2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
38 #include <asm/uaccess.h>
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
48 #define ELV_HASH_FN(sec) \
49 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
50 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
51 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
52 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
55 * Query io scheduler to see if the current process issuing bio may be
58 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
60 struct request_queue *q = rq->q;
61 elevator_t *e = q->elevator;
63 if (e->ops->elevator_allow_merge_fn)
64 return e->ops->elevator_allow_merge_fn(q, rq, bio);
70 * can we safely merge with this request?
72 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
74 if (!rq_mergeable(rq))
78 * different data direction or already started, don't merge
80 if (bio_data_dir(bio) != rq_data_dir(rq))
84 * must be same device and not a special request
86 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
90 * only merge integrity protected bio into ditto rq
92 if (bio_integrity(bio) != blk_integrity_rq(rq))
95 if (!elv_iosched_allow_merge(rq, bio))
100 EXPORT_SYMBOL(elv_rq_merge_ok);
102 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
104 int ret = ELEVATOR_NO_MERGE;
107 * we can merge and sequence is ok, check if it's possible
109 if (elv_rq_merge_ok(__rq, bio)) {
110 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
111 ret = ELEVATOR_BACK_MERGE;
112 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
113 ret = ELEVATOR_FRONT_MERGE;
119 static struct elevator_type *elevator_find(const char *name)
121 struct elevator_type *e;
123 list_for_each_entry(e, &elv_list, list) {
124 if (!strcmp(e->elevator_name, name))
131 static void elevator_put(struct elevator_type *e)
133 module_put(e->elevator_owner);
136 static struct elevator_type *elevator_get(const char *name)
138 struct elevator_type *e;
140 spin_lock(&elv_list_lock);
142 e = elevator_find(name);
144 char elv[ELV_NAME_MAX + strlen("-iosched")];
146 spin_unlock(&elv_list_lock);
148 if (!strcmp(name, "anticipatory"))
149 sprintf(elv, "as-iosched");
151 sprintf(elv, "%s-iosched", name);
154 spin_lock(&elv_list_lock);
155 e = elevator_find(name);
158 if (e && !try_module_get(e->elevator_owner))
161 spin_unlock(&elv_list_lock);
166 static void *elevator_init_queue(struct request_queue *q,
167 struct elevator_queue *eq)
169 return eq->ops->elevator_init_fn(q);
172 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
176 eq->elevator_data = data;
179 static char chosen_elevator[16];
181 static int __init elevator_setup(char *str)
184 * Be backwards-compatible with previous kernels, so users
185 * won't get the wrong elevator.
187 if (!strcmp(str, "as"))
188 strcpy(chosen_elevator, "anticipatory");
190 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
194 __setup("elevator=", elevator_setup);
196 static struct kobj_type elv_ktype;
198 static elevator_t *elevator_alloc(struct request_queue *q,
199 struct elevator_type *e)
204 eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
209 eq->elevator_type = e;
210 kobject_init(&eq->kobj, &elv_ktype);
211 mutex_init(&eq->sysfs_lock);
213 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
214 GFP_KERNEL, q->node);
218 for (i = 0; i < ELV_HASH_ENTRIES; i++)
219 INIT_HLIST_HEAD(&eq->hash[i]);
228 static void elevator_release(struct kobject *kobj)
230 elevator_t *e = container_of(kobj, elevator_t, kobj);
232 elevator_put(e->elevator_type);
237 int elevator_init(struct request_queue *q, char *name)
239 struct elevator_type *e = NULL;
240 struct elevator_queue *eq;
244 INIT_LIST_HEAD(&q->queue_head);
245 q->last_merge = NULL;
247 q->boundary_rq = NULL;
250 e = elevator_get(name);
255 if (!e && *chosen_elevator) {
256 e = elevator_get(chosen_elevator);
258 printk(KERN_ERR "I/O scheduler %s not found\n",
263 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
266 "Default I/O scheduler not found. " \
