2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
30 #include "rt2x00lib.h"
33 * Link tuning handlers
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
41 * Reset link information.
42 * Both the currently active vgc level as well as
43 * the link tuner counter should be reset. Resetting
44 * the counter is important for devices where the
45 * device should only perform link tuning during the
46 * first minute after being enabled.
48 rt2x00dev->link.count = 0;
49 rt2x00dev->link.vgc_level = 0;
52 * Reset the link tuner.
54 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
60 * Clear all (possibly) pre-existing quality statistics.
62 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
65 * The RX and TX percentage should start at 50%
66 * this will assure we will get at least get some
67 * decent value when the link tuner starts.
68 * The value will be dropped and overwritten with
69 * the correct (measured )value anyway during the
70 * first run of the link tuner.
72 rt2x00dev->link.qual.rx_percentage = 50;
73 rt2x00dev->link.qual.tx_percentage = 50;
75 rt2x00lib_reset_link_tuner(rt2x00dev);
77 queue_delayed_work(rt2x00dev->hw->workqueue,
78 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 cancel_delayed_work_sync(&rt2x00dev->link.work);
87 * Radio control handlers.
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
94 * Don't enable the radio twice.
95 * And check if the hardware button has been disabled.
97 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
98 test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
102 * Initialize all data queues.
104 rt2x00queue_init_rx(rt2x00dev);
105 rt2x00queue_init_tx(rt2x00dev);
111 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
115 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
117 rt2x00leds_led_radio(rt2x00dev, true);
118 rt2x00led_led_activity(rt2x00dev, true);
120 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
125 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
128 * Start the TX queues.
130 ieee80211_wake_queues(rt2x00dev->hw);
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
137 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
141 * Stop the TX queues.
143 ieee80211_stop_queues(rt2x00dev->hw);
148 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
153 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
154 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
155 rt2x00led_led_activity(rt2x00dev, false);
156 rt2x00leds_led_radio(rt2x00dev, false);
159 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
162 * When we are disabling the RX, we should also stop the link tuner.
164 if (state == STATE_RADIO_RX_OFF)
165 rt2x00lib_stop_link_tuner(rt2x00dev);
167 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
170 * When we are enabling the RX, we should also start the link tuner.
172 if (state == STATE_RADIO_RX_ON &&
173 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
174 rt2x00lib_start_link_tuner(rt2x00dev);
177 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
179 struct antenna_setup ant;
181 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
183 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
185 memcpy(&ant, &rt2x00dev->link.ant.active, sizeof(ant));
188 * We are done sampling. Now we should evaluate the results.
190 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
193 * During the last period we have sampled the RSSI
194 * from both antenna's. It now is time to determine
195 * which antenna demonstrated the best performance.
196 * When we are already on the antenna with the best
197 * performance, then there really is nothing for us
200 if (sample_a == sample_b)
203 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204 ant.rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
206 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207 ant.tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
209 rt2x00lib_config_antenna(rt2x00dev, &ant);
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
214 struct antenna_setup ant;
215 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
216 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
218 memcpy(&ant, &rt2x00dev->link.ant.active, sizeof(ant));
221 * Legacy driver indicates that we should swap antenna's
222 * when the difference in RSSI is greater that 5. This
223 * also should be done when the RSSI was actually better
224 * then the previous sample.
225 * When the difference exceeds the threshold we should
226 * sample the rssi from the other antenna to make a valid
227 * comparison between the 2 antennas.
229 if (abs(rssi_curr - rssi_old) < 5)
232 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
234 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
235 ant.rx = (ant.rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
237 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
238 ant.tx = (ant.tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
240 rt2x00lib_config_antenna(rt2x00dev, &ant);
243 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
246 * Determine if software diversity is enabled for
247 * either the TX or RX antenna (or both).
248 * Always perform this check since within the link
249 * tuner interval the configuration might have changed.
