Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[linux-2.6] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/swap.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/ptrace.h>
48 #include <linux/mount.h>
49 #include <linux/security.h>
50 #include <linux/syscalls.h>
51 #include <linux/rmap.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/audit.h>
55
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/tlb.h>
59
60 #ifdef CONFIG_KMOD
61 #include <linux/kmod.h>
62 #endif
63
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 int suid_dumpable = 0;
67
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72
73 int register_binfmt(struct linux_binfmt * fmt)
74 {
75         if (!fmt)
76                 return -EINVAL;
77         write_lock(&binfmt_lock);
78         list_add(&fmt->lh, &formats);
79         write_unlock(&binfmt_lock);
80         return 0;       
81 }
82
83 EXPORT_SYMBOL(register_binfmt);
84
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87         write_lock(&binfmt_lock);
88         list_del(&fmt->lh);
89         write_unlock(&binfmt_lock);
90 }
91
92 EXPORT_SYMBOL(unregister_binfmt);
93
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96         module_put(fmt->module);
97 }
98
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 asmlinkage long sys_uselib(const char __user * library)
106 {
107         struct file * file;
108         struct nameidata nd;
109         int error;
110
111         error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
112         if (error)
113                 goto out;
114
115         error = -EINVAL;
116         if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
117                 goto exit;
118
119         error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
120         if (error)
121                 goto exit;
122
123         file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
124         error = PTR_ERR(file);
125         if (IS_ERR(file))
126                 goto out;
127
128         error = -ENOEXEC;
129         if(file->f_op) {
130                 struct linux_binfmt * fmt;
131
132                 read_lock(&binfmt_lock);
133                 list_for_each_entry(fmt, &formats, lh) {
134                         if (!fmt->load_shlib)
135                                 continue;
136                         if (!try_module_get(fmt->module))
137                                 continue;
138                         read_unlock(&binfmt_lock);
139                         error = fmt->load_shlib(file);
140                         read_lock(&binfmt_lock);
141                         put_binfmt(fmt);
142                         if (error != -ENOEXEC)
143                                 break;
144                 }
145                 read_unlock(&binfmt_lock);
146         }
147         fput(file);
148 out:
149         return error;
150 exit:
151         release_open_intent(&nd);
152         path_put(&nd.path);
153         goto out;
154 }
155
156 #ifdef CONFIG_MMU
157
158 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
159                 int write)
160 {
161         struct page *page;
162         int ret;
163
164 #ifdef CONFIG_STACK_GROWSUP
165         if (write) {
166                 ret = expand_stack_downwards(bprm->vma, pos);
167                 if (ret < 0)
168                         return NULL;
169         }
170 #endif
171         ret = get_user_pages(current, bprm->mm, pos,
172                         1, write, 1, &page, NULL);
173         if (ret <= 0)
174                 return NULL;
175
176         if (write) {
177                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
178                 struct rlimit *rlim;
179
180                 /*
181                  * We've historically supported up to 32 pages (ARG_MAX)
182                  * of argument strings even with small stacks
183                  */
184                 if (size <= ARG_MAX)
185                         return page;
186
187                 /*
188                  * Limit to 1/4-th the stack size for the argv+env strings.
189                  * This ensures that:
190                  *  - the remaining binfmt code will not run out of stack space,
191                  *  - the program will have a reasonable amount of stack left
192                  *    to work from.
193                  */
194                 rlim = current->signal->rlim;
195                 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
196                         put_page(page);
197                         return NULL;
198                 }
199         }
200
201         return page;
202 }
203
204 static void put_arg_page(struct page *page)
205 {
206         put_page(page);
207 }
208
209 static void free_arg_page(struct linux_binprm *bprm, int i)
210 {
211 }
212
213 static void free_arg_pages(struct linux_binprm *bprm)
214 {
215 }
216
217 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
218                 struct page *page)
219 {
220         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
221 }
222
223 static int __bprm_mm_init(struct linux_binprm *bprm)
224 {
225         int err = -ENOMEM;
226         struct vm_area_struct *vma = NULL;
227         struct mm_struct *mm = bprm->mm;
228
229         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
230         if (!vma)
231                 goto err;
232
233         down_write(&mm->mmap_sem);
234         vma->vm_mm = mm;
235
236         /*
237          * Place the stack at the largest stack address the architecture
238          * supports. Later, we'll move this to an appropriate place. We don't
239          * use STACK_TOP because that can depend on attributes which aren't
240          * configured yet.
241          */
242         vma->vm_end = STACK_TOP_MAX;
243         vma->vm_start = vma->vm_end - PAGE_SIZE;
244
245         vma->vm_flags = VM_STACK_FLAGS;
246         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
247         err = insert_vm_struct(mm, vma);
248         if (err) {
249                 up_write(&mm->mmap_sem);
250                 goto err;
251         }
252
253         mm->stack_vm = mm->total_vm = 1;
254         up_write(&mm->mmap_sem);
255
256         bprm->p = vma->vm_end - sizeof(void *);
257
258         return 0;
259
260 err:
261         if (vma) {
262                 bprm->vma = NULL;
263                 kmem_cache_free(vm_area_cachep, vma);
264         }
265
266         return err;
267 }
268
269 static bool valid_arg_len(struct linux_binprm *bprm, long len)
270 {
271         return len <= MAX_ARG_STRLEN;
272 }
273
274 #else
275
276 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
277                 int write)
278 {
279         struct page *page;
280
281         page = bprm->page[pos / PAGE_SIZE];
282         if (!page && write) {
283                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
284                 if (!page)
285                         return NULL;
286                 bprm->page[pos / PAGE_SIZE] = page;
287         }
288
289         return page;
290 }
291
292 static void put_arg_page(struct page *page)
293 {
294 }
295
296 static void free_arg_page(struct linux_binprm *bprm, int i)
297 {
298         if (bprm->page[i]) {
299                 __free_page(bprm->page[i]);
300                 bprm->page[i] = NULL;
301         }
302 }
303
304 static void free_arg_pages(struct linux_binprm *bprm)
305 {
306         int i;
307
308         for (i = 0; i < MAX_ARG_PAGES; i++)
309                 free_arg_page(bprm, i);
310 }
311
312 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
313                 struct page *page)
314 {
315 }
316
317 static int __bprm_mm_init(struct linux_binprm *bprm)
318 {
319         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
320         return 0;
321 }
322
323 static bool valid_arg_len(struct linux_binprm *bprm, long len)
324 {
325         return len <= bprm->p;
326 }
327
328 #endif /* CONFIG_MMU */
329
330 /*
331  * Create a new mm_struct and populate it with a temporary stack
332  * vm_area_struct.  We don't have enough context at this point to set the stack
333  * flags, permissions, and offset, so we use temporary values.  We'll update
334  * them later in setup_arg_pages().