268 e = elevator_get("noop");
272 eq = elevator_alloc(q, e);
276 data = elevator_init_queue(q, eq);
278 kobject_put(&eq->kobj);
282 elevator_attach(q, eq, data);
285 EXPORT_SYMBOL(elevator_init);
287 void elevator_exit(elevator_t *e)
289 mutex_lock(&e->sysfs_lock);
290 if (e->ops->elevator_exit_fn)
291 e->ops->elevator_exit_fn(e);
293 mutex_unlock(&e->sysfs_lock);
295 kobject_put(&e->kobj);
297 EXPORT_SYMBOL(elevator_exit);
299 static void elv_activate_rq(struct request_queue *q, struct request *rq)
301 elevator_t *e = q->elevator;
303 if (e->ops->elevator_activate_req_fn)
304 e->ops->elevator_activate_req_fn(q, rq);
307 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
309 elevator_t *e = q->elevator;
311 if (e->ops->elevator_deactivate_req_fn)
312 e->ops->elevator_deactivate_req_fn(q, rq);
315 static inline void __elv_rqhash_del(struct request *rq)
317 hlist_del_init(&rq->hash);
320 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
323 __elv_rqhash_del(rq);
326 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
328 elevator_t *e = q->elevator;
330 BUG_ON(ELV_ON_HASH(rq));
331 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
334 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
336 __elv_rqhash_del(rq);
337 elv_rqhash_add(q, rq);
340 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
342 elevator_t *e = q->elevator;
343 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
344 struct hlist_node *entry, *next;
347 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
348 BUG_ON(!ELV_ON_HASH(rq));
350 if (unlikely(!rq_mergeable(rq))) {
351 __elv_rqhash_del(rq);
355 if (rq_hash_key(rq) == offset)
363 * RB-tree support functions for inserting/lookup/removal of requests
364 * in a sorted RB tree.
366 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
368 struct rb_node **p = &root->rb_node;
369 struct rb_node *parent = NULL;
370 struct request *__rq;
374 __rq = rb_entry(parent, struct request, rb_node);
376 if (rq->sector < __rq->sector)
378 else if (rq->sector > __rq->sector)
384 rb_link_node(&rq->rb_node, parent, p);
385 rb_insert_color(&rq->rb_node, root);
388 EXPORT_SYMBOL(elv_rb_add);
390 void elv_rb_del(struct rb_root *root, struct request *rq)
392 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
393 rb_erase(&rq->rb_node, root);
394 RB_CLEAR_NODE(&rq->rb_node);
396 EXPORT_SYMBOL(elv_rb_del);
398 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
400 struct rb_node *n = root->rb_node;
404 rq = rb_entry(n, struct request, rb_node);
406 if (sector < rq->sector)
408 else if (sector > rq->sector)
416 EXPORT_SYMBOL(elv_rb_find);
419 * Insert rq into dispatch queue of q. Queue lock must be held on
420 * entry. rq is sort instead into the dispatch queue. To be used by
421 * specific elevators.
423 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
426 struct list_head *entry;
429 if (q->last_merge == rq)
430 q->last_merge = NULL;
432 elv_rqhash_del(q, rq);
436 boundary = q->end_sector;
437 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
438 list_for_each_prev(entry, &q->queue_head) {
439 struct request *pos = list_entry_rq(entry);
441 if (rq_data_dir(rq) != rq_data_dir(pos))
443 if (pos->cmd_flags & stop_flags)
445 if (rq->sector >= boundary) {
446 if (pos->sector < boundary)
449 if (pos->sector >= boundary)
452 if (rq->sector >= pos->sector)
456 list_add(&rq->queuelist, entry);
458 EXPORT_SYMBOL(elv_dispatch_sort);
461 * Insert rq into dispatch queue of q. Queue lock must be held on
462 * entry. rq is added to the back of the dispatch queue. To be used by
463 * specific elevators.
465 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
467 if (q->last_merge == rq)
468 q->last_merge = NULL;
470 elv_rqhash_del(q, rq);
474 q->end_sector = rq_end_sector(rq);
476 list_add_tail(&rq->queuelist, &q->queue_head);
478 EXPORT_SYMBOL(elv_dispatch_add_tail);
480 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
482 elevator_t *e = q->elevator;
483 struct request *__rq;
487 * First try one-hit cache.
