2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/interrupt.h>
29 #include <linux/cpu.h>
30 #include <linux/blktrace_api.h>
31 #include <linux/fault-inject.h>
36 #include <scsi/scsi_cmnd.h>
38 static void blk_unplug_work(struct work_struct *work);
39 static void blk_unplug_timeout(unsigned long data);
40 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
41 static void init_request_from_bio(struct request *req, struct bio *bio);
42 static int __make_request(request_queue_t *q, struct bio *bio);
43 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
46 * For the allocated request tables
48 static struct kmem_cache *request_cachep;
51 * For queue allocation
53 static struct kmem_cache *requestq_cachep;
56 * For io context allocations
58 static struct kmem_cache *iocontext_cachep;
61 * Controlling structure to kblockd
63 static struct workqueue_struct *kblockd_workqueue;
65 unsigned long blk_max_low_pfn, blk_max_pfn;
67 EXPORT_SYMBOL(blk_max_low_pfn);
68 EXPORT_SYMBOL(blk_max_pfn);
70 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
72 /* Amount of time in which a process may batch requests */
73 #define BLK_BATCH_TIME (HZ/50UL)
75 /* Number of requests a "batching" process may submit */
76 #define BLK_BATCH_REQ 32
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
83 static inline int queue_congestion_on_threshold(struct request_queue *q)
85 return q->nr_congestion_on;
89 * The threshold at which a queue is considered to be uncongested
91 static inline int queue_congestion_off_threshold(struct request_queue *q)
93 return q->nr_congestion_off;
96 static void blk_queue_congestion_threshold(struct request_queue *q)
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
103 q->nr_congestion_on = nr;
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 q->nr_congestion_off = nr;
112 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
115 * Locates the passed device's request queue and returns the address of its
118 * Will return NULL if the request queue cannot be located.
120 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 struct backing_dev_info *ret = NULL;
123 request_queue_t *q = bdev_get_queue(bdev);
126 ret = &q->backing_dev_info;
129 EXPORT_SYMBOL(blk_get_backing_dev_info);
131 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
134 q->activity_data = data;
136 EXPORT_SYMBOL(blk_queue_activity_fn);
139 * blk_queue_prep_rq - set a prepare_request function for queue
141 * @pfn: prepare_request function
143 * It's possible for a queue to register a prepare_request callback which
144 * is invoked before the request is handed to the request_fn. The goal of
145 * the function is to prepare a request for I/O, it can be used to build a
146 * cdb from the request data for instance.
149 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
154 EXPORT_SYMBOL(blk_queue_prep_rq);
157 * blk_queue_merge_bvec - set a merge_bvec function for queue
159 * @mbfn: merge_bvec_fn
161 * Usually queues have static limitations on the max sectors or segments that
162 * we can put in a request. Stacking drivers may have some settings that
163 * are dynamic, and thus we have to query the queue whether it is ok to
164 * add a new bio_vec to a bio at a given offset or not. If the block device
165 * has such limitations, it needs to register a merge_bvec_fn to control
166 * the size of bio's sent to it. Note that a block device *must* allow a
167 * single page to be added to an empty bio. The block device driver may want
168 * to use the bio_split() function to deal with these bio's. By default
169 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
172 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
174 q->merge_bvec_fn = mbfn;
177 EXPORT_SYMBOL(blk_queue_merge_bvec);
179 void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
181 q->softirq_done_fn = fn;
184 EXPORT_SYMBOL(blk_queue_softirq_done);
187 * blk_queue_make_request - define an alternate make_request function for a device
188 * @q: the request queue for the device to be affected
189 * @mfn: the alternate make_request function
192 * The normal way for &struct bios to be passed to a device
193 * driver is for them to be collected into requests on a request
194 * queue, and then to allow the device driver to select requests
195 * off that queue when it is ready. This works well for many block
196 * devices. However some block devices (typically virtual devices
197 * such as md or lvm) do not benefit from the processing on the
198 * request queue, and are served best by having the requests passed
199 * directly to them. This can be achieved by providing a function
200 * to blk_queue_make_request().
203 * The driver that does this *must* be able to deal appropriately
204 * with buffers in "highmemory". This can be accomplished by either calling
205 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
206 * blk_queue_bounce() to create a buffer in normal memory.
208 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
213 q->nr_requests = BLKDEV_MAX_RQ;
214 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
215 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
216 q->make_request_fn = mfn;
217 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
218 q->backing_dev_info.state = 0;
219 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
220 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
221 blk_queue_hardsect_size(q, 512);
222 blk_queue_dma_alignment(q, 511);
223 blk_queue_congestion_threshold(q);
224 q->nr_batching = BLK_BATCH_REQ;
226 q->unplug_thresh = 4; /* hmm */
227 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
228 if (q->unplug_delay == 0)
231 INIT_WORK(&q->unplug_work, blk_unplug_work);
233 q->unplug_timer.function = blk_unplug_timeout;
234 q->unplug_timer.data = (unsigned long)q;
237 * by default assume old behaviour and bounce for any highmem page
239 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
241 blk_queue_activity_fn(q, NULL, NULL);
244 EXPORT_SYMBOL(blk_queue_make_request);
246 static void rq_init(request_queue_t *q, struct request *rq)
248 INIT_LIST_HEAD(&rq->queuelist);
249 INIT_LIST_HEAD(&rq->donelist);
252 rq->bio = rq->biotail = NULL;
253 INIT_HLIST_NODE(&rq->hash);
254 RB_CLEAR_NODE(&rq->rb_node);
262 rq->nr_phys_segments = 0;
265 rq->end_io_data = NULL;
266 rq->completion_data = NULL;
270 * blk_queue_ordered - does this queue support ordered writes
271 * @q: the request queue
272 * @ordered: one of QUEUE_ORDERED_*
273 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
276 * For journalled file systems, doing ordered writes on a commit
277 * block instead of explicitly doing wait_on_buffer (which is bad
278 * for performance) can be a big win. Block drivers supporting this
279 * feature should call this function and indicate so.
282 int blk_queue_ordered(request_queue_t *q, unsigned ordered,
283 prepare_flush_fn *prepare_flush_fn)
285 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
286 prepare_flush_fn == NULL) {
287 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
291 if (ordered != QUEUE_ORDERED_NONE &&
292 ordered != QUEUE_ORDERED_DRAIN &&
293 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
294 ordered != QUEUE_ORDERED_DRAIN_FUA &&
295 ordered != QUEUE_ORDERED_TAG &&
296 ordered != QUEUE_ORDERED_TAG_FLUSH &&
297 ordered != QUEUE_ORDERED_TAG_FUA) {
298 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
302 q->ordered = ordered;
303 q->next_ordered = ordered;
304 q->prepare_flush_fn = prepare_flush_fn;
309 EXPORT_SYMBOL(blk_queue_ordered);
312 * blk_queue_issue_flush_fn - set function for issuing a flush
313 * @q: the request queue
314 * @iff: the function to be called issuing the flush
317 * If a driver supports issuing a flush command, the support is notified
318 * to the block layer by defining it through this call.
321 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
323 q->issue_flush_fn = iff;
326 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
329 * Cache flushing for ordered writes handling
331 inline unsigned blk_ordered_cur_seq(request_queue_t *q)
335 return 1 << ffz(q->ordseq);
338 unsigned blk_ordered_req_seq(struct request *rq)
340 request_queue_t *q = rq->q;
342 BUG_ON(q->ordseq == 0);
344 if (rq == &q->pre_flush_rq)
345 return QUEUE_ORDSEQ_PREFLUSH;
346 if (rq == &q->bar_rq)
347 return QUEUE_ORDSEQ_BAR;
348 if (rq == &q->post_flush_rq)
349 return QUEUE_ORDSEQ_POSTFLUSH;
351 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
352 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
353 return QUEUE_ORDSEQ_DRAIN;
355 return QUEUE_ORDSEQ_DONE;
358 void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
363 if (error && !q->orderr)
366 BUG_ON(q->ordseq & seq);
369 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
373 * Okay, sequence complete.
376 uptodate = q->orderr ? q->orderr : 1;
380 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
381 end_that_request_last(rq, uptodate);
384 static void pre_flush_end_io(struct request *rq, int error)
386 elv_completed_request(rq->q, rq);
387 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
390 static void bar_end_io(struct request *rq, int error)
392 elv_completed_request(rq->q, rq);
393 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
396 static void post_flush_end_io(struct request *rq, int error)
398 elv_completed_request(rq->q, rq);
399 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
402 static void queue_flush(request_queue_t *q, unsigned which)
405 rq_end_io_fn *end_io;
407 if (which == QUEUE_ORDERED_PREFLUSH) {
408 rq = &q->pre_flush_rq;
409 end_io = pre_flush_end_io;
411 rq = &q->post_flush_rq;
412 end_io = post_flush_end_io;
415 rq->cmd_flags = REQ_HARDBARRIER;
417 rq->elevator_private = NULL;
418 rq->elevator_private2 = NULL;
419 rq->rq_disk = q->bar_rq.rq_disk;
421 q->prepare_flush_fn(q, rq);
423 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
426 static inline struct request *start_ordered(request_queue_t *q,
431 q->ordered = q->next_ordered;
432 q->ordseq |= QUEUE_ORDSEQ_STARTED;
435 * Prep proxy barrier request.
437 blkdev_dequeue_request(rq);
442 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
443 rq->cmd_flags |= REQ_RW;
444 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
445 rq->elevator_private = NULL;
446 rq->elevator_private2 = NULL;
447 init_request_from_bio(rq, q->orig_bar_rq->bio);
448 rq->end_io = bar_end_io;
451 * Queue ordered sequence. As we stack them at the head, we
452 * need to queue in reverse order. Note that we rely on that
453 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
454 * request gets inbetween ordered sequence.
456 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
457 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
459 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
461 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
463 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
464 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
465 rq = &q->pre_flush_rq;
467 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
469 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
470 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
477 int blk_do_ordered(request_queue_t *q, struct request **rqp)
479 struct request *rq = *rqp;
480 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
486 if (q->next_ordered != QUEUE_ORDERED_NONE) {
487 *rqp = start_ordered(q, rq);
491 * This can happen when the queue switches to
492 * ORDERED_NONE while this request is on it.
494 blkdev_dequeue_request(rq);
495 end_that_request_first(rq, -EOPNOTSUPP,
496 rq->hard_nr_sectors);
497 end_that_request_last(rq, -EOPNOTSUPP);
504 * Ordered sequence in progress
507 /* Special requests are not subject to ordering rules. */
508 if (!blk_fs_request(rq) &&
509 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
512 if (q->ordered & QUEUE_ORDERED_TAG) {
513 /* Ordered by tag. Blocking the next barrier is enough. */
514 if (is_barrier && rq != &q->bar_rq)
517 /* Ordered by draining. Wait for turn. */
518 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
519 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
526 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
528 request_queue_t *q = bio->bi_private;
529 struct bio_vec *bvec;
533 * This is dry run, restore bio_sector and size. We'll finish
534 * this request again with the original bi_end_io after an
535 * error occurs or post flush is complete.
