fs/nfs/nfsroot.c: remove CVS keyword
[linux-2.6] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in dummy.c */
24 extern struct security_operations dummy_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops;       /* Initialized to NULL */
28
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31
32 static inline int verify(struct security_operations *ops)
33 {
34         /* verify the security_operations structure exists */
35         if (!ops)
36                 return -EINVAL;
37         security_fixup_ops(ops);
38         return 0;
39 }
40
41 static void __init do_security_initcalls(void)
42 {
43         initcall_t *call;
44         call = __security_initcall_start;
45         while (call < __security_initcall_end) {
46                 (*call) ();
47                 call++;
48         }
49 }
50
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58         printk(KERN_INFO "Security Framework initialized\n");
59
60         if (verify(&dummy_security_ops)) {
61                 printk(KERN_ERR "%s could not verify "
62                        "dummy_security_ops structure.\n", __func__);
63                 return -EIO;
64         }
65
66         security_ops = &dummy_security_ops;
67         do_security_initcalls();
68
69         return 0;
70 }
71
72 /* Save user chosen LSM */
73 static int __init choose_lsm(char *str)
74 {
75         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
76         return 1;
77 }
78 __setup("security=", choose_lsm);
79
80 /**
81  * security_module_enable - Load given security module on boot ?
82  * @ops: a pointer to the struct security_operations that is to be checked.
83  *
84  * Each LSM must pass this method before registering its own operations
85  * to avoid security registration races. This method may also be used
86  * to check if your LSM is currently loaded during kernel initialization.
87  *
88  * Return true if:
89  *      -The passed LSM is the one chosen by user at boot time,
90  *      -or user didsn't specify a specific LSM and we're the first to ask
91  *       for registeration permissoin,
92  *      -or the passed LSM is currently loaded.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97         if (!*chosen_lsm)
98                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
99         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
100                 return 0;
101
102         return 1;
103 }
104
105 /**
106  * register_security - registers a security framework with the kernel
107  * @ops: a pointer to the struct security_options that is to be registered
108  *
109  * This function is to allow a security module to register itself with the
110  * kernel security subsystem.  Some rudimentary checking is done on the @ops
111  * value passed to this function. You'll need to check first if your LSM
112  * is allowed to register its @ops by calling security_module_enable(@ops).
113  *
114  * If there is already a security module registered with the kernel,
115  * an error will be returned.  Otherwise 0 is returned on success.
116  */
117 int register_security(struct security_operations *ops)
118 {
119         if (verify(ops)) {
120                 printk(KERN_DEBUG "%s could not verify "
121                        "security_operations structure.\n", __func__);
122                 return -EINVAL;
123         }
124
125         if (security_ops != &dummy_security_ops)
126                 return -EAGAIN;
127
128         security_ops = ops;
129
130         return 0;
131 }
132
133 /**
134  * mod_reg_security - allows security modules to be "stacked"
135  * @name: a pointer to a string with the name of the security_options to be registered
136  * @ops: a pointer to the struct security_options that is to be registered
137  *
138  * This function allows security modules to be stacked if the currently loaded
139  * security module allows this to happen.  It passes the @name and @ops to the
140  * register_security function of the currently loaded security module.
141  *
142  * The return value depends on the currently loaded security module, with 0 as
143  * success.