251 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
252 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
254 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
257 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
259 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
260 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
261 rt2x00dev->link.ant.flags = 0;
266 * If we have only sampled the data over the last period
267 * we should now harvest the data. Otherwise just evaluate
268 * the data. The latter should only be performed once
271 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
272 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
273 else if (rt2x00dev->link.count & 1)
274 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
277 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
284 if (link->qual.avg_rssi)
285 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
286 link->qual.avg_rssi = avg_rssi;
289 * Update antenna RSSI
291 if (link->ant.rssi_ant)
292 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
293 link->ant.rssi_ant = rssi;
296 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
298 if (qual->rx_failed || qual->rx_success)
299 qual->rx_percentage =
300 (qual->rx_success * 100) /
301 (qual->rx_failed + qual->rx_success);
303 qual->rx_percentage = 50;
305 if (qual->tx_failed || qual->tx_success)
306 qual->tx_percentage =
307 (qual->tx_success * 100) /
308 (qual->tx_failed + qual->tx_success);
310 qual->tx_percentage = 50;
312 qual->rx_success = 0;
314 qual->tx_success = 0;
318 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
321 int rssi_percentage = 0;
325 * We need a positive value for the RSSI.
328 rssi += rt2x00dev->rssi_offset;
331 * Calculate the different percentages,
332 * which will be used for the signal.
334 if (rt2x00dev->rssi_offset)
335 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
338 * Add the individual percentages and use the WEIGHT
339 * defines to calculate the current link signal.
341 signal = ((WEIGHT_RSSI * rssi_percentage) +
342 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
343 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
345 return (signal > 100) ? 100 : signal;
348 static void rt2x00lib_link_tuner(struct work_struct *work)
350 struct rt2x00_dev *rt2x00dev =
351 container_of(work, struct rt2x00_dev, link.work.work);
354 * When the radio is shutting down we should
355 * immediately cease all link tuning.
357 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
363 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
364 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
365 rt2x00dev->link.qual.rx_failed;
368 * Only perform the link tuning when Link tuning
369 * has been enabled (This could have been disabled from the EEPROM).
371 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
372 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
375 * Precalculate a portion of the link signal which is
376 * in based on the tx/rx success/failure counters.
378 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
381 * Send a signal to the led to update the led signal strength.
383 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
386 * Evaluate antenna setup, make this the last step since this could
387 * possibly reset some statistics.
389 rt2x00lib_evaluate_antenna(rt2x00dev);
392 * Increase tuner counter, and reschedule the next link tuner run.
394 rt2x00dev->link.count++;
395 queue_delayed_work(rt2x00dev->hw->workqueue,
396 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
399 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
401 struct rt2x00_dev *rt2x00dev =
402 container_of(work, struct rt2x00_dev, filter_work);
404 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
407 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
408 struct ieee80211_vif *vif)
410 struct rt2x00_dev *rt2x00dev = data;
411 struct rt2x00_intf *intf = vif_to_intf(vif);
412 struct ieee80211_bss_conf conf;
416 * Copy all data we need during this action under the protection
417 * of a spinlock. Otherwise race conditions might occur which results
418 * into an invalid configuration.
420 spin_lock(&intf->lock);
422 memcpy(&conf, &vif->bss_conf, sizeof(conf));
423 delayed_flags = intf->delayed_flags;
424 intf->delayed_flags = 0;
426 spin_unlock(&intf->lock);
429 * It is possible the radio was disabled while the work had been
430 * scheduled. If that happens we should return here immediately,
431 * note that in the spinlock protected area above the delayed_flags
432 * have been cleared correctly.
434 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
437 if (delayed_flags & DELAYED_UPDATE_BEACON)
438 rt2x00queue_update_beacon(rt2x00dev, vif);
440 if (delayed_flags & DELAYED_CONFIG_ERP)
441 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
443 if (delayed_flags & DELAYED_LED_ASSOC)
444 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
447 static void rt2x00lib_intf_scheduled(struct work_struct *work)
449 struct rt2x00_dev *rt2x00dev =
450 container_of(work, struct rt2x00_dev, intf_work);
453 * Iterate over each interface and perform the
454 * requested configurations.