490 ret = elv_try_merge(q->last_merge, bio);
491 if (ret != ELEVATOR_NO_MERGE) {
492 *req = q->last_merge;
497 if (blk_queue_nomerges(q))
498 return ELEVATOR_NO_MERGE;
501 * See if our hash lookup can find a potential backmerge.
503 __rq = elv_rqhash_find(q, bio->bi_sector);
504 if (__rq && elv_rq_merge_ok(__rq, bio)) {
506 return ELEVATOR_BACK_MERGE;
509 if (e->ops->elevator_merge_fn)
510 return e->ops->elevator_merge_fn(q, req, bio);
512 return ELEVATOR_NO_MERGE;
515 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
517 elevator_t *e = q->elevator;
519 if (e->ops->elevator_merged_fn)
520 e->ops->elevator_merged_fn(q, rq, type);
522 if (type == ELEVATOR_BACK_MERGE)
523 elv_rqhash_reposition(q, rq);
528 void elv_merge_requests(struct request_queue *q, struct request *rq,
529 struct request *next)
531 elevator_t *e = q->elevator;
533 if (e->ops->elevator_merge_req_fn)
534 e->ops->elevator_merge_req_fn(q, rq, next);
536 elv_rqhash_reposition(q, rq);
537 elv_rqhash_del(q, next);
543 void elv_requeue_request(struct request_queue *q, struct request *rq)
546 * it already went through dequeue, we need to decrement the
547 * in_flight count again
549 if (blk_account_rq(rq)) {
551 if (blk_sorted_rq(rq))
552 elv_deactivate_rq(q, rq);
555 rq->cmd_flags &= ~REQ_STARTED;
557 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
560 static void elv_drain_elevator(struct request_queue *q)
563 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
565 if (q->nr_sorted == 0)
567 if (printed++ < 10) {
568 printk(KERN_ERR "%s: forced dispatching is broken "
569 "(nr_sorted=%u), please report this\n",
570 q->elevator->elevator_type->elevator_name, q->nr_sorted);
574 void elv_insert(struct request_queue *q, struct request *rq, int where)
576 struct list_head *pos;
580 blk_add_trace_rq(q, rq, BLK_TA_INSERT);
585 case ELEVATOR_INSERT_FRONT:
586 rq->cmd_flags |= REQ_SOFTBARRIER;
588 list_add(&rq->queuelist, &q->queue_head);
591 case ELEVATOR_INSERT_BACK:
592 rq->cmd_flags |= REQ_SOFTBARRIER;
593 elv_drain_elevator(q);
594 list_add_tail(&rq->queuelist, &q->queue_head);
596 * We kick the queue here for the following reasons.
597 * - The elevator might have returned NULL previously
598 * to delay requests and returned them now. As the
599 * queue wasn't empty before this request, ll_rw_blk
600 * won't run the queue on return, resulting in hang.
601 * - Usually, back inserted requests won't be merged
602 * with anything. There's no point in delaying queue
609 case ELEVATOR_INSERT_SORT:
610 BUG_ON(!blk_fs_request(rq));
611 rq->cmd_flags |= REQ_SORTED;
613 if (rq_mergeable(rq)) {
614 elv_rqhash_add(q, rq);
620 * Some ioscheds (cfq) run q->request_fn directly, so
621 * rq cannot be accessed after calling
622 * elevator_add_req_fn.
624 q->elevator->ops->elevator_add_req_fn(q, rq);
627 case ELEVATOR_INSERT_REQUEUE:
629 * If ordered flush isn't in progress, we do front
630 * insertion; otherwise, requests should be requeued
633 rq->cmd_flags |= REQ_SOFTBARRIER;
636 * Most requeues happen because of a busy condition,
637 * don't force unplug of the queue for that case.