144  */
145 int mod_reg_security(const char *name, struct security_operations *ops)
146 {
147         if (verify(ops)) {
148                 printk(KERN_INFO "%s could not verify "
149                        "security operations.\n", __func__);
150                 return -EINVAL;
151         }
152
153         if (ops == security_ops) {
154                 printk(KERN_INFO "%s security operations "
155                        "already registered.\n", __func__);
156                 return -EINVAL;
157         }
158
159         return security_ops->register_security(name, ops);
160 }
161
162 /* Security operations */
163
164 int security_ptrace(struct task_struct *parent, struct task_struct *child)
165 {
166         return security_ops->ptrace(parent, child);
167 }
168
169 int security_capget(struct task_struct *target,
170                      kernel_cap_t *effective,
171                      kernel_cap_t *inheritable,
172                      kernel_cap_t *permitted)
173 {
174         return security_ops->capget(target, effective, inheritable, permitted);
175 }
176
177 int security_capset_check(struct task_struct *target,
178                            kernel_cap_t *effective,
179                            kernel_cap_t *inheritable,
180                            kernel_cap_t *permitted)
181 {
182         return security_ops->capset_check(target, effective, inheritable, permitted);
183 }
184
185 void security_capset_set(struct task_struct *target,
186                           kernel_cap_t *effective,
187                           kernel_cap_t *inheritable,
188                           kernel_cap_t *permitted)
189 {
190         security_ops->capset_set(target, effective, inheritable, permitted);
191 }
192
193 int security_capable(struct task_struct *tsk, int cap)
194 {
195         return security_ops->capable(tsk, cap);
196 }
197
198 int security_acct(struct file *file)
199 {
200         return security_ops->acct(file);
201 }
202
203 int security_sysctl(struct ctl_table *table, int op)
204 {
205         return security_ops->sysctl(table, op);
206 }
207
208 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
209 {
210         return security_ops->quotactl(cmds, type, id, sb);
211 }
212
213 int security_quota_on(struct dentry *dentry)
214 {
215         return security_ops->quota_on(dentry);
216 }
217
218 int security_syslog(int type)
219 {
220         return security_ops->syslog(type);
221 }
222
223 int security_settime(struct timespec *ts, struct timezone *tz)
224 {
225         return security_ops->settime(ts, tz);
226 }
227
228 int security_vm_enough_memory(long pages)
229 {
230         return security_ops->vm_enough_memory(current->mm, pages);
231 }
232
233 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
234 {
235         return security_ops->vm_enough_memory(mm, pages);
236 }
237
238 int security_bprm_alloc(struct linux_binprm *bprm)
239 {
240         return security_ops->bprm_alloc_security(bprm);
241 }
242
243 void security_bprm_free(struct linux_binprm *bprm)
244 {
245         security_ops->bprm_free_security(bprm);
246 }
247
248 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
249 {
250         security_ops->bprm_apply_creds(bprm, unsafe);
251 }
252
253 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
254 {
255         security_ops->bprm_post_apply_creds(bprm);
256 }
257
258 int security_bprm_set(struct linux_binprm *bprm)
259 {
260         return security_ops->bprm_set_security(bprm);
261 }
262
263 int security_bprm_check(struct linux_binprm *bprm)
264 {
265         return security_ops->bprm_check_security(bprm);
266 }
267
268 int security_bprm_secureexec(struct linux_binprm *bprm)
269 {
270         return security_ops->bprm_secureexec(bprm);
271 }
272
273 int security_sb_alloc(struct super_block *sb)
274 {
275         return security_ops->sb_alloc_security(sb);
276 }
277
278 void security_sb_free(struct super_block *sb)
279 {
280         security_ops->sb_free_security(sb);
281 }
282
283 int security_sb_copy_data(char *orig, char *copy)
284 {
285         return security_ops->sb_copy_data(orig, copy);
286 }
287 EXPORT_SYMBOL(security_sb_copy_data);
288
289 int security_sb_kern_mount(struct super_block *sb, void *data)
290 {
291         return security_ops->sb_kern_mount(sb, data);
292 }
293
294 int security_sb_statfs(struct dentry *dentry)
295 {
296         return security_ops->sb_statfs(dentry);
297 }
298
299 int security_sb_mount(char *dev_name, struct path *path,
