
1570 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1572 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1573 tp->full_duplex = 1;
1575 if (tp->full_duplex)
1576 tp->full_duplex_lock = 1;
1578 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1579 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1580 tp->mii_advertise = media2advert[tp->default_port - 9];
1581 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1584 if (tp->flags & HAS_MEDIA_TABLE) {
1585 sprintf(dev->name, "tulip%d", board_idx); /* hack */
1586 tulip_parse_eeprom(dev);
1587 strcpy(dev->name, "eth%d"); /* un-hack */
1590 if ((tp->flags & ALWAYS_CHECK_MII) ||
1591 (tp->mtable && tp->mtable->has_mii) ||
1592 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1593 if (tp->mtable && tp->mtable->has_mii) {
1594 for (i = 0; i < tp->mtable->leafcount; i++)
1595 if (tp->mtable->mleaf[i].media == 11) {
1597 tp->saved_if_port = dev->if_port;
1598 tulip_select_media(dev, 2);
1599 dev->if_port = tp->saved_if_port;
1604 /* Find the connected MII xcvrs.
1605 Doing this in open() would allow detecting external xcvrs
1606 later, but takes much time. */
1607 tulip_find_mii (dev, board_idx);
1610 /* The Tulip-specific entries in the device structure. */
1611 dev->open = tulip_open;
1612 dev->hard_start_xmit = tulip_start_xmit;
1613 dev->tx_timeout = tulip_tx_timeout;
1614 dev->watchdog_timeo = TX_TIMEOUT;
1615 #ifdef CONFIG_TULIP_NAPI
1616 netif_napi_add(dev, &tp->napi, tulip_poll, 16);
1618 dev->stop = tulip_close;
1619 dev->get_stats = tulip_get_stats;
1620 dev->do_ioctl = private_ioctl;
1621 dev->set_multicast_list = set_rx_mode;
1622 #ifdef CONFIG_NET_POLL_CONTROLLER
1623 dev->poll_controller = &poll_tulip;
1625 SET_ETHTOOL_OPS(dev, &ops);
1627 if (register_netdev(dev))
1628 goto err_out_free_ring;
1630 printk(KERN_INFO "%s: %s rev %d at "
1631 #ifdef CONFIG_TULIP_MMIO
1636 " %#llx,", dev->name, chip_name, pdev->revision,
1637 (unsigned long long) pci_resource_start(pdev, TULIP_BAR));
1638 pci_set_drvdata(pdev, dev);
1641 printk(" EEPROM not present,");
1642 printk(" %s", print_mac(mac, dev->dev_addr));
1643 printk(", IRQ %d.\n", irq);
1645 if (tp->chip_id == PNIC2)
1646 tp->link_change = pnic2_lnk_change;
1647 else if (tp->flags & HAS_NWAY)
1648 tp->link_change = t21142_lnk_change;
1649 else if (tp->flags & HAS_PNICNWAY)
1650 tp->link_change = pnic_lnk_change;
1652 /* Reset the xcvr interface and turn on heartbeat. */
1658 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1661 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1662 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1663 iowrite32(0x0000, ioaddr + CSR13);
1664 iowrite32(0x0000, ioaddr + CSR14);
1665 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1667 t21142_start_nway(dev);
1670 /* just do a reset for sanity sake */
1671 iowrite32(0x0000, ioaddr + CSR13);
1672 iowrite32(0x0000, ioaddr + CSR14);
1675 if ( ! tp->mii_cnt) {
1678 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1679 iowrite32(0x30, ioaddr + CSR12);
1680 iowrite32(0x0001F078, ioaddr + CSR6);
1681 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1686 iowrite32(0x00000000, ioaddr + CSR6);
1687 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1688 iowrite32(0x00000001, ioaddr + CSR13);
1692 iowrite32(0x01a80000, ioaddr + CSR6);
1693 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1694 iowrite32(0x00001000, ioaddr + CSR12);
1697 /* No initialization necessary. */
1701 /* put the chip in snooze mode until opened */
1702 tulip_set_power_state (tp, 0, 1);
1707 pci_free_consistent (pdev,
1708 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1709 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1710 tp->rx_ring, tp->rx_ring_dma);
1714 pci_iounmap(pdev, ioaddr);
1717 pci_release_regions (pdev);
1719 err_out_free_netdev:
1727 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1729 struct net_device *dev = pci_get_drvdata(pdev);
1734 if (netif_running(dev))
1737 netif_device_detach(dev);
1738 free_irq(dev->irq, dev);
1740 pci_save_state(pdev);
1741 pci_disable_device(pdev);
1742 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1748 static int tulip_resume(struct pci_dev *pdev)
1750 struct net_device *dev = pci_get_drvdata(pdev);
1756 pci_set_power_state(pdev, PCI_D0);
1757 pci_restore_state(pdev);
1759 if ((retval = pci_enable_device(pdev))) {
1760 printk (KERN_ERR "tulip: pci_enable_device failed in resume\n");
1764 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1765 printk (KERN_ERR "tulip: request_irq failed in resume\n");
1769 netif_device_attach(dev);
1771 if (netif_running(dev))
1777 #endif /* CONFIG_PM */
1780 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1782 struct net_device *dev = pci_get_drvdata (pdev);
1783 struct tulip_private *tp;
1788 tp = netdev_priv(dev);
1789 unregister_netdev(dev);
1790 pci_free_consistent (pdev,
1791 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1792 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1793 tp->rx_ring, tp->rx_ring_dma);
1795 pci_iounmap(pdev, tp->base_addr);
1797 pci_release_regions (pdev);
1798 pci_set_drvdata (pdev, NULL);
1800 /* pci_power_off (pdev, -1); */
1803 #ifdef CONFIG_NET_POLL_CONTROLLER
1805 * Polling 'interrupt' - used by things like netconsole to send skbs
1806 * without having to re-enable interrupts. It's not called while
1807 * the interrupt routine is executing.
1810 static void poll_tulip (struct net_device *dev)
1812 /* disable_irq here is not very nice, but with the lockless
1813 interrupt handler we have no other choice. */
1814 disable_irq(dev->irq);
1815 tulip_interrupt (dev->irq, dev);
1816 enable_irq(dev->irq);
1820 static struct pci_driver tulip_driver = {
1822 .id_table = tulip_pci_tbl,
1823 .probe = tulip_init_one,
1824 .remove = __devexit_p(tulip_remove_one),
1826 .suspend = tulip_suspend,
1827 .resume = tulip_resume,
1828 #endif /* CONFIG_PM */
1832 static int __init tulip_init (void)
1835 printk (KERN_INFO "%s", version);
1838 /* copy module parms into globals */
1839 tulip_rx_copybreak = rx_copybreak;
1840 tulip_max_interrupt_work = max_interrupt_work;
1842 /* probe for and init boards */
1843 return pci_register_driver(&tulip_driver);
1847 static void __exit tulip_cleanup (void)
1849 pci_unregister_driver (&tulip_driver);
1853 module_init(tulip_init);
1854 module_exit(tulip_cleanup);