335  */
336 int bprm_mm_init(struct linux_binprm *bprm)
337 {
338         int err;
339         struct mm_struct *mm = NULL;
340
341         bprm->mm = mm = mm_alloc();
342         err = -ENOMEM;
343         if (!mm)
344                 goto err;
345
346         err = init_new_context(current, mm);
347         if (err)
348                 goto err;
349
350         err = __bprm_mm_init(bprm);
351         if (err)
352                 goto err;
353
354         return 0;
355
356 err:
357         if (mm) {
358                 bprm->mm = NULL;
359                 mmdrop(mm);
360         }
361
362         return err;
363 }
364
365 /*
366  * count() counts the number of strings in array ARGV.
367  */
368 static int count(char __user * __user * argv, int max)
369 {
370         int i = 0;
371
372         if (argv != NULL) {
373                 for (;;) {
374                         char __user * p;
375
376                         if (get_user(p, argv))
377                                 return -EFAULT;
378                         if (!p)
379                                 break;
380                         argv++;
381                         if(++i > max)
382                                 return -E2BIG;
383                         cond_resched();
384                 }
385         }
386         return i;
387 }
388
389 /*
390  * 'copy_strings()' copies argument/environment strings from the old
391  * processes's memory to the new process's stack.  The call to get_user_pages()
392  * ensures the destination page is created and not swapped out.
393  */
394 static int copy_strings(int argc, char __user * __user * argv,
395                         struct linux_binprm *bprm)
396 {
397         struct page *kmapped_page = NULL;
398         char *kaddr = NULL;
399         unsigned long kpos = 0;
400         int ret;
401
402         while (argc-- > 0) {
403                 char __user *str;
404                 int len;
405                 unsigned long pos;
406
407                 if (get_user(str, argv+argc) ||
408                                 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
409                         ret = -EFAULT;
410                         goto out;
411                 }
412
413                 if (!valid_arg_len(bprm, len)) {
414                         ret = -E2BIG;
415                         goto out;
416                 }
417
418                 /* We're going to work our way backwords. */
419                 pos = bprm->p;
420                 str += len;
421                 bprm->p -= len;
422
423                 while (len > 0) {
424                         int offset, bytes_to_copy;
425
426                         offset = pos % PAGE_SIZE;
427                         if (offset == 0)
428                                 offset = PAGE_SIZE;
429
430                         bytes_to_copy = offset;
431                         if (bytes_to_copy > len)
432                                 bytes_to_copy = len;
433
434                         offset -= bytes_to_copy;
435                         pos -= bytes_to_copy;
436                         str -= bytes_to_copy;
437                         len -= bytes_to_copy;
438
439                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
440                                 struct page *page;
441
442                                 page = get_arg_page(bprm, pos, 1);
443                                 if (!page) {
444                                         ret = -E2BIG;
445                                         goto out;
446                                 }
447
448                                 if (kmapped_page) {
449                                         flush_kernel_dcache_page(kmapped_page);
450                                         kunmap(kmapped_page);
451                                         put_arg_page(kmapped_page);
452                                 }
453                                 kmapped_page = page;
454                                 kaddr = kmap(kmapped_page);
455                                 kpos = pos & PAGE_MASK;
456                                 flush_arg_page(bprm, kpos, kmapped_page);
457                         }
458                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
459                                 ret = -EFAULT;
460                                 goto out;
461                         }
462                 }
463         }
464         ret = 0;
465 out:
466         if (kmapped_page) {
467                 flush_kernel_dcache_page(kmapped_page);
468                 kunmap(kmapped_page);
469                 put_arg_page(kmapped_page);
470         }
471         return ret;
472 }
473
474 /*
475  * Like copy_strings, but get argv and its values from kernel memory.
476  */
477 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
478 {
479         int r;
480         mm_segment_t oldfs = get_fs();
481         set_fs(KERNEL_DS);
482         r = copy_strings(argc, (char __user * __user *)argv, bprm);
483         set_fs(oldfs);
484         return r;
485 }
486 EXPORT_SYMBOL(copy_strings_kernel);
487
488 #ifdef CONFIG_MMU
489
490 /*
491  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
492  * the binfmt code determines where the new stack should reside, we shift it to
493  * its final location.  The process proceeds as follows:
494  *
495  * 1) Use shift to calculate the new vma endpoints.
496  * 2) Extend vma to cover both the old and new ranges.  This ensures the
497  *    arguments passed to subsequent functions are consistent.
498  * 3) Move vma's page tables to the new range.
499  * 4) Free up any cleared pgd range.
500  * 5) Shrink the vma to cover only the new range.
501  */
502 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
503 {
504         struct mm_struct *mm = vma->vm_mm;
505         unsigned long old_start = vma->vm_start;
506         unsigned long old_end = vma->vm_end;
507         unsigned long length = old_end - old_start;
508         unsigned long new_start = old_start - shift;
509         unsigned long new_end = old_end - shift;
510         struct mmu_gather *tlb;
511
512         BUG_ON(new_start > new_end);
513
514         /*
515          * ensure there are no vmas between where we want to go
516          * and where we are
517          */
518         if (vma != find_vma(mm, new_start))
519                 return -EFAULT;
520
521         /*
522          * cover the whole range: [new_start, old_end)
523          */
524         vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
525
526         /*
527          * move the page tables downwards, on failure we rely on
528          * process cleanup to remove whatever mess we made.
529          */
530         if (length != move_page_tables(vma, old_start,
531                                        vma, new_start, length))
532                 return -ENOMEM;
533
534         lru_add_drain();
535         tlb = tlb_gather_mmu(mm, 0);
536         if (new_end > old_start) {
537                 /*
538                  * when the old and new regions overlap clear from new_end.
539                  */
540                 free_pgd_range(&tlb, new_end, old_end, new_end,
541                         vma->vm_next ? vma->vm_next->vm_start : 0);
542         } else {
543                 /*
544                  * otherwise, clean from old_start; this is done to not touch
545                  * the address space in [new_end, old_start) some architectures
546                  * have constraints on va-space that make this illegal (IA64) -
547                  * for the others its just a little faster.
548                  */
549                 free_pgd_range(&tlb, old_start, old_end, new_end,
550                         vma->vm_next ? vma->vm_next->vm_start : 0);
551         }
552         tlb_finish_mmu(tlb, new_end, old_end);
553
554         /*
555          * shrink the vma to just the new range.