544 bio_for_each_segment(bvec, bio, i) {
545 bvec->bv_len += bvec->bv_offset;
550 set_bit(BIO_UPTODATE, &bio->bi_flags);
551 bio->bi_size = q->bi_size;
552 bio->bi_sector -= (q->bi_size >> 9);
558 static int ordered_bio_endio(struct request *rq, struct bio *bio,
559 unsigned int nbytes, int error)
561 request_queue_t *q = rq->q;
565 if (&q->bar_rq != rq)
569 * Okay, this is the barrier request in progress, dry finish it.
571 if (error && !q->orderr)
574 endio = bio->bi_end_io;
575 private = bio->bi_private;
576 bio->bi_end_io = flush_dry_bio_endio;
579 bio_endio(bio, nbytes, error);
581 bio->bi_end_io = endio;
582 bio->bi_private = private;
588 * blk_queue_bounce_limit - set bounce buffer limit for queue
589 * @q: the request queue for the device
590 * @dma_addr: bus address limit
593 * Different hardware can have different requirements as to what pages
594 * it can do I/O directly to. A low level driver can call
595 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
596 * buffers for doing I/O to pages residing above @page.
598 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
600 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
603 q->bounce_gfp = GFP_NOIO;
604 #if BITS_PER_LONG == 64
605 /* Assume anything <= 4GB can be handled by IOMMU.
606 Actually some IOMMUs can handle everything, but I don't
607 know of a way to test this here. */
608 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
610 q->bounce_pfn = max_low_pfn;
612 if (bounce_pfn < blk_max_low_pfn)
614 q->bounce_pfn = bounce_pfn;
617 init_emergency_isa_pool();
618 q->bounce_gfp = GFP_NOIO | GFP_DMA;
619 q->bounce_pfn = bounce_pfn;
623 EXPORT_SYMBOL(blk_queue_bounce_limit);
626 * blk_queue_max_sectors - set max sectors for a request for this queue
627 * @q: the request queue for the device
628 * @max_sectors: max sectors in the usual 512b unit
631 * Enables a low level driver to set an upper limit on the size of
634 void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
636 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
637 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
638 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
641 if (BLK_DEF_MAX_SECTORS > max_sectors)
642 q->max_hw_sectors = q->max_sectors = max_sectors;
644 q->max_sectors = BLK_DEF_MAX_SECTORS;
645 q->max_hw_sectors = max_sectors;
649 EXPORT_SYMBOL(blk_queue_max_sectors);
652 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
653 * @q: the request queue for the device
654 * @max_segments: max number of segments
657 * Enables a low level driver to set an upper limit on the number of
658 * physical data segments in a request. This would be the largest sized
659 * scatter list the driver could handle.
661 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
665 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
668 q->max_phys_segments = max_segments;
671 EXPORT_SYMBOL(blk_queue_max_phys_segments);
674 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
675 * @q: the request queue for the device
676 * @max_segments: max number of segments
679 * Enables a low level driver to set an upper limit on the number of
680 * hw data segments in a request. This would be the largest number of
681 * address/length pairs the host adapter can actually give as once
684 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
688 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
691 q->max_hw_segments = max_segments;
694 EXPORT_SYMBOL(blk_queue_max_hw_segments);
697 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
698 * @q: the request queue for the device
699 * @max_size: max size of segment in bytes
702 * Enables a low level driver to set an upper limit on the size of a
705 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
707 if (max_size < PAGE_CACHE_SIZE) {
708 max_size = PAGE_CACHE_SIZE;
709 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
712 q->max_segment_size = max_size;
715 EXPORT_SYMBOL(blk_queue_max_segment_size);
718 * blk_queue_hardsect_size - set hardware sector size for the queue
719 * @q: the request queue for the device
720 * @size: the hardware sector size, in bytes
723 * This should typically be set to the lowest possible sector size
724 * that the hardware can operate on (possible without reverting to
725 * even internal read-modify-write operations). Usually the default
726 * of 512 covers most hardware.
728 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
730 q->hardsect_size = size;
733 EXPORT_SYMBOL(blk_queue_hardsect_size);
736 * Returns the minimum that is _not_ zero, unless both are zero.
738 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
741 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
742 * @t: the stacking driver (top)
743 * @b: the underlying device (bottom)
745 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
747 /* zero is "infinity" */
748 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
749 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
751 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
752 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
753 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
754 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
755 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
756 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
759 EXPORT_SYMBOL(blk_queue_stack_limits);
762 * blk_queue_segment_boundary - set boundary rules for segment merging
763 * @q: the request queue for the device
764 * @mask: the memory boundary mask
766 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
768 if (mask < PAGE_CACHE_SIZE - 1) {
769 mask = PAGE_CACHE_SIZE - 1;
770 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
773 q->seg_boundary_mask = mask;
776 EXPORT_SYMBOL(blk_queue_segment_boundary);
779 * blk_queue_dma_alignment - set dma length and memory alignment
780 * @q: the request queue for the device
781 * @mask: alignment mask
784 * set required memory and length aligment for direct dma transactions.
785 * this is used when buiding direct io requests for the queue.
788 void blk_queue_dma_alignment(request_queue_t *q, int mask)
790 q->dma_alignment = mask;
793 EXPORT_SYMBOL(blk_queue_dma_alignment);
796 * blk_queue_find_tag - find a request by its tag and queue
797 * @q: The request queue for the device
798 * @tag: The tag of the request
801 * Should be used when a device returns a tag and you want to match
804 * no locks need be held.
806 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
808 return blk_map_queue_find_tag(q->queue_tags, tag);
811 EXPORT_SYMBOL(blk_queue_find_tag);
814 * __blk_free_tags - release a given set of tag maintenance info
815 * @bqt: the tag map to free
817 * Tries to free the specified @bqt@. Returns true if it was
818 * actually freed and false if there are still references using it
820 static int __blk_free_tags(struct blk_queue_tag *bqt)
824 retval = atomic_dec_and_test(&bqt->refcnt);
827 BUG_ON(!list_empty(&bqt->busy_list));
829 kfree(bqt->tag_index);
830 bqt->tag_index = NULL;
843 * __blk_queue_free_tags - release tag maintenance info
844 * @q: the request queue for the device
847 * blk_cleanup_queue() will take care of calling this function, if tagging
848 * has been used. So there's no need to call this directly.
850 static void __blk_queue_free_tags(request_queue_t *q)
852 struct blk_queue_tag *bqt = q->queue_tags;
857 __blk_free_tags(bqt);
859 q->queue_tags = NULL;
860 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
865 * blk_free_tags - release a given set of tag maintenance info
866 * @bqt: the tag map to free
868 * For externally managed @bqt@ frees the map. Callers of this
869 * function must guarantee to have released all the queues that
870 * might have been using this tag map.
872 void blk_free_tags(struct blk_queue_tag *bqt)
874 if (unlikely(!__blk_free_tags(bqt)))
877 EXPORT_SYMBOL(blk_free_tags);
880 * blk_queue_free_tags - release tag maintenance info
881 * @q: the request queue for the device
884 * This is used to disabled tagged queuing to a device, yet leave
887 void blk_queue_free_tags(request_queue_t *q)
889 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
892 EXPORT_SYMBOL(blk_queue_free_tags);
895 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
897 struct request **tag_index;
898 unsigned long *tag_map;
901 if (q && depth > q->nr_requests * 2) {
902 depth = q->nr_requests * 2;
903 printk(KERN_ERR "%s: adjusted depth to %d\n",
904 __FUNCTION__, depth);
907 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
911 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
912 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
916 tags->real_max_depth = depth;
917 tags->max_depth = depth;
918 tags->tag_index = tag_index;
919 tags->tag_map = tag_map;
927 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
930 struct blk_queue_tag *tags;
932 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
936 if (init_tag_map(q, tags, depth))
939 INIT_LIST_HEAD(&tags->busy_list);
941 atomic_set(&tags->refcnt, 1);
949 * blk_init_tags - initialize the tag info for an external tag map
950 * @depth: the maximum queue depth supported
951 * @tags: the tag to use
953 struct blk_queue_tag *blk_init_tags(int depth)
955 return __blk_queue_init_tags(NULL, depth);
957 EXPORT_SYMBOL(blk_init_tags);
960 * blk_queue_init_tags - initialize the queue tag info
961 * @q: the request queue for the device
962 * @depth: the maximum queue depth supported
963 * @tags: the tag to use
965 int blk_queue_init_tags(request_queue_t *q, int depth,
966 struct blk_queue_tag *tags)
970 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
972 if (!tags && !q->queue_tags) {
973 tags = __blk_queue_init_tags(q, depth);
977 } else if (q->queue_tags) {
978 if ((rc = blk_queue_resize_tags(q, depth)))
980 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
983 atomic_inc(&tags->refcnt);
986 * assign it, all done
988 q->queue_tags = tags;
989 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
996 EXPORT_SYMBOL(blk_queue_init_tags);
999 * blk_queue_resize_tags - change the queueing depth
1000 * @q: the request queue for the device
1001 * @new_depth: the new max command queueing depth
1004 * Must be called with the queue lock held.
1006 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1008 struct blk_queue_tag *bqt = q->queue_tags;
1009 struct request **tag_index;
1010 unsigned long *tag_map;
1011 int max_depth, nr_ulongs;
1017 * if we already have large enough real_max_depth. just
1018 * adjust max_depth. *NOTE* as requests with tag value
1019 * between new_depth and real_max_depth can be in-flight, tag
1020 * map can not be shrunk blindly here.
1022 if (new_depth <= bqt->real_max_depth) {
1023 bqt->max_depth = new_depth;
1028 * Currently cannot replace a shared tag map with a new
1029 * one, so error out if this is the case
1031 if (atomic_read(&bqt->refcnt) != 1)
1035 * save the old state info, so we can copy it back
1037 tag_index = bqt->tag_index;
1038 tag_map = bqt->tag_map;
1039 max_depth = bqt->real_max_depth;
1041 if (init_tag_map(q, bqt, new_depth))
1044 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1045 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1046 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1053 EXPORT_SYMBOL(blk_queue_resize_tags);
1056 * blk_queue_end_tag - end tag operations for a request
1057 * @q: the request queue for the device
1058 * @rq: the request that has completed
1061 * Typically called when end_that_request_first() returns 0, meaning
1062 * all transfers have been done for a request. It's important to call
1063 * this function before end_that_request_last(), as that will put the
1064 * request back on the free list thus corrupting the internal tag list.
1067 * queue lock must be held.
1069 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1071 struct blk_queue_tag *bqt = q->queue_tags;
1076 if (unlikely(tag >= bqt->real_max_depth))
1078 * This can happen after tag depth has been reduced.
1079 * FIXME: how about a warning or info message here?
1083 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1084 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1089 list_del_init(&rq->queuelist);
1090 rq->cmd_flags &= ~REQ_QUEUED;
1093 if (unlikely(bqt->tag_index[tag] == NULL))
1094 printk(KERN_ERR "%s: tag %d is missing\n",
1097 bqt->tag_index[tag] = NULL;
1101 EXPORT_SYMBOL(blk_queue_end_tag);
1104 * blk_queue_start_tag - find a free tag and assign it
1105 * @q: the request queue for the device
1106 * @rq: the block request that needs tagging
1109 * This can either be used as a stand-alone helper, or possibly be
1110 * assigned as the queue &prep_rq_fn (in which case &struct request
1111 * automagically gets a tag assigned). Note that this function
1112 * assumes that any type of request can be queued! if this is not
1113 * true for your device, you must check the request type before
1114 * calling this function. The request will also be removed from
1115 * the request queue, so it's the drivers responsibility to readd
1116 * it if it should need to be restarted for some reason.