300                        char *type, unsigned long flags, void *data)
301 {
302         return security_ops->sb_mount(dev_name, path, type, flags, data);
303 }
304
305 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
306 {
307         return security_ops->sb_check_sb(mnt, path);
308 }
309
310 int security_sb_umount(struct vfsmount *mnt, int flags)
311 {
312         return security_ops->sb_umount(mnt, flags);
313 }
314
315 void security_sb_umount_close(struct vfsmount *mnt)
316 {
317         security_ops->sb_umount_close(mnt);
318 }
319
320 void security_sb_umount_busy(struct vfsmount *mnt)
321 {
322         security_ops->sb_umount_busy(mnt);
323 }
324
325 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
326 {
327         security_ops->sb_post_remount(mnt, flags, data);
328 }
329
330 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
331 {
332         security_ops->sb_post_addmount(mnt, mountpoint);
333 }
334
335 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
336 {
337         return security_ops->sb_pivotroot(old_path, new_path);
338 }
339
340 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
341 {
342         security_ops->sb_post_pivotroot(old_path, new_path);
343 }
344
345 int security_sb_get_mnt_opts(const struct super_block *sb,
346                                 struct security_mnt_opts *opts)
347 {
348         return security_ops->sb_get_mnt_opts(sb, opts);
349 }
350
351 int security_sb_set_mnt_opts(struct super_block *sb,
352                                 struct security_mnt_opts *opts)
353 {
354         return security_ops->sb_set_mnt_opts(sb, opts);
355 }
356 EXPORT_SYMBOL(security_sb_set_mnt_opts);
357
358 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
359                                 struct super_block *newsb)
360 {
361         security_ops->sb_clone_mnt_opts(oldsb, newsb);
362 }
363 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
364
365 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
366 {
367         return security_ops->sb_parse_opts_str(options, opts);
368 }
369 EXPORT_SYMBOL(security_sb_parse_opts_str);
370
371 int security_inode_alloc(struct inode *inode)
372 {
373         inode->i_security = NULL;
374         return security_ops->inode_alloc_security(inode);
375 }
376
377 void security_inode_free(struct inode *inode)
378 {
379         security_ops->inode_free_security(inode);
380 }
381
382 int security_inode_init_security(struct inode *inode, struct inode *dir,
383                                   char **name, void **value, size_t *len)
384 {
385         if (unlikely(IS_PRIVATE(inode)))
386                 return -EOPNOTSUPP;
387         return security_ops->inode_init_security(inode, dir, name, value, len);
388 }
389 EXPORT_SYMBOL(security_inode_init_security);
390
391 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
392 {
393         if (unlikely(IS_PRIVATE(dir)))
394                 return 0;
395         return security_ops->inode_create(dir, dentry, mode);
396 }
397
398 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
399                          struct dentry *new_dentry)
400 {
401         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
402                 return 0;
403         return security_ops->inode_link(old_dentry, dir, new_dentry);
404 }
405
406 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
407 {
408         if (unlikely(IS_PRIVATE(dentry->d_inode)))
409                 return 0;
410         return security_ops->inode_unlink(dir, dentry);
411 }
412
413 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
414                             const char *old_name)
415 {
416         if (unlikely(IS_PRIVATE(dir)))
417                 return 0;
418         return security_ops->inode_symlink(dir, dentry, old_name);
419 }
420
421 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
422 {
423         if (unlikely(IS_PRIVATE(dir)))
424                 return 0;
425         return security_ops->inode_mkdir(dir, dentry, mode);
426 }
427
428 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
429 {
430         if (unlikely(IS_PRIVATE(dentry->d_inode)))
431                 return 0;
432         return security_ops->inode_rmdir(dir, dentry);
433 }
434
435 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
436 {
437         if (unlikely(IS_PRIVATE(dir)))
438                 return 0;
439         return security_ops->inode_mknod(dir, dentry, mode, dev);
440 }
441
442 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