456 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
457 rt2x00lib_intf_scheduled_iter,
462 * Interrupt context handlers.
464 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
465 struct ieee80211_vif *vif)
467 struct rt2x00_dev *rt2x00dev = data;
468 struct rt2x00_intf *intf = vif_to_intf(vif);
470 if (vif->type != NL80211_IFTYPE_AP &&
471 vif->type != NL80211_IFTYPE_ADHOC)
475 * Clean up the beacon skb.
477 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
478 intf->beacon->skb = NULL;
480 spin_lock(&intf->lock);
481 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
482 spin_unlock(&intf->lock);
485 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
487 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
490 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
491 rt2x00lib_beacondone_iter,
494 schedule_work(&rt2x00dev->intf_work);
496 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
498 void rt2x00lib_txdone(struct queue_entry *entry,
499 struct txdone_entry_desc *txdesc)
501 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
502 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
503 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
504 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
505 u8 rate_idx, rate_flags;
510 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
513 * If the IV/EIV data was stripped from the frame before it was
514 * passed to the hardware, we should now reinsert it again because
515 * mac80211 will expect the the same data to be present it the
516 * frame as it was passed to us.
518 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
519 rt2x00crypto_tx_insert_iv(entry->skb);
522 * Send frame to debugfs immediately, after this call is completed
523 * we are going to overwrite the skb->cb array.
525 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
528 * Update TX statistics.
530 rt2x00dev->link.qual.tx_success +=
531 test_bit(TXDONE_SUCCESS, &txdesc->flags);
532 rt2x00dev->link.qual.tx_failed +=
533 test_bit(TXDONE_FAILURE, &txdesc->flags);
535 rate_idx = skbdesc->tx_rate_idx;
536 rate_flags = skbdesc->tx_rate_flags;
539 * Initialize TX status
541 memset(&tx_info->status, 0, sizeof(tx_info->status));
542 tx_info->status.ack_signal = 0;
543 tx_info->status.rates[0].idx = rate_idx;
544 tx_info->status.rates[0].flags = rate_flags;
545 tx_info->status.rates[0].count = txdesc->retry + 1;
546 tx_info->status.rates[1].idx = -1; /* terminate */
548 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
549 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
550 tx_info->flags |= IEEE80211_TX_STAT_ACK;
551 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
552 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
555 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
556 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
557 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
558 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
559 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
563 * Only send the status report to mac80211 when TX status was
564 * requested by it. If this was a extra frame coming through
565 * a mac80211 library call (RTS/CTS) then we should not send the
566 * status report back.
568 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
569 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
571 dev_kfree_skb_irq(entry->skb);
574 * Make this entry available for reuse.
579 rt2x00dev->ops->lib->init_txentry(rt2x00dev, entry);
581 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
582 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
585 * If the data queue was below the threshold before the txdone
586 * handler we must make sure the packet queue in the mac80211 stack
587 * is reenabled when the txdone handler has finished.
589 if (!rt2x00queue_threshold(entry->queue))
590 ieee80211_wake_queue(rt2x00dev->hw, qid);
592 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
594 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
595 struct queue_entry *entry)
597 struct rxdone_entry_desc rxdesc;
599 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
600 struct ieee80211_supported_band *sband;
601 struct ieee80211_hdr *hdr;
602 const struct rt2x00_rate *rate;
603 unsigned int header_length;
609 * Allocate a new sk_buffer. If no new buffer available, drop the
610 * received frame and reuse the existing buffer.
612 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
619 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
622 * Extract the RXD details.
624 memset(&rxdesc, 0, sizeof(rxdesc));
625 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
628 * The data behind the ieee80211 header must be
629 * aligned on a 4 byte boundary.