641 if (q->ordseq == 0) {
642 list_add(&rq->queuelist, &q->queue_head);
646 ordseq = blk_ordered_req_seq(rq);
648 list_for_each(pos, &q->queue_head) {
649 struct request *pos_rq = list_entry_rq(pos);
650 if (ordseq <= blk_ordered_req_seq(pos_rq))
654 list_add_tail(&rq->queuelist, pos);
658 printk(KERN_ERR "%s: bad insertion point %d\n",
663 if (unplug_it && blk_queue_plugged(q)) {
664 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
667 if (nrq >= q->unplug_thresh)
668 __generic_unplug_device(q);
672 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
676 rq->cmd_flags |= REQ_ORDERED_COLOR;
678 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
680 * toggle ordered color
682 if (blk_barrier_rq(rq))
686 * barriers implicitly indicate back insertion
688 if (where == ELEVATOR_INSERT_SORT)
689 where = ELEVATOR_INSERT_BACK;
692 * this request is scheduling boundary, update
695 if (blk_fs_request(rq)) {
696 q->end_sector = rq_end_sector(rq);
699 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
700 where == ELEVATOR_INSERT_SORT)
701 where = ELEVATOR_INSERT_BACK;
706 elv_insert(q, rq, where);
708 EXPORT_SYMBOL(__elv_add_request);
710 void elv_add_request(struct request_queue *q, struct request *rq, int where,
715 spin_lock_irqsave(q->queue_lock, flags);
716 __elv_add_request(q, rq, where, plug);
717 spin_unlock_irqrestore(q->queue_lock, flags);
719 EXPORT_SYMBOL(elv_add_request);
721 static inline struct request *__elv_next_request(struct request_queue *q)
726 while (!list_empty(&q->queue_head)) {
727 rq = list_entry_rq(q->queue_head.next);
728 if (blk_do_ordered(q, &rq))
732 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
737 struct request *elv_next_request(struct request_queue *q)
742 while ((rq = __elv_next_request(q)) != NULL) {
744 * Kill the empty barrier place holder, the driver must
747 if (blk_empty_barrier(rq)) {
748 end_queued_request(rq, 1);
751 if (!(rq->cmd_flags & REQ_STARTED)) {
753 * This is the first time the device driver
754 * sees this request (possibly after
755 * requeueing). Notify IO scheduler.
757 if (blk_sorted_rq(rq))
758 elv_activate_rq(q, rq);
761 * just mark as started even if we don't start
762 * it, a request that has been delayed should
763 * not be passed by new incoming requests
765 rq->cmd_flags |= REQ_STARTED;
766 blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
769 if (!q->boundary_rq || q->boundary_rq == rq) {
770 q->end_sector = rq_end_sector(rq);
771 q->boundary_rq = NULL;
774 if (rq->cmd_flags & REQ_DONTPREP)
777 if (q->dma_drain_size && rq->data_len) {
779 * make sure space for the drain appears we
780 * know we can do this because max_hw_segments
781 * has been adjusted to be one fewer than the
784 rq->nr_phys_segments++;
785 rq->nr_hw_segments++;
791 ret = q->prep_rq_fn(q, rq);
792 if (ret == BLKPREP_OK) {
794 } else if (ret == BLKPREP_DEFER) {
796 * the request may have been (partially) prepped.
797 * we need to keep this request in the front to
798 * avoid resource deadlock. REQ_STARTED will
799 * prevent other fs requests from passing this one.
