4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
51 #include <asm/byteorder.h>
53 #include <asm/uaccess.h>
55 #include <asm/bitops.h>
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, int nr_sectors)
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
67 nr_sectors = rq->hard_nr_sectors;
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
78 HWGROUP(drive)->hwif->ide_dma_on(drive);
81 if (!end_that_request_first(rq, uptodate, nr_sectors)) {
82 add_disk_randomness(rq->rq_disk);
83 if (!list_empty(&rq->queuelist))
84 blkdev_dequeue_request(rq);
85 HWGROUP(drive)->rq = NULL;
86 end_that_request_last(rq, uptodate);
94 * ide_end_request - complete an IDE I/O
95 * @drive: IDE device for the I/O
97 * @nr_sectors: number of sectors completed
99 * This is our end_request wrapper function. We complete the I/O
100 * update random number input and dequeue the request, which if
101 * it was tagged may be out of order.
104 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
111 * room for locking improvements here, the calls below don't
112 * need the queue lock held at all
114 spin_lock_irqsave(&ide_lock, flags);
115 rq = HWGROUP(drive)->rq;
118 nr_sectors = rq->hard_cur_sectors;
120 ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
122 spin_unlock_irqrestore(&ide_lock, flags);
125 EXPORT_SYMBOL(ide_end_request);
128 * Power Management state machine. This one is rather trivial for now,
129 * we should probably add more, like switching back to PIO on suspend
130 * to help some BIOSes, re-do the door locking on resume, etc...
134 ide_pm_flush_cache = ide_pm_state_start_suspend,
137 idedisk_pm_restore_pio = ide_pm_state_start_resume,
142 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
144 struct request_pm_state *pm = rq->data;
146 if (drive->media != ide_disk)
149 switch (pm->pm_step) {
150 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
151 if (pm->pm_state == PM_EVENT_FREEZE)
152 pm->pm_step = ide_pm_state_completed;
154 pm->pm_step = idedisk_pm_standby;
156 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
157 pm->pm_step = ide_pm_state_completed;
159 case idedisk_pm_restore_pio: /* Resume step 1 complete */
160 pm->pm_step = idedisk_pm_idle;
162 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
163 pm->pm_step = ide_pm_restore_dma;
168 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
170 struct request_pm_state *pm = rq->data;
171 ide_task_t *args = rq->special;
173 memset(args, 0, sizeof(*args));
175 switch (pm->pm_step) {
176 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
177 if (drive->media != ide_disk)
179 /* Not supported? Switch to next step now. */
180 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
181 ide_complete_power_step(drive, rq, 0, 0);
184 if (ide_id_has_flush_cache_ext(drive->id))
185 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
187 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
188 args->command_type = IDE_DRIVE_TASK_NO_DATA;
189 args->handler = &task_no_data_intr;
190 return do_rw_taskfile(drive, args);
192 case idedisk_pm_standby: /* Suspend step 2 (standby) */
193 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
194 args->command_type = IDE_DRIVE_TASK_NO_DATA;
195 args->handler = &task_no_data_intr;
196 return do_rw_taskfile(drive, args);
198 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
199 if (drive->hwif->tuneproc != NULL)
200 drive->hwif->tuneproc(drive, 255);
202 * skip idedisk_pm_idle for ATAPI devices
204 if (drive->media != ide_disk)
205 pm->pm_step = ide_pm_restore_dma;
207 ide_complete_power_step(drive, rq, 0, 0);
210 case idedisk_pm_idle: /* Resume step 2 (idle) */
211 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
212 args->command_type = IDE_DRIVE_TASK_NO_DATA;
213 args->handler = task_no_data_intr;
214 return do_rw_taskfile(drive, args);
216 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
218 * Right now, all we do is call hwif->ide_dma_check(drive),
219 * we could be smarter and check for current xfer_speed
220 * in struct drive etc...
222 if ((drive->id->capability & 1) == 0)
224 if (drive->hwif->ide_dma_check == NULL)
226 drive->hwif->dma_off_quietly(drive);
230 pm->pm_step = ide_pm_state_completed;
235 * ide_end_dequeued_request - complete an IDE I/O
236 * @drive: IDE device for the I/O
238 * @nr_sectors: number of sectors completed
240 * Complete an I/O that is no longer on the request queue. This
241 * typically occurs when we pull the request and issue a REQUEST_SENSE.
242 * We must still finish the old request but we must not tamper with the
243 * queue in the meantime.