556          */
557         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
558
559         return 0;
560 }
561
562 #define EXTRA_STACK_VM_PAGES    20      /* random */
563
564 /*
565  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
566  * the stack is optionally relocated, and some extra space is added.
567  */
568 int setup_arg_pages(struct linux_binprm *bprm,
569                     unsigned long stack_top,
570                     int executable_stack)
571 {
572         unsigned long ret;
573         unsigned long stack_shift;
574         struct mm_struct *mm = current->mm;
575         struct vm_area_struct *vma = bprm->vma;
576         struct vm_area_struct *prev = NULL;
577         unsigned long vm_flags;
578         unsigned long stack_base;
579
580 #ifdef CONFIG_STACK_GROWSUP
581         /* Limit stack size to 1GB */
582         stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
583         if (stack_base > (1 << 30))
584                 stack_base = 1 << 30;
585
586         /* Make sure we didn't let the argument array grow too large. */
587         if (vma->vm_end - vma->vm_start > stack_base)
588                 return -ENOMEM;
589
590         stack_base = PAGE_ALIGN(stack_top - stack_base);
591
592         stack_shift = vma->vm_start - stack_base;
593         mm->arg_start = bprm->p - stack_shift;
594         bprm->p = vma->vm_end - stack_shift;
595 #else
596         stack_top = arch_align_stack(stack_top);
597         stack_top = PAGE_ALIGN(stack_top);
598         stack_shift = vma->vm_end - stack_top;
599
600         bprm->p -= stack_shift;
601         mm->arg_start = bprm->p;
602 #endif
603
604         if (bprm->loader)
605                 bprm->loader -= stack_shift;
606         bprm->exec -= stack_shift;
607
608         down_write(&mm->mmap_sem);
609         vm_flags = vma->vm_flags;
610
611         /*
612          * Adjust stack execute permissions; explicitly enable for
613          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
614          * (arch default) otherwise.
615          */
616         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
617                 vm_flags |= VM_EXEC;
618         else if (executable_stack == EXSTACK_DISABLE_X)
619                 vm_flags &= ~VM_EXEC;
620         vm_flags |= mm->def_flags;
621
622         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
623                         vm_flags);
624         if (ret)
625                 goto out_unlock;
626         BUG_ON(prev != vma);
627
628         /* Move stack pages down in memory. */
629         if (stack_shift) {
630                 ret = shift_arg_pages(vma, stack_shift);
631                 if (ret) {
632                         up_write(&mm->mmap_sem);
633                         return ret;
634                 }
635         }
636
637 #ifdef CONFIG_STACK_GROWSUP
638         stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
639 #else
640         stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
641 #endif
642         ret = expand_stack(vma, stack_base);
643         if (ret)
644                 ret = -EFAULT;
645
646 out_unlock:
647         up_write(&mm->mmap_sem);
648         return 0;
649 }
650 EXPORT_SYMBOL(setup_arg_pages);
651
652 #endif /* CONFIG_MMU */
653
654 struct file *open_exec(const char *name)
655 {
656         struct nameidata nd;
657         int err;
658         struct file *file;
659
660         err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
661         file = ERR_PTR(err);
662
663         if (!err) {
664                 struct inode *inode = nd.path.dentry->d_inode;
665                 file = ERR_PTR(-EACCES);
666                 if (S_ISREG(inode->i_mode)) {
667                         int err = vfs_permission(&nd, MAY_EXEC);
668                         file = ERR_PTR(err);
669                         if (!err) {
670                                 file = nameidata_to_filp(&nd,
671                                                         O_RDONLY|O_LARGEFILE);
672                                 if (!IS_ERR(file)) {
673                                         err = deny_write_access(file);
674                                         if (err) {
675                                                 fput(file);
676                                                 file = ERR_PTR(err);
677                                         }
678                                 }
679 out:
680                                 return file;
681                         }
682                 }
683                 release_open_intent(&nd);
684                 path_put(&nd.path);
685         }
686         goto out;
687 }
688
689 EXPORT_SYMBOL(open_exec);
690
691 int kernel_read(struct file *file, unsigned long offset,
692         char *addr, unsigned long count)
693 {
694         mm_segment_t old_fs;
695         loff_t pos = offset;
696         int result;
697
698         old_fs = get_fs();
699         set_fs(get_ds());
700         /* The cast to a user pointer is valid due to the set_fs() */
701         result = vfs_read(file, (void __user *)addr, count, &pos);
702         set_fs(old_fs);
703         return result;
704 }
705
706 EXPORT_SYMBOL(kernel_read);
707
708 static int exec_mmap(struct mm_struct *mm)
709 {
710         struct task_struct *tsk;
711         struct mm_struct * old_mm, *active_mm;
712
713         /* Notify parent that we're no longer interested in the old VM */
714         tsk = current;
715         old_mm = current->mm;
716         mm_release(tsk, old_mm);
717
718         if (old_mm) {
719                 /*
720                  * Make sure that if there is a core dump in progress
721                  * for the old mm, we get out and die instead of going
722                  * through with the exec.  We must hold mmap_sem around
723                  * checking core_waiters and changing tsk->mm.  The
724                  * core-inducing thread will increment core_waiters for
725                  * each thread whose ->mm == old_mm.
726                  */
727                 down_read(&old_mm->mmap_sem);
728                 if (unlikely(old_mm->core_waiters)) {
729                         up_read(&old_mm->mmap_sem);
730                         return -EINTR;
731                 }
732         }
733         task_lock(tsk);
734         active_mm = tsk->active_mm;
735         tsk->mm = mm;
736         tsk->active_mm = mm;
737         activate_mm(active_mm, mm);
738         task_unlock(tsk);
739         mm_update_next_owner(old_mm);
740         arch_pick_mmap_layout(mm);
741         if (old_mm) {
742                 up_read(&old_mm->mmap_sem);
743                 BUG_ON(active_mm != old_mm);
744                 mmput(old_mm);
745                 return 0;
746         }
747         mmdrop(active_mm);
748         return 0;
749 }
750
751 /*
752  * This function makes sure the current process has its own signal table,
753  * so that flush_signal_handlers can later reset the handlers without
754  * disturbing other processes.  (Other processes might share the signal
755  * table via the CLONE_SIGHAND option to clone().)
756  */
757 static int de_thread(struct task_struct *tsk)
758 {
759         struct signal_struct *sig = tsk->signal;
760         struct sighand_struct *oldsighand = tsk->sighand;
761         spinlock_t *lock = &oldsighand->siglock;
762         struct task_struct *leader = NULL;
763         int count;
764
765         if (thread_group_empty(tsk))
766                 goto no_thread_group;
767
768         /*
769          * Kill all other threads in the thread group.