801 if (q->dma_drain_size && rq->data_len &&
802 !(rq->cmd_flags & REQ_DONTPREP)) {
804 * remove the space for the drain we added
805 * so that we don't add it again
807 --rq->nr_phys_segments;
808 --rq->nr_hw_segments;
813 } else if (ret == BLKPREP_KILL) {
814 rq->cmd_flags |= REQ_QUIET;
815 end_queued_request(rq, 0);
817 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
824 EXPORT_SYMBOL(elv_next_request);
826 void elv_dequeue_request(struct request_queue *q, struct request *rq)
828 BUG_ON(list_empty(&rq->queuelist));
829 BUG_ON(ELV_ON_HASH(rq));
831 list_del_init(&rq->queuelist);
834 * the time frame between a request being removed from the lists
835 * and to it is freed is accounted as io that is in progress at
838 if (blk_account_rq(rq))
841 EXPORT_SYMBOL(elv_dequeue_request);
843 int elv_queue_empty(struct request_queue *q)
845 elevator_t *e = q->elevator;
847 if (!list_empty(&q->queue_head))
850 if (e->ops->elevator_queue_empty_fn)
851 return e->ops->elevator_queue_empty_fn(q);
855 EXPORT_SYMBOL(elv_queue_empty);
857 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
859 elevator_t *e = q->elevator;
861 if (e->ops->elevator_latter_req_fn)
862 return e->ops->elevator_latter_req_fn(q, rq);
866 struct request *elv_former_request(struct request_queue *q, struct request *rq)
868 elevator_t *e = q->elevator;
870 if (e->ops->elevator_former_req_fn)
871 return e->ops->elevator_former_req_fn(q, rq);
875 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
877 elevator_t *e = q->elevator;
879 if (e->ops->elevator_set_req_fn)
880 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
882 rq->elevator_private = NULL;
886 void elv_put_request(struct request_queue *q, struct request *rq)
888 elevator_t *e = q->elevator;
890 if (e->ops->elevator_put_req_fn)
891 e->ops->elevator_put_req_fn(rq);
894 int elv_may_queue(struct request_queue *q, int rw)
896 elevator_t *e = q->elevator;
898 if (e->ops->elevator_may_queue_fn)
899 return e->ops->elevator_may_queue_fn(q, rw);
901 return ELV_MQUEUE_MAY;
904 void elv_completed_request(struct request_queue *q, struct request *rq)
906 elevator_t *e = q->elevator;
909 * request is released from the driver, io must be done
911 if (blk_account_rq(rq)) {
913 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
914 e->ops->elevator_completed_req_fn(q, rq);
918 * Check if the queue is waiting for fs requests to be
919 * drained for flush sequence.
921 if (unlikely(q->ordseq)) {
922 struct request *first_rq = list_entry_rq(q->queue_head.next);
923 if (q->in_flight == 0 &&
924 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
925 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
926 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
932 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
935 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
937 elevator_t *e = container_of(kobj, elevator_t, kobj);
938 struct elv_fs_entry *entry = to_elv(attr);
944 mutex_lock(&e->sysfs_lock);
945 error = e->ops ? entry->show(e, page) : -ENOENT;
946 mutex_unlock(&e->sysfs_lock);
951 elv_attr_store(struct kobject *kobj, struct attribute *attr,
952 const char *page, size_t length)
954 elevator_t *e = container_of(kobj, elevator_t, kobj);
955 struct elv_fs_entry *entry = to_elv(attr);
961 mutex_lock(&e->sysfs_lock);
962 error = e->ops ? entry->store(e, page, length) : -ENOENT;
963 mutex_unlock(&e->sysfs_lock);
967 static struct sysfs_ops elv_sysfs_ops = {
968 .show = elv_attr_show,
969 .store = elv_attr_store,
972 static struct kobj_type elv_ktype = {
973 .sysfs_ops = &elv_sysfs_ops,
974 .release = elevator_release,
977 int elv_register_queue(struct request_queue *q)
979 elevator_t *e = q->elevator;
982 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
984 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
986 while (attr->attr.name) {
987 if (sysfs_create_file(&e->kobj, &attr->attr))
992 kobject_uevent(&e->kobj, KOBJ_ADD);
997 static void __elv_unregister_queue(elevator_t *e)
999 kobject_uevent(&e->kobj, KOBJ_REMOVE);
1000 kobject_del(&e->kobj);
1003 void elv_unregister_queue(struct request_queue *q)
1006 __elv_unregister_queue(q->elevator);
1009 void elv_register(struct elevator_type *e)
1013 spin_lock(&elv_list_lock);
1014 BUG_ON(elevator_find(e->elevator_name));
1015 list_add_tail(&e->list, &elv_list);
1016 spin_unlock(&elv_list_lock);
1018 if (!strcmp(e->elevator_name, chosen_elevator) ||
1019 (!*chosen_elevator &&
1020 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
1023 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
1026 EXPORT_SYMBOL_GPL(elv_register);
1028 void elv_unregister(struct elevator_type *e)
1030 struct task_struct *g, *p;
1033 * Iterate every thread in the process to remove the io contexts.