443                            struct inode *new_dir, struct dentry *new_dentry)
444 {
445         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
446             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
447                 return 0;
448         return security_ops->inode_rename(old_dir, old_dentry,
449                                            new_dir, new_dentry);
450 }
451
452 int security_inode_readlink(struct dentry *dentry)
453 {
454         if (unlikely(IS_PRIVATE(dentry->d_inode)))
455                 return 0;
456         return security_ops->inode_readlink(dentry);
457 }
458
459 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
460 {
461         if (unlikely(IS_PRIVATE(dentry->d_inode)))
462                 return 0;
463         return security_ops->inode_follow_link(dentry, nd);
464 }
465
466 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
467 {
468         if (unlikely(IS_PRIVATE(inode)))
469                 return 0;
470         return security_ops->inode_permission(inode, mask, nd);
471 }
472
473 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
474 {
475         if (unlikely(IS_PRIVATE(dentry->d_inode)))
476                 return 0;
477         return security_ops->inode_setattr(dentry, attr);
478 }
479
480 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
481 {
482         if (unlikely(IS_PRIVATE(dentry->d_inode)))
483                 return 0;
484         return security_ops->inode_getattr(mnt, dentry);
485 }
486
487 void security_inode_delete(struct inode *inode)
488 {
489         if (unlikely(IS_PRIVATE(inode)))
490                 return;
491         security_ops->inode_delete(inode);
492 }
493
494 int security_inode_setxattr(struct dentry *dentry, const char *name,
495                             const void *value, size_t size, int flags)
496 {
497         if (unlikely(IS_PRIVATE(dentry->d_inode)))
498                 return 0;
499         return security_ops->inode_setxattr(dentry, name, value, size, flags);
500 }
501
502 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
503                                   const void *value, size_t size, int flags)
504 {
505         if (unlikely(IS_PRIVATE(dentry->d_inode)))
506                 return;
507         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
508 }
509
510 int security_inode_getxattr(struct dentry *dentry, const char *name)
511 {
512         if (unlikely(IS_PRIVATE(dentry->d_inode)))
513                 return 0;
514         return security_ops->inode_getxattr(dentry, name);
515 }
516
517 int security_inode_listxattr(struct dentry *dentry)
518 {
519         if (unlikely(IS_PRIVATE(dentry->d_inode)))
520                 return 0;
521         return security_ops->inode_listxattr(dentry);
522 }
523
524 int security_inode_removexattr(struct dentry *dentry, const char *name)
525 {
526         if (unlikely(IS_PRIVATE(dentry->d_inode)))
527                 return 0;
528         return security_ops->inode_removexattr(dentry, name);
529 }
530
531 int security_inode_need_killpriv(struct dentry *dentry)
532 {
533         return security_ops->inode_need_killpriv(dentry);
534 }
535
536 int security_inode_killpriv(struct dentry *dentry)
537 {
538         return security_ops->inode_killpriv(dentry);
539 }
540
541 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
542 {
543         if (unlikely(IS_PRIVATE(inode)))
544                 return 0;
545         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
546 }
547
548 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
549 {
550         if (unlikely(IS_PRIVATE(inode)))
551                 return 0;
552         return security_ops->inode_setsecurity(inode, name, value, size, flags);
553 }
554
555 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
556 {
557         if (unlikely(IS_PRIVATE(inode)))
558                 return 0;
559         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
560 }
561
562 void security_inode_getsecid(const struct inode *inode, u32 *secid)
563 {
564         security_ops->inode_getsecid(inode, secid);
565 }
566
567 int security_file_permission(struct file *file, int mask)
568 {
569         return security_ops->file_permission(file, mask);
570 }
571
572 int security_file_alloc(struct file *file)
573 {
574         return security_ops->file_alloc_security(file);
575 }
576
577 void security_file_free(struct file *file)
578 {
579         security_ops->file_free_security(file);
580 }
581
582 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