245 * NOTE: This path does not handle barrier, but barrier is not supported
249 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
250 int uptodate, int nr_sectors)
255 spin_lock_irqsave(&ide_lock, flags);
257 BUG_ON(!blk_rq_started(rq));
260 * if failfast is set on a request, override number of sectors and
261 * complete the whole request right now
263 if (blk_noretry_request(rq) && end_io_error(uptodate))
264 nr_sectors = rq->hard_nr_sectors;
266 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
270 * decide whether to reenable DMA -- 3 is a random magic for now,
271 * if we DMA timeout more than 3 times, just stay in PIO
273 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
275 HWGROUP(drive)->hwif->ide_dma_on(drive);
278 if (!end_that_request_first(rq, uptodate, nr_sectors)) {
279 add_disk_randomness(rq->rq_disk);
280 if (blk_rq_tagged(rq))
281 blk_queue_end_tag(drive->queue, rq);
282 end_that_request_last(rq, uptodate);
285 spin_unlock_irqrestore(&ide_lock, flags);
288 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
292 * ide_complete_pm_request - end the current Power Management request
293 * @drive: target drive
296 * This function cleans up the current PM request and stops the queue
299 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
304 printk("%s: completing PM request, %s\n", drive->name,
305 blk_pm_suspend_request(rq) ? "suspend" : "resume");
307 spin_lock_irqsave(&ide_lock, flags);
308 if (blk_pm_suspend_request(rq)) {
309 blk_stop_queue(drive->queue);
312 blk_start_queue(drive->queue);
314 blkdev_dequeue_request(rq);
315 HWGROUP(drive)->rq = NULL;
316 end_that_request_last(rq, 1);
317 spin_unlock_irqrestore(&ide_lock, flags);
321 * FIXME: probably move this somewhere else, name is bad too :)
323 u64 ide_get_error_location(ide_drive_t *drive, char *args)
334 if (ide_id_has_flush_cache_ext(drive->id)) {
335 low = (hcyl << 16) | (lcyl << 8) | sect;
336 HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
337 high = ide_read_24(drive);
339 u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
342 low = (hcyl << 16) | (lcyl << 8) | sect;
344 low = hcyl * drive->head * drive->sect;
345 low += lcyl * drive->sect;
350 sector = ((u64) high << 24) | low;
353 EXPORT_SYMBOL(ide_get_error_location);
356 * ide_end_drive_cmd - end an explicit drive command
361 * Clean up after success/failure of an explicit drive command.
362 * These get thrown onto the queue so they are synchronized with
363 * real I/O operations on the drive.
365 * In LBA48 mode we have to read the register set twice to get
366 * all the extra information out.
369 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
371 ide_hwif_t *hwif = HWIF(drive);
375 spin_lock_irqsave(&ide_lock, flags);
376 rq = HWGROUP(drive)->rq;
377 spin_unlock_irqrestore(&ide_lock, flags);
379 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
380 u8 *args = (u8 *) rq->buffer;
382 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
387 args[2] = hwif->INB(IDE_NSECTOR_REG);
389 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
390 u8 *args = (u8 *) rq->buffer;
392 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
397 args[2] = hwif->INB(IDE_NSECTOR_REG);
398 args[3] = hwif->INB(IDE_SECTOR_REG);
399 args[4] = hwif->INB(IDE_LCYL_REG);
400 args[5] = hwif->INB(IDE_HCYL_REG);
401 args[6] = hwif->INB(IDE_SELECT_REG);
403 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
404 ide_task_t *args = (ide_task_t *) rq->special;
406 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
409 if (args->tf_in_flags.b.data) {
410 u16 data = hwif->INW(IDE_DATA_REG);
411 args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
412 args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
414 args->tfRegister[IDE_ERROR_OFFSET] = err;
415 /* be sure we're looking at the low order bits */
416 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
417 args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
418 args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
419 args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
420 args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
421 args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
422 args->tfRegister[IDE_STATUS_OFFSET] = stat;
424 if (drive->addressing == 1) {
425 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
426 args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
427 args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
428 args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
429 args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
430 args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
433 } else if (blk_pm_request(rq)) {
434 struct request_pm_state *pm = rq->data;
436 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
437 drive->name, rq->pm->pm_step, stat, err);
439 ide_complete_power_step(drive, rq, stat, err);
440 if (pm->pm_step == ide_pm_state_completed)
441 ide_complete_pm_request(drive, rq);
445 spin_lock_irqsave(&ide_lock, flags);
446 blkdev_dequeue_request(rq);
447 HWGROUP(drive)->rq = NULL;
449 end_that_request_last(rq, !rq->errors);
450 spin_unlock_irqrestore(&ide_lock, flags);
453 EXPORT_SYMBOL(ide_end_drive_cmd);
456 * try_to_flush_leftover_data - flush junk
457 * @drive: drive to flush
459 * try_to_flush_leftover_data() is invoked in response to a drive
460 * unexpectedly having its DRQ_STAT bit set. As an alternative to
461 * resetting the drive, this routine tries to clear the condition
462 * by read a sector's worth of data from the drive. Of course,
463 * this may not help if the drive is *waiting* for data from *us*.
465 static void try_to_flush_leftover_data (ide_drive_t *drive)
467 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
469 if (drive->media != ide_disk)
473 u32 wcount = (i > 16) ? 16 : i;
476 HWIF(drive)->ata_input_data(drive, buffer, wcount);
480 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
485 drv = *(ide_driver_t **)rq->rq_disk->private_data;
486 drv->end_request(drive, 0, 0);
488 ide_end_request(drive, 0, 0);
491 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
493 ide_hwif_t *hwif = drive->hwif;
495 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
496 /* other bits are useless when BUSY */
497 rq->errors |= ERROR_RESET;
498 } else if (stat & ERR_STAT) {
499 /* err has different meaning on cdrom and tape */
500 if (err == ABRT_ERR) {
501 if (drive->select.b.lba &&
502 /* some newer drives don't support WIN_SPECIFY */
503 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
505 } else if ((err & BAD_CRC) == BAD_CRC) {
506 /* UDMA crc error, just retry the operation */
508 } else if (err & (BBD_ERR | ECC_ERR)) {
509 /* retries won't help these */
510 rq->errors = ERROR_MAX;
511 } else if (err & TRK0_ERR) {
512 /* help it find track zero */
513 rq->errors |= ERROR_RECAL;
517 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
518 try_to_flush_leftover_data(drive);
520 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
521 ide_kill_rq(drive, rq);
525 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
526 rq->errors |= ERROR_RESET;
528 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
530 return ide_do_reset(drive);
533 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
534 drive->special.b.recalibrate = 1;
541 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
543 ide_hwif_t *hwif = drive->hwif;
545 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
546 /* other bits are useless when BUSY */
547 rq->errors |= ERROR_RESET;
549 /* add decoding error stuff */
552 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
554 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
556 if (rq->errors >= ERROR_MAX) {
557 ide_kill_rq(drive, rq);
559 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
561 return ide_do_reset(drive);
570 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
572 if (drive->media == ide_disk)
573 return ide_ata_error(drive, rq, stat, err);
574 return ide_atapi_error(drive, rq, stat, err);
577 EXPORT_SYMBOL_GPL(__ide_error);
580 * ide_error - handle an error on the IDE
581 * @drive: drive the error occurred on
582 * @msg: message to report
585 * ide_error() takes action based on the error returned by the drive.