1119 * queue lock must be held.
1121 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1123 struct blk_queue_tag *bqt = q->queue_tags;
1126 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1128 "%s: request %p for device [%s] already tagged %d",
1130 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1135 * Protect against shared tag maps, as we may not have exclusive
1136 * access to the tag map.
1139 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1140 if (tag >= bqt->max_depth)
1143 } while (test_and_set_bit(tag, bqt->tag_map));
1145 rq->cmd_flags |= REQ_QUEUED;
1147 bqt->tag_index[tag] = rq;
1148 blkdev_dequeue_request(rq);
1149 list_add(&rq->queuelist, &bqt->busy_list);
1154 EXPORT_SYMBOL(blk_queue_start_tag);
1157 * blk_queue_invalidate_tags - invalidate all pending tags
1158 * @q: the request queue for the device
1161 * Hardware conditions may dictate a need to stop all pending requests.
1162 * In this case, we will safely clear the block side of the tag queue and
1163 * readd all requests to the request queue in the right order.
1166 * queue lock must be held.
1168 void blk_queue_invalidate_tags(request_queue_t *q)
1170 struct blk_queue_tag *bqt = q->queue_tags;
1171 struct list_head *tmp, *n;
1174 list_for_each_safe(tmp, n, &bqt->busy_list) {
1175 rq = list_entry_rq(tmp);
1177 if (rq->tag == -1) {
1179 "%s: bad tag found on list\n", __FUNCTION__);
1180 list_del_init(&rq->queuelist);
1181 rq->cmd_flags &= ~REQ_QUEUED;
1183 blk_queue_end_tag(q, rq);
1185 rq->cmd_flags &= ~REQ_STARTED;
1186 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1190 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1192 void blk_dump_rq_flags(struct request *rq, char *msg)
1196 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1197 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1200 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1202 rq->current_nr_sectors);
1203 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1205 if (blk_pc_request(rq)) {
1207 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1208 printk("%02x ", rq->cmd[bit]);
1213 EXPORT_SYMBOL(blk_dump_rq_flags);
1215 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1217 struct bio_vec *bv, *bvprv = NULL;
1218 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1219 int high, highprv = 1;
1221 if (unlikely(!bio->bi_io_vec))
1224 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1225 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1226 bio_for_each_segment(bv, bio, i) {
1228 * the trick here is making sure that a high page is never
1229 * considered part of another segment, since that might
1230 * change with the bounce page.
1232 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1233 if (high || highprv)
1234 goto new_hw_segment;
1236 if (seg_size + bv->bv_len > q->max_segment_size)
1238 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1240 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1242 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1243 goto new_hw_segment;
1245 seg_size += bv->bv_len;
1246 hw_seg_size += bv->bv_len;
1251 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1252 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1253 hw_seg_size += bv->bv_len;
1256 if (hw_seg_size > bio->bi_hw_front_size)
1257 bio->bi_hw_front_size = hw_seg_size;
1258 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1264 seg_size = bv->bv_len;
1267 if (hw_seg_size > bio->bi_hw_back_size)
1268 bio->bi_hw_back_size = hw_seg_size;
1269 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1270 bio->bi_hw_front_size = hw_seg_size;
1271 bio->bi_phys_segments = nr_phys_segs;
1272 bio->bi_hw_segments = nr_hw_segs;
1273 bio->bi_flags |= (1 << BIO_SEG_VALID);
1277 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1280 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1283 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1285 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1289 * bio and nxt are contigous in memory, check if the queue allows
1290 * these two to be merged into one
1292 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1298 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1301 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1302 blk_recount_segments(q, bio);
1303 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1304 blk_recount_segments(q, nxt);
1305 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1306 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1308 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1315 * map a request to scatterlist, return number of sg entries setup. Caller
1316 * must make sure sg can hold rq->nr_phys_segments entries
1318 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1320 struct bio_vec *bvec, *bvprv;
1322 int nsegs, i, cluster;
1325 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1328 * for each bio in rq
1331 rq_for_each_bio(bio, rq) {
1333 * for each segment in bio
1335 bio_for_each_segment(bvec, bio, i) {
1336 int nbytes = bvec->bv_len;
1338 if (bvprv && cluster) {
1339 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1342 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1344 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1347 sg[nsegs - 1].length += nbytes;
1350 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1351 sg[nsegs].page = bvec->bv_page;
1352 sg[nsegs].length = nbytes;
1353 sg[nsegs].offset = bvec->bv_offset;
1358 } /* segments in bio */
1364 EXPORT_SYMBOL(blk_rq_map_sg);
1367 * the standard queue merge functions, can be overridden with device
1368 * specific ones if so desired
1371 static inline int ll_new_mergeable(request_queue_t *q,
1372 struct request *req,
1375 int nr_phys_segs = bio_phys_segments(q, bio);
1377 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1378 req->cmd_flags |= REQ_NOMERGE;
1379 if (req == q->last_merge)
1380 q->last_merge = NULL;
1385 * A hw segment is just getting larger, bump just the phys
1388 req->nr_phys_segments += nr_phys_segs;
1392 static inline int ll_new_hw_segment(request_queue_t *q,
1393 struct request *req,
1396 int nr_hw_segs = bio_hw_segments(q, bio);
1397 int nr_phys_segs = bio_phys_segments(q, bio);
1399 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1400 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1401 req->cmd_flags |= REQ_NOMERGE;
1402 if (req == q->last_merge)
1403 q->last_merge = NULL;
1408 * This will form the start of a new hw segment. Bump both
1411 req->nr_hw_segments += nr_hw_segs;
1412 req->nr_phys_segments += nr_phys_segs;
1416 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1419 unsigned short max_sectors;
1422 if (unlikely(blk_pc_request(req)))
1423 max_sectors = q->max_hw_sectors;
1425 max_sectors = q->max_sectors;
1427 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1428 req->cmd_flags |= REQ_NOMERGE;
1429 if (req == q->last_merge)
1430 q->last_merge = NULL;
1433 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1434 blk_recount_segments(q, req->biotail);
1435 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1436 blk_recount_segments(q, bio);
1437 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1438 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1439 !BIOVEC_VIRT_OVERSIZE(len)) {
1440 int mergeable = ll_new_mergeable(q, req, bio);
1443 if (req->nr_hw_segments == 1)
1444 req->bio->bi_hw_front_size = len;
1445 if (bio->bi_hw_segments == 1)
1446 bio->bi_hw_back_size = len;
1451 return ll_new_hw_segment(q, req, bio);
1454 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1457 unsigned short max_sectors;
1460 if (unlikely(blk_pc_request(req)))
1461 max_sectors = q->max_hw_sectors;
1463 max_sectors = q->max_sectors;
1466 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1467 req->cmd_flags |= REQ_NOMERGE;
1468 if (req == q->last_merge)
1469 q->last_merge = NULL;
1472 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1473 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1474 blk_recount_segments(q, bio);
1475 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1476 blk_recount_segments(q, req->bio);
1477 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1478 !BIOVEC_VIRT_OVERSIZE(len)) {
1479 int mergeable = ll_new_mergeable(q, req, bio);
1482 if (bio->bi_hw_segments == 1)
1483 bio->bi_hw_front_size = len;
1484 if (req->nr_hw_segments == 1)
1485 req->biotail->bi_hw_back_size = len;
1490 return ll_new_hw_segment(q, req, bio);
1493 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1494 struct request *next)
1496 int total_phys_segments;
1497 int total_hw_segments;
1500 * First check if the either of the requests are re-queued
1501 * requests. Can't merge them if they are.
1503 if (req->special || next->special)
1507 * Will it become too large?
1509 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1512 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1513 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1514 total_phys_segments--;
1516 if (total_phys_segments > q->max_phys_segments)
1519 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1520 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1521 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1523 * propagate the combined length to the end of the requests
1525 if (req->nr_hw_segments == 1)
1526 req->bio->bi_hw_front_size = len;
1527 if (next->nr_hw_segments == 1)
1528 next->biotail->bi_hw_back_size = len;
1529 total_hw_segments--;
1532 if (total_hw_segments > q->max_hw_segments)
1535 /* Merge is OK... */
1536 req->nr_phys_segments = total_phys_segments;
1537 req->nr_hw_segments = total_hw_segments;
1542 * "plug" the device if there are no outstanding requests: this will
1543 * force the transfer to start only after we have put all the requests
1546 * This is called with interrupts off and no requests on the queue and
1547 * with the queue lock held.
1549 void blk_plug_device(request_queue_t *q)
1551 WARN_ON(!irqs_disabled());
1554 * don't plug a stopped queue, it must be paired with blk_start_queue()
1555 * which will restart the queueing
1557 if (blk_queue_stopped(q))
1560 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1561 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1562 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1566 EXPORT_SYMBOL(blk_plug_device);
1569 * remove the queue from the plugged list, if present. called with
1570 * queue lock held and interrupts disabled.
1572 int blk_remove_plug(request_queue_t *q)
1574 WARN_ON(!irqs_disabled());
1576 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1579 del_timer(&q->unplug_timer);
1583 EXPORT_SYMBOL(blk_remove_plug);
1586 * remove the plug and let it rip..
1588 void __generic_unplug_device(request_queue_t *q)
1590 if (unlikely(blk_queue_stopped(q)))
1593 if (!blk_remove_plug(q))
1598 EXPORT_SYMBOL(__generic_unplug_device);
1601 * generic_unplug_device - fire a request queue
1602 * @q: The &request_queue_t in question
1605 * Linux uses plugging to build bigger requests queues before letting
1606 * the device have at them. If a queue is plugged, the I/O scheduler
1607 * is still adding and merging requests on the queue. Once the queue
1608 * gets unplugged, the request_fn defined for the queue is invoked and
1609 * transfers started.
1611 void generic_unplug_device(request_queue_t *q)
1613 spin_lock_irq(q->queue_lock);
1614 __generic_unplug_device(q);
1615 spin_unlock_irq(q->queue_lock);
1617 EXPORT_SYMBOL(generic_unplug_device);
1619 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1622 request_queue_t *q = bdi->unplug_io_data;
1625 * devices don't necessarily have an ->unplug_fn defined
1628 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1629 q->rq.count[READ] + q->rq.count[WRITE]);
1635 static void blk_unplug_work(struct work_struct *work)
1637 request_queue_t *q = container_of(work, request_queue_t, unplug_work);
1639 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1640 q->rq.count[READ] + q->rq.count[WRITE]);
1645 static void blk_unplug_timeout(unsigned long data)
1647 request_queue_t *q = (request_queue_t *)data;
1649 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1650 q->rq.count[READ] + q->rq.count[WRITE]);
1652 kblockd_schedule_work(&q->unplug_work);
1656 * blk_start_queue - restart a previously stopped queue
1657 * @q: The &request_queue_t in question
1660 * blk_start_queue() will clear the stop flag on the queue, and call
1661 * the request_fn for the queue if it was in a stopped state when
1662 * entered. Also see blk_stop_queue(). Queue lock must be held.
