1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
148 #include <linux/module.h>
149 #include <linux/moduleparam.h>
150 #include <linux/kernel.h>
151 #include <linux/types.h>
152 #include <linux/slab.h>
153 #include <linux/delay.h>
154 #include <linux/init.h>
155 #include <linux/pci.h>
156 #include <linux/dma-mapping.h>
157 #include <linux/netdevice.h>
158 #include <linux/etherdevice.h>
159 #include <linux/mii.h>
160 #include <linux/if_vlan.h>
161 #include <linux/skbuff.h>
162 #include <linux/ethtool.h>
163 #include <linux/string.h>
164 #include <asm/unaligned.h>
167 #define DRV_NAME "e100"
168 #define DRV_EXT "-NAPI"
169 #define DRV_VERSION "3.5.23-k6"DRV_EXT
170 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
171 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
172 #define PFX DRV_NAME ": "
174 #define E100_WATCHDOG_PERIOD (2 * HZ)
175 #define E100_NAPI_WEIGHT 16
177 MODULE_DESCRIPTION(DRV_DESCRIPTION);
178 MODULE_AUTHOR(DRV_COPYRIGHT);
179 MODULE_LICENSE("GPL");
180 MODULE_VERSION(DRV_VERSION);
182 static int debug = 3;
183 static int eeprom_bad_csum_allow = 0;
184 static int use_io = 0;
185 module_param(debug, int, 0);
186 module_param(eeprom_bad_csum_allow, int, 0);
187 module_param(use_io, int, 0);
188 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
189 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
190 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
191 #define DPRINTK(nlevel, klevel, fmt, args...) \
192 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
193 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
196 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
197 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
198 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
199 static struct pci_device_id e100_id_table[] = {
200 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
201 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
202 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
203 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
204 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
205 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
206 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
207 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
208 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
209 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
210 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
211 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
212 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
213 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
214 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
215 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
216 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
217 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
218 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
219 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
220 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
221 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
222 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
223 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
224 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
225 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
226 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
227 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
228 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
229 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
230 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
231 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
232 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
233 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
234 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
235 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
236 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
237 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
238 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
239 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
240 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
243 MODULE_DEVICE_TABLE(pci, e100_id_table);
246 mac_82557_D100_A = 0,
247 mac_82557_D100_B = 1,
248 mac_82557_D100_C = 2,
249 mac_82558_D101_A4 = 4,
250 mac_82558_D101_B0 = 5,
254 mac_82550_D102_C = 13,
262 phy_100a = 0x000003E0,
263 phy_100c = 0x035002A8,
264 phy_82555_tx = 0x015002A8,
265 phy_nsc_tx = 0x5C002000,
266 phy_82562_et = 0x033002A8,
267 phy_82562_em = 0x032002A8,
268 phy_82562_ek = 0x031002A8,
269 phy_82562_eh = 0x017002A8,
270 phy_unknown = 0xFFFFFFFF,
273 /* CSR (Control/Status Registers) */
299 RU_UNINITIALIZED = -1,
303 stat_ack_not_ours = 0x00,
304 stat_ack_sw_gen = 0x04,
306 stat_ack_cu_idle = 0x20,
307 stat_ack_frame_rx = 0x40,
308 stat_ack_cu_cmd_done = 0x80,
309 stat_ack_not_present = 0xFF,
310 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
311 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
315 irq_mask_none = 0x00,
323 ruc_load_base = 0x06,
326 cuc_dump_addr = 0x40,
327 cuc_dump_stats = 0x50,
328 cuc_load_base = 0x60,
329 cuc_dump_reset = 0x70,
333 cuc_dump_complete = 0x0000A005,
334 cuc_dump_reset_complete = 0x0000A007,
338 software_reset = 0x0000,
340 selective_reset = 0x0002,
343 enum eeprom_ctrl_lo {
351 mdi_write = 0x04000000,
352 mdi_read = 0x08000000,
353 mdi_ready = 0x10000000,
363 enum eeprom_offsets {
364 eeprom_cnfg_mdix = 0x03,
366 eeprom_config_asf = 0x0D,
367 eeprom_smbus_addr = 0x90,
370 enum eeprom_cnfg_mdix {
371 eeprom_mdix_enabled = 0x0080,
375 eeprom_id_wol = 0x0020,
378 enum eeprom_config_asf {
384 cb_complete = 0x8000,
413 struct rx *next, *prev;
418 #if defined(__BIG_ENDIAN_BITFIELD)
424 /*0*/ u8 X(byte_count:6, pad0:2);
425 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
426 /*2*/ u8 adaptive_ifs;
427 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
428 term_write_cache_line:1), pad3:4);
429 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
430 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
431 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
432 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
433 rx_discard_overruns:1), rx_save_bad_frames:1);
434 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
435 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
437 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
438 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
439 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
440 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
442 /*11*/ u8 X(linear_priority:3, pad11:5);
443 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
444 /*13*/ u8 ip_addr_lo;
445 /*14*/ u8 ip_addr_hi;
446 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
447 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
448 pad15_2:1), crs_or_cdt:1);
449 /*16*/ u8 fc_delay_lo;
450 /*17*/ u8 fc_delay_hi;
451 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
452 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
453 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
454 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
455 full_duplex_force:1), full_duplex_pin:1);
456 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
457 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
458 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
462 #define E100_MAX_MULTICAST_ADDRS 64
465 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
468 /* Important: keep total struct u32-aligned */
469 #define UCODE_SIZE 134
476 __le32 ucode[UCODE_SIZE];
477 struct config config;
490 __le32 dump_buffer_addr;
492 struct cb *next, *prev;
498 lb_none = 0, lb_mac = 1, lb_phy = 3,
502 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
503 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
504 tx_multiple_collisions, tx_total_collisions;