586 * For normal I/O that may well include retries. We deal with
587 * both new-style (taskfile) and old style command handling here.
588 * In the case of taskfile command handling there is work left to
592 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
597 err = ide_dump_status(drive, msg, stat);
599 if ((rq = HWGROUP(drive)->rq) == NULL)
602 /* retry only "normal" I/O: */
603 if (!blk_fs_request(rq)) {
605 ide_end_drive_cmd(drive, stat, err);
612 drv = *(ide_driver_t **)rq->rq_disk->private_data;
613 return drv->error(drive, rq, stat, err);
615 return __ide_error(drive, rq, stat, err);
618 EXPORT_SYMBOL_GPL(ide_error);
620 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
622 if (drive->media != ide_disk)
623 rq->errors |= ERROR_RESET;
625 ide_kill_rq(drive, rq);
630 EXPORT_SYMBOL_GPL(__ide_abort);
633 * ide_abort - abort pending IDE operations
634 * @drive: drive the error occurred on
635 * @msg: message to report
637 * ide_abort kills and cleans up when we are about to do a
638 * host initiated reset on active commands. Longer term we
639 * want handlers to have sensible abort handling themselves
641 * This differs fundamentally from ide_error because in
642 * this case the command is doing just fine when we
646 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
650 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
653 /* retry only "normal" I/O: */
654 if (!blk_fs_request(rq)) {
656 ide_end_drive_cmd(drive, BUSY_STAT, 0);
663 drv = *(ide_driver_t **)rq->rq_disk->private_data;
664 return drv->abort(drive, rq);
666 return __ide_abort(drive, rq);
670 * ide_cmd - issue a simple drive command
671 * @drive: drive the command is for
673 * @nsect: sector byte
674 * @handler: handler for the command completion
676 * Issue a simple drive command with interrupts.
677 * The drive must be selected beforehand.
680 static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
681 ide_handler_t *handler)
683 ide_hwif_t *hwif = HWIF(drive);
685 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
686 SELECT_MASK(drive,0);
687 hwif->OUTB(nsect,IDE_NSECTOR_REG);
688 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
692 * drive_cmd_intr - drive command completion interrupt
693 * @drive: drive the completion interrupt occurred on
695 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
696 * We do any necessary data reading and then wait for the drive to
697 * go non busy. At that point we may read the error data and complete
701 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
703 struct request *rq = HWGROUP(drive)->rq;
704 ide_hwif_t *hwif = HWIF(drive);
705 u8 *args = (u8 *) rq->buffer;
706 u8 stat = hwif->INB(IDE_STATUS_REG);
709 local_irq_enable_in_hardirq();
710 if ((stat & DRQ_STAT) && args && args[3]) {
711 u8 io_32bit = drive->io_32bit;
713 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
714 drive->io_32bit = io_32bit;
715 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
719 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
720 return ide_error(drive, "drive_cmd", stat);
721 /* calls ide_end_drive_cmd */
722 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
726 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
728 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
729 task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
730 task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
731 task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
732 task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
733 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
735 task->handler = &set_geometry_intr;
738 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
740 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
741 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
743 task->handler = &recal_intr;
746 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
748 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
749 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
751 task->handler = &set_multmode_intr;
754 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
756 special_t *s = &drive->special;
759 memset(&args, 0, sizeof(ide_task_t));
760 args.command_type = IDE_DRIVE_TASK_NO_DATA;
762 if (s->b.set_geometry) {
763 s->b.set_geometry = 0;
764 ide_init_specify_cmd(drive, &args);
765 } else if (s->b.recalibrate) {
766 s->b.recalibrate = 0;
767 ide_init_restore_cmd(drive, &args);
768 } else if (s->b.set_multmode) {
769 s->b.set_multmode = 0;
770 if (drive->mult_req > drive->id->max_multsect)
771 drive->mult_req = drive->id->max_multsect;
772 ide_init_setmult_cmd(drive, &args);
774 int special = s->all;
776 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
780 do_rw_taskfile(drive, &args);
786 * do_special - issue some special commands
787 * @drive: drive the command is for
789 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
790 * commands to a drive. It used to do much more, but has been scaled
794 static ide_startstop_t do_special (ide_drive_t *drive)
796 special_t *s = &drive->special;
799 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
803 if (HWIF(drive)->tuneproc != NULL)
804 HWIF(drive)->tuneproc(drive, drive->tune_req);
807 if (drive->media == ide_disk)
808 return ide_disk_special(drive);
816 void ide_map_sg(ide_drive_t *drive, struct request *rq)
818 ide_hwif_t *hwif = drive->hwif;