583 {
584         return security_ops->file_ioctl(file, cmd, arg);
585 }
586
587 int security_file_mmap(struct file *file, unsigned long reqprot,
588                         unsigned long prot, unsigned long flags,
589                         unsigned long addr, unsigned long addr_only)
590 {
591         return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
592 }
593
594 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
595                             unsigned long prot)
596 {
597         return security_ops->file_mprotect(vma, reqprot, prot);
598 }
599
600 int security_file_lock(struct file *file, unsigned int cmd)
601 {
602         return security_ops->file_lock(file, cmd);
603 }
604
605 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
606 {
607         return security_ops->file_fcntl(file, cmd, arg);
608 }
609
610 int security_file_set_fowner(struct file *file)
611 {
612         return security_ops->file_set_fowner(file);
613 }
614
615 int security_file_send_sigiotask(struct task_struct *tsk,
616                                   struct fown_struct *fown, int sig)
617 {
618         return security_ops->file_send_sigiotask(tsk, fown, sig);
619 }
620
621 int security_file_receive(struct file *file)
622 {
623         return security_ops->file_receive(file);
624 }
625
626 int security_dentry_open(struct file *file)
627 {
628         return security_ops->dentry_open(file);
629 }
630
631 int security_task_create(unsigned long clone_flags)
632 {
633         return security_ops->task_create(clone_flags);
634 }
635
636 int security_task_alloc(struct task_struct *p)
637 {
638         return security_ops->task_alloc_security(p);
639 }
640
641 void security_task_free(struct task_struct *p)
642 {
643         security_ops->task_free_security(p);
644 }
645
646 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
647 {
648         return security_ops->task_setuid(id0, id1, id2, flags);
649 }
650
651 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
652                                uid_t old_suid, int flags)
653 {
654         return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
655 }
656
657 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
658 {
659         return security_ops->task_setgid(id0, id1, id2, flags);
660 }
661
662 int security_task_setpgid(struct task_struct *p, pid_t pgid)
663 {
664         return security_ops->task_setpgid(p, pgid);
665 }
666
667 int security_task_getpgid(struct task_struct *p)
668 {
669         return security_ops->task_getpgid(p);
670 }
671
672 int security_task_getsid(struct task_struct *p)
673 {
674         return security_ops->task_getsid(p);
675 }
676
677 void security_task_getsecid(struct task_struct *p, u32 *secid)
678 {
679         security_ops->task_getsecid(p, secid);
680 }
681 EXPORT_SYMBOL(security_task_getsecid);
682
683 int security_task_setgroups(struct group_info *group_info)
684 {
685         return security_ops->task_setgroups(group_info);
686 }
687
688 int security_task_setnice(struct task_struct *p, int nice)
689 {
690         return security_ops->task_setnice(p, nice);
691 }
692
693 int security_task_setioprio(struct task_struct *p, int ioprio)
694 {
695         return security_ops->task_setioprio(p, ioprio);
696 }
697
698 int security_task_getioprio(struct task_struct *p)
699 {
700         return security_ops->task_getioprio(p);
701 }
702
703 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
704 {
705         return security_ops->task_setrlimit(resource, new_rlim);
706 }
707
708 int security_task_setscheduler(struct task_struct *p,
709                                 int policy, struct sched_param *lp)
710 {
711         return security_ops->task_setscheduler(p, policy, lp);
712 }
713
714 int security_task_getscheduler(struct task_struct *p)
715 {
716         return security_ops->task_getscheduler(p);
717 }
718
719 int security_task_movememory(struct task_struct *p)
720 {
721         return security_ops->task_movememory(p);
722 }
723
724 int security_task_kill(struct task_struct *p, struct siginfo *info,
725                         int sig, u32 secid)
726 {
727         return security_ops->task_kill(p, info, sig, secid);
728 }
729
730 int security_task_wait(struct task_struct *p)
731 {
732         return security_ops->task_wait(p);
733 }
734
735 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
736                          unsigned long arg4, unsigned long arg5, long *rc_p)
737 {
738         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