505 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
506 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
507 rx_short_frame_errors;
508 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
509 __le16 xmt_tco_frames, rcv_tco_frames;
529 struct param_range rfds;
530 struct param_range cbs;
534 /* Begin: frequently used values: keep adjacent for cache effect */
535 u32 msg_enable ____cacheline_aligned;
536 struct net_device *netdev;
537 struct pci_dev *pdev;
539 struct rx *rxs ____cacheline_aligned;
540 struct rx *rx_to_use;
541 struct rx *rx_to_clean;
542 struct rfd blank_rfd;
543 enum ru_state ru_running;
545 spinlock_t cb_lock ____cacheline_aligned;
547 struct csr __iomem *csr;
548 enum scb_cmd_lo cuc_cmd;
549 unsigned int cbs_avail;
550 struct napi_struct napi;
552 struct cb *cb_to_use;
553 struct cb *cb_to_send;
554 struct cb *cb_to_clean;
556 /* End: frequently used values: keep adjacent for cache effect */
560 promiscuous = (1 << 1),
561 multicast_all = (1 << 2),
562 wol_magic = (1 << 3),
563 ich_10h_workaround = (1 << 4),
564 } flags ____cacheline_aligned;
568 struct params params;
569 struct timer_list watchdog;
570 struct timer_list blink_timer;
571 struct mii_if_info mii;
572 struct work_struct tx_timeout_task;
573 enum loopback loopback;
578 dma_addr_t cbs_dma_addr;
584 u32 tx_single_collisions;
585 u32 tx_multiple_collisions;
590 u32 rx_fc_unsupported;
592 u32 rx_over_length_errors;
597 spinlock_t mdio_lock;
600 static inline void e100_write_flush(struct nic *nic)
602 /* Flush previous PCI writes through intermediate bridges
603 * by doing a benign read */
604 (void)ioread8(&nic->csr->scb.status);
607 static void e100_enable_irq(struct nic *nic)
611 spin_lock_irqsave(&nic->cmd_lock, flags);
612 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
613 e100_write_flush(nic);
614 spin_unlock_irqrestore(&nic->cmd_lock, flags);
617 static void e100_disable_irq(struct nic *nic)
621 spin_lock_irqsave(&nic->cmd_lock, flags);
622 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
623 e100_write_flush(nic);
624 spin_unlock_irqrestore(&nic->cmd_lock, flags);
627 static void e100_hw_reset(struct nic *nic)
629 /* Put CU and RU into idle with a selective reset to get
630 * device off of PCI bus */
631 iowrite32(selective_reset, &nic->csr->port);
632 e100_write_flush(nic); udelay(20);
634 /* Now fully reset device */
635 iowrite32(software_reset, &nic->csr->port);
636 e100_write_flush(nic); udelay(20);
638 /* Mask off our interrupt line - it's unmasked after reset */
639 e100_disable_irq(nic);
642 static int e100_self_test(struct nic *nic)
644 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
646 /* Passing the self-test is a pretty good indication
647 * that the device can DMA to/from host memory */
649 nic->mem->selftest.signature = 0;
650 nic->mem->selftest.result = 0xFFFFFFFF;
652 iowrite32(selftest | dma_addr, &nic->csr->port);
653 e100_write_flush(nic);
654 /* Wait 10 msec for self-test to complete */
657 /* Interrupts are enabled after self-test */
658 e100_disable_irq(nic);
660 /* Check results of self-test */
661 if(nic->mem->selftest.result != 0) {
662 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
663 nic->mem->selftest.result);
666 if(nic->mem->selftest.signature == 0) {
667 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
674 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
676 u32 cmd_addr_data[3];
680 /* Three cmds: write/erase enable, write data, write/erase disable */
681 cmd_addr_data[0] = op_ewen << (addr_len - 2);
682 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
684 cmd_addr_data[2] = op_ewds << (addr_len - 2);
686 /* Bit-bang cmds to write word to eeprom */
687 for(j = 0; j < 3; j++) {
690 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
691 e100_write_flush(nic); udelay(4);
693 for(i = 31; i >= 0; i--) {
694 ctrl = (cmd_addr_data[j] & (1 << i)) ?
696 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
697 e100_write_flush(nic); udelay(4);
699 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
700 e100_write_flush(nic); udelay(4);
702 /* Wait 10 msec for cmd to complete */
706 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
707 e100_write_flush(nic); udelay(4);
711 /* General technique stolen from the eepro100 driver - very clever */
712 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
719 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
722 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
723 e100_write_flush(nic); udelay(4);
725 /* Bit-bang to read word from eeprom */
726 for(i = 31; i >= 0; i--) {
727 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
728 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
729 e100_write_flush(nic); udelay(4);
731 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
732 e100_write_flush(nic); udelay(4);
734 /* Eeprom drives a dummy zero to EEDO after receiving
735 * complete address. Use this to adjust addr_len. */
736 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
737 if(!(ctrl & eedo) && i > 16) {
738 *addr_len -= (i - 16);
742 data = (data << 1) | (ctrl & eedo ? 1 : 0);
746 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
747 e100_write_flush(nic); udelay(4);
749 return cpu_to_le16(data);
752 /* Load entire EEPROM image into driver cache and validate checksum */
753 static int e100_eeprom_load(struct nic *nic)
755 u16 addr, addr_len = 8, checksum = 0;
757 /* Try reading with an 8-bit addr len to discover actual addr len */
758 e100_eeprom_read(nic, &addr_len, 0);
759 nic->eeprom_wc = 1 << addr_len;
761 for(addr = 0; addr < nic->eeprom_wc; addr++) {
762 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
763 if(addr < nic->eeprom_wc - 1)
764 checksum += le16_to_cpu(nic->eeprom[addr]);
767 /* The checksum, stored in the last word, is calculated such that
768 * the sum of words should be 0xBABA */
769 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
770 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
771 if (!eeprom_bad_csum_allow)
778 /* Save (portion of) driver EEPROM cache to device and update checksum */
779 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
781 u16 addr, addr_len = 8, checksum = 0;
783 /* Try reading with an 8-bit addr len to discover actual addr len */
784 e100_eeprom_read(nic, &addr_len, 0);
785 nic->eeprom_wc = 1 << addr_len;
787 if(start + count >= nic->eeprom_wc)
790 for(addr = start; addr < start + count; addr++)
791 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
793 /* The checksum, stored in the last word, is calculated such that
794 * the sum of words should be 0xBABA */
795 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
796 checksum += le16_to_cpu(nic->eeprom[addr]);
797 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
798 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
799 nic->eeprom[nic->eeprom_wc - 1]);
804 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
805 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
806 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
812 spin_lock_irqsave(&nic->cmd_lock, flags);
814 /* Previous command is accepted when SCB clears */
815 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
816 if(likely(!ioread8(&nic->csr->scb.cmd_lo)))
819 if(unlikely(i > E100_WAIT_SCB_FAST))
822 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
827 if(unlikely(cmd != cuc_resume))
828 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
829 iowrite8(cmd, &nic->csr->scb.cmd_lo);
832 spin_unlock_irqrestore(&nic->cmd_lock, flags);
837 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
838 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
844 spin_lock_irqsave(&nic->cb_lock, flags);
846 if(unlikely(!nic->cbs_avail)) {
852 nic->cb_to_use = cb->next;
856 if(unlikely(!nic->cbs_avail))
859 cb_prepare(nic, cb, skb);
861 /* Order is important otherwise we'll be in a race with h/w:
862 * set S-bit in current first, then clear S-bit in previous. */
863 cb->command |= cpu_to_le16(cb_s);
865 cb->prev->command &= cpu_to_le16(~cb_s);
867 while(nic->cb_to_send != nic->cb_to_use) {
868 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
869 nic->cb_to_send->dma_addr))) {
870 /* Ok, here's where things get sticky. It's
871 * possible that we can't schedule the command
872 * because the controller is too busy, so
873 * let's just queue the command and try again
874 * when another command is scheduled. */
877 schedule_work(&nic->tx_timeout_task);
881 nic->cuc_cmd = cuc_resume;
882 nic->cb_to_send = nic->cb_to_send->next;
887 spin_unlock_irqrestore(&nic->cb_lock, flags);
892 static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
900 * Stratus87247: we shouldn't be writing the MDI control
901 * register until the Ready bit shows True. Also, since
902 * manipulation of the MDI control registers is a multi-step
903 * procedure it should be done under lock.
905 spin_lock_irqsave(&nic->mdio_lock, flags);
906 for (i = 100; i; --i) {
907 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
912 printk("e100.mdio_ctrl(%s) won't go Ready\n",
914 spin_unlock_irqrestore(&nic->mdio_lock, flags);
915 return 0; /* No way to indicate timeout error */
917 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
919 for (i = 0; i < 100; i++) {
921 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
924 spin_unlock_irqrestore(&nic->mdio_lock, flags);
926 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
927 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
928 return (u16)data_out;
931 static int mdio_read(struct net_device *netdev, int addr, int reg)
933 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
936 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
938 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
941 static void e100_get_defaults(struct nic *nic)
943 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
944 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
946 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
947 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
948 if(nic->mac == mac_unknown)
949 nic->mac = mac_82557_D100_A;
951 nic->params.rfds = rfds;
952 nic->params.cbs = cbs;
954 /* Quadwords to DMA into FIFO before starting frame transmit */
955 nic->tx_threshold = 0xE0;
957 /* no interrupt for every tx completion, delay = 256us if not 557 */
958 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
959 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
961 /* Template for a freshly allocated RFD */
962 nic->blank_rfd.command = 0;
963 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
964 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
967 nic->mii.phy_id_mask = 0x1F;
968 nic->mii.reg_num_mask = 0x1F;
969 nic->mii.dev = nic->netdev;
970 nic->mii.mdio_read = mdio_read;
971 nic->mii.mdio_write = mdio_write;
974 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
976 struct config *config = &cb->u.config;
977 u8 *c = (u8 *)config;
979 cb->command = cpu_to_le16(cb_config);
981 memset(config, 0, sizeof(struct config));
983 config->byte_count = 0x16; /* bytes in this struct */
984 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
985 config->direct_rx_dma = 0x1; /* reserved */
986 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
987 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
988 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
989 config->tx_underrun_retry = 0x3; /* # of underrun retries */
990 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
992 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
993 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
994 config->ifs = 0x6; /* x16 = inter frame spacing */
995 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
996 config->pad15_1 = 0x1;
997 config->pad15_2 = 0x1;
998 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
999 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1000 config->tx_padding = 0x1; /* 1=pad short frames */
1001 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1002 config->pad18 = 0x1;
1003 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1004 config->pad20_1 = 0x1F;
1005 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1006 config->pad21_1 = 0x5;
1008 config->adaptive_ifs = nic->adaptive_ifs;
1009 config->loopback = nic->loopback;
1011 if(nic->mii.force_media && nic->mii.full_duplex)
1012 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1014 if(nic->flags & promiscuous || nic->loopback) {
1015 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1016 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1017 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1020 if(nic->flags & multicast_all)
1021 config->multicast_all = 0x1; /* 1=accept, 0=no */
1023 /* disable WoL when up */
1024 if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
1025 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1027 if(nic->mac >= mac_82558_D101_A4) {
1028 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1029 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1030 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1031 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1032 if (nic->mac >= mac_82559_D101M) {
1033 config->tno_intr = 0x1; /* TCO stats enable */
1034 /* Enable TCO in extended config */
1035 if (nic->mac >= mac_82551_10) {
1036 config->byte_count = 0x20; /* extended bytes */
1037 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1040 config->standard_stat_counter = 0x0;
1044 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1045 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1046 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1047 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1048 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1049 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1052 /********************************************************/
1053 /* Micro code for 8086:1229 Rev 8 */
1054 /********************************************************/
1056 /* Parameter values for the D101M B-step */
1057 #define D101M_CPUSAVER_TIMER_DWORD 78
1058 #define D101M_CPUSAVER_BUNDLE_DWORD 65
1059 #define D101M_CPUSAVER_MIN_SIZE_DWORD 126
1061 #define D101M_B_RCVBUNDLE_UCODE \
1063 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
1064 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
1065 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
1066 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
1067 0x00380438, 0x00000000, 0x00140000, 0x00380555, \
1068 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \
1069 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1070 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1071 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
1072 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
1073 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1074 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
1075 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
1076 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
1077 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
1078 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \
1079 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
1080 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1081 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1082 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1083 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \
1084 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
1085 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
1086 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
1087 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
1088 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
1089 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