819 struct scatterlist *sg = hwif->sg_table;
821 if (hwif->sg_mapped) /* needed by ide-scsi */
824 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
825 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
827 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
832 EXPORT_SYMBOL_GPL(ide_map_sg);
834 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
836 ide_hwif_t *hwif = drive->hwif;
838 hwif->nsect = hwif->nleft = rq->nr_sectors;
839 hwif->cursg = hwif->cursg_ofs = 0;
842 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
845 * execute_drive_command - issue special drive command
846 * @drive: the drive to issue the command on
847 * @rq: the request structure holding the command
849 * execute_drive_cmd() issues a special drive command, usually
850 * initiated by ioctl() from the external hdparm program. The
851 * command can be a drive command, drive task or taskfile
852 * operation. Weirdly you can call it with NULL to wait for
853 * all commands to finish. Don't do this as that is due to change
856 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
859 ide_hwif_t *hwif = HWIF(drive);
860 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
861 ide_task_t *args = rq->special;
866 hwif->data_phase = args->data_phase;
868 switch (hwif->data_phase) {
869 case TASKFILE_MULTI_OUT:
871 case TASKFILE_MULTI_IN:
873 ide_init_sg_cmd(drive, rq);
874 ide_map_sg(drive, rq);
879 if (args->tf_out_flags.all != 0)
880 return flagged_taskfile(drive, args);
881 return do_rw_taskfile(drive, args);
882 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
883 u8 *args = rq->buffer;
889 printk("%s: DRIVE_TASK_CMD ", drive->name);
890 printk("cmd=0x%02x ", args[0]);
891 printk("fr=0x%02x ", args[1]);
892 printk("ns=0x%02x ", args[2]);
893 printk("sc=0x%02x ", args[3]);
894 printk("lcyl=0x%02x ", args[4]);
895 printk("hcyl=0x%02x ", args[5]);
896 printk("sel=0x%02x\n", args[6]);
898 hwif->OUTB(args[1], IDE_FEATURE_REG);
899 hwif->OUTB(args[3], IDE_SECTOR_REG);
900 hwif->OUTB(args[4], IDE_LCYL_REG);
901 hwif->OUTB(args[5], IDE_HCYL_REG);
902 sel = (args[6] & ~0x10);
903 if (drive->select.b.unit)
905 hwif->OUTB(sel, IDE_SELECT_REG);
906 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
908 } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
909 u8 *args = rq->buffer;
914 printk("%s: DRIVE_CMD ", drive->name);
915 printk("cmd=0x%02x ", args[0]);
916 printk("sc=0x%02x ", args[1]);
917 printk("fr=0x%02x ", args[2]);
918 printk("xx=0x%02x\n", args[3]);
920 if (args[0] == WIN_SMART) {
921 hwif->OUTB(0x4f, IDE_LCYL_REG);
922 hwif->OUTB(0xc2, IDE_HCYL_REG);
923 hwif->OUTB(args[2],IDE_FEATURE_REG);
924 hwif->OUTB(args[1],IDE_SECTOR_REG);
925 ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
928 hwif->OUTB(args[2],IDE_FEATURE_REG);
929 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
935 * NULL is actually a valid way of waiting for
936 * all current requests to be flushed from the queue.
939 printk("%s: DRIVE_CMD (null)\n", drive->name);
941 ide_end_drive_cmd(drive,
942 hwif->INB(IDE_STATUS_REG),
943 hwif->INB(IDE_ERROR_REG));
947 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
949 struct request_pm_state *pm = rq->data;
951 if (blk_pm_suspend_request(rq) &&
952 pm->pm_step == ide_pm_state_start_suspend)
953 /* Mark drive blocked when starting the suspend sequence. */
955 else if (blk_pm_resume_request(rq) &&
956 pm->pm_step == ide_pm_state_start_resume) {
958 * The first thing we do on wakeup is to wait for BSY bit to
959 * go away (with a looong timeout) as a drive on this hwif may
960 * just be POSTing itself.
961 * We do that before even selecting as the "other" device on
962 * the bus may be broken enough to walk on our toes at this
967 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
969 rc = ide_wait_not_busy(HWIF(drive), 35000);
971 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
973 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
974 rc = ide_wait_not_busy(HWIF(drive), 100000);
976 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
981 * start_request - start of I/O and command issuing for IDE
983 * start_request() initiates handling of a new I/O request. It
984 * accepts commands and I/O (read/write) requests. It also does
985 * the final remapping for weird stuff like EZDrive. Once
986 * device mapper can work sector level the EZDrive stuff can go away
988 * FIXME: this function needs a rename
991 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
993 ide_startstop_t startstop;
996 BUG_ON(!blk_rq_started(rq));
999 printk("%s: start_request: current=0x%08lx\n",
1000 HWIF(drive)->name, (unsigned long) rq);
1003 /* bail early if we've exceeded max_failures */
1004 if (drive->max_failures && (drive->failures > drive->max_failures)) {
1009 if (blk_fs_request(rq) &&
1010 (drive->media == ide_disk || drive->media == ide_floppy)) {
1011 block += drive->sect0;
1013 /* Yecch - this will shift the entire interval,
1014 possibly killing some innocent following sector */
1015 if (block == 0 && drive->remap_0_to_1 == 1)
1016 block = 1; /* redirect MBR access to EZ-Drive partn table */
1018 if (blk_pm_request(rq))
1019 ide_check_pm_state(drive, rq);
1021 SELECT_DRIVE(drive);
1022 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1023 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1026 if (!drive->special.all) {
1030 * We reset the drive so we need to issue a SETFEATURES.