770          */
771         spin_lock_irq(lock);
772         if (signal_group_exit(sig)) {
773                 /*
774                  * Another group action in progress, just
775                  * return so that the signal is processed.
776                  */
777                 spin_unlock_irq(lock);
778                 return -EAGAIN;
779         }
780         sig->group_exit_task = tsk;
781         zap_other_threads(tsk);
782
783         /* Account for the thread group leader hanging around: */
784         count = thread_group_leader(tsk) ? 1 : 2;
785         sig->notify_count = count;
786         while (atomic_read(&sig->count) > count) {
787                 __set_current_state(TASK_UNINTERRUPTIBLE);
788                 spin_unlock_irq(lock);
789                 schedule();
790                 spin_lock_irq(lock);
791         }
792         spin_unlock_irq(lock);
793
794         /*
795          * At this point all other threads have exited, all we have to
796          * do is to wait for the thread group leader to become inactive,
797          * and to assume its PID:
798          */
799         if (!thread_group_leader(tsk)) {
800                 leader = tsk->group_leader;
801
802                 sig->notify_count = -1; /* for exit_notify() */
803                 for (;;) {
804                         write_lock_irq(&tasklist_lock);
805                         if (likely(leader->exit_state))
806                                 break;
807                         __set_current_state(TASK_UNINTERRUPTIBLE);
808                         write_unlock_irq(&tasklist_lock);
809                         schedule();
810                 }
811
812                 if (unlikely(task_child_reaper(tsk) == leader))
813                         task_active_pid_ns(tsk)->child_reaper = tsk;
814                 /*
815                  * The only record we have of the real-time age of a
816                  * process, regardless of execs it's done, is start_time.
817                  * All the past CPU time is accumulated in signal_struct
818                  * from sister threads now dead.  But in this non-leader
819                  * exec, nothing survives from the original leader thread,
820                  * whose birth marks the true age of this process now.
821                  * When we take on its identity by switching to its PID, we
822                  * also take its birthdate (always earlier than our own).
823                  */
824                 tsk->start_time = leader->start_time;
825
826                 BUG_ON(!same_thread_group(leader, tsk));
827                 BUG_ON(has_group_leader_pid(tsk));
828                 /*
829                  * An exec() starts a new thread group with the
830                  * TGID of the previous thread group. Rehash the
831                  * two threads with a switched PID, and release
832                  * the former thread group leader:
833                  */
834
835                 /* Become a process group leader with the old leader's pid.
836                  * The old leader becomes a thread of the this thread group.
837                  * Note: The old leader also uses this pid until release_task
838                  *       is called.  Odd but simple and correct.
839                  */
840                 detach_pid(tsk, PIDTYPE_PID);
841                 tsk->pid = leader->pid;
842                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
843                 transfer_pid(leader, tsk, PIDTYPE_PGID);
844                 transfer_pid(leader, tsk, PIDTYPE_SID);
845                 list_replace_rcu(&leader->tasks, &tsk->tasks);
846
847                 tsk->group_leader = tsk;
848                 leader->group_leader = tsk;
849
850                 tsk->exit_signal = SIGCHLD;
851
852                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
853                 leader->exit_state = EXIT_DEAD;
854
855                 write_unlock_irq(&tasklist_lock);
856         }
857
858         sig->group_exit_task = NULL;
859         sig->notify_count = 0;
860
861 no_thread_group:
862         exit_itimers(sig);
863         if (leader)
864                 release_task(leader);
865
866         if (atomic_read(&oldsighand->count) != 1) {
867                 struct sighand_struct *newsighand;
868                 /*
869                  * This ->sighand is shared with the CLONE_SIGHAND
870                  * but not CLONE_THREAD task, switch to the new one.
871                  */
872                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
873                 if (!newsighand)
874                         return -ENOMEM;
875
876                 atomic_set(&newsighand->count, 1);
877                 memcpy(newsighand->action, oldsighand->action,
878                        sizeof(newsighand->action));
879
880                 write_lock_irq(&tasklist_lock);
881                 spin_lock(&oldsighand->siglock);
882                 rcu_assign_pointer(tsk->sighand, newsighand);
883                 spin_unlock(&oldsighand->siglock);
884                 write_unlock_irq(&tasklist_lock);
885
886                 __cleanup_sighand(oldsighand);
887         }
888
889         BUG_ON(!thread_group_leader(tsk));
890         return 0;
891 }
892
893 /*
894  * These functions flushes out all traces of the currently running executable
895  * so that a new one can be started
896  */
897 static void flush_old_files(struct files_struct * files)
898 {
899         long j = -1;
900         struct fdtable *fdt;
901
902         spin_lock(&files->file_lock);
903         for (;;) {
904                 unsigned long set, i;
905
906                 j++;
907                 i = j * __NFDBITS;
908                 fdt = files_fdtable(files);
909                 if (i >= fdt->max_fds)
910                         break;
911                 set = fdt->close_on_exec->fds_bits[j];
912                 if (!set)
913                         continue;
914                 fdt->close_on_exec->fds_bits[j] = 0;
915                 spin_unlock(&files->file_lock);
916                 for ( ; set ; i++,set >>= 1) {
917                         if (set & 1) {
918                                 sys_close(i);
919                         }
920                 }
921                 spin_lock(&files->file_lock);
922
923         }
924         spin_unlock(&files->file_lock);
925 }
926
927 char *get_task_comm(char *buf, struct task_struct *tsk)
928 {
929         /* buf must be at least sizeof(tsk->comm) in size */
930         task_lock(tsk);
931         strncpy(buf, tsk->comm, sizeof(tsk->comm));
932         task_unlock(tsk);
933         return buf;
934 }
935
936 void set_task_comm(struct task_struct *tsk, char *buf)
937 {
938         task_lock(tsk);
939         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
940         task_unlock(tsk);
941 }
942
943 int flush_old_exec(struct linux_binprm * bprm)
944 {
945         char * name;
946         int i, ch, retval;
947         char tcomm[sizeof(current->comm)];
948
949         /*
950          * Make sure we have a private signal table and that
951          * we are unassociated from the previous thread group.