1664 void blk_start_queue(request_queue_t *q)
1666 WARN_ON(!irqs_disabled());
1668 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1671 * one level of recursion is ok and is much faster than kicking
1672 * the unplug handling
1674 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1676 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1679 kblockd_schedule_work(&q->unplug_work);
1683 EXPORT_SYMBOL(blk_start_queue);
1686 * blk_stop_queue - stop a queue
1687 * @q: The &request_queue_t in question
1690 * The Linux block layer assumes that a block driver will consume all
1691 * entries on the request queue when the request_fn strategy is called.
1692 * Often this will not happen, because of hardware limitations (queue
1693 * depth settings). If a device driver gets a 'queue full' response,
1694 * or if it simply chooses not to queue more I/O at one point, it can
1695 * call this function to prevent the request_fn from being called until
1696 * the driver has signalled it's ready to go again. This happens by calling
1697 * blk_start_queue() to restart queue operations. Queue lock must be held.
1699 void blk_stop_queue(request_queue_t *q)
1702 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1704 EXPORT_SYMBOL(blk_stop_queue);
1707 * blk_sync_queue - cancel any pending callbacks on a queue
1711 * The block layer may perform asynchronous callback activity
1712 * on a queue, such as calling the unplug function after a timeout.
1713 * A block device may call blk_sync_queue to ensure that any
1714 * such activity is cancelled, thus allowing it to release resources
1715 * the the callbacks might use. The caller must already have made sure
1716 * that its ->make_request_fn will not re-add plugging prior to calling
1720 void blk_sync_queue(struct request_queue *q)
1722 del_timer_sync(&q->unplug_timer);
1725 EXPORT_SYMBOL(blk_sync_queue);
1728 * blk_run_queue - run a single device queue
1729 * @q: The queue to run
1731 void blk_run_queue(struct request_queue *q)
1733 unsigned long flags;
1735 spin_lock_irqsave(q->queue_lock, flags);
1739 * Only recurse once to avoid overrunning the stack, let the unplug
1740 * handling reinvoke the handler shortly if we already got there.
1742 if (!elv_queue_empty(q)) {
1743 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1745 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1748 kblockd_schedule_work(&q->unplug_work);
1752 spin_unlock_irqrestore(q->queue_lock, flags);
1754 EXPORT_SYMBOL(blk_run_queue);
1757 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1758 * @kobj: the kobj belonging of the request queue to be released
1761 * blk_cleanup_queue is the pair to blk_init_queue() or
1762 * blk_queue_make_request(). It should be called when a request queue is
1763 * being released; typically when a block device is being de-registered.
1764 * Currently, its primary task it to free all the &struct request
1765 * structures that were allocated to the queue and the queue itself.
1768 * Hopefully the low level driver will have finished any
1769 * outstanding requests first...
1771 static void blk_release_queue(struct kobject *kobj)
1773 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1774 struct request_list *rl = &q->rq;
1779 mempool_destroy(rl->rq_pool);
1782 __blk_queue_free_tags(q);
1784 blk_trace_shutdown(q);
1786 kmem_cache_free(requestq_cachep, q);
1789 void blk_put_queue(request_queue_t *q)
1791 kobject_put(&q->kobj);
1793 EXPORT_SYMBOL(blk_put_queue);
1795 void blk_cleanup_queue(request_queue_t * q)
1797 mutex_lock(&q->sysfs_lock);
1798 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1799 mutex_unlock(&q->sysfs_lock);
1802 elevator_exit(q->elevator);
1807 EXPORT_SYMBOL(blk_cleanup_queue);
1809 static int blk_init_free_list(request_queue_t *q)
1811 struct request_list *rl = &q->rq;
1813 rl->count[READ] = rl->count[WRITE] = 0;
1814 rl->starved[READ] = rl->starved[WRITE] = 0;
1816 init_waitqueue_head(&rl->wait[READ]);
1817 init_waitqueue_head(&rl->wait[WRITE]);
1819 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1820 mempool_free_slab, request_cachep, q->node);
1828 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1830 return blk_alloc_queue_node(gfp_mask, -1);
1832 EXPORT_SYMBOL(blk_alloc_queue);
1834 static struct kobj_type queue_ktype;
1836 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1840 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1844 memset(q, 0, sizeof(*q));
1845 init_timer(&q->unplug_timer);
1847 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1848 q->kobj.ktype = &queue_ktype;
1849 kobject_init(&q->kobj);
1851 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1852 q->backing_dev_info.unplug_io_data = q;
1854 mutex_init(&q->sysfs_lock);
1858 EXPORT_SYMBOL(blk_alloc_queue_node);
1861 * blk_init_queue - prepare a request queue for use with a block device
1862 * @rfn: The function to be called to process requests that have been
1863 * placed on the queue.
1864 * @lock: Request queue spin lock
1867 * If a block device wishes to use the standard request handling procedures,
1868 * which sorts requests and coalesces adjacent requests, then it must
1869 * call blk_init_queue(). The function @rfn will be called when there
1870 * are requests on the queue that need to be processed. If the device
1871 * supports plugging, then @rfn may not be called immediately when requests
1872 * are available on the queue, but may be called at some time later instead.
1873 * Plugged queues are generally unplugged when a buffer belonging to one
1874 * of the requests on the queue is needed, or due to memory pressure.
1876 * @rfn is not required, or even expected, to remove all requests off the
1877 * queue, but only as many as it can handle at a time. If it does leave
1878 * requests on the queue, it is responsible for arranging that the requests
1879 * get dealt with eventually.
1881 * The queue spin lock must be held while manipulating the requests on the
1882 * request queue; this lock will be taken also from interrupt context, so irq
1883 * disabling is needed for it.
1885 * Function returns a pointer to the initialized request queue, or NULL if
1886 * it didn't succeed.
1889 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1890 * when the block device is deactivated (such as at module unload).
1893 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1895 return blk_init_queue_node(rfn, lock, -1);
1897 EXPORT_SYMBOL(blk_init_queue);
1900 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1902 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1908 if (blk_init_free_list(q)) {
1909 kmem_cache_free(requestq_cachep, q);
1914 * if caller didn't supply a lock, they get per-queue locking with
1918 spin_lock_init(&q->__queue_lock);
1919 lock = &q->__queue_lock;
1922 q->request_fn = rfn;
1923 q->back_merge_fn = ll_back_merge_fn;
1924 q->front_merge_fn = ll_front_merge_fn;
1925 q->merge_requests_fn = ll_merge_requests_fn;
1926 q->prep_rq_fn = NULL;
1927 q->unplug_fn = generic_unplug_device;
1928 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1929 q->queue_lock = lock;
1931 blk_queue_segment_boundary(q, 0xffffffff);
1933 blk_queue_make_request(q, __make_request);
1934 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1936 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1937 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1942 if (!elevator_init(q, NULL)) {
1943 blk_queue_congestion_threshold(q);
1950 EXPORT_SYMBOL(blk_init_queue_node);
1952 int blk_get_queue(request_queue_t *q)
1954 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1955 kobject_get(&q->kobj);
1962 EXPORT_SYMBOL(blk_get_queue);
1964 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1966 if (rq->cmd_flags & REQ_ELVPRIV)
1967 elv_put_request(q, rq);
1968 mempool_free(rq, q->rq.rq_pool);
1971 static struct request *
1972 blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
1974 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1980 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1981 * see bio.h and blkdev.h
1983 rq->cmd_flags = rw | REQ_ALLOCED;
1986 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1987 mempool_free(rq, q->rq.rq_pool);
1990 rq->cmd_flags |= REQ_ELVPRIV;
1997 * ioc_batching returns true if the ioc is a valid batching request and
1998 * should be given priority access to a request.
2000 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2006 * Make sure the process is able to allocate at least 1 request
2007 * even if the batch times out, otherwise we could theoretically
2010 return ioc->nr_batch_requests == q->nr_batching ||
2011 (ioc->nr_batch_requests > 0
2012 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2016 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2017 * will cause the process to be a "batcher" on all queues in the system. This
2018 * is the behaviour we want though - once it gets a wakeup it should be given
2021 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2023 if (!ioc || ioc_batching(q, ioc))
2026 ioc->nr_batch_requests = q->nr_batching;
2027 ioc->last_waited = jiffies;
2030 static void __freed_request(request_queue_t *q, int rw)
2032 struct request_list *rl = &q->rq;
2034 if (rl->count[rw] < queue_congestion_off_threshold(q))
2035 blk_clear_queue_congested(q, rw);
2037 if (rl->count[rw] + 1 <= q->nr_requests) {
2038 if (waitqueue_active(&rl->wait[rw]))
2039 wake_up(&rl->wait[rw]);
2041 blk_clear_queue_full(q, rw);
2046 * A request has just been released. Account for it, update the full and
2047 * congestion status, wake up any waiters. Called under q->queue_lock.
2049 static void freed_request(request_queue_t *q, int rw, int priv)
2051 struct request_list *rl = &q->rq;
2057 __freed_request(q, rw);
2059 if (unlikely(rl->starved[rw ^ 1]))
2060 __freed_request(q, rw ^ 1);
2063 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2065 * Get a free request, queue_lock must be held.
2066 * Returns NULL on failure, with queue_lock held.
2067 * Returns !NULL on success, with queue_lock *not held*.
2069 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
2072 struct request *rq = NULL;
2073 struct request_list *rl = &q->rq;
2074 struct io_context *ioc = NULL;
2075 int may_queue, priv;
2077 may_queue = elv_may_queue(q, rw);
2078 if (may_queue == ELV_MQUEUE_NO)
2081 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2082 if (rl->count[rw]+1 >= q->nr_requests) {
2083 ioc = current_io_context(GFP_ATOMIC, q->node);
2085 * The queue will fill after this allocation, so set
2086 * it as full, and mark this process as "batching".
2087 * This process will be allowed to complete a batch of
2088 * requests, others will be blocked.
2090 if (!blk_queue_full(q, rw)) {
2091 ioc_set_batching(q, ioc);
2092 blk_set_queue_full(q, rw);
2094 if (may_queue != ELV_MQUEUE_MUST
2095 && !ioc_batching(q, ioc)) {
2097 * The queue is full and the allocating
2098 * process is not a "batcher", and not
2099 * exempted by the IO scheduler
2105 blk_set_queue_congested(q, rw);
2109 * Only allow batching queuers to allocate up to 50% over the defined
2110 * limit of requests, otherwise we could have thousands of requests
2111 * allocated with any setting of ->nr_requests
2113 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2117 rl->starved[rw] = 0;
2119 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2123 spin_unlock_irq(q->queue_lock);
2125 rq = blk_alloc_request(q, rw, priv, gfp_mask);
2126 if (unlikely(!rq)) {
2128 * Allocation failed presumably due to memory. Undo anything
2129 * we might have messed up.
2131 * Allocating task should really be put onto the front of the
2132 * wait queue, but this is pretty rare.