1031 * Do it _after_ do_special() restored device parameters.
1033 if (drive->current_speed == 0xff)
1034 ide_config_drive_speed(drive, drive->desired_speed);
1036 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1037 rq->cmd_type == REQ_TYPE_ATA_TASK ||
1038 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1039 return execute_drive_cmd(drive, rq);
1040 else if (blk_pm_request(rq)) {
1041 struct request_pm_state *pm = rq->data;
1043 printk("%s: start_power_step(step: %d)\n",
1044 drive->name, rq->pm->pm_step);
1046 startstop = ide_start_power_step(drive, rq);
1047 if (startstop == ide_stopped &&
1048 pm->pm_step == ide_pm_state_completed)
1049 ide_complete_pm_request(drive, rq);
1053 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1054 return drv->do_request(drive, rq, block);
1056 return do_special(drive);
1058 ide_kill_rq(drive, rq);
1063 * ide_stall_queue - pause an IDE device
1064 * @drive: drive to stall
1065 * @timeout: time to stall for (jiffies)
1067 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1068 * to the hwgroup by sleeping for timeout jiffies.
1071 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1073 if (timeout > WAIT_WORSTCASE)
1074 timeout = WAIT_WORSTCASE;
1075 drive->sleep = timeout + jiffies;
1076 drive->sleeping = 1;
1079 EXPORT_SYMBOL(ide_stall_queue);
1081 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1084 * choose_drive - select a drive to service
1085 * @hwgroup: hardware group to select on
1087 * choose_drive() selects the next drive which will be serviced.
1088 * This is necessary because the IDE layer can't issue commands
1089 * to both drives on the same cable, unlike SCSI.
1092 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1094 ide_drive_t *drive, *best;
1098 drive = hwgroup->drive;
1101 * drive is doing pre-flush, ordered write, post-flush sequence. even
1102 * though that is 3 requests, it must be seen as a single transaction.
1103 * we must not preempt this drive until that is complete
1105 if (blk_queue_flushing(drive->queue)) {
1107 * small race where queue could get replugged during
1108 * the 3-request flush cycle, just yank the plug since
1109 * we want it to finish asap
1111 blk_remove_plug(drive->queue);
1116 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1117 && !elv_queue_empty(drive->queue)) {
1119 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1120 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1122 if (!blk_queue_plugged(drive->queue))
1126 } while ((drive = drive->next) != hwgroup->drive);
1127 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1128 long t = (signed long)(WAKEUP(best) - jiffies);
1129 if (t >= WAIT_MIN_SLEEP) {
1131 * We *may* have some time to spare, but first let's see if
1132 * someone can potentially benefit from our nice mood today..
1136 if (!drive->sleeping
1137 && time_before(jiffies - best->service_time, WAKEUP(drive))
1138 && time_before(WAKEUP(drive), jiffies + t))
1140 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1143 } while ((drive = drive->next) != best);
1150 * Issue a new request to a drive from hwgroup
1151 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1153 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1154 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1155 * may have both interfaces in a single hwgroup to "serialize" access.
1156 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1157 * together into one hwgroup for serialized access.
1159 * Note also that several hwgroups can end up sharing a single IRQ,
1160 * possibly along with many other devices. This is especially common in
1161 * PCI-based systems with off-board IDE controller cards.
1163 * The IDE driver uses the single global ide_lock spinlock to protect
1164 * access to the request queues, and to protect the hwgroup->busy flag.
1166 * The first thread into the driver for a particular hwgroup sets the
1167 * hwgroup->busy flag to indicate that this hwgroup is now active,
1168 * and then initiates processing of the top request from the request queue.
1170 * Other threads attempting entry notice the busy setting, and will simply
1171 * queue their new requests and exit immediately. Note that hwgroup->busy
1172 * remains set even when the driver is merely awaiting the next interrupt.
1173 * Thus, the meaning is "this hwgroup is busy processing a request".
1175 * When processing of a request completes, the completing thread or IRQ-handler
1176 * will start the next request from the queue. If no more work remains,
1177 * the driver will clear the hwgroup->busy flag and exit.
1179 * The ide_lock (spinlock) is used to protect all access to the
1180 * hwgroup->busy flag, but is otherwise not needed for most processing in
1181 * the driver. This makes the driver much more friendlier to shared IRQs
1182 * than previous designs, while remaining 100% (?) SMP safe and capable.
1184 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1189 ide_startstop_t startstop;
1192 /* for atari only: POSSIBLY BROKEN HERE(?) */
1193 ide_get_lock(ide_intr, hwgroup);
1195 /* caller must own ide_lock */
1196 BUG_ON(!irqs_disabled());
1198 while (!hwgroup->busy) {
1200 drive = choose_drive(hwgroup);
1201 if (drive == NULL) {
1203 unsigned long sleep = 0; /* shut up, gcc */
1205 drive = hwgroup->drive;
1207 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1209 sleep = drive->sleep;
1211 } while ((drive = drive->next) != hwgroup->drive);
1214 * Take a short snooze, and then wake up this hwgroup again.
1215 * This gives other hwgroups on the same a chance to
1216 * play fairly with us, just in case there are big differences
1217 * in relative throughputs.. don't want to hog the cpu too much.