952          */
953         retval = de_thread(current);
954         if (retval)
955                 goto out;
956
957         set_mm_exe_file(bprm->mm, bprm->file);
958
959         /*
960          * Release all of the old mmap stuff
961          */
962         retval = exec_mmap(bprm->mm);
963         if (retval)
964                 goto out;
965
966         bprm->mm = NULL;                /* We're using it now */
967
968         /* This is the point of no return */
969         current->sas_ss_sp = current->sas_ss_size = 0;
970
971         if (current->euid == current->uid && current->egid == current->gid)
972                 set_dumpable(current->mm, 1);
973         else
974                 set_dumpable(current->mm, suid_dumpable);
975
976         name = bprm->filename;
977
978         /* Copies the binary name from after last slash */
979         for (i=0; (ch = *(name++)) != '\0';) {
980                 if (ch == '/')
981                         i = 0; /* overwrite what we wrote */
982                 else
983                         if (i < (sizeof(tcomm) - 1))
984                                 tcomm[i++] = ch;
985         }
986         tcomm[i] = '\0';
987         set_task_comm(current, tcomm);
988
989         current->flags &= ~PF_RANDOMIZE;
990         flush_thread();
991
992         /* Set the new mm task size. We have to do that late because it may
993          * depend on TIF_32BIT which is only updated in flush_thread() on
994          * some architectures like powerpc
995          */
996         current->mm->task_size = TASK_SIZE;
997
998         if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
999                 suid_keys(current);
1000                 set_dumpable(current->mm, suid_dumpable);
1001                 current->pdeath_signal = 0;
1002         } else if (file_permission(bprm->file, MAY_READ) ||
1003                         (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1004                 suid_keys(current);
1005                 set_dumpable(current->mm, suid_dumpable);
1006         }
1007
1008         /* An exec changes our domain. We are no longer part of the thread
1009            group */
1010
1011         current->self_exec_id++;
1012                         
1013         flush_signal_handlers(current, 0);
1014         flush_old_files(current->files);
1015
1016         return 0;
1017
1018 out:
1019         return retval;
1020 }
1021
1022 EXPORT_SYMBOL(flush_old_exec);
1023
1024 /* 
1025  * Fill the binprm structure from the inode. 
1026  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1027  */
1028 int prepare_binprm(struct linux_binprm *bprm)
1029 {
1030         int mode;
1031         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1032         int retval;
1033
1034         mode = inode->i_mode;
1035         if (bprm->file->f_op == NULL)
1036                 return -EACCES;
1037
1038         bprm->e_uid = current->euid;
1039         bprm->e_gid = current->egid;
1040
1041         if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1042                 /* Set-uid? */
1043                 if (mode & S_ISUID) {
1044                         current->personality &= ~PER_CLEAR_ON_SETID;
1045                         bprm->e_uid = inode->i_uid;
1046                 }
1047
1048                 /* Set-gid? */
1049                 /*
1050                  * If setgid is set but no group execute bit then this
1051                  * is a candidate for mandatory locking, not a setgid
1052                  * executable.
1053                  */
1054                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1055                         current->personality &= ~PER_CLEAR_ON_SETID;
1056                         bprm->e_gid = inode->i_gid;
1057                 }
1058         }
1059
1060         /* fill in binprm security blob */
1061         retval = security_bprm_set(bprm);
1062         if (retval)
1063                 return retval;
1064
1065         memset(bprm->buf,0,BINPRM_BUF_SIZE);
1066         return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1067 }
1068
1069 EXPORT_SYMBOL(prepare_binprm);
1070
1071 static int unsafe_exec(struct task_struct *p)
1072 {
1073         int unsafe = 0;
1074         if (p->ptrace & PT_PTRACED) {
1075                 if (p->ptrace & PT_PTRACE_CAP)
1076                         unsafe |= LSM_UNSAFE_PTRACE_CAP;
1077                 else
1078                         unsafe |= LSM_UNSAFE_PTRACE;
1079         }
1080         if (atomic_read(&p->fs->count) > 1 ||
1081             atomic_read(&p->files->count) > 1 ||
1082             atomic_read(&p->sighand->count) > 1)
1083                 unsafe |= LSM_UNSAFE_SHARE;
1084
1085         return unsafe;
1086 }
1087
1088 void compute_creds(struct linux_binprm *bprm)
1089 {
1090         int unsafe;
1091
1092         if (bprm->e_uid != current->uid) {
1093                 suid_keys(current);
1094                 current->pdeath_signal = 0;
1095         }
1096         exec_keys(current);
1097
1098         task_lock(current);
1099         unsafe = unsafe_exec(current);
1100         security_bprm_apply_creds(bprm, unsafe);
1101         task_unlock(current);
1102         security_bprm_post_apply_creds(bprm);
1103 }
1104 EXPORT_SYMBOL(compute_creds);
1105
1106 /*
1107  * Arguments are '\0' separated strings found at the location bprm->p
1108  * points to; chop off the first by relocating brpm->p to right after
1109  * the first '\0' encountered.
1110  */
1111 int remove_arg_zero(struct linux_binprm *bprm)
1112 {
1113         int ret = 0;
1114         unsigned long offset;
1115         char *kaddr;
1116         struct page *page;
1117
1118         if (!bprm->argc)
1119                 return 0;
1120
1121         do {
1122                 offset = bprm->p & ~PAGE_MASK;
1123                 page = get_arg_page(bprm, bprm->p, 0);
1124                 if (!page) {
1125                         ret = -EFAULT;
1126                         goto out;
1127                 }
1128                 kaddr = kmap_atomic(page, KM_USER0);
1129
1130                 for (; offset < PAGE_SIZE && kaddr[offset];
1131                                 offset++, bprm->p++)
1132                         ;
1133
1134                 kunmap_atomic(kaddr, KM_USER0);
1135                 put_arg_page(page);
1136
1137                 if (offset == PAGE_SIZE)
1138                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1139         } while (offset == PAGE_SIZE);
1140
1141         bprm->p++;
1142         bprm->argc--;
1143         ret = 0;
1144
1145 out:
1146         return ret;
1147 }
1148 EXPORT_SYMBOL(remove_arg_zero);
1149
1150 /*
1151  * cycle the list of binary formats handler, until one recognizes the image
1152  */
1153 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1154 {
1155         int try,retval;
1156         struct linux_binfmt *fmt;
1157 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1158         /* handle /sbin/loader.. */
1159         {
1160             struct exec * eh = (struct exec *) bprm->buf;
1161
1162             if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1163                 (eh->fh.f_flags & 0x3000) == 0x3000)
1164             {
1165                 struct file * file;
1166                 unsigned long loader;
1167
1168                 allow_write_access(bprm->file);
1169                 fput(bprm->file);
1170                 bprm->file = NULL;
1171
1172                 loader = bprm->vma->vm_end - sizeof(void *);
1173
1174                 file = open_exec("/sbin/loader");
1175                 retval = PTR_ERR(file);
1176                 if (IS_ERR(file))
1177                         return retval;
1178
1179                 /* Remember if the application is TASO.  */
1180                 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1181
1182                 bprm->file = file;
1183                 bprm->loader = loader;
1184                 retval = prepare_binprm(bprm);
1185                 if (retval<0)
1186                         return retval;
1187                 /* should call search_binary_handler recursively here,
1188                    but it does not matter */
1189             }