2134 spin_lock_irq(q->queue_lock);
2135 freed_request(q, rw, priv);
2138 * in the very unlikely event that allocation failed and no
2139 * requests for this direction was pending, mark us starved
2140 * so that freeing of a request in the other direction will
2141 * notice us. another possible fix would be to split the
2142 * rq mempool into READ and WRITE
2145 if (unlikely(rl->count[rw] == 0))
2146 rl->starved[rw] = 1;
2152 * ioc may be NULL here, and ioc_batching will be false. That's
2153 * OK, if the queue is under the request limit then requests need
2154 * not count toward the nr_batch_requests limit. There will always
2155 * be some limit enforced by BLK_BATCH_TIME.
2157 if (ioc_batching(q, ioc))
2158 ioc->nr_batch_requests--;
2162 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2168 * No available requests for this queue, unplug the device and wait for some
2169 * requests to become available.
2171 * Called with q->queue_lock held, and returns with it unlocked.
2173 static struct request *get_request_wait(request_queue_t *q, int rw,
2178 rq = get_request(q, rw, bio, GFP_NOIO);
2181 struct request_list *rl = &q->rq;
2183 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2184 TASK_UNINTERRUPTIBLE);
2186 rq = get_request(q, rw, bio, GFP_NOIO);
2189 struct io_context *ioc;
2191 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2193 __generic_unplug_device(q);
2194 spin_unlock_irq(q->queue_lock);
2198 * After sleeping, we become a "batching" process and
2199 * will be able to allocate at least one request, and
2200 * up to a big batch of them for a small period time.
2201 * See ioc_batching, ioc_set_batching
2203 ioc = current_io_context(GFP_NOIO, q->node);
2204 ioc_set_batching(q, ioc);
2206 spin_lock_irq(q->queue_lock);
2208 finish_wait(&rl->wait[rw], &wait);
2214 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2218 BUG_ON(rw != READ && rw != WRITE);
2220 spin_lock_irq(q->queue_lock);
2221 if (gfp_mask & __GFP_WAIT) {
2222 rq = get_request_wait(q, rw, NULL);
2224 rq = get_request(q, rw, NULL, gfp_mask);
2226 spin_unlock_irq(q->queue_lock);
2228 /* q->queue_lock is unlocked at this point */
2232 EXPORT_SYMBOL(blk_get_request);
2235 * blk_start_queueing - initiate dispatch of requests to device
2236 * @q: request queue to kick into gear
2238 * This is basically a helper to remove the need to know whether a queue
2239 * is plugged or not if someone just wants to initiate dispatch of requests
2242 * The queue lock must be held with interrupts disabled.
2244 void blk_start_queueing(request_queue_t *q)
2246 if (!blk_queue_plugged(q))
2249 __generic_unplug_device(q);
2251 EXPORT_SYMBOL(blk_start_queueing);
2254 * blk_requeue_request - put a request back on queue
2255 * @q: request queue where request should be inserted
2256 * @rq: request to be inserted
2259 * Drivers often keep queueing requests until the hardware cannot accept
2260 * more, when that condition happens we need to put the request back
2261 * on the queue. Must be called with queue lock held.
2263 void blk_requeue_request(request_queue_t *q, struct request *rq)
2265 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2267 if (blk_rq_tagged(rq))
2268 blk_queue_end_tag(q, rq);
2270 elv_requeue_request(q, rq);
2273 EXPORT_SYMBOL(blk_requeue_request);
2276 * blk_insert_request - insert a special request in to a request queue
2277 * @q: request queue where request should be inserted
2278 * @rq: request to be inserted
2279 * @at_head: insert request at head or tail of queue
2280 * @data: private data
2283 * Many block devices need to execute commands asynchronously, so they don't
2284 * block the whole kernel from preemption during request execution. This is
2285 * accomplished normally by inserting aritficial requests tagged as
2286 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2287 * scheduled for actual execution by the request queue.
2289 * We have the option of inserting the head or the tail of the queue.
2290 * Typically we use the tail for new ioctls and so forth. We use the head
2291 * of the queue for things like a QUEUE_FULL message from a device, or a
2292 * host that is unable to accept a particular command.
2294 void blk_insert_request(request_queue_t *q, struct request *rq,
2295 int at_head, void *data)
2297 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2298 unsigned long flags;
2301 * tell I/O scheduler that this isn't a regular read/write (ie it
2302 * must not attempt merges on this) and that it acts as a soft
2305 rq->cmd_type = REQ_TYPE_SPECIAL;
2306 rq->cmd_flags |= REQ_SOFTBARRIER;
2310 spin_lock_irqsave(q->queue_lock, flags);
2313 * If command is tagged, release the tag
2315 if (blk_rq_tagged(rq))
2316 blk_queue_end_tag(q, rq);
2318 drive_stat_acct(rq, rq->nr_sectors, 1);
2319 __elv_add_request(q, rq, where, 0);
2320 blk_start_queueing(q);
2321 spin_unlock_irqrestore(q->queue_lock, flags);
2324 EXPORT_SYMBOL(blk_insert_request);
2326 static int __blk_rq_unmap_user(struct bio *bio)
2331 if (bio_flagged(bio, BIO_USER_MAPPED))
2332 bio_unmap_user(bio);
2334 ret = bio_uncopy_user(bio);
2340 static int __blk_rq_map_user(request_queue_t *q, struct request *rq,
2341 void __user *ubuf, unsigned int len)
2343 unsigned long uaddr;
2344 struct bio *bio, *orig_bio;
2347 reading = rq_data_dir(rq) == READ;
2350 * if alignment requirement is satisfied, map in user pages for
2351 * direct dma. else, set up kernel bounce buffers
2353 uaddr = (unsigned long) ubuf;
2354 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2355 bio = bio_map_user(q, NULL, uaddr, len, reading);
2357 bio = bio_copy_user(q, uaddr, len, reading);
2360 return PTR_ERR(bio);
2364 blk_queue_bounce(q, &bio);
2366 * We link the bounce buffer in and could have to traverse it
2367 * later so we have to get a ref to prevent it from being freed
2372 * for most (all? don't know of any) queues we could
2373 * skip grabbing the queue lock here. only drivers with
2374 * funky private ->back_merge_fn() function could be
2377 spin_lock_irq(q->queue_lock);
2379 blk_rq_bio_prep(q, rq, bio);
2380 else if (!q->back_merge_fn(q, rq, bio)) {
2382 spin_unlock_irq(q->queue_lock);
2385 rq->biotail->bi_next = bio;
2388 rq->nr_sectors += bio_sectors(bio);
2389 rq->hard_nr_sectors = rq->nr_sectors;
2390 rq->data_len += bio->bi_size;
2392 spin_unlock_irq(q->queue_lock);
2394 return bio->bi_size;
2397 /* if it was boucned we must call the end io function */
2398 bio_endio(bio, bio->bi_size, 0);
2399 __blk_rq_unmap_user(orig_bio);
2405 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2406 * @q: request queue where request should be inserted
2407 * @rq: request structure to fill
2408 * @ubuf: the user buffer
2409 * @len: length of user data
2412 * Data will be mapped directly for zero copy io, if possible. Otherwise
2413 * a kernel bounce buffer is used.
2415 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2416 * still in process context.
2418 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2419 * before being submitted to the device, as pages mapped may be out of
2420 * reach. It's the callers responsibility to make sure this happens. The
2421 * original bio must be passed back in to blk_rq_unmap_user() for proper
2424 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2427 unsigned long bytes_read = 0;
2430 if (len > (q->max_hw_sectors << 9))
2435 while (bytes_read != len) {
2436 unsigned long map_len, end, start;
2438 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2439 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2441 start = (unsigned long)ubuf >> PAGE_SHIFT;
2444 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2445 * pages. If this happens we just lower the requested
2446 * mapping len by a page so that we can fit
2448 if (end - start > BIO_MAX_PAGES)
2449 map_len -= PAGE_SIZE;
2451 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2458 rq->buffer = rq->data = NULL;
2461 blk_rq_unmap_user(rq);
2465 EXPORT_SYMBOL(blk_rq_map_user);
2468 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2469 * @q: request queue where request should be inserted
2470 * @rq: request to map data to
2471 * @iov: pointer to the iovec
2472 * @iov_count: number of elements in the iovec
2475 * Data will be mapped directly for zero copy io, if possible. Otherwise
2476 * a kernel bounce buffer is used.
2478 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2479 * still in process context.
2481 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2482 * before being submitted to the device, as pages mapped may be out of
2483 * reach. It's the callers responsibility to make sure this happens. The
2484 * original bio must be passed back in to blk_rq_unmap_user() for proper
2487 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2488 struct sg_iovec *iov, int iov_count, unsigned int len)
2492 if (!iov || iov_count <= 0)
2495 /* we don't allow misaligned data like bio_map_user() does. If the
2496 * user is using sg, they're expected to know the alignment constraints
2497 * and respect them accordingly */
2498 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2500 return PTR_ERR(bio);
2502 if (bio->bi_size != len) {
2503 bio_endio(bio, bio->bi_size, 0);
2504 bio_unmap_user(bio);
2509 blk_rq_bio_prep(q, rq, bio);
2510 rq->buffer = rq->data = NULL;
2514 EXPORT_SYMBOL(blk_rq_map_user_iov);
2517 * blk_rq_unmap_user - unmap a request with user data
2518 * @rq: rq to be unmapped
2521 * Unmap a rq previously mapped by blk_rq_map_user().
2522 * rq->bio must be set to the original head of the request.
2524 int blk_rq_unmap_user(struct request *rq)
2526 struct bio *bio, *mapped_bio;
2528 while ((bio = rq->bio)) {
2529 if (bio_flagged(bio, BIO_BOUNCED))
2530 mapped_bio = bio->bi_private;
2534 __blk_rq_unmap_user(mapped_bio);
2535 rq->bio = bio->bi_next;
2541 EXPORT_SYMBOL(blk_rq_unmap_user);
2544 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2545 * @q: request queue where request should be inserted
2546 * @rq: request to fill
2547 * @kbuf: the kernel buffer
2548 * @len: length of user data
2549 * @gfp_mask: memory allocation flags
2551 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2552 unsigned int len, gfp_t gfp_mask)
2556 if (len > (q->max_hw_sectors << 9))
2561 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2563 return PTR_ERR(bio);
2565 if (rq_data_dir(rq) == WRITE)
2566 bio->bi_rw |= (1 << BIO_RW);
2568 blk_rq_bio_prep(q, rq, bio);
2569 rq->buffer = rq->data = NULL;
2573 EXPORT_SYMBOL(blk_rq_map_kern);
2576 * blk_execute_rq_nowait - insert a request into queue for execution
2577 * @q: queue to insert the request in
2578 * @bd_disk: matching gendisk
2579 * @rq: request to insert
2580 * @at_head: insert request at head or tail of queue
2581 * @done: I/O completion handler
2584 * Insert a fully prepared request at the back of the io scheduler queue
2585 * for execution. Don't wait for completion.