739 }
740
741 void security_task_reparent_to_init(struct task_struct *p)
742 {
743         security_ops->task_reparent_to_init(p);
744 }
745
746 void security_task_to_inode(struct task_struct *p, struct inode *inode)
747 {
748         security_ops->task_to_inode(p, inode);
749 }
750
751 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
752 {
753         return security_ops->ipc_permission(ipcp, flag);
754 }
755
756 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
757 {
758         security_ops->ipc_getsecid(ipcp, secid);
759 }
760
761 int security_msg_msg_alloc(struct msg_msg *msg)
762 {
763         return security_ops->msg_msg_alloc_security(msg);
764 }
765
766 void security_msg_msg_free(struct msg_msg *msg)
767 {
768         security_ops->msg_msg_free_security(msg);
769 }
770
771 int security_msg_queue_alloc(struct msg_queue *msq)
772 {
773         return security_ops->msg_queue_alloc_security(msq);
774 }
775
776 void security_msg_queue_free(struct msg_queue *msq)
777 {
778         security_ops->msg_queue_free_security(msq);
779 }
780
781 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
782 {
783         return security_ops->msg_queue_associate(msq, msqflg);
784 }
785
786 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
787 {
788         return security_ops->msg_queue_msgctl(msq, cmd);
789 }
790
791 int security_msg_queue_msgsnd(struct msg_queue *msq,
792                                struct msg_msg *msg, int msqflg)
793 {
794         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
795 }
796
797 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
798                                struct task_struct *target, long type, int mode)
799 {
800         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
801 }
802
803 int security_shm_alloc(struct shmid_kernel *shp)
804 {
805         return security_ops->shm_alloc_security(shp);
806 }
807
808 void security_shm_free(struct shmid_kernel *shp)
809 {
810         security_ops->shm_free_security(shp);
811 }
812
813 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
814 {
815         return security_ops->shm_associate(shp, shmflg);
816 }
817
818 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
819 {
820         return security_ops->shm_shmctl(shp, cmd);
821 }
822
823 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
824 {
825         return security_ops->shm_shmat(shp, shmaddr, shmflg);
826 }
827
828 int security_sem_alloc(struct sem_array *sma)
829 {
830         return security_ops->sem_alloc_security(sma);
831 }
832
833 void security_sem_free(struct sem_array *sma)
834 {
835         security_ops->sem_free_security(sma);
836 }
837
838 int security_sem_associate(struct sem_array *sma, int semflg)
839 {
840         return security_ops->sem_associate(sma, semflg);
841 }
842
843 int security_sem_semctl(struct sem_array *sma, int cmd)
844 {
845         return security_ops->sem_semctl(sma, cmd);
846 }
847
848 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
849                         unsigned nsops, int alter)
850 {
851         return security_ops->sem_semop(sma, sops, nsops, alter);
852 }
853
854 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
855 {
856         if (unlikely(inode && IS_PRIVATE(inode)))
857                 return;
858         security_ops->d_instantiate(dentry, inode);
859 }
860 EXPORT_SYMBOL(security_d_instantiate);
861
862 int security_getprocattr(struct task_struct *p, char *name, char **value)
863 {
864         return security_ops->getprocattr(p, name, value);
865 }
866
867 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
868 {
869         return security_ops->setprocattr(p, name, value, size);
870 }
871
872 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
873 {
874         return security_ops->netlink_send(sk, skb);
875 }
876
877 int security_netlink_recv(struct sk_buff *skb, int cap)
878 {
879         return security_ops->netlink_recv(skb, cap);
880 }
881 EXPORT_SYMBOL(security_netlink_recv);
882
883 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
884 {
885         return security_ops->secid_to_secctx(secid, secdata, seclen);
886 }
887 EXPORT_SYMBOL(security_secid_to_secctx);
888
889 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
890 {
891         return security_ops->secctx_to_secid(secdata, seclen, secid);
892 }
893 EXPORT_SYMBOL(security_secctx_to_secid);
894
895 void security_release_secctx(char *secdata, u32 seclen)
896 {
897         return security_ops->release_secctx(secdata, seclen);