1090 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \
1091 0x00380559, 0x00000000, 0x00000000, 0x00000000, \
1092 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1093 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \
1094 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
1095 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1098 /********************************************************/
1099 /* Micro code for 8086:1229 Rev 9 */
1100 /********************************************************/
1102 /* Parameter values for the D101S */
1103 #define D101S_CPUSAVER_TIMER_DWORD 78
1104 #define D101S_CPUSAVER_BUNDLE_DWORD 67
1105 #define D101S_CPUSAVER_MIN_SIZE_DWORD 128
1107 #define D101S_RCVBUNDLE_UCODE \
1109 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
1110 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
1111 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
1112 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
1113 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
1114 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \
1115 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1116 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1117 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
1118 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
1119 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1120 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
1121 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \
1122 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
1123 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
1124 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
1125 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
1126 0x00101313, 0x00380700, 0x00000000, 0x00000000, \
1127 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1128 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1129 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
1130 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
1131 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
1132 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
1133 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
1134 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
1135 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
1136 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
1137 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
1138 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1139 0x00000000, 0x00000000, 0x00000000, 0x00130831, \
1140 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
1141 0x00041000, 0x00010004, 0x00380700 \
1144 /********************************************************/
1145 /* Micro code for the 8086:1229 Rev F/10 */
1146 /********************************************************/
1148 /* Parameter values for the D102 E-step */
1149 #define D102_E_CPUSAVER_TIMER_DWORD 42
1150 #define D102_E_CPUSAVER_BUNDLE_DWORD 54
1151 #define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
1153 #define D102_E_RCVBUNDLE_UCODE \
1155 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
1156 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
1157 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
1158 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
1159 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1160 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
1161 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1162 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1163 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1164 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
1165 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
1166 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
1167 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
1168 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
1169 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1170 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1171 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1172 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
1173 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
1174 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1175 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1176 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1177 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1178 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1179 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1180 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1181 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1182 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1183 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1184 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1185 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1186 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1187 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1190 static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1194 u32 ucode[UCODE_SIZE + 1];
1200 { D101M_B_RCVBUNDLE_UCODE,
1202 D101M_CPUSAVER_TIMER_DWORD,
1203 D101M_CPUSAVER_BUNDLE_DWORD,
1204 D101M_CPUSAVER_MIN_SIZE_DWORD },
1205 { D101S_RCVBUNDLE_UCODE,
1207 D101S_CPUSAVER_TIMER_DWORD,
1208 D101S_CPUSAVER_BUNDLE_DWORD,
1209 D101S_CPUSAVER_MIN_SIZE_DWORD },
1210 { D102_E_RCVBUNDLE_UCODE,
1212 D102_E_CPUSAVER_TIMER_DWORD,
1213 D102_E_CPUSAVER_BUNDLE_DWORD,
1214 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1215 { D102_E_RCVBUNDLE_UCODE,
1217 D102_E_CPUSAVER_TIMER_DWORD,
1218 D102_E_CPUSAVER_BUNDLE_DWORD,
1219 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1224 /*************************************************************************
1225 * CPUSaver parameters
1227 * All CPUSaver parameters are 16-bit literals that are part of a
1228 * "move immediate value" instruction. By changing the value of
1229 * the literal in the instruction before the code is loaded, the
1230 * driver can change the algorithm.
1232 * INTDELAY - This loads the dead-man timer with its initial value.
1233 * When this timer expires the interrupt is asserted, and the
1234 * timer is reset each time a new packet is received. (see
1235 * BUNDLEMAX below to set the limit on number of chained packets)
1236 * The current default is 0x600 or 1536. Experiments show that
1237 * the value should probably stay within the 0x200 - 0x1000.
1240 * This sets the maximum number of frames that will be bundled. In
1241 * some situations, such as the TCP windowing algorithm, it may be
1242 * better to limit the growth of the bundle size than let it go as
1243 * high as it can, because that could cause too much added latency.
1244 * The default is six, because this is the number of packets in the
1245 * default TCP window size. A value of 1 would make CPUSaver indicate
1246 * an interrupt for every frame received. If you do not want to put
1247 * a limit on the bundle size, set this value to xFFFF.
1250 * This contains a bit-mask describing the minimum size frame that
1251 * will be bundled. The default masks the lower 7 bits, which means
1252 * that any frame less than 128 bytes in length will not be bundled,
1253 * but will instead immediately generate an interrupt. This does
1254 * not affect the current bundle in any way. Any frame that is 128
1255 * bytes or large will be bundled normally. This feature is meant
1256 * to provide immediate indication of ACK frames in a TCP environment.
1257 * Customers were seeing poor performance when a machine with CPUSaver
1258 * enabled was sending but not receiving. The delay introduced when
1259 * the ACKs were received was enough to reduce total throughput, because
1260 * the sender would sit idle until the ACK was finally seen.
1262 * The current default is 0xFF80, which masks out the lower 7 bits.