2587 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2588 struct request *rq, int at_head,
2591 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2593 rq->rq_disk = bd_disk;
2594 rq->cmd_flags |= REQ_NOMERGE;
2596 WARN_ON(irqs_disabled());
2597 spin_lock_irq(q->queue_lock);
2598 __elv_add_request(q, rq, where, 1);
2599 __generic_unplug_device(q);
2600 spin_unlock_irq(q->queue_lock);
2602 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2605 * blk_execute_rq - insert a request into queue for execution
2606 * @q: queue to insert the request in
2607 * @bd_disk: matching gendisk
2608 * @rq: request to insert
2609 * @at_head: insert request at head or tail of queue
2612 * Insert a fully prepared request at the back of the io scheduler queue
2613 * for execution and wait for completion.
2615 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2616 struct request *rq, int at_head)
2618 DECLARE_COMPLETION_ONSTACK(wait);
2619 char sense[SCSI_SENSE_BUFFERSIZE];
2623 * we need an extra reference to the request, so we can look at
2624 * it after io completion
2629 memset(sense, 0, sizeof(sense));
2634 rq->end_io_data = &wait;
2635 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2636 wait_for_completion(&wait);
2644 EXPORT_SYMBOL(blk_execute_rq);
2647 * blkdev_issue_flush - queue a flush
2648 * @bdev: blockdev to issue flush for
2649 * @error_sector: error sector
2652 * Issue a flush for the block device in question. Caller can supply
2653 * room for storing the error offset in case of a flush error, if they
2654 * wish to. Caller must run wait_for_completion() on its own.
2656 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2660 if (bdev->bd_disk == NULL)
2663 q = bdev_get_queue(bdev);
2666 if (!q->issue_flush_fn)
2669 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2672 EXPORT_SYMBOL(blkdev_issue_flush);
2674 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2676 int rw = rq_data_dir(rq);
2678 if (!blk_fs_request(rq) || !rq->rq_disk)
2682 __disk_stat_inc(rq->rq_disk, merges[rw]);
2684 disk_round_stats(rq->rq_disk);
2685 rq->rq_disk->in_flight++;
2690 * add-request adds a request to the linked list.
2691 * queue lock is held and interrupts disabled, as we muck with the
2692 * request queue list.
2694 static inline void add_request(request_queue_t * q, struct request * req)
2696 drive_stat_acct(req, req->nr_sectors, 1);
2699 q->activity_fn(q->activity_data, rq_data_dir(req));
2702 * elevator indicated where it wants this request to be
2703 * inserted at elevator_merge time
2705 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2709 * disk_round_stats() - Round off the performance stats on a struct
2712 * The average IO queue length and utilisation statistics are maintained
2713 * by observing the current state of the queue length and the amount of
2714 * time it has been in this state for.
2716 * Normally, that accounting is done on IO completion, but that can result
2717 * in more than a second's worth of IO being accounted for within any one
2718 * second, leading to >100% utilisation. To deal with that, we call this
2719 * function to do a round-off before returning the results when reading
2720 * /proc/diskstats. This accounts immediately for all queue usage up to
2721 * the current jiffies and restarts the counters again.
2723 void disk_round_stats(struct gendisk *disk)
2725 unsigned long now = jiffies;
2727 if (now == disk->stamp)
2730 if (disk->in_flight) {
2731 __disk_stat_add(disk, time_in_queue,
2732 disk->in_flight * (now - disk->stamp));
2733 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2738 EXPORT_SYMBOL_GPL(disk_round_stats);
2741 * queue lock must be held
2743 void __blk_put_request(request_queue_t *q, struct request *req)
2747 if (unlikely(--req->ref_count))
2750 elv_completed_request(q, req);
2753 * Request may not have originated from ll_rw_blk. if not,
2754 * it didn't come out of our reserved rq pools
2756 if (req->cmd_flags & REQ_ALLOCED) {
2757 int rw = rq_data_dir(req);
2758 int priv = req->cmd_flags & REQ_ELVPRIV;
2760 BUG_ON(!list_empty(&req->queuelist));
2761 BUG_ON(!hlist_unhashed(&req->hash));
2763 blk_free_request(q, req);
2764 freed_request(q, rw, priv);
2768 EXPORT_SYMBOL_GPL(__blk_put_request);
2770 void blk_put_request(struct request *req)
2772 unsigned long flags;
2773 request_queue_t *q = req->q;
2776 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2777 * following if (q) test.
2780 spin_lock_irqsave(q->queue_lock, flags);
2781 __blk_put_request(q, req);
2782 spin_unlock_irqrestore(q->queue_lock, flags);
2786 EXPORT_SYMBOL(blk_put_request);
2789 * blk_end_sync_rq - executes a completion event on a request
2790 * @rq: request to complete
2791 * @error: end io status of the request
2793 void blk_end_sync_rq(struct request *rq, int error)
2795 struct completion *waiting = rq->end_io_data;
2797 rq->end_io_data = NULL;
2798 __blk_put_request(rq->q, rq);
2801 * complete last, if this is a stack request the process (and thus
2802 * the rq pointer) could be invalid right after this complete()
2806 EXPORT_SYMBOL(blk_end_sync_rq);
2809 * Has to be called with the request spinlock acquired
2811 static int attempt_merge(request_queue_t *q, struct request *req,
2812 struct request *next)
2814 if (!rq_mergeable(req) || !rq_mergeable(next))
2820 if (req->sector + req->nr_sectors != next->sector)
2823 if (rq_data_dir(req) != rq_data_dir(next)
2824 || req->rq_disk != next->rq_disk
2829 * If we are allowed to merge, then append bio list
2830 * from next to rq and release next. merge_requests_fn
2831 * will have updated segment counts, update sector
2834 if (!q->merge_requests_fn(q, req, next))
2838 * At this point we have either done a back merge
2839 * or front merge. We need the smaller start_time of
2840 * the merged requests to be the current request
2841 * for accounting purposes.
2843 if (time_after(req->start_time, next->start_time))
2844 req->start_time = next->start_time;
2846 req->biotail->bi_next = next->bio;
2847 req->biotail = next->biotail;
2849 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2851 elv_merge_requests(q, req, next);
2854 disk_round_stats(req->rq_disk);
2855 req->rq_disk->in_flight--;
2858 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2860 __blk_put_request(q, next);
2864 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2866 struct request *next = elv_latter_request(q, rq);
2869 return attempt_merge(q, rq, next);
2874 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2876 struct request *prev = elv_former_request(q, rq);
2879 return attempt_merge(q, prev, rq);
2884 static void init_request_from_bio(struct request *req, struct bio *bio)
2886 req->cmd_type = REQ_TYPE_FS;
2889 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2891 if (bio_rw_ahead(bio) || bio_failfast(bio))
2892 req->cmd_flags |= REQ_FAILFAST;
2895 * REQ_BARRIER implies no merging, but lets make it explicit
2897 if (unlikely(bio_barrier(bio)))
2898 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2901 req->cmd_flags |= REQ_RW_SYNC;
2902 if (bio_rw_meta(bio))
2903 req->cmd_flags |= REQ_RW_META;
2906 req->hard_sector = req->sector = bio->bi_sector;
2907 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2908 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2909 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2910 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2911 req->buffer = bio_data(bio); /* see ->buffer comment above */
2912 req->bio = req->biotail = bio;
2913 req->ioprio = bio_prio(bio);
2914 req->rq_disk = bio->bi_bdev->bd_disk;
2915 req->start_time = jiffies;
2918 static int __make_request(request_queue_t *q, struct bio *bio)
2920 struct request *req;
2921 int el_ret, nr_sectors, barrier, err;
2922 const unsigned short prio = bio_prio(bio);
2923 const int sync = bio_sync(bio);
2925 nr_sectors = bio_sectors(bio);
2928 * low level driver can indicate that it wants pages above a
2929 * certain limit bounced to low memory (ie for highmem, or even
2930 * ISA dma in theory)
2932 blk_queue_bounce(q, &bio);
2934 barrier = bio_barrier(bio);
2935 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2940 spin_lock_irq(q->queue_lock);
2942 if (unlikely(barrier) || elv_queue_empty(q))
2945 el_ret = elv_merge(q, &req, bio);
2947 case ELEVATOR_BACK_MERGE:
2948 BUG_ON(!rq_mergeable(req));
2950 if (!q->back_merge_fn(q, req, bio))
2953 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2955 req->biotail->bi_next = bio;
2957 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2958 req->ioprio = ioprio_best(req->ioprio, prio);
2959 drive_stat_acct(req, nr_sectors, 0);
2960 if (!attempt_back_merge(q, req))
2961 elv_merged_request(q, req, el_ret);
2964 case ELEVATOR_FRONT_MERGE:
2965 BUG_ON(!rq_mergeable(req));
2967 if (!q->front_merge_fn(q, req, bio))
2970 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2972 bio->bi_next = req->bio;
2976 * may not be valid. if the low level driver said
2977 * it didn't need a bounce buffer then it better
2978 * not touch req->buffer either...
2980 req->buffer = bio_data(bio);
2981 req->current_nr_sectors = bio_cur_sectors(bio);
2982 req->hard_cur_sectors = req->current_nr_sectors;
2983 req->sector = req->hard_sector = bio->bi_sector;
2984 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2985 req->ioprio = ioprio_best(req->ioprio, prio);
2986 drive_stat_acct(req, nr_sectors, 0);
2987 if (!attempt_front_merge(q, req))
2988 elv_merged_request(q, req, el_ret);
2991 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2998 * Grab a free request. This is might sleep but can not fail.
2999 * Returns with the queue unlocked.
3001 req = get_request_wait(q, bio_data_dir(bio), bio);
3004 * After dropping the lock and possibly sleeping here, our request
3005 * may now be mergeable after it had proven unmergeable (above).
3006 * We don't worry about that case for efficiency. It won't happen
3007 * often, and the elevators are able to handle it.
3009 init_request_from_bio(req, bio);
3011 spin_lock_irq(q->queue_lock);
3012 if (elv_queue_empty(q))
3014 add_request(q, req);
3017 __generic_unplug_device(q);
3019 spin_unlock_irq(q->queue_lock);
3023 bio_endio(bio, nr_sectors << 9, err);
3028 * If bio->bi_dev is a partition, remap the location
3030 static inline void blk_partition_remap(struct bio *bio)
3032 struct block_device *bdev = bio->bi_bdev;
3034 if (bdev != bdev->bd_contains) {
3035 struct hd_struct *p = bdev->bd_part;
3036 const int rw = bio_data_dir(bio);
3038 p->sectors[rw] += bio_sectors(bio);
3041 bio->bi_sector += p->start_sect;
3042 bio->bi_bdev = bdev->bd_contains;
3046 static void handle_bad_sector(struct bio *bio)
3048 char b[BDEVNAME_SIZE];
3050 printk(KERN_INFO "attempt to access beyond end of device\n");
3051 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3052 bdevname(bio->bi_bdev, b),
3054 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3055 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3057 set_bit(BIO_EOF, &bio->bi_flags);
3060 #ifdef CONFIG_FAIL_MAKE_REQUEST
3062 static DECLARE_FAULT_ATTR(fail_make_request);
3064 static int __init setup_fail_make_request(char *str)
3066 return setup_fault_attr(&fail_make_request, str);
3068 __setup("fail_make_request=", setup_fail_make_request);
3070 static int should_fail_request(struct bio *bio)
3072 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3073 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3074 return should_fail(&fail_make_request, bio->bi_size);
3079 static int __init fail_make_request_debugfs(void)
3081 return init_fault_attr_dentries(&fail_make_request,
3082 "fail_make_request");
3085 late_initcall(fail_make_request_debugfs);
3087 #else /* CONFIG_FAIL_MAKE_REQUEST */
3089 static inline int should_fail_request(struct bio *bio)
3094 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3097 * generic_make_request: hand a buffer to its device driver for I/O
3098 * @bio: The bio describing the location in memory and on the device.