898 }
899 EXPORT_SYMBOL(security_release_secctx);
900
901 #ifdef CONFIG_SECURITY_NETWORK
902
903 int security_unix_stream_connect(struct socket *sock, struct socket *other,
904                                  struct sock *newsk)
905 {
906         return security_ops->unix_stream_connect(sock, other, newsk);
907 }
908 EXPORT_SYMBOL(security_unix_stream_connect);
909
910 int security_unix_may_send(struct socket *sock,  struct socket *other)
911 {
912         return security_ops->unix_may_send(sock, other);
913 }
914 EXPORT_SYMBOL(security_unix_may_send);
915
916 int security_socket_create(int family, int type, int protocol, int kern)
917 {
918         return security_ops->socket_create(family, type, protocol, kern);
919 }
920
921 int security_socket_post_create(struct socket *sock, int family,
922                                 int type, int protocol, int kern)
923 {
924         return security_ops->socket_post_create(sock, family, type,
925                                                 protocol, kern);
926 }
927
928 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
929 {
930         return security_ops->socket_bind(sock, address, addrlen);
931 }
932
933 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
934 {
935         return security_ops->socket_connect(sock, address, addrlen);
936 }
937
938 int security_socket_listen(struct socket *sock, int backlog)
939 {
940         return security_ops->socket_listen(sock, backlog);
941 }
942
943 int security_socket_accept(struct socket *sock, struct socket *newsock)
944 {
945         return security_ops->socket_accept(sock, newsock);
946 }
947
948 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
949 {
950         security_ops->socket_post_accept(sock, newsock);
951 }
952
953 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
954 {
955         return security_ops->socket_sendmsg(sock, msg, size);
956 }
957
958 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
959                             int size, int flags)
960 {
961         return security_ops->socket_recvmsg(sock, msg, size, flags);
962 }
963
964 int security_socket_getsockname(struct socket *sock)
965 {
966         return security_ops->socket_getsockname(sock);
967 }
968
969 int security_socket_getpeername(struct socket *sock)
970 {
971         return security_ops->socket_getpeername(sock);
972 }
973
974 int security_socket_getsockopt(struct socket *sock, int level, int optname)
975 {
976         return security_ops->socket_getsockopt(sock, level, optname);
977 }
978
979 int security_socket_setsockopt(struct socket *sock, int level, int optname)
980 {
981         return security_ops->socket_setsockopt(sock, level, optname);
982 }
983
984 int security_socket_shutdown(struct socket *sock, int how)
985 {
986         return security_ops->socket_shutdown(sock, how);
987 }
988
989 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
990 {
991         return security_ops->socket_sock_rcv_skb(sk, skb);
992 }
993 EXPORT_SYMBOL(security_sock_rcv_skb);
994
995 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
996                                       int __user *optlen, unsigned len)
997 {
998         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
999 }
1000
1001 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1002 {
1003         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1004 }
1005 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1006
1007 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1008 {
1009         return security_ops->sk_alloc_security(sk, family, priority);
1010 }
1011
1012 void security_sk_free(struct sock *sk)
1013 {
1014         return security_ops->sk_free_security(sk);
1015 }
1016
1017 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1018 {
1019         return security_ops->sk_clone_security(sk, newsk);
1020 }
1021
1022 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1023 {
1024         security_ops->sk_getsecid(sk, &fl->secid);
1025 }
1026 EXPORT_SYMBOL(security_sk_classify_flow);
1027
1028 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1029 {
1030         security_ops->req_classify_flow(req, fl);
1031 }
1032 EXPORT_SYMBOL(security_req_classify_flow);
1033
1034 void security_sock_graft(struct sock *sk, struct socket *parent)
1035 {
1036         security_ops->sock_graft(sk, parent);
1037 }
1038 EXPORT_SYMBOL(security_sock_graft);
1039
1040 int security_inet_conn_request(struct sock *sk,