1263 * This means that any frame which is x7F (127) bytes or smaller
1264 * will cause an immediate interrupt. Because this value must be a
1265 * bit mask, there are only a few valid values that can be used. To
1266 * turn this feature off, the driver can write the value xFFFF to the
1267 * lower word of this instruction (in the same way that the other
1268 * parameters are used). Likewise, a value of 0xF800 (2047) would
1269 * cause an interrupt to be generated for every frame, because all
1270 * standard Ethernet frames are <= 2047 bytes in length.
1271 *************************************************************************/
1273 /* if you wish to disable the ucode functionality, while maintaining the
1274 * workarounds it provides, set the following defines to:
1279 #define BUNDLESMALL 1
1280 #define BUNDLEMAX (u16)6
1281 #define INTDELAY (u16)1536 /* 0x600 */
1283 /* do not load u-code for ICH devices */
1284 if (nic->flags & ich)
1287 /* Search for ucode match against h/w revision */
1288 for (opts = ucode_opts; opts->mac; opts++) {
1290 u32 *ucode = opts->ucode;
1291 if (nic->mac != opts->mac)
1294 /* Insert user-tunable settings */
1295 ucode[opts->timer_dword] &= 0xFFFF0000;
1296 ucode[opts->timer_dword] |= INTDELAY;
1297 ucode[opts->bundle_dword] &= 0xFFFF0000;
1298 ucode[opts->bundle_dword] |= BUNDLEMAX;
1299 ucode[opts->min_size_dword] &= 0xFFFF0000;
1300 ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80;
1302 for (i = 0; i < UCODE_SIZE; i++)
1303 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
1304 cb->command = cpu_to_le16(cb_ucode | cb_el);
1309 cb->command = cpu_to_le16(cb_nop | cb_el);
1312 static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb,
1313 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
1315 int err = 0, counter = 50;
1316 struct cb *cb = nic->cb_to_clean;
1318 if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode)))
1319 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
1321 /* must restart cuc */
1322 nic->cuc_cmd = cuc_start;
1324 /* wait for completion */
1325 e100_write_flush(nic);
1328 /* wait for possibly (ouch) 500ms */
1329 while (!(cb->status & cpu_to_le16(cb_complete))) {
1331 if (!--counter) break;
1334 /* ack any interrupts, something could have been set */
1335 iowrite8(~0, &nic->csr->scb.stat_ack);
1337 /* if the command failed, or is not OK, notify and return */
1338 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1339 DPRINTK(PROBE,ERR, "ucode load failed\n");
1346 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1347 struct sk_buff *skb)
1349 cb->command = cpu_to_le16(cb_iaaddr);
1350 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1353 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1355 cb->command = cpu_to_le16(cb_dump);
1356 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1357 offsetof(struct mem, dump_buf));
1360 #define NCONFIG_AUTO_SWITCH 0x0080
1361 #define MII_NSC_CONG MII_RESV1
1362 #define NSC_CONG_ENABLE 0x0100
1363 #define NSC_CONG_TXREADY 0x0400
1364 #define ADVERTISE_FC_SUPPORTED 0x0400
1365 static int e100_phy_init(struct nic *nic)
1367 struct net_device *netdev = nic->netdev;
1369 u16 bmcr, stat, id_lo, id_hi, cong;
1371 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1372 for(addr = 0; addr < 32; addr++) {
1373 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1374 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1375 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1376 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1377 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1380 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1384 /* Selected the phy and isolate the rest */
1385 for(addr = 0; addr < 32; addr++) {
1386 if(addr != nic->mii.phy_id) {
1387 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1389 bmcr = mdio_read(netdev, addr, MII_BMCR);
1390 mdio_write(netdev, addr, MII_BMCR,
1391 bmcr & ~BMCR_ISOLATE);
1396 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1397 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1398 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1399 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1401 /* Handle National tx phys */
1402 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1403 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1404 /* Disable congestion control */
1405 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1406 cong |= NSC_CONG_TXREADY;
1407 cong &= ~NSC_CONG_ENABLE;
1408 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1411 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1412 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1413 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1414 /* enable/disable MDI/MDI-X auto-switching. */
1415 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1416 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1422 static int e100_hw_init(struct nic *nic)
1428 DPRINTK(HW, ERR, "e100_hw_init\n");
1429 if(!in_interrupt() && (err = e100_self_test(nic)))
1432 if((err = e100_phy_init(nic)))
1434 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1436 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1438 if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode)))
1440 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1442 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1444 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1445 nic->dma_addr + offsetof(struct mem, stats))))
1447 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1450 e100_disable_irq(nic);
1455 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1457 struct net_device *netdev = nic->netdev;
1458 struct dev_mc_list *list = netdev->mc_list;
1459 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1461 cb->command = cpu_to_le16(cb_multi);
1462 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1463 for(i = 0; list && i < count; i++, list = list->next)
1464 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1468 static void e100_set_multicast_list(struct net_device *netdev)
1470 struct nic *nic = netdev_priv(netdev);
1472 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1473 netdev->mc_count, netdev->flags);
1475 if(netdev->flags & IFF_PROMISC)
1476 nic->flags |= promiscuous;
1478 nic->flags &= ~promiscuous;
1480 if(netdev->flags & IFF_ALLMULTI ||
1481 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1482 nic->flags |= multicast_all;
1484 nic->flags &= ~multicast_all;
1486 e100_exec_cb(nic, NULL, e100_configure);
1487 e100_exec_cb(nic, NULL, e100_multi);
1490 static void e100_update_stats(struct nic *nic)
1492 struct net_device *dev = nic->netdev;
1493 struct net_device_stats *ns = &dev->stats;