3100 * generic_make_request() is used to make I/O requests of block
3101 * devices. It is passed a &struct bio, which describes the I/O that needs
3104 * generic_make_request() does not return any status. The
3105 * success/failure status of the request, along with notification of
3106 * completion, is delivered asynchronously through the bio->bi_end_io
3107 * function described (one day) else where.
3109 * The caller of generic_make_request must make sure that bi_io_vec
3110 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3111 * set to describe the device address, and the
3112 * bi_end_io and optionally bi_private are set to describe how
3113 * completion notification should be signaled.
3115 * generic_make_request and the drivers it calls may use bi_next if this
3116 * bio happens to be merged with someone else, and may change bi_dev and
3117 * bi_sector for remaps as it sees fit. So the values of these fields
3118 * should NOT be depended on after the call to generic_make_request.
3120 void generic_make_request(struct bio *bio)
3124 sector_t old_sector;
3125 int ret, nr_sectors = bio_sectors(bio);
3129 /* Test device or partition size, when known. */
3130 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3132 sector_t sector = bio->bi_sector;
3134 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3136 * This may well happen - the kernel calls bread()
3137 * without checking the size of the device, e.g., when
3138 * mounting a device.
3140 handle_bad_sector(bio);
3146 * Resolve the mapping until finished. (drivers are
3147 * still free to implement/resolve their own stacking
3148 * by explicitly returning 0)
3150 * NOTE: we don't repeat the blk_size check for each new device.
3151 * Stacking drivers are expected to know what they are doing.
3156 char b[BDEVNAME_SIZE];
3158 q = bdev_get_queue(bio->bi_bdev);
3161 "generic_make_request: Trying to access "
3162 "nonexistent block-device %s (%Lu)\n",
3163 bdevname(bio->bi_bdev, b),
3164 (long long) bio->bi_sector);
3166 bio_endio(bio, bio->bi_size, -EIO);
3170 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3171 printk("bio too big device %s (%u > %u)\n",
3172 bdevname(bio->bi_bdev, b),
3178 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3181 if (should_fail_request(bio))
3185 * If this device has partitions, remap block n
3186 * of partition p to block n+start(p) of the disk.
3188 blk_partition_remap(bio);
3190 if (old_sector != -1)
3191 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3194 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3196 old_sector = bio->bi_sector;
3197 old_dev = bio->bi_bdev->bd_dev;
3199 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3201 sector_t sector = bio->bi_sector;
3203 if (maxsector < nr_sectors ||
3204 maxsector - nr_sectors < sector) {
3206 * This may well happen - partitions are not
3207 * checked to make sure they are within the size
3208 * of the whole device.
3210 handle_bad_sector(bio);
3215 ret = q->make_request_fn(q, bio);
3219 EXPORT_SYMBOL(generic_make_request);
3222 * submit_bio: submit a bio to the block device layer for I/O
3223 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3224 * @bio: The &struct bio which describes the I/O
3226 * submit_bio() is very similar in purpose to generic_make_request(), and
3227 * uses that function to do most of the work. Both are fairly rough
3228 * interfaces, @bio must be presetup and ready for I/O.
3231 void submit_bio(int rw, struct bio *bio)
3233 int count = bio_sectors(bio);
3235 BIO_BUG_ON(!bio->bi_size);
3236 BIO_BUG_ON(!bio->bi_io_vec);
3239 count_vm_events(PGPGOUT, count);
3241 count_vm_events(PGPGIN, count);
3243 if (unlikely(block_dump)) {
3244 char b[BDEVNAME_SIZE];
3245 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3246 current->comm, current->pid,
3247 (rw & WRITE) ? "WRITE" : "READ",
3248 (unsigned long long)bio->bi_sector,
3249 bdevname(bio->bi_bdev,b));
3252 generic_make_request(bio);
3255 EXPORT_SYMBOL(submit_bio);
3257 static void blk_recalc_rq_segments(struct request *rq)
3259 struct bio *bio, *prevbio = NULL;
3260 int nr_phys_segs, nr_hw_segs;
3261 unsigned int phys_size, hw_size;
3262 request_queue_t *q = rq->q;
3267 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3268 rq_for_each_bio(bio, rq) {
3269 /* Force bio hw/phys segs to be recalculated. */
3270 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3272 nr_phys_segs += bio_phys_segments(q, bio);
3273 nr_hw_segs += bio_hw_segments(q, bio);
3275 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3276 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3278 if (blk_phys_contig_segment(q, prevbio, bio) &&
3279 pseg <= q->max_segment_size) {
3281 phys_size += prevbio->bi_size + bio->bi_size;
3285 if (blk_hw_contig_segment(q, prevbio, bio) &&
3286 hseg <= q->max_segment_size) {
3288 hw_size += prevbio->bi_size + bio->bi_size;
3295 rq->nr_phys_segments = nr_phys_segs;
3296 rq->nr_hw_segments = nr_hw_segs;
3299 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3301 if (blk_fs_request(rq)) {
3302 rq->hard_sector += nsect;
3303 rq->hard_nr_sectors -= nsect;
3306 * Move the I/O submission pointers ahead if required.
3308 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3309 (rq->sector <= rq->hard_sector)) {
3310 rq->sector = rq->hard_sector;
3311 rq->nr_sectors = rq->hard_nr_sectors;
3312 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3313 rq->current_nr_sectors = rq->hard_cur_sectors;
3314 rq->buffer = bio_data(rq->bio);
3318 * if total number of sectors is less than the first segment
3319 * size, something has gone terribly wrong
3321 if (rq->nr_sectors < rq->current_nr_sectors) {
3322 printk("blk: request botched\n");
3323 rq->nr_sectors = rq->current_nr_sectors;
3328 static int __end_that_request_first(struct request *req, int uptodate,
3331 int total_bytes, bio_nbytes, error, next_idx = 0;
3334 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3337 * extend uptodate bool to allow < 0 value to be direct io error
3340 if (end_io_error(uptodate))
3341 error = !uptodate ? -EIO : uptodate;
3344 * for a REQ_BLOCK_PC request, we want to carry any eventual
3345 * sense key with us all the way through
3347 if (!blk_pc_request(req))
3351 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3352 printk("end_request: I/O error, dev %s, sector %llu\n",
3353 req->rq_disk ? req->rq_disk->disk_name : "?",
3354 (unsigned long long)req->sector);
3357 if (blk_fs_request(req) && req->rq_disk) {
3358 const int rw = rq_data_dir(req);
3360 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3363 total_bytes = bio_nbytes = 0;
3364 while ((bio = req->bio) != NULL) {
3367 if (nr_bytes >= bio->bi_size) {
3368 req->bio = bio->bi_next;
3369 nbytes = bio->bi_size;
3370 if (!ordered_bio_endio(req, bio, nbytes, error))
3371 bio_endio(bio, nbytes, error);
3375 int idx = bio->bi_idx + next_idx;
3377 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3378 blk_dump_rq_flags(req, "__end_that");
3379 printk("%s: bio idx %d >= vcnt %d\n",
3381 bio->bi_idx, bio->bi_vcnt);
3385 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3386 BIO_BUG_ON(nbytes > bio->bi_size);
3389 * not a complete bvec done
3391 if (unlikely(nbytes > nr_bytes)) {
3392 bio_nbytes += nr_bytes;
3393 total_bytes += nr_bytes;
3398 * advance to the next vector
3401 bio_nbytes += nbytes;
3404 total_bytes += nbytes;
3407 if ((bio = req->bio)) {
3409 * end more in this run, or just return 'not-done'
3411 if (unlikely(nr_bytes <= 0))
3423 * if the request wasn't completed, update state
3426 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3427 bio_endio(bio, bio_nbytes, error);
3428 bio->bi_idx += next_idx;
3429 bio_iovec(bio)->bv_offset += nr_bytes;
3430 bio_iovec(bio)->bv_len -= nr_bytes;
3433 blk_recalc_rq_sectors(req, total_bytes >> 9);
3434 blk_recalc_rq_segments(req);
3439 * end_that_request_first - end I/O on a request
3440 * @req: the request being processed
3441 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3442 * @nr_sectors: number of sectors to end I/O on
3445 * Ends I/O on a number of sectors attached to @req, and sets it up
3446 * for the next range of segments (if any) in the cluster.
3449 * 0 - we are done with this request, call end_that_request_last()
3450 * 1 - still buffers pending for this request
3452 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3454 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3457 EXPORT_SYMBOL(end_that_request_first);
3460 * end_that_request_chunk - end I/O on a request
3461 * @req: the request being processed
3462 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3463 * @nr_bytes: number of bytes to complete
3466 * Ends I/O on a number of bytes attached to @req, and sets it up
3467 * for the next range of segments (if any). Like end_that_request_first(),
3468 * but deals with bytes instead of sectors.
3471 * 0 - we are done with this request, call end_that_request_last()
3472 * 1 - still buffers pending for this request
3474 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3476 return __end_that_request_first(req, uptodate, nr_bytes);
3479 EXPORT_SYMBOL(end_that_request_chunk);
3482 * splice the completion data to a local structure and hand off to
3483 * process_completion_queue() to complete the requests
3485 static void blk_done_softirq(struct softirq_action *h)
3487 struct list_head *cpu_list, local_list;
3489 local_irq_disable();
3490 cpu_list = &__get_cpu_var(blk_cpu_done);
3491 list_replace_init(cpu_list, &local_list);
3494 while (!list_empty(&local_list)) {
3495 struct request *rq = list_entry(local_list.next, struct request, donelist);
3497 list_del_init(&rq->donelist);
3498 rq->q->softirq_done_fn(rq);
3502 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3506 * If a CPU goes away, splice its entries to the current CPU
3507 * and trigger a run of the softirq
3509 if (action == CPU_DEAD) {
3510 int cpu = (unsigned long) hcpu;
3512 local_irq_disable();
3513 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3514 &__get_cpu_var(blk_cpu_done));
3515 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3523 static struct notifier_block __devinitdata blk_cpu_notifier = {
3524 .notifier_call = blk_cpu_notify,
3528 * blk_complete_request - end I/O on a request
3529 * @req: the request being processed
3532 * Ends all I/O on a request. It does not handle partial completions,
3533 * unless the driver actually implements this in its completion callback
3534 * through requeueing. Theh actual completion happens out-of-order,
3535 * through a softirq handler. The user must have registered a completion
3536 * callback through blk_queue_softirq_done().