1219 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1220 sleep = jiffies + WAIT_MIN_SLEEP;
1222 if (timer_pending(&hwgroup->timer))
1223 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1225 /* so that ide_timer_expiry knows what to do */
1226 hwgroup->sleeping = 1;
1227 hwgroup->req_gen_timer = hwgroup->req_gen;
1228 mod_timer(&hwgroup->timer, sleep);
1229 /* we purposely leave hwgroup->busy==1
1232 /* Ugly, but how can we sleep for the lock
1233 * otherwise? perhaps from tq_disk?
1236 /* for atari only */
1241 /* no more work for this hwgroup (for now) */
1246 if (hwgroup->hwif->sharing_irq &&
1247 hwif != hwgroup->hwif &&
1248 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1249 /* set nIEN for previous hwif */
1250 SELECT_INTERRUPT(drive);
1252 hwgroup->hwif = hwif;
1253 hwgroup->drive = drive;
1254 drive->sleeping = 0;
1255 drive->service_start = jiffies;
1257 if (blk_queue_plugged(drive->queue)) {
1258 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1263 * we know that the queue isn't empty, but this can happen
1264 * if the q->prep_rq_fn() decides to kill a request
1266 rq = elv_next_request(drive->queue);
1273 * Sanity: don't accept a request that isn't a PM request
1274 * if we are currently power managed. This is very important as
1275 * blk_stop_queue() doesn't prevent the elv_next_request()
1276 * above to return us whatever is in the queue. Since we call
1277 * ide_do_request() ourselves, we end up taking requests while
1278 * the queue is blocked...
1280 * We let requests forced at head of queue with ide-preempt
1281 * though. I hope that doesn't happen too much, hopefully not
1282 * unless the subdriver triggers such a thing in its own PM
1285 * We count how many times we loop here to make sure we service
1286 * all drives in the hwgroup without looping for ever
1288 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1289 drive = drive->next ? drive->next : hwgroup->drive;
1290 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1292 /* We clear busy, there should be no pending ATA command at this point. */
1300 * Some systems have trouble with IDE IRQs arriving while
1301 * the driver is still setting things up. So, here we disable
1302 * the IRQ used by this interface while the request is being started.
1303 * This may look bad at first, but pretty much the same thing
1304 * happens anyway when any interrupt comes in, IDE or otherwise
1305 * -- the kernel masks the IRQ while it is being handled.
1307 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1308 disable_irq_nosync(hwif->irq);
1309 spin_unlock(&ide_lock);
1310 local_irq_enable_in_hardirq();
1311 /* allow other IRQs while we start this request */
1312 startstop = start_request(drive, rq);
1313 spin_lock_irq(&ide_lock);
1314 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1315 enable_irq(hwif->irq);
1316 if (startstop == ide_stopped)
1322 * Passes the stuff to ide_do_request
1324 void do_ide_request(request_queue_t *q)
1326 ide_drive_t *drive = q->queuedata;
1328 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1332 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1333 * retry the current request in pio mode instead of risking tossing it
1336 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1338 ide_hwif_t *hwif = HWIF(drive);
1340 ide_startstop_t ret = ide_stopped;
1343 * end current dma transaction
1347 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1348 (void)HWIF(drive)->ide_dma_end(drive);
1349 ret = ide_error(drive, "dma timeout error",
1350 hwif->INB(IDE_STATUS_REG));
1352 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1353 hwif->dma_timeout(drive);
1357 * disable dma for now, but remember that we did so because of
1358 * a timeout -- we'll reenable after we finish this next request
1359 * (or rather the first chunk of it) in pio.
1362 drive->state = DMA_PIO_RETRY;
1363 hwif->dma_off_quietly(drive);
1366 * un-busy drive etc (hwgroup->busy is cleared on return) and
1367 * make sure request is sane
1369 rq = HWGROUP(drive)->rq;
1374 HWGROUP(drive)->rq = NULL;
1381 rq->sector = rq->bio->bi_sector;
1382 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1383 rq->hard_cur_sectors = rq->current_nr_sectors;
1384 rq->buffer = bio_data(rq->bio);
1390 * ide_timer_expiry - handle lack of an IDE interrupt
1391 * @data: timer callback magic (hwgroup)
1393 * An IDE command has timed out before the expected drive return
1394 * occurred. At this point we attempt to clean up the current
1395 * mess. If the current handler includes an expiry handler then
1396 * we invoke the expiry handler, and providing it is happy the
1397 * work is done. If that fails we apply generic recovery rules
1398 * invoking the handler and checking the drive DMA status. We
1399 * have an excessively incestuous relationship with the DMA
1400 * logic that wants cleaning up.
1403 void ide_timer_expiry (unsigned long data)
1405 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1406 ide_handler_t *handler;
1407 ide_expiry_t *expiry;
1408 unsigned long flags;
1409 unsigned long wait = -1;
1411 spin_lock_irqsave(&ide_lock, flags);
1413 if (((handler = hwgroup->handler) == NULL) ||
1414 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1416 * Either a marginal timeout occurred
1417 * (got the interrupt just as timer expired),
1418 * or we were "sleeping" to give other devices a chance.
1419 * Either way, we don't really want to complain about anything.