1494 struct stats *s = &nic->mem->stats;
1495 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1496 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1499 /* Device's stats reporting may take several microseconds to
1500 * complete, so we're always waiting for results of the
1501 * previous command. */
1503 if(*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1505 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1506 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1507 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1508 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1509 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1510 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1511 ns->collisions += nic->tx_collisions;
1512 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1513 le32_to_cpu(s->tx_lost_crs);
1514 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1515 nic->rx_over_length_errors;
1516 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1517 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1518 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1519 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1520 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1521 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1522 le32_to_cpu(s->rx_alignment_errors) +
1523 le32_to_cpu(s->rx_short_frame_errors) +
1524 le32_to_cpu(s->rx_cdt_errors);
1525 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1526 nic->tx_single_collisions +=
1527 le32_to_cpu(s->tx_single_collisions);
1528 nic->tx_multiple_collisions +=
1529 le32_to_cpu(s->tx_multiple_collisions);
1530 if(nic->mac >= mac_82558_D101_A4) {
1531 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1532 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1533 nic->rx_fc_unsupported +=
1534 le32_to_cpu(s->fc_rcv_unsupported);
1535 if(nic->mac >= mac_82559_D101M) {
1536 nic->tx_tco_frames +=
1537 le16_to_cpu(s->xmt_tco_frames);
1538 nic->rx_tco_frames +=
1539 le16_to_cpu(s->rcv_tco_frames);
1545 if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1546 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1549 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1551 /* Adjust inter-frame-spacing (IFS) between two transmits if
1552 * we're getting collisions on a half-duplex connection. */
1554 if(duplex == DUPLEX_HALF) {
1555 u32 prev = nic->adaptive_ifs;
1556 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1558 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1559 (nic->tx_frames > min_frames)) {
1560 if(nic->adaptive_ifs < 60)
1561 nic->adaptive_ifs += 5;
1562 } else if (nic->tx_frames < min_frames) {
1563 if(nic->adaptive_ifs >= 5)
1564 nic->adaptive_ifs -= 5;
1566 if(nic->adaptive_ifs != prev)
1567 e100_exec_cb(nic, NULL, e100_configure);
1571 static void e100_watchdog(unsigned long data)
1573 struct nic *nic = (struct nic *)data;
1574 struct ethtool_cmd cmd;
1576 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1578 /* mii library handles link maintenance tasks */
1580 mii_ethtool_gset(&nic->mii, &cmd);
1582 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1583 printk(KERN_INFO "e100: %s NIC Link is Up %s Mbps %s Duplex\n",
1585 cmd.speed == SPEED_100 ? "100" : "10",
1586 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1587 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1588 printk(KERN_INFO "e100: %s NIC Link is Down\n",
1592 mii_check_link(&nic->mii);
1594 /* Software generated interrupt to recover from (rare) Rx
1595 * allocation failure.
1596 * Unfortunately have to use a spinlock to not re-enable interrupts
1597 * accidentally, due to hardware that shares a register between the
1598 * interrupt mask bit and the SW Interrupt generation bit */
1599 spin_lock_irq(&nic->cmd_lock);
1600 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1601 e100_write_flush(nic);
1602 spin_unlock_irq(&nic->cmd_lock);
1604 e100_update_stats(nic);
1605 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1607 if(nic->mac <= mac_82557_D100_C)
1608 /* Issue a multicast command to workaround a 557 lock up */
1609 e100_set_multicast_list(nic->netdev);
1611 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1612 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1613 nic->flags |= ich_10h_workaround;
1615 nic->flags &= ~ich_10h_workaround;
1617 mod_timer(&nic->watchdog,
1618 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1621 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1622 struct sk_buff *skb)
1624 cb->command = nic->tx_command;
1625 /* interrupt every 16 packets regardless of delay */
1626 if((nic->cbs_avail & ~15) == nic->cbs_avail)
1627 cb->command |= cpu_to_le16(cb_i);
1628 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1629 cb->u.tcb.tcb_byte_count = 0;
1630 cb->u.tcb.threshold = nic->tx_threshold;
1631 cb->u.tcb.tbd_count = 1;
1632 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1633 skb->data, skb->len, PCI_DMA_TODEVICE));
1634 /* check for mapping failure? */
1635 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1638 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1640 struct nic *nic = netdev_priv(netdev);
1643 if(nic->flags & ich_10h_workaround) {
1644 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1645 Issue a NOP command followed by a 1us delay before
1646 issuing the Tx command. */
1647 if(e100_exec_cmd(nic, cuc_nop, 0))
1648 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1652 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1656 /* We queued the skb, but now we're out of space. */
1657 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1658 netif_stop_queue(netdev);
1661 /* This is a hard error - log it. */
1662 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1663 netif_stop_queue(netdev);
1667 netdev->trans_start = jiffies;
1671 static int e100_tx_clean(struct nic *nic)
1673 struct net_device *dev = nic->netdev;
1677 spin_lock(&nic->cb_lock);
1679 /* Clean CBs marked complete */
1680 for(cb = nic->cb_to_clean;
1681 cb->status & cpu_to_le16(cb_complete);
1682 cb = nic->cb_to_clean = cb->next) {
1683 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1684 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1687 if(likely(cb->skb != NULL)) {
1688 dev->stats.tx_packets++;
1689 dev->stats.tx_bytes += cb->skb->len;
1691 pci_unmap_single(nic->pdev,
1692 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1693 le16_to_cpu(cb->u.tcb.tbd.size),
1695 dev_kfree_skb_any(cb->skb);
1703 spin_unlock(&nic->cb_lock);
1705 /* Recover from running out of Tx resources in xmit_frame */
1706 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1707 netif_wake_queue(nic->netdev);