631 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
632 align = ((unsigned long)(entry->skb->data + header_length)) & 3;
635 * Hardware might have stripped the IV/EIV/ICV data,
636 * in that case it is possible that the data was
637 * provided seperately (through hardware descriptor)
638 * in which case we should reinsert the data into the frame.
640 if ((rxdesc.flags & RX_FLAG_IV_STRIPPED)) {
641 rt2x00crypto_rx_insert_iv(entry->skb, align,
642 header_length, &rxdesc);
644 skb_push(entry->skb, align);
645 /* Move entire frame in 1 command */
646 memmove(entry->skb->data, entry->skb->data + align,
650 /* Update data pointers, trim buffer to correct size */
651 skb_trim(entry->skb, rxdesc.size);
654 * Update RX statistics.
656 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
657 for (i = 0; i < sband->n_bitrates; i++) {
658 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
660 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
661 (rate->plcp == rxdesc.signal)) ||
662 ((rxdesc.dev_flags & RXDONE_SIGNAL_BITRATE) &&
663 (rate->bitrate == rxdesc.signal))) {
670 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
671 "signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
672 !!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
677 * Only update link status if this is a beacon frame carrying our bssid.
679 hdr = (struct ieee80211_hdr *)entry->skb->data;
680 if (ieee80211_is_beacon(hdr->frame_control) &&
681 (rxdesc.dev_flags & RXDONE_MY_BSS))
682 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
684 rt2x00debug_update_crypto(rt2x00dev,
686 rxdesc.cipher_status);
688 rt2x00dev->link.qual.rx_success++;
690 rx_status->mactime = rxdesc.timestamp;
691 rx_status->rate_idx = idx;
693 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
694 rx_status->signal = rxdesc.rssi;
695 rx_status->flag = rxdesc.flags;
696 rx_status->antenna = rt2x00dev->link.ant.active.rx;
699 * Send frame to mac80211 & debugfs.
700 * mac80211 will clean up the skb structure.
702 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
703 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
706 * Replace the skb with the freshly allocated one.
711 rt2x00dev->ops->lib->init_rxentry(rt2x00dev, entry);
713 rt2x00queue_index_inc(entry->queue, Q_INDEX);
715 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
718 * Driver initialization handlers.
720 const struct rt2x00_rate rt2x00_supported_rates[12] = {
722 .flags = DEV_RATE_CCK,
728 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
734 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
740 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
746 .flags = DEV_RATE_OFDM,
752 .flags = DEV_RATE_OFDM,
758 .flags = DEV_RATE_OFDM,
764 .flags = DEV_RATE_OFDM,
770 .flags = DEV_RATE_OFDM,
776 .flags = DEV_RATE_OFDM,
782 .flags = DEV_RATE_OFDM,
788 .flags = DEV_RATE_OFDM,
795 static void rt2x00lib_channel(struct ieee80211_channel *entry,
796 const int channel, const int tx_power,
799 entry->center_freq = ieee80211_channel_to_frequency(channel);
800 entry->hw_value = value;
801 entry->max_power = tx_power;
802 entry->max_antenna_gain = 0xff;
805 static void rt2x00lib_rate(struct ieee80211_rate *entry,
806 const u16 index, const struct rt2x00_rate *rate)
809 entry->bitrate = rate->bitrate;
810 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
811 entry->hw_value_short = entry->hw_value;
813 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
814 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
815 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
819 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
820 struct hw_mode_spec *spec)
822 struct ieee80211_hw *hw = rt2x00dev->hw;
823 struct ieee80211_channel *channels;
824 struct ieee80211_rate *rates;
825 unsigned int num_rates;
829 if (spec->supported_rates & SUPPORT_RATE_CCK)
831 if (spec->supported_rates & SUPPORT_RATE_OFDM)
834 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
838 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
840 goto exit_free_channels;
843 * Initialize Rate list.