3539 void blk_complete_request(struct request *req)
3541 struct list_head *cpu_list;
3542 unsigned long flags;
3544 BUG_ON(!req->q->softirq_done_fn);
3546 local_irq_save(flags);
3548 cpu_list = &__get_cpu_var(blk_cpu_done);
3549 list_add_tail(&req->donelist, cpu_list);
3550 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3552 local_irq_restore(flags);
3555 EXPORT_SYMBOL(blk_complete_request);
3558 * queue lock must be held
3560 void end_that_request_last(struct request *req, int uptodate)
3562 struct gendisk *disk = req->rq_disk;
3566 * extend uptodate bool to allow < 0 value to be direct io error
3569 if (end_io_error(uptodate))
3570 error = !uptodate ? -EIO : uptodate;
3572 if (unlikely(laptop_mode) && blk_fs_request(req))
3573 laptop_io_completion();
3576 * Account IO completion. bar_rq isn't accounted as a normal
3577 * IO on queueing nor completion. Accounting the containing
3578 * request is enough.
3580 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3581 unsigned long duration = jiffies - req->start_time;
3582 const int rw = rq_data_dir(req);
3584 __disk_stat_inc(disk, ios[rw]);
3585 __disk_stat_add(disk, ticks[rw], duration);
3586 disk_round_stats(disk);
3590 req->end_io(req, error);
3592 __blk_put_request(req->q, req);
3595 EXPORT_SYMBOL(end_that_request_last);
3597 void end_request(struct request *req, int uptodate)
3599 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3600 add_disk_randomness(req->rq_disk);
3601 blkdev_dequeue_request(req);
3602 end_that_request_last(req, uptodate);
3606 EXPORT_SYMBOL(end_request);
3608 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3610 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3611 rq->cmd_flags |= (bio->bi_rw & 3);
3613 rq->nr_phys_segments = bio_phys_segments(q, bio);
3614 rq->nr_hw_segments = bio_hw_segments(q, bio);
3615 rq->current_nr_sectors = bio_cur_sectors(bio);
3616 rq->hard_cur_sectors = rq->current_nr_sectors;
3617 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3618 rq->buffer = bio_data(bio);
3619 rq->data_len = bio->bi_size;
3621 rq->bio = rq->biotail = bio;
3624 EXPORT_SYMBOL(blk_rq_bio_prep);
3626 int kblockd_schedule_work(struct work_struct *work)
3628 return queue_work(kblockd_workqueue, work);
3631 EXPORT_SYMBOL(kblockd_schedule_work);
3633 void kblockd_flush(void)
3635 flush_workqueue(kblockd_workqueue);
3637 EXPORT_SYMBOL(kblockd_flush);
3639 int __init blk_dev_init(void)
3643 kblockd_workqueue = create_workqueue("kblockd");
3644 if (!kblockd_workqueue)
3645 panic("Failed to create kblockd\n");
3647 request_cachep = kmem_cache_create("blkdev_requests",
3648 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3650 requestq_cachep = kmem_cache_create("blkdev_queue",
3651 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3653 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3654 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3656 for_each_possible_cpu(i)
3657 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3659 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3660 register_hotcpu_notifier(&blk_cpu_notifier);
3662 blk_max_low_pfn = max_low_pfn;
3663 blk_max_pfn = max_pfn;
3669 * IO Context helper functions
3671 void put_io_context(struct io_context *ioc)
3676 BUG_ON(atomic_read(&ioc->refcount) == 0);
3678 if (atomic_dec_and_test(&ioc->refcount)) {
3679 struct cfq_io_context *cic;
3682 if (ioc->aic && ioc->aic->dtor)
3683 ioc->aic->dtor(ioc->aic);
3684 if (ioc->cic_root.rb_node != NULL) {
3685 struct rb_node *n = rb_first(&ioc->cic_root);
3687 cic = rb_entry(n, struct cfq_io_context, rb_node);
3692 kmem_cache_free(iocontext_cachep, ioc);
3695 EXPORT_SYMBOL(put_io_context);
3697 /* Called by the exitting task */
3698 void exit_io_context(void)
3700 struct io_context *ioc;
3701 struct cfq_io_context *cic;
3704 ioc = current->io_context;
3705 current->io_context = NULL;
3706 task_unlock(current);
3709 if (ioc->aic && ioc->aic->exit)
3710 ioc->aic->exit(ioc->aic);
3711 if (ioc->cic_root.rb_node != NULL) {
3712 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3716 put_io_context(ioc);
3720 * If the current task has no IO context then create one and initialise it.
3721 * Otherwise, return its existing IO context.
3723 * This returned IO context doesn't have a specifically elevated refcount,
3724 * but since the current task itself holds a reference, the context can be
3725 * used in general code, so long as it stays within `current` context.
3727 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3729 struct task_struct *tsk = current;
3730 struct io_context *ret;
3732 ret = tsk->io_context;
3736 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3738 atomic_set(&ret->refcount, 1);
3739 ret->task = current;
3740 ret->ioprio_changed = 0;
3741 ret->last_waited = jiffies; /* doesn't matter... */
3742 ret->nr_batch_requests = 0; /* because this is 0 */
3744 ret->cic_root.rb_node = NULL;
3745 /* make sure set_task_ioprio() sees the settings above */
3747 tsk->io_context = ret;
3752 EXPORT_SYMBOL(current_io_context);
3755 * If the current task has no IO context then create one and initialise it.
3756 * If it does have a context, take a ref on it.
3758 * This is always called in the context of the task which submitted the I/O.
3760 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3762 struct io_context *ret;
3763 ret = current_io_context(gfp_flags, node);
3765 atomic_inc(&ret->refcount);
3768 EXPORT_SYMBOL(get_io_context);
3770 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3772 struct io_context *src = *psrc;
3773 struct io_context *dst = *pdst;
3776 BUG_ON(atomic_read(&src->refcount) == 0);
3777 atomic_inc(&src->refcount);
3778 put_io_context(dst);
3782 EXPORT_SYMBOL(copy_io_context);
3784 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3786 struct io_context *temp;
3791 EXPORT_SYMBOL(swap_io_context);
3796 struct queue_sysfs_entry {
3797 struct attribute attr;
3798 ssize_t (*show)(struct request_queue *, char *);
3799 ssize_t (*store)(struct request_queue *, const char *, size_t);
3803 queue_var_show(unsigned int var, char *page)
3805 return sprintf(page, "%d\n", var);
3809 queue_var_store(unsigned long *var, const char *page, size_t count)
3811 char *p = (char *) page;
3813 *var = simple_strtoul(p, &p, 10);
3817 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3819 return queue_var_show(q->nr_requests, (page));
3823 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3825 struct request_list *rl = &q->rq;
3827 int ret = queue_var_store(&nr, page, count);
3828 if (nr < BLKDEV_MIN_RQ)
3831 spin_lock_irq(q->queue_lock);
3832 q->nr_requests = nr;
3833 blk_queue_congestion_threshold(q);
3835 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3836 blk_set_queue_congested(q, READ);
3837 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3838 blk_clear_queue_congested(q, READ);
3840 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3841 blk_set_queue_congested(q, WRITE);
3842 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3843 blk_clear_queue_congested(q, WRITE);
3845 if (rl->count[READ] >= q->nr_requests) {
3846 blk_set_queue_full(q, READ);
3847 } else if (rl->count[READ]+1 <= q->nr_requests) {
3848 blk_clear_queue_full(q, READ);
3849 wake_up(&rl->wait[READ]);
3852 if (rl->count[WRITE] >= q->nr_requests) {
3853 blk_set_queue_full(q, WRITE);
3854 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3855 blk_clear_queue_full(q, WRITE);
3856 wake_up(&rl->wait[WRITE]);
3858 spin_unlock_irq(q->queue_lock);
3862 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3864 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3866 return queue_var_show(ra_kb, (page));
3870 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3872 unsigned long ra_kb;
3873 ssize_t ret = queue_var_store(&ra_kb, page, count);
3875 spin_lock_irq(q->queue_lock);
3876 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3877 spin_unlock_irq(q->queue_lock);
3882 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3884 int max_sectors_kb = q->max_sectors >> 1;
3886 return queue_var_show(max_sectors_kb, (page));
3890 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3892 unsigned long max_sectors_kb,
3893 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3894 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3895 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3898 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3901 * Take the queue lock to update the readahead and max_sectors
3902 * values synchronously:
3904 spin_lock_irq(q->queue_lock);
3906 * Trim readahead window as well, if necessary:
3908 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3909 if (ra_kb > max_sectors_kb)
3910 q->backing_dev_info.ra_pages =
3911 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3913 q->max_sectors = max_sectors_kb << 1;
3914 spin_unlock_irq(q->queue_lock);
3919 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3921 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3923 return queue_var_show(max_hw_sectors_kb, (page));
3927 static struct queue_sysfs_entry queue_requests_entry = {
3928 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3929 .show = queue_requests_show,
3930 .store = queue_requests_store,
3933 static struct queue_sysfs_entry queue_ra_entry = {
3934 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3935 .show = queue_ra_show,
3936 .store = queue_ra_store,
3939 static struct queue_sysfs_entry queue_max_sectors_entry = {
3940 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3941 .show = queue_max_sectors_show,
3942 .store = queue_max_sectors_store,
3945 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3946 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3947 .show = queue_max_hw_sectors_show,
3950 static struct queue_sysfs_entry queue_iosched_entry = {
3951 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3952 .show = elv_iosched_show,
3953 .store = elv_iosched_store,
3956 static struct attribute *default_attrs[] = {
3957 &queue_requests_entry.attr,
3958 &queue_ra_entry.attr,
3959 &queue_max_hw_sectors_entry.attr,
3960 &queue_max_sectors_entry.attr,
3961 &queue_iosched_entry.attr,
3965 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3968 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3970 struct queue_sysfs_entry *entry = to_queue(attr);
3971 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3976 mutex_lock(&q->sysfs_lock);
3977 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3978 mutex_unlock(&q->sysfs_lock);
3981 res = entry->show(q, page);
3982 mutex_unlock(&q->sysfs_lock);
3987 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3988 const char *page, size_t length)
3990 struct queue_sysfs_entry *entry = to_queue(attr);
3991 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3997 mutex_lock(&q->sysfs_lock);
3998 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3999 mutex_unlock(&q->sysfs_lock);
4002 res = entry->store(q, page, length);
4003 mutex_unlock(&q->sysfs_lock);
4007 static struct sysfs_ops queue_sysfs_ops = {
4008 .show = queue_attr_show,
4009 .store = queue_attr_store,
4012 static struct kobj_type queue_ktype = {
4013 .sysfs_ops = &queue_sysfs_ops,
4014 .default_attrs = default_attrs,
4015 .release = blk_release_queue,
4018 int blk_register_queue(struct gendisk *disk)
4022 request_queue_t *q = disk->queue;
4024 if (!q || !q->request_fn)
4027 q->kobj.parent = kobject_get(&disk->kobj);
4029 ret = kobject_add(&q->kobj);
4033 kobject_uevent(&q->kobj, KOBJ_ADD);
4035 ret = elv_register_queue(q);
4037 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4038 kobject_del(&q->kobj);
4045 void blk_unregister_queue(struct gendisk *disk)
4047 request_queue_t *q = disk->queue;
4049 if (q && q->request_fn) {
4050 elv_unregister_queue(q);
4052 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4053 kobject_del(&q->kobj);
4054 kobject_put(&disk->kobj);