1712 static void e100_clean_cbs(struct nic *nic)
1715 while(nic->cbs_avail != nic->params.cbs.count) {
1716 struct cb *cb = nic->cb_to_clean;
1718 pci_unmap_single(nic->pdev,
1719 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1720 le16_to_cpu(cb->u.tcb.tbd.size),
1722 dev_kfree_skb(cb->skb);
1724 nic->cb_to_clean = nic->cb_to_clean->next;
1727 pci_free_consistent(nic->pdev,
1728 sizeof(struct cb) * nic->params.cbs.count,
1729 nic->cbs, nic->cbs_dma_addr);
1733 nic->cuc_cmd = cuc_start;
1734 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1738 static int e100_alloc_cbs(struct nic *nic)
1741 unsigned int i, count = nic->params.cbs.count;
1743 nic->cuc_cmd = cuc_start;
1744 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1747 nic->cbs = pci_alloc_consistent(nic->pdev,
1748 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1752 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1753 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1754 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1756 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1757 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1758 ((i+1) % count) * sizeof(struct cb));
1762 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1763 nic->cbs_avail = count;
1768 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1770 if(!nic->rxs) return;
1771 if(RU_SUSPENDED != nic->ru_running) return;
1773 /* handle init time starts */
1774 if(!rx) rx = nic->rxs;
1776 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1778 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1779 nic->ru_running = RU_RUNNING;
1783 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1784 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1786 if(!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1789 /* Align, init, and map the RFD. */
1790 skb_reserve(rx->skb, NET_IP_ALIGN);
1791 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1792 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1793 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1795 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1796 dev_kfree_skb_any(rx->skb);
1802 /* Link the RFD to end of RFA by linking previous RFD to
1803 * this one. We are safe to touch the previous RFD because
1804 * it is protected by the before last buffer's el bit being set */
1805 if (rx->prev->skb) {
1806 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1807 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1808 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1809 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1815 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1816 unsigned int *work_done, unsigned int work_to_do)
1818 struct net_device *dev = nic->netdev;
1819 struct sk_buff *skb = rx->skb;
1820 struct rfd *rfd = (struct rfd *)skb->data;
1821 u16 rfd_status, actual_size;
1823 if(unlikely(work_done && *work_done >= work_to_do))
1826 /* Need to sync before taking a peek at cb_complete bit */
1827 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1828 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1829 rfd_status = le16_to_cpu(rfd->status);
1831 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1833 /* If data isn't ready, nothing to indicate */
1834 if (unlikely(!(rfd_status & cb_complete))) {
1835 /* If the next buffer has the el bit, but we think the receiver
1836 * is still running, check to see if it really stopped while
1837 * we had interrupts off.
1838 * This allows for a fast restart without re-enabling
1840 if ((le16_to_cpu(rfd->command) & cb_el) &&
1841 (RU_RUNNING == nic->ru_running))
1843 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1844 nic->ru_running = RU_SUSPENDED;
1848 /* Get actual data size */
1849 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1850 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1851 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1854 pci_unmap_single(nic->pdev, rx->dma_addr,
1855 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1857 /* If this buffer has the el bit, but we think the receiver
1858 * is still running, check to see if it really stopped while
1859 * we had interrupts off.
1860 * This allows for a fast restart without re-enabling interrupts.
1861 * This can happen when the RU sees the size change but also sees
1862 * the el bit set. */
1863 if ((le16_to_cpu(rfd->command) & cb_el) &&
1864 (RU_RUNNING == nic->ru_running)) {
1866 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1867 nic->ru_running = RU_SUSPENDED;
1870 /* Pull off the RFD and put the actual data (minus eth hdr) */
1871 skb_reserve(skb, sizeof(struct rfd));
1872 skb_put(skb, actual_size);
1873 skb->protocol = eth_type_trans(skb, nic->netdev);
1875 if(unlikely(!(rfd_status & cb_ok))) {
1876 /* Don't indicate if hardware indicates errors */
1877 dev_kfree_skb_any(skb);
1878 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1879 /* Don't indicate oversized frames */
1880 nic->rx_over_length_errors++;
1881 dev_kfree_skb_any(skb);
1883 dev->stats.rx_packets++;
1884 dev->stats.rx_bytes += actual_size;
1885 netif_receive_skb(skb);
1895 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1896 unsigned int work_to_do)
1899 int restart_required = 0, err = 0;
1900 struct rx *old_before_last_rx, *new_before_last_rx;
1901 struct rfd *old_before_last_rfd, *new_before_last_rfd;
1903 /* Indicate newly arrived packets */
1904 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1905 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1906 /* Hit quota or no more to clean */
1907 if (-EAGAIN == err || -ENODATA == err)
1912 /* On EAGAIN, hit quota so have more work to do, restart once
1913 * cleanup is complete.
1914 * Else, are we already rnr? then pay attention!!! this ensures that
1915 * the state machine progression never allows a start with a
1916 * partially cleaned list, avoiding a race between hardware
1917 * and rx_to_clean when in NAPI mode */
1918 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
1919 restart_required = 1;
1921 old_before_last_rx = nic->rx_to_use->prev->prev;
1922 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
1924 /* Alloc new skbs to refill list */
1925 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1926 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1927 break; /* Better luck next time (see watchdog) */
1930 new_before_last_rx = nic->rx_to_use->prev->prev;
1931 if (new_before_last_rx != old_before_last_rx) {
1932 /* Set the el-bit on the buffer that is before the last buffer.
1933 * This lets us update the next pointer on the last buffer
1934 * without worrying about hardware touching it.