1036 read_lock(&tasklist_lock);
1037 do_each_thread(g, p) {
1040 e->ops.trim(p->io_context);
1042 } while_each_thread(g, p);
1043 read_unlock(&tasklist_lock);
1046 spin_lock(&elv_list_lock);
1047 list_del_init(&e->list);
1048 spin_unlock(&elv_list_lock);
1050 EXPORT_SYMBOL_GPL(elv_unregister);
1053 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1054 * we don't free the old io scheduler, before we have allocated what we
1055 * need for the new one. this way we have a chance of going back to the old
1056 * one, if the new one fails init for some reason.
1058 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1060 elevator_t *old_elevator, *e;
1064 * Allocate new elevator
1066 e = elevator_alloc(q, new_e);
1070 data = elevator_init_queue(q, e);
1072 kobject_put(&e->kobj);
1077 * Turn on BYPASS and drain all requests w/ elevator private data
1079 spin_lock_irq(q->queue_lock);
1081 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
1083 elv_drain_elevator(q);
1085 while (q->rq.elvpriv) {
1088 spin_unlock_irq(q->queue_lock);
1090 spin_lock_irq(q->queue_lock);
1091 elv_drain_elevator(q);
1095 * Remember old elevator.
1097 old_elevator = q->elevator;
1100 * attach and start new elevator
1102 elevator_attach(q, e, data);
1104 spin_unlock_irq(q->queue_lock);
1106 __elv_unregister_queue(old_elevator);
1108 if (elv_register_queue(q))
1112 * finally exit old elevator and turn off BYPASS.
1114 elevator_exit(old_elevator);
1115 spin_lock_irq(q->queue_lock);
1116 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1117 spin_unlock_irq(q->queue_lock);
1119 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1125 * switch failed, exit the new io scheduler and reattach the old
1126 * one again (along with re-adding the sysfs dir)
1129 q->elevator = old_elevator;
1130 elv_register_queue(q);
1132 spin_lock_irq(q->queue_lock);
1133 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1134 spin_unlock_irq(q->queue_lock);
1139 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1142 char elevator_name[ELV_NAME_MAX];
1144 struct elevator_type *e;
1146 elevator_name[sizeof(elevator_name) - 1] = '\0';
1147 strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1148 len = strlen(elevator_name);
1150 if (len && elevator_name[len - 1] == '\n')
1151 elevator_name[len - 1] = '\0';
1153 e = elevator_get(elevator_name);
1155 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1159 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1164 if (!elevator_switch(q, e))
1165 printk(KERN_ERR "elevator: switch to %s failed\n",
1170 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1172 elevator_t *e = q->elevator;
1173 struct elevator_type *elv = e->elevator_type;
1174 struct elevator_type *__e;
1177 spin_lock(&elv_list_lock);
1178 list_for_each_entry(__e, &elv_list, list) {
1179 if (!strcmp(elv->elevator_name, __e->elevator_name))
1180 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1182 len += sprintf(name+len, "%s ", __e->elevator_name);
1184 spin_unlock(&elv_list_lock);
1186 len += sprintf(len+name, "\n");
1190 struct request *elv_rb_former_request(struct request_queue *q,
1193 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1196 return rb_entry_rq(rbprev);
1200 EXPORT_SYMBOL(elv_rb_former_request);
1202 struct request *elv_rb_latter_request(struct request_queue *q,
1205 struct rb_node *rbnext = rb_next(&rq->rb_node);
1208 return rb_entry_rq(rbnext);
1212 EXPORT_SYMBOL(elv_rb_latter_request);