shrink struct dentry
[linux-2.6] / drivers / lguest / lg.h
1 #ifndef _LGUEST_H
2 #define _LGUEST_H
3
4 #ifndef __ASSEMBLY__
5 #include <linux/types.h>
6 #include <linux/init.h>
7 #include <linux/stringify.h>
8 #include <linux/lguest.h>
9 #include <linux/lguest_launcher.h>
10 #include <linux/wait.h>
11 #include <linux/hrtimer.h>
12 #include <linux/err.h>
13
14 #include <asm/lguest.h>
15
16 void free_pagetables(void);
17 int init_pagetables(struct page **switcher_page, unsigned int pages);
18
19 struct pgdir
20 {
21         unsigned long gpgdir;
22         pgd_t *pgdir;
23 };
24
25 /* We have two pages shared with guests, per cpu.  */
26 struct lguest_pages
27 {
28         /* This is the stack page mapped rw in guest */
29         char spare[PAGE_SIZE - sizeof(struct lguest_regs)];
30         struct lguest_regs regs;
31
32         /* This is the host state & guest descriptor page, ro in guest */
33         struct lguest_ro_state state;
34 } __attribute__((aligned(PAGE_SIZE)));
35
36 #define CHANGED_IDT             1
37 #define CHANGED_GDT             2
38 #define CHANGED_GDT_TLS         4 /* Actually a subset of CHANGED_GDT */
39 #define CHANGED_ALL             3
40
41 struct lguest;
42
43 struct lg_cpu {
44         unsigned int id;
45         struct lguest *lg;
46         struct task_struct *tsk;
47         struct mm_struct *mm;   /* == tsk->mm, but that becomes NULL on exit */
48
49         u32 cr2;
50         int ts;
51         u32 esp1;
52         u8 ss1;
53
54         /* Bitmap of what has changed: see CHANGED_* above. */
55         int changed;
56
57         unsigned long pending_notify; /* pfn from LHCALL_NOTIFY */
58
59         /* At end of a page shared mapped over lguest_pages in guest.  */
60         unsigned long regs_page;
61         struct lguest_regs *regs;
62
63         struct lguest_pages *last_pages;
64
65         int cpu_pgd; /* which pgd this cpu is currently using */
66
67         /* If a hypercall was asked for, this points to the arguments. */
68         struct hcall_args *hcall;
69         u32 next_hcall;
70
71         /* Virtual clock device */
72         struct hrtimer hrt;
73
74         /* Do we need to stop what we're doing and return to userspace? */
75         int break_out;
76         wait_queue_head_t break_wq;
77         int halted;
78
79         /* Pending virtual interrupts */
80         DECLARE_BITMAP(irqs_pending, LGUEST_IRQS);
81
82         struct lg_cpu_arch arch;
83 };
84
85 /* The private info the thread maintains about the guest. */
86 struct lguest
87 {
88         struct lguest_data __user *lguest_data;
89         struct lg_cpu cpus[NR_CPUS];
90         unsigned int nr_cpus;
91
92         u32 pfn_limit;
93         /* This provides the offset to the base of guest-physical
94          * memory in the Launcher. */
95         void __user *mem_base;
96         unsigned long kernel_address;
97
98         struct pgdir pgdirs[4];
99
100         unsigned long noirq_start, noirq_end;
101
102         unsigned int stack_pages;
103         u32 tsc_khz;
104
105         /* Dead? */
106         const char *dead;
107 };
108
109 extern struct mutex lguest_lock;
110
111 /* core.c: */
112 int lguest_address_ok(const struct lguest *lg,
113                       unsigned long addr, unsigned long len);
114 void __lgread(struct lg_cpu *, void *, unsigned long, unsigned);
115 void __lgwrite(struct lg_cpu *, unsigned long, const void *, unsigned);
116
117 /*H:035 Using memory-copy operations like that is usually inconvient, so we
118  * have the following helper macros which read and write a specific type (often
119  * an unsigned long).