1190         }
1191 #endif
1192         retval = security_bprm_check(bprm);
1193         if (retval)
1194                 return retval;
1195
1196         /* kernel module loader fixup */
1197         /* so we don't try to load run modprobe in kernel space. */
1198         set_fs(USER_DS);
1199
1200         retval = audit_bprm(bprm);
1201         if (retval)
1202                 return retval;
1203
1204         retval = -ENOENT;
1205         for (try=0; try<2; try++) {
1206                 read_lock(&binfmt_lock);
1207                 list_for_each_entry(fmt, &formats, lh) {
1208                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1209                         if (!fn)
1210                                 continue;
1211                         if (!try_module_get(fmt->module))
1212                                 continue;
1213                         read_unlock(&binfmt_lock);
1214                         retval = fn(bprm, regs);
1215                         if (retval >= 0) {
1216                                 put_binfmt(fmt);
1217                                 allow_write_access(bprm->file);
1218                                 if (bprm->file)
1219                                         fput(bprm->file);
1220                                 bprm->file = NULL;
1221                                 current->did_exec = 1;
1222                                 proc_exec_connector(current);
1223                                 return retval;
1224                         }
1225                         read_lock(&binfmt_lock);
1226                         put_binfmt(fmt);
1227                         if (retval != -ENOEXEC || bprm->mm == NULL)
1228                                 break;
1229                         if (!bprm->file) {
1230                                 read_unlock(&binfmt_lock);
1231                                 return retval;
1232                         }
1233                 }
1234                 read_unlock(&binfmt_lock);
1235                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1236                         break;
1237 #ifdef CONFIG_KMOD
1238                 }else{
1239 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1240                         if (printable(bprm->buf[0]) &&
1241                             printable(bprm->buf[1]) &&
1242                             printable(bprm->buf[2]) &&
1243                             printable(bprm->buf[3]))
1244                                 break; /* -ENOEXEC */
1245                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1246 #endif
1247                 }
1248         }
1249         return retval;
1250 }
1251
1252 EXPORT_SYMBOL(search_binary_handler);
1253
1254 void free_bprm(struct linux_binprm *bprm)
1255 {
1256         free_arg_pages(bprm);
1257         kfree(bprm);
1258 }
1259
1260 /*
1261  * sys_execve() executes a new program.
1262  */
1263 int do_execve(char * filename,
1264         char __user *__user *argv,
1265         char __user *__user *envp,
1266         struct pt_regs * regs)
1267 {
1268         struct linux_binprm *bprm;
1269         struct file *file;
1270         struct files_struct *displaced;
1271         int retval;
1272
1273         retval = unshare_files(&displaced);
1274         if (retval)
1275                 goto out_ret;
1276
1277         retval = -ENOMEM;
1278         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1279         if (!bprm)
1280                 goto out_files;
1281
1282         file = open_exec(filename);
1283         retval = PTR_ERR(file);
1284         if (IS_ERR(file))
1285                 goto out_kfree;
1286
1287         sched_exec();
1288
1289         bprm->file = file;
1290         bprm->filename = filename;
1291         bprm->interp = filename;
1292
1293         retval = bprm_mm_init(bprm);
1294         if (retval)
1295                 goto out_file;
1296
1297         bprm->argc = count(argv, MAX_ARG_STRINGS);
1298         if ((retval = bprm->argc) < 0)
1299                 goto out_mm;
1300
1301         bprm->envc = count(envp, MAX_ARG_STRINGS);
1302         if ((retval = bprm->envc) < 0)
1303                 goto out_mm;
1304
1305         retval = security_bprm_alloc(bprm);
1306         if (retval)
1307                 goto out;
1308
1309         retval = prepare_binprm(bprm);
1310         if (retval < 0)
1311                 goto out;
1312
1313         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1314         if (retval < 0)
1315                 goto out;
1316
1317         bprm->exec = bprm->p;
1318         retval = copy_strings(bprm->envc, envp, bprm);
1319         if (retval < 0)
1320                 goto out;
1321
1322         retval = copy_strings(bprm->argc, argv, bprm);
1323         if (retval < 0)
1324                 goto out;
1325
1326         retval = search_binary_handler(bprm,regs);
1327         if (retval >= 0) {
1328                 /* execve success */
1329                 security_bprm_free(bprm);
1330                 acct_update_integrals(current);
1331                 free_bprm(bprm);
1332                 if (displaced)
1333                         put_files_struct(displaced);
1334                 return retval;
1335         }
1336
1337 out:
1338         if (bprm->security)
1339                 security_bprm_free(bprm);
1340
1341 out_mm:
1342         if (bprm->mm)
1343                 mmput (bprm->mm);
1344
1345 out_file:
1346         if (bprm->file) {
1347                 allow_write_access(bprm->file);
1348                 fput(bprm->file);
1349         }
1350 out_kfree:
1351         free_bprm(bprm);
1352
1353 out_files:
1354         if (displaced)
1355                 reset_files_struct(displaced);
1356 out_ret:
1357         return retval;
1358 }
1359
1360 int set_binfmt(struct linux_binfmt *new)
1361 {
1362         struct linux_binfmt *old = current->binfmt;
1363
1364         if (new) {
1365                 if (!try_module_get(new->module))
1366                         return -1;
1367         }
1368         current->binfmt = new;
1369         if (old)
1370                 module_put(old->module);
1371         return 0;
1372 }
1373
1374 EXPORT_SYMBOL(set_binfmt);
1375
1376 /* format_corename will inspect the pattern parameter, and output a
1377  * name into corename, which must have space for at least
1378  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1379  */
1380 static int format_corename(char *corename, const char *pattern, long signr)
1381 {
1382         const char *pat_ptr = pattern;
1383         char *out_ptr = corename;
1384         char *const out_end = corename + CORENAME_MAX_SIZE;
1385         int rc;
1386         int pid_in_pattern = 0;
1387         int ispipe = 0;
1388
1389         if (*pattern == '|')
1390                 ispipe = 1;
1391
1392         /* Repeat as long as we have more pattern to process and more output
1393            space */
1394         while (*pat_ptr) {
1395                 if (*pat_ptr != '%') {
1396                         if (out_ptr == out_end)
1397                                 goto out;
1398                         *out_ptr++ = *pat_ptr++;
1399                 } else {
1400                         switch (*++pat_ptr) {
1401                         case 0:
1402                                 goto out;
1403                         /* Double percent, output one percent */
1404                         case '%':
1405                                 if (out_ptr == out_end)
1406                                         goto out;
1407                                 *out_ptr++ = '%';
1408                                 break;
1409                         /* pid */
1410                         case 'p':
1411                                 pid_in_pattern = 1;
1412                                 rc = snprintf(out_ptr, out_end - out_ptr,
1413                                               "%d", task_tgid_vnr(current));
1414                                 if (rc > out_end - out_ptr)
1415                                         goto out;
1416                                 out_ptr += rc;
1417                                 break;
1418                         /* uid */
1419                         case 'u':