1421 if (hwgroup->sleeping) {
1422 hwgroup->sleeping = 0;
1426 ide_drive_t *drive = hwgroup->drive;
1428 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1429 hwgroup->handler = NULL;
1432 ide_startstop_t startstop = ide_stopped;
1433 if (!hwgroup->busy) {
1434 hwgroup->busy = 1; /* paranoia */
1435 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1437 if ((expiry = hwgroup->expiry) != NULL) {
1439 if ((wait = expiry(drive)) > 0) {
1441 hwgroup->timer.expires = jiffies + wait;
1442 hwgroup->req_gen_timer = hwgroup->req_gen;
1443 add_timer(&hwgroup->timer);
1444 spin_unlock_irqrestore(&ide_lock, flags);
1448 hwgroup->handler = NULL;
1450 * We need to simulate a real interrupt when invoking
1451 * the handler() function, which means we need to
1452 * globally mask the specific IRQ:
1454 spin_unlock(&ide_lock);
1456 #if DISABLE_IRQ_NOSYNC
1457 disable_irq_nosync(hwif->irq);
1459 /* disable_irq_nosync ?? */
1460 disable_irq(hwif->irq);
1461 #endif /* DISABLE_IRQ_NOSYNC */
1463 * as if we were handling an interrupt */
1464 local_irq_disable();
1465 if (hwgroup->polling) {
1466 startstop = handler(drive);
1467 } else if (drive_is_ready(drive)) {
1468 if (drive->waiting_for_dma)
1469 hwgroup->hwif->dma_lost_irq(drive);
1470 (void)ide_ack_intr(hwif);
1471 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1472 startstop = handler(drive);
1474 if (drive->waiting_for_dma) {
1475 startstop = ide_dma_timeout_retry(drive, wait);
1478 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1480 drive->service_time = jiffies - drive->service_start;
1481 spin_lock_irq(&ide_lock);
1482 enable_irq(hwif->irq);
1483 if (startstop == ide_stopped)
1487 ide_do_request(hwgroup, IDE_NO_IRQ);
1488 spin_unlock_irqrestore(&ide_lock, flags);
1492 * unexpected_intr - handle an unexpected IDE interrupt
1493 * @irq: interrupt line
1494 * @hwgroup: hwgroup being processed
1496 * There's nothing really useful we can do with an unexpected interrupt,
1497 * other than reading the status register (to clear it), and logging it.
1498 * There should be no way that an irq can happen before we're ready for it,
1499 * so we needn't worry much about losing an "important" interrupt here.
1501 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1502 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1503 * looks "good", we just ignore the interrupt completely.
1505 * This routine assumes __cli() is in effect when called.
1507 * If an unexpected interrupt happens on irq15 while we are handling irq14
1508 * and if the two interfaces are "serialized" (CMD640), then it looks like
1509 * we could screw up by interfering with a new request being set up for
1512 * In reality, this is a non-issue. The new command is not sent unless
1513 * the drive is ready to accept one, in which case we know the drive is
1514 * not trying to interrupt us. And ide_set_handler() is always invoked
1515 * before completing the issuance of any new drive command, so we will not
1516 * be accidentally invoked as a result of any valid command completion
1519 * Note that we must walk the entire hwgroup here. We know which hwif
1520 * is doing the current command, but we don't know which hwif burped
1524 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1527 ide_hwif_t *hwif = hwgroup->hwif;
1530 * handle the unexpected interrupt
1533 if (hwif->irq == irq) {
1534 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1535 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1536 /* Try to not flood the console with msgs */
1537 static unsigned long last_msgtime, count;
1539 if (time_after(jiffies, last_msgtime + HZ)) {
1540 last_msgtime = jiffies;
1541 printk(KERN_ERR "%s%s: unexpected interrupt, "
1542 "status=0x%02x, count=%ld\n",
1544 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1548 } while ((hwif = hwif->next) != hwgroup->hwif);
1552 * ide_intr - default IDE interrupt handler
1553 * @irq: interrupt number
1554 * @dev_id: hwif group
1555 * @regs: unused weirdness from the kernel irq layer
1557 * This is the default IRQ handler for the IDE layer. You should
1558 * not need to override it. If you do be aware it is subtle in
1561 * hwgroup->hwif is the interface in the group currently performing
1562 * a command. hwgroup->drive is the drive and hwgroup->handler is
1563 * the IRQ handler to call. As we issue a command the handlers
1564 * step through multiple states, reassigning the handler to the
1565 * next step in the process. Unlike a smart SCSI controller IDE
1566 * expects the main processor to sequence the various transfer
1567 * stages. We also manage a poll timer to catch up with most
1568 * timeout situations. There are still a few where the handlers
1569 * don't ever decide to give up.
1571 * The handler eventually returns ide_stopped to indicate the
1572 * request completed. At this point we issue the next request
1573 * on the hwgroup and the process begins again.
1576 irqreturn_t ide_intr (int irq, void *dev_id)
1578 unsigned long flags;
1579 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1582 ide_handler_t *handler;
1583 ide_startstop_t startstop;
1585 spin_lock_irqsave(&ide_lock, flags);
1586 hwif = hwgroup->hwif;
1588 if (!ide_ack_intr(hwif)) {
1589 spin_unlock_irqrestore(&ide_lock, flags);
1593 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1595 * Not expecting an interrupt from this drive.
1596 * That means this could be:
1597 * (1) an interrupt from another PCI device
1598 * sharing the same PCI INT# as us.
1599 * or (2) a drive just entered sleep or standby mode,
1600 * and is interrupting to let us know.
1601 * or (3) a spurious interrupt of unknown origin.
1603 * For PCI, we cannot tell the difference,
1604 * so in that case we just ignore it and hope it goes away.