120  *
121  * This reads into a variable of the given type then returns that. */
122 #define lgread(cpu, addr, type)                                         \
123         ({ type _v; __lgread((cpu), &_v, (addr), sizeof(_v)); _v; })
124
125 /* This checks that the variable is of the given type, then writes it out. */
126 #define lgwrite(cpu, addr, type, val)                           \
127         do {                                                    \
128                 typecheck(type, val);                           \
129                 __lgwrite((cpu), (addr), &(val), sizeof(val));  \
130         } while(0)
131 /* (end of memory access helper routines) :*/
132
133 int run_guest(struct lg_cpu *cpu, unsigned long __user *user);
134
135 /* Helper macros to obtain the first 12 or the last 20 bits, this is only the
136  * first step in the migration to the kernel types.  pte_pfn is already defined
137  * in the kernel. */
138 #define pgd_flags(x)    (pgd_val(x) & ~PAGE_MASK)
139 #define pgd_pfn(x)      (pgd_val(x) >> PAGE_SHIFT)
140
141 /* interrupts_and_traps.c: */
142 void maybe_do_interrupt(struct lg_cpu *cpu);
143 int deliver_trap(struct lg_cpu *cpu, unsigned int num);
144 void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int i,
145                           u32 low, u32 hi);
146 void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages);
147 void pin_stack_pages(struct lg_cpu *cpu);
148 void setup_default_idt_entries(struct lguest_ro_state *state,
149                                const unsigned long *def);
150 void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
151                 const unsigned long *def);
152 void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta);
153 void init_clockdev(struct lg_cpu *cpu);
154 bool check_syscall_vector(struct lguest *lg);
155 int init_interrupts(void);
156 void free_interrupts(void);
157
158 /* segments.c: */
159 void setup_default_gdt_entries(struct lguest_ro_state *state);
160 void setup_guest_gdt(struct lg_cpu *cpu);
161 void load_guest_gdt(struct lg_cpu *cpu, unsigned long table, u32 num);
162 void guest_load_tls(struct lg_cpu *cpu, unsigned long tls_array);
163 void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt);
164 void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt);
165
166 /* page_tables.c: */
167 int init_guest_pagetable(struct lguest *lg);
168 void free_guest_pagetable(struct lguest *lg);
169 void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable);
170 void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i);
171 void guest_pagetable_clear_all(struct lg_cpu *cpu);
172 void guest_pagetable_flush_user(struct lg_cpu *cpu);
173 void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir,
174                    unsigned long vaddr, pte_t val);
175 void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages);
176 int demand_page(struct lg_cpu *cpu, unsigned long cr2, int errcode);
177 void pin_page(struct lg_cpu *cpu, unsigned long vaddr);
178 unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr);
179 void page_table_guest_data_init(struct lg_cpu *cpu);
180
181 /* <arch>/core.c: */
182 void lguest_arch_host_init(void);
183 void lguest_arch_host_fini(void);
184 void lguest_arch_run_guest(struct lg_cpu *cpu);
185 void lguest_arch_handle_trap(struct lg_cpu *cpu);
186 int lguest_arch_init_hypercalls(struct lg_cpu *cpu);
187 int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args);
188 void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start);
189
190 /* <arch>/switcher.S: */
191 extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
192
193 /* lguest_user.c: */
194 int lguest_device_init(void);
195 void lguest_device_remove(void);
196
197 /* hypercalls.c: */
198 void do_hypercalls(struct lg_cpu *cpu);
199 void write_timestamp(struct lg_cpu *cpu);
200
201 /*L:035
202  * Let's step aside for the moment, to study one important routine that's used
203  * widely in the Host code.
204  *
205  * There are many cases where the Guest can do something invalid, like pass crap
206  * to a hypercall.  Since only the Guest kernel can make hypercalls, it's quite
207  * acceptable to simply terminate the Guest and give the Launcher a nicely
208  * formatted reason.  It's also simpler for the Guest itself, which doesn't
209  * need to check most hypercalls for "success"; if you're still running, it
210  * succeeded.
211  *
212  * Once this is called, the Guest will never run again, so most Host code can
213  * call this then continue as if nothing had happened.  This means many
214  * functions don't have to explicitly return an error code, which keeps the
215  * code simple.
216  *
217  * It also means that this can be called more than once: only the first one is
218  * remembered.  The only trick is that we still need to kill the Guest even if
219  * we can't allocate memory to store the reason.  Linux has a neat way of
220  * packing error codes into invalid pointers, so we use that here.
221  *
222  * Like any macro which uses an "if", it is safely wrapped in a run-once "do {
223  * } while(0)".
224  */
225 #define kill_guest(cpu, fmt...)                                 \
226 do {                                                            \
227         if (!(cpu)->lg->dead) {                                 \
228                 (cpu)->lg->dead = kasprintf(GFP_ATOMIC, fmt);   \
229                 if (!(cpu)->lg->dead)                           \
230                         (cpu)->lg->dead = ERR_PTR(-ENOMEM);     \
231         }                                                       \
232 } while(0)
233 /* (End of aside) :*/
234
235 #endif  /* __ASSEMBLY__ */
236 #endif  /* _LGUEST_H */