1420                                 rc = snprintf(out_ptr, out_end - out_ptr,
1421                                               "%d", current->uid);
1422                                 if (rc > out_end - out_ptr)
1423                                         goto out;
1424                                 out_ptr += rc;
1425                                 break;
1426                         /* gid */
1427                         case 'g':
1428                                 rc = snprintf(out_ptr, out_end - out_ptr,
1429                                               "%d", current->gid);
1430                                 if (rc > out_end - out_ptr)
1431                                         goto out;
1432                                 out_ptr += rc;
1433                                 break;
1434                         /* signal that caused the coredump */
1435                         case 's':
1436                                 rc = snprintf(out_ptr, out_end - out_ptr,
1437                                               "%ld", signr);
1438                                 if (rc > out_end - out_ptr)
1439                                         goto out;
1440                                 out_ptr += rc;
1441                                 break;
1442                         /* UNIX time of coredump */
1443                         case 't': {
1444                                 struct timeval tv;
1445                                 do_gettimeofday(&tv);
1446                                 rc = snprintf(out_ptr, out_end - out_ptr,
1447                                               "%lu", tv.tv_sec);
1448                                 if (rc > out_end - out_ptr)
1449                                         goto out;
1450                                 out_ptr += rc;
1451                                 break;
1452                         }
1453                         /* hostname */
1454                         case 'h':
1455                                 down_read(&uts_sem);
1456                                 rc = snprintf(out_ptr, out_end - out_ptr,
1457                                               "%s", utsname()->nodename);
1458                                 up_read(&uts_sem);
1459                                 if (rc > out_end - out_ptr)
1460                                         goto out;
1461                                 out_ptr += rc;
1462                                 break;
1463                         /* executable */
1464                         case 'e':
1465                                 rc = snprintf(out_ptr, out_end - out_ptr,
1466                                               "%s", current->comm);
1467                                 if (rc > out_end - out_ptr)
1468                                         goto out;
1469                                 out_ptr += rc;
1470                                 break;
1471                         /* core limit size */
1472                         case 'c':
1473                                 rc = snprintf(out_ptr, out_end - out_ptr,
1474                                               "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1475                                 if (rc > out_end - out_ptr)
1476                                         goto out;
1477                                 out_ptr += rc;
1478                                 break;
1479                         default:
1480                                 break;
1481                         }
1482                         ++pat_ptr;
1483                 }
1484         }
1485         /* Backward compatibility with core_uses_pid:
1486          *
1487          * If core_pattern does not include a %p (as is the default)
1488          * and core_uses_pid is set, then .%pid will be appended to
1489          * the filename. Do not do this for piped commands. */
1490         if (!ispipe && !pid_in_pattern
1491             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1492                 rc = snprintf(out_ptr, out_end - out_ptr,
1493                               ".%d", task_tgid_vnr(current));
1494                 if (rc > out_end - out_ptr)
1495                         goto out;
1496                 out_ptr += rc;
1497         }
1498 out:
1499         *out_ptr = 0;
1500         return ispipe;
1501 }
1502
1503 static void zap_process(struct task_struct *start)
1504 {
1505         struct task_struct *t;
1506
1507         start->signal->flags = SIGNAL_GROUP_EXIT;
1508         start->signal->group_stop_count = 0;
1509
1510         t = start;
1511         do {
1512                 if (t != current && t->mm) {
1513                         t->mm->core_waiters++;
1514                         sigaddset(&t->pending.signal, SIGKILL);
1515                         signal_wake_up(t, 1);
1516                 }
1517         } while ((t = next_thread(t)) != start);
1518 }
1519
1520 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1521                                 int exit_code)
1522 {
1523         struct task_struct *g, *p;
1524         unsigned long flags;
1525         int err = -EAGAIN;
1526
1527         spin_lock_irq(&tsk->sighand->siglock);
1528         if (!signal_group_exit(tsk->signal)) {
1529                 tsk->signal->group_exit_code = exit_code;
1530                 zap_process(tsk);
1531                 err = 0;
1532         }
1533         spin_unlock_irq(&tsk->sighand->siglock);
1534         if (err)
1535                 return err;
1536
1537         if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1538                 goto done;
1539
1540         rcu_read_lock();
1541         for_each_process(g) {
1542                 if (g == tsk->group_leader)
1543                         continue;
1544
1545                 p = g;
1546                 do {
1547                         if (p->mm) {
1548                                 if (p->mm == mm) {
1549                                         /*
1550                                          * p->sighand can't disappear, but
1551                                          * may be changed by de_thread()
1552                                          */
1553                                         lock_task_sighand(p, &flags);
1554                                         zap_process(p);
1555                                         unlock_task_sighand(p, &flags);
1556                                 }
1557                                 break;
1558                         }
1559                 } while ((p = next_thread(p)) != g);
1560         }
1561         rcu_read_unlock();
1562 done:
1563         return mm->core_waiters;
1564 }
1565
1566 static int coredump_wait(int exit_code)
1567 {
1568         struct task_struct *tsk = current;
1569         struct mm_struct *mm = tsk->mm;
1570         struct completion startup_done;
1571         struct completion *vfork_done;
1572         int core_waiters;
1573
1574         init_completion(&mm->core_done);
1575         init_completion(&startup_done);
1576         mm->core_startup_done = &startup_done;
1577
1578         core_waiters = zap_threads(tsk, mm, exit_code);
1579         up_write(&mm->mmap_sem);
1580
1581         if (unlikely(core_waiters < 0))
1582                 goto fail;
1583
1584         /*
1585          * Make sure nobody is waiting for us to release the VM,
1586          * otherwise we can deadlock when we wait on each other
1587          */
1588         vfork_done = tsk->vfork_done;
1589         if (vfork_done) {
1590                 tsk->vfork_done = NULL;
1591                 complete(vfork_done);
1592         }
1593
1594         if (core_waiters)
1595                 wait_for_completion(&startup_done);
1596 fail:
1597         BUG_ON(mm->core_waiters);
1598         return core_waiters;
1599 }
1600
1601 /*
1602  * set_dumpable converts traditional three-value dumpable to two flags and
1603  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1604  * these bits are not changed atomically.  So get_dumpable can observe the
1605  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1606  * return either old dumpable or new one by paying attention to the order of
1607  * modifying the bits.