1606 * FIXME: unexpected_intr should be hwif-> then we can
1607 * remove all the ifdef PCI crap
1609 #ifdef CONFIG_BLK_DEV_IDEPCI
1610 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1611 #endif /* CONFIG_BLK_DEV_IDEPCI */
1614 * Probably not a shared PCI interrupt,
1615 * so we can safely try to do something about it:
1617 unexpected_intr(irq, hwgroup);
1618 #ifdef CONFIG_BLK_DEV_IDEPCI
1621 * Whack the status register, just in case
1622 * we have a leftover pending IRQ.
1624 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1625 #endif /* CONFIG_BLK_DEV_IDEPCI */
1627 spin_unlock_irqrestore(&ide_lock, flags);
1630 drive = hwgroup->drive;
1633 * This should NEVER happen, and there isn't much
1634 * we could do about it here.
1636 * [Note - this can occur if the drive is hot unplugged]
1638 spin_unlock_irqrestore(&ide_lock, flags);
1641 if (!drive_is_ready(drive)) {
1643 * This happens regularly when we share a PCI IRQ with
1644 * another device. Unfortunately, it can also happen
1645 * with some buggy drives that trigger the IRQ before
1646 * their status register is up to date. Hopefully we have
1647 * enough advance overhead that the latter isn't a problem.
1649 spin_unlock_irqrestore(&ide_lock, flags);
1652 if (!hwgroup->busy) {
1653 hwgroup->busy = 1; /* paranoia */
1654 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1656 hwgroup->handler = NULL;
1658 del_timer(&hwgroup->timer);
1659 spin_unlock(&ide_lock);
1661 /* Some controllers might set DMA INTR no matter DMA or PIO;
1662 * bmdma status might need to be cleared even for
1663 * PIO interrupts to prevent spurious/lost irq.
1665 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1666 /* ide_dma_end() needs bmdma status for error checking.
1667 * So, skip clearing bmdma status here and leave it
1668 * to ide_dma_end() if this is dma interrupt.
1670 hwif->ide_dma_clear_irq(drive);
1673 local_irq_enable_in_hardirq();
1674 /* service this interrupt, may set handler for next interrupt */
1675 startstop = handler(drive);
1676 spin_lock_irq(&ide_lock);
1679 * Note that handler() may have set things up for another
1680 * interrupt to occur soon, but it cannot happen until
1681 * we exit from this routine, because it will be the
1682 * same irq as is currently being serviced here, and Linux
1683 * won't allow another of the same (on any CPU) until we return.
1685 drive->service_time = jiffies - drive->service_start;
1686 if (startstop == ide_stopped) {
1687 if (hwgroup->handler == NULL) { /* paranoia */
1689 ide_do_request(hwgroup, hwif->irq);
1691 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1692 "on exit\n", drive->name);
1695 spin_unlock_irqrestore(&ide_lock, flags);
1700 * ide_init_drive_cmd - initialize a drive command request
1701 * @rq: request object
1703 * Initialize a request before we fill it in and send it down to
1704 * ide_do_drive_cmd. Commands must be set up by this function. Right
1705 * now it doesn't do a lot, but if that changes abusers will have a
1709 void ide_init_drive_cmd (struct request *rq)
1711 memset(rq, 0, sizeof(*rq));
1712 rq->cmd_type = REQ_TYPE_ATA_CMD;
1716 EXPORT_SYMBOL(ide_init_drive_cmd);
1719 * ide_do_drive_cmd - issue IDE special command
1720 * @drive: device to issue command
1721 * @rq: request to issue
1722 * @action: action for processing
1724 * This function issues a special IDE device request
1725 * onto the request queue.
1727 * If action is ide_wait, then the rq is queued at the end of the
1728 * request queue, and the function sleeps until it has been processed.
1729 * This is for use when invoked from an ioctl handler.
1731 * If action is ide_preempt, then the rq is queued at the head of
1732 * the request queue, displacing the currently-being-processed
1733 * request and this function returns immediately without waiting
1734 * for the new rq to be completed. This is VERY DANGEROUS, and is
1735 * intended for careful use by the ATAPI tape/cdrom driver code.
1737 * If action is ide_end, then the rq is queued at the end of the
1738 * request queue, and the function returns immediately without waiting
1739 * for the new rq to be completed. This is again intended for careful
1740 * use by the ATAPI tape/cdrom driver code.
1743 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1745 unsigned long flags;
1746 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1747 DECLARE_COMPLETION_ONSTACK(wait);
1748 int where = ELEVATOR_INSERT_BACK, err;
1749 int must_wait = (action == ide_wait || action == ide_head_wait);
1754 * we need to hold an extra reference to request for safe inspection
1759 rq->end_io_data = &wait;
1760 rq->end_io = blk_end_sync_rq;
1763 spin_lock_irqsave(&ide_lock, flags);
1764 if (action == ide_preempt)
1766 if (action == ide_preempt || action == ide_head_wait) {
1767 where = ELEVATOR_INSERT_FRONT;
1768 rq->cmd_flags |= REQ_PREEMPT;
1770 __elv_add_request(drive->queue, rq, where, 0);
1771 ide_do_request(hwgroup, IDE_NO_IRQ);
1772 spin_unlock_irqrestore(&ide_lock, flags);
1776 wait_for_completion(&wait);
1780 blk_put_request(rq);
1786 EXPORT_SYMBOL(ide_do_drive_cmd);