845 for (i = 0; i < num_rates; i++)
846 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
849 * Initialize Channel list.
851 for (i = 0; i < spec->num_channels; i++) {
852 rt2x00lib_channel(&channels[i],
853 spec->channels[i].channel,
854 spec->channels_info[i].tx_power1, i);
858 * Intitialize 802.11b, 802.11g
862 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
863 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
864 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
865 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
866 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
867 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
868 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
872 * Intitialize 802.11a
874 * Channels: OFDM, UNII, HiperLAN2.
876 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
877 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
878 spec->num_channels - 14;
879 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
881 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
882 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
883 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
884 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
891 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
895 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
897 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
898 ieee80211_unregister_hw(rt2x00dev->hw);
900 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
901 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
902 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
903 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
904 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
907 kfree(rt2x00dev->spec.channels_info);
910 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
912 struct hw_mode_spec *spec = &rt2x00dev->spec;
915 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
919 * Initialize HW modes.
921 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
926 * Initialize HW fields.
928 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
933 status = ieee80211_register_hw(rt2x00dev->hw);
935 rt2x00lib_remove_hw(rt2x00dev);
939 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
945 * Initialization/uninitialization handlers.
947 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
949 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
953 * Unregister extra components.
955 rt2x00rfkill_unregister(rt2x00dev);
958 * Allow the HW to uninitialize.
960 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
963 * Free allocated queue entries.
965 rt2x00queue_uninitialize(rt2x00dev);
968 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
972 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
976 * Allocate all queue entries.
978 status = rt2x00queue_initialize(rt2x00dev);
983 * Initialize the device.
985 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
987 rt2x00queue_uninitialize(rt2x00dev);
991 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
994 * Register the extra components.
996 rt2x00rfkill_register(rt2x00dev);
1001 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1005 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1009 * If this is the first interface which is added,
1010 * we should load the firmware now.
1012 retval = rt2x00lib_load_firmware(rt2x00dev);
1017 * Initialize the device.
1019 retval = rt2x00lib_initialize(rt2x00dev);
1023 rt2x00dev->intf_ap_count = 0;
1024 rt2x00dev->intf_sta_count = 0;
1025 rt2x00dev->intf_associated = 0;
1027 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1032 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1034 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1038 * Perhaps we can add something smarter here,
1039 * but for now just disabling the radio should do.
1041 rt2x00lib_disable_radio(rt2x00dev);
1043 rt2x00dev->intf_ap_count = 0;
1044 rt2x00dev->intf_sta_count = 0;
1045 rt2x00dev->intf_associated = 0;
1049 * driver allocation handlers.
1051 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1053 int retval = -ENOMEM;
1056 * Make room for rt2x00_intf inside the per-interface
1057 * structure ieee80211_vif.
1059 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1062 * Determine which operating modes are supported, all modes
1063 * which require beaconing, depend on the availability of
1066 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1067 if (rt2x00dev->ops->bcn->entry_num > 0)
1068 rt2x00dev->hw->wiphy->interface_modes |=
1069 BIT(NL80211_IFTYPE_ADHOC) |
1070 BIT(NL80211_IFTYPE_AP);
1073 * Let the driver probe the device to detect the capabilities.
1075 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1077 ERROR(rt2x00dev, "Failed to allocate device.\n");
1082 * Initialize configuration work.
1084 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1085 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1086 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1089 * Allocate queue array.
1091 retval = rt2x00queue_allocate(rt2x00dev);
1096 * Initialize ieee80211 structure.
1098 retval = rt2x00lib_probe_hw(rt2x00dev);
1100 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1105 * Register extra components.
1107 rt2x00leds_register(rt2x00dev);
1108 rt2x00rfkill_allocate(rt2x00dev);
1109 rt2x00debug_register(rt2x00dev);
1111 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1116 rt2x00lib_remove_dev(rt2x00dev);
1120 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1122 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1124 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1129 rt2x00lib_disable_radio(rt2x00dev);
1132 * Uninitialize device.