1608  *
1609  * dumpable |   mm->flags (binary)
1610  * old  new | initial interim  final
1611  * ---------+-----------------------
1612  *  0    1  |   00      01      01
1613  *  0    2  |   00      10(*)   11
1614  *  1    0  |   01      00      00
1615  *  1    2  |   01      11      11
1616  *  2    0  |   11      10(*)   00
1617  *  2    1  |   11      11      01
1618  *
1619  * (*) get_dumpable regards interim value of 10 as 11.
1620  */
1621 void set_dumpable(struct mm_struct *mm, int value)
1622 {
1623         switch (value) {
1624         case 0:
1625                 clear_bit(MMF_DUMPABLE, &mm->flags);
1626                 smp_wmb();
1627                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1628                 break;
1629         case 1:
1630                 set_bit(MMF_DUMPABLE, &mm->flags);
1631                 smp_wmb();
1632                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1633                 break;
1634         case 2:
1635                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1636                 smp_wmb();
1637                 set_bit(MMF_DUMPABLE, &mm->flags);
1638                 break;
1639         }
1640 }
1641
1642 int get_dumpable(struct mm_struct *mm)
1643 {
1644         int ret;
1645
1646         ret = mm->flags & 0x3;
1647         return (ret >= 2) ? 2 : ret;
1648 }
1649
1650 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1651 {
1652         char corename[CORENAME_MAX_SIZE + 1];
1653         struct mm_struct *mm = current->mm;
1654         struct linux_binfmt * binfmt;
1655         struct inode * inode;
1656         struct file * file;
1657         int retval = 0;
1658         int fsuid = current->fsuid;
1659         int flag = 0;
1660         int ispipe = 0;
1661         unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1662         char **helper_argv = NULL;
1663         int helper_argc = 0;
1664         char *delimit;
1665
1666         audit_core_dumps(signr);
1667
1668         binfmt = current->binfmt;
1669         if (!binfmt || !binfmt->core_dump)
1670                 goto fail;
1671         down_write(&mm->mmap_sem);
1672         /*
1673          * If another thread got here first, or we are not dumpable, bail out.
1674          */
1675         if (mm->core_waiters || !get_dumpable(mm)) {
1676                 up_write(&mm->mmap_sem);
1677                 goto fail;
1678         }
1679
1680         /*
1681          *      We cannot trust fsuid as being the "true" uid of the
1682          *      process nor do we know its entire history. We only know it
1683          *      was tainted so we dump it as root in mode 2.
1684          */
1685         if (get_dumpable(mm) == 2) {    /* Setuid core dump mode */
1686                 flag = O_EXCL;          /* Stop rewrite attacks */
1687                 current->fsuid = 0;     /* Dump root private */
1688         }
1689
1690         retval = coredump_wait(exit_code);
1691         if (retval < 0)
1692                 goto fail;
1693
1694         /*
1695          * Clear any false indication of pending signals that might
1696          * be seen by the filesystem code called to write the core file.
1697          */
1698         clear_thread_flag(TIF_SIGPENDING);
1699
1700         /*
1701          * lock_kernel() because format_corename() is controlled by sysctl, which
1702          * uses lock_kernel()
1703          */
1704         lock_kernel();
1705         ispipe = format_corename(corename, core_pattern, signr);
1706         unlock_kernel();
1707         /*
1708          * Don't bother to check the RLIMIT_CORE value if core_pattern points
1709          * to a pipe.  Since we're not writing directly to the filesystem
1710          * RLIMIT_CORE doesn't really apply, as no actual core file will be
1711          * created unless the pipe reader choses to write out the core file
1712          * at which point file size limits and permissions will be imposed
1713          * as it does with any other process
1714          */
1715         if ((!ispipe) && (core_limit < binfmt->min_coredump))
1716                 goto fail_unlock;
1717
1718         if (ispipe) {
1719                 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1720                 /* Terminate the string before the first option */
1721                 delimit = strchr(corename, ' ');
1722                 if (delimit)
1723                         *delimit = '\0';
1724                 delimit = strrchr(helper_argv[0], '/');
1725                 if (delimit)
1726                         delimit++;
1727                 else
1728                         delimit = helper_argv[0];
1729                 if (!strcmp(delimit, current->comm)) {
1730                         printk(KERN_NOTICE "Recursive core dump detected, "
1731                                         "aborting\n");
1732                         goto fail_unlock;
1733                 }
1734
1735                 core_limit = RLIM_INFINITY;
1736
1737                 /* SIGPIPE can happen, but it's just never processed */
1738                 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1739                                 &file)) {
1740                         printk(KERN_INFO "Core dump to %s pipe failed\n",
1741                                corename);
1742                         goto fail_unlock;
1743                 }
1744         } else
1745                 file = filp_open(corename,
1746                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1747                                  0600);
1748         if (IS_ERR(file))
1749                 goto fail_unlock;
1750         inode = file->f_path.dentry->d_inode;
1751         if (inode->i_nlink > 1)
1752                 goto close_fail;        /* multiple links - don't dump */
1753         if (!ispipe && d_unhashed(file->f_path.dentry))
1754                 goto close_fail;
1755
1756         /* AK: actually i see no reason to not allow this for named pipes etc.,
1757            but keep the previous behaviour for now. */
1758         if (!ispipe && !S_ISREG(inode->i_mode))
1759                 goto close_fail;
1760         /*
1761          * Dont allow local users get cute and trick others to coredump
1762          * into their pre-created files:
1763          */
1764         if (inode->i_uid != current->fsuid)
1765                 goto close_fail;
1766         if (!file->f_op)
1767                 goto close_fail;
1768         if (!file->f_op->write)
1769                 goto close_fail;
1770         if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1771                 goto close_fail;
1772
1773         retval = binfmt->core_dump(signr, regs, file, core_limit);
1774
1775         if (retval)
1776                 current->signal->group_exit_code |= 0x80;
1777 close_fail:
1778         filp_close(file, NULL);
1779 fail_unlock:
1780         if (helper_argv)
1781                 argv_free(helper_argv);
1782
1783         current->fsuid = fsuid;
1784         complete_all(&mm->core_done);
1785 fail:
1786         return retval;
1787 }