1041                         struct sk_buff *skb, struct request_sock *req)
1042 {
1043         return security_ops->inet_conn_request(sk, skb, req);
1044 }
1045 EXPORT_SYMBOL(security_inet_conn_request);
1046
1047 void security_inet_csk_clone(struct sock *newsk,
1048                         const struct request_sock *req)
1049 {
1050         security_ops->inet_csk_clone(newsk, req);
1051 }
1052
1053 void security_inet_conn_established(struct sock *sk,
1054                         struct sk_buff *skb)
1055 {
1056         security_ops->inet_conn_established(sk, skb);
1057 }
1058
1059 #endif  /* CONFIG_SECURITY_NETWORK */
1060
1061 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1062
1063 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1064 {
1065         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1066 }
1067 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1068
1069 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1070                               struct xfrm_sec_ctx **new_ctxp)
1071 {
1072         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1073 }
1074
1075 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1076 {
1077         security_ops->xfrm_policy_free_security(ctx);
1078 }
1079 EXPORT_SYMBOL(security_xfrm_policy_free);
1080
1081 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1082 {
1083         return security_ops->xfrm_policy_delete_security(ctx);
1084 }
1085
1086 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1087 {
1088         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1089 }
1090 EXPORT_SYMBOL(security_xfrm_state_alloc);
1091
1092 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1093                                       struct xfrm_sec_ctx *polsec, u32 secid)
1094 {
1095         if (!polsec)
1096                 return 0;
1097         /*
1098          * We want the context to be taken from secid which is usually
1099          * from the sock.
1100          */
1101         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1102 }
1103
1104 int security_xfrm_state_delete(struct xfrm_state *x)
1105 {
1106         return security_ops->xfrm_state_delete_security(x);
1107 }
1108 EXPORT_SYMBOL(security_xfrm_state_delete);
1109
1110 void security_xfrm_state_free(struct xfrm_state *x)
1111 {
1112         security_ops->xfrm_state_free_security(x);
1113 }
1114
1115 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1116 {
1117         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1118 }
1119
1120 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1121                                        struct xfrm_policy *xp, struct flowi *fl)
1122 {
1123         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1124 }
1125
1126 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1127 {
1128         return security_ops->xfrm_decode_session(skb, secid, 1);
1129 }
1130
1131 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1132 {
1133         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1134
1135         BUG_ON(rc);
1136 }
1137 EXPORT_SYMBOL(security_skb_classify_flow);
1138
1139 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1140
1141 #ifdef CONFIG_KEYS
1142
1143 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1144 {
1145         return security_ops->key_alloc(key, tsk, flags);
1146 }
1147
1148 void security_key_free(struct key *key)
1149 {
1150         security_ops->key_free(key);
1151 }
1152
1153 int security_key_permission(key_ref_t key_ref,
1154                             struct task_struct *context, key_perm_t perm)
1155 {
1156         return security_ops->key_permission(key_ref, context, perm);
1157 }
1158
1159 int security_key_getsecurity(struct key *key, char **_buffer)
1160 {
1161         return security_ops->key_getsecurity(key, _buffer);
1162 }
1163
1164 #endif  /* CONFIG_KEYS */
1165
1166 #ifdef CONFIG_AUDIT
1167
1168 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1169 {
1170         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1171 }
1172
1173 int security_audit_rule_known(struct audit_krule *krule)
1174 {
1175         return security_ops->audit_rule_known(krule);
1176 }
1177
1178 void security_audit_rule_free(void *lsmrule)
1179 {
1180         security_ops->audit_rule_free(lsmrule);
1181 }
1182
1183 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1184                               struct audit_context *actx)
1185 {
1186         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1187 }
1188
1189 #endif /* CONFIG_AUDIT */