1134 rt2x00lib_uninitialize(rt2x00dev);
1137 * Free extra components
1139 rt2x00debug_deregister(rt2x00dev);
1140 rt2x00rfkill_free(rt2x00dev);
1141 rt2x00leds_unregister(rt2x00dev);
1144 * Free ieee80211_hw memory.
1146 rt2x00lib_remove_hw(rt2x00dev);
1149 * Free firmware image.
1151 rt2x00lib_free_firmware(rt2x00dev);
1154 * Free queue structures.
1156 rt2x00queue_free(rt2x00dev);
1158 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1161 * Device state handlers
1164 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1168 NOTICE(rt2x00dev, "Going to sleep.\n");
1171 * Only continue if mac80211 has open interfaces.
1173 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
1174 !test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1177 set_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags);
1182 rt2x00lib_stop(rt2x00dev);
1183 rt2x00lib_uninitialize(rt2x00dev);
1186 * Suspend/disable extra components.
1188 rt2x00leds_suspend(rt2x00dev);
1189 rt2x00debug_deregister(rt2x00dev);
1193 * Set device mode to sleep for power management,
1194 * on some hardware this call seems to consistently fail.
1195 * From the specifications it is hard to tell why it fails,
1196 * and if this is a "bad thing".
1197 * Overall it is safe to just ignore the failure and
1198 * continue suspending. The only downside is that the
1199 * device will not be in optimal power save mode, but with
1200 * the radio and the other components already disabled the
1201 * device is as good as disabled.
1203 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1205 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1206 "continue suspending.\n");
1210 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1212 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1213 struct ieee80211_vif *vif)
1215 struct rt2x00_dev *rt2x00dev = data;
1216 struct rt2x00_intf *intf = vif_to_intf(vif);
1218 spin_lock(&intf->lock);
1220 rt2x00lib_config_intf(rt2x00dev, intf,
1221 vif->type, intf->mac, intf->bssid);
1225 * Master or Ad-hoc mode require a new beacon update.
1227 if (vif->type == NL80211_IFTYPE_AP ||
1228 vif->type == NL80211_IFTYPE_ADHOC)
1229 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1231 spin_unlock(&intf->lock);
1234 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1238 NOTICE(rt2x00dev, "Waking up.\n");
1241 * Restore/enable extra components.
1243 rt2x00debug_register(rt2x00dev);
1244 rt2x00leds_resume(rt2x00dev);
1247 * Only continue if mac80211 had open interfaces.
1249 if (!test_and_clear_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags))
1253 * Reinitialize device and all active interfaces.
1255 retval = rt2x00lib_start(rt2x00dev);
1260 * Reconfigure device.
1262 retval = rt2x00mac_config(rt2x00dev->hw, ~0);
1267 * Iterator over each active interface to
1268 * reconfigure the hardware.
1270 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1271 rt2x00lib_resume_intf, rt2x00dev);
1274 * We are ready again to receive requests from mac80211.
1276 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1279 * It is possible that during that mac80211 has attempted
1280 * to send frames while we were suspending or resuming.
1281 * In that case we have disabled the TX queue and should
1282 * now enable it again
1284 ieee80211_wake_queues(rt2x00dev->hw);
1287 * During interface iteration we might have changed the
1288 * delayed_flags, time to handles the event by calling
1289 * the work handler directly.
1291 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1296 rt2x00lib_stop(rt2x00dev);
1297 rt2x00lib_uninitialize(rt2x00dev);
1298 rt2x00debug_deregister(rt2x00dev);
1302 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1303 #endif /* CONFIG_PM */
1306 * rt2x00lib module information.
1308 MODULE_AUTHOR(DRV_PROJECT);
1309 MODULE_VERSION(DRV_VERSION);
1310 MODULE_DESCRIPTION("rt2x00 library");
1311 MODULE_LICENSE("GPL");