1935 * We set the size to 0 to prevent hardware from touching this
1937 * When the hardware hits the before last buffer with el-bit
1938 * and size of 0, it will RNR interrupt, the RUS will go into
1939 * the No Resources state. It will not complete nor write to
1941 new_before_last_rfd =
1942 (struct rfd *)new_before_last_rx->skb->data;
1943 new_before_last_rfd->size = 0;
1944 new_before_last_rfd->command |= cpu_to_le16(cb_el);
1945 pci_dma_sync_single_for_device(nic->pdev,
1946 new_before_last_rx->dma_addr, sizeof(struct rfd),
1947 PCI_DMA_BIDIRECTIONAL);
1949 /* Now that we have a new stopping point, we can clear the old
1950 * stopping point. We must sync twice to get the proper
1951 * ordering on the hardware side of things. */
1952 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
1953 pci_dma_sync_single_for_device(nic->pdev,
1954 old_before_last_rx->dma_addr, sizeof(struct rfd),
1955 PCI_DMA_BIDIRECTIONAL);
1956 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1957 pci_dma_sync_single_for_device(nic->pdev,
1958 old_before_last_rx->dma_addr, sizeof(struct rfd),
1959 PCI_DMA_BIDIRECTIONAL);
1962 if(restart_required) {
1964 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
1965 e100_start_receiver(nic, nic->rx_to_clean);
1971 static void e100_rx_clean_list(struct nic *nic)
1974 unsigned int i, count = nic->params.rfds.count;
1976 nic->ru_running = RU_UNINITIALIZED;
1979 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1981 pci_unmap_single(nic->pdev, rx->dma_addr,
1982 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1983 dev_kfree_skb(rx->skb);
1990 nic->rx_to_use = nic->rx_to_clean = NULL;
1993 static int e100_rx_alloc_list(struct nic *nic)
1996 unsigned int i, count = nic->params.rfds.count;
1997 struct rfd *before_last;
1999 nic->rx_to_use = nic->rx_to_clean = NULL;
2000 nic->ru_running = RU_UNINITIALIZED;
2002 if(!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2005 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
2006 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2007 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2008 if(e100_rx_alloc_skb(nic, rx)) {
2009 e100_rx_clean_list(nic);
2013 /* Set the el-bit on the buffer that is before the last buffer.
2014 * This lets us update the next pointer on the last buffer without
2015 * worrying about hardware touching it.
2016 * We set the size to 0 to prevent hardware from touching this buffer.
2017 * When the hardware hits the before last buffer with el-bit and size
2018 * of 0, it will RNR interrupt, the RU will go into the No Resources
2019 * state. It will not complete nor write to this buffer. */
2020 rx = nic->rxs->prev->prev;
2021 before_last = (struct rfd *)rx->skb->data;
2022 before_last->command |= cpu_to_le16(cb_el);
2023 before_last->size = 0;
2024 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2025 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2027 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2028 nic->ru_running = RU_SUSPENDED;
2033 static irqreturn_t e100_intr(int irq, void *dev_id)
2035 struct net_device *netdev = dev_id;
2036 struct nic *nic = netdev_priv(netdev);
2037 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2039 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
2041 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
2042 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2045 /* Ack interrupt(s) */
2046 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2048 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2049 if(stat_ack & stat_ack_rnr)
2050 nic->ru_running = RU_SUSPENDED;
2052 if(likely(netif_rx_schedule_prep(netdev, &nic->napi))) {
2053 e100_disable_irq(nic);
2054 __netif_rx_schedule(netdev, &nic->napi);
2060 static int e100_poll(struct napi_struct *napi, int budget)
2062 struct nic *nic = container_of(napi, struct nic, napi);
2063 struct net_device *netdev = nic->netdev;
2064 unsigned int work_done = 0;
2066 e100_rx_clean(nic, &work_done, budget);
2069 /* If budget not fully consumed, exit the polling mode */
2070 if (work_done < budget) {
2071 netif_rx_complete(netdev, napi);
2072 e100_enable_irq(nic);
2078 #ifdef CONFIG_NET_POLL_CONTROLLER
2079 static void e100_netpoll(struct net_device *netdev)
2081 struct nic *nic = netdev_priv(netdev);
2083 e100_disable_irq(nic);
2084 e100_intr(nic->pdev->irq, netdev);
2086 e100_enable_irq(nic);
2090 static int e100_set_mac_address(struct net_device *netdev, void *p)
2092 struct nic *nic = netdev_priv(netdev);
2093 struct sockaddr *addr = p;
2095 if (!is_valid_ether_addr(addr->sa_data))
2096 return -EADDRNOTAVAIL;
2098 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2099 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2104 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2106 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2108 netdev->mtu = new_mtu;
2112 static int e100_asf(struct nic *nic)
2114 /* ASF can be enabled from eeprom */
2115 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2116 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2117 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2118 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2121 static int e100_up(struct nic *nic)
2125 if((err = e100_rx_alloc_list(nic)))
2127 if((err = e100_alloc_cbs(nic)))
2128 goto err_rx_clean_list;
2129 if((err = e100_hw_init(nic)))
2131 e100_set_multicast_list(nic->netdev);
2132 e100_start_receiver(nic, NULL);
2133 mod_timer(&nic->watchdog, jiffies);
2134 if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2135 nic->netdev->name, nic->netdev)))
2137 netif_wake_queue(nic->netdev);
2138 napi_enable(&nic->napi);
2139 /* enable ints _after_ enabling poll, preventing a race between
2140 * disable ints+schedule */
2141 e100_enable_irq(nic);
2145 del_timer_sync(&nic->watchdog);
2147 e100_clean_cbs(nic);
2149 e100_rx_clean_list(nic);
2153 static void e100_down(struct nic *nic)
2155 /* wait here for poll to complete */
2156 napi_disable(&nic->napi);
2157 netif_stop_queue(nic->netdev);
2159 free_irq(nic->pdev->irq, nic->netdev);
2160 del_timer_sync(&nic->watchdog);
2161 netif_carrier_off(nic->netdev);
2162 e100_clean_cbs(nic);
2163 e100_rx_clean_list(nic);
2166 static void e100_tx_timeout(struct net_device *netdev)
2168 struct nic *nic = netdev_priv(netdev);
2170 /* Reset outside of interrupt context, to avoid request_irq
2171 * in interrupt context */
2172 schedule_work(&nic->tx_timeout_task);
2175 static void e100_tx_timeout_task(struct work_struct *work)
2177 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2178 struct net_device *netdev = nic->netdev;
2180 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2181 ioread8(&nic->csr->scb.status));
2182 e100_down(netdev_priv(netdev));
2183 e100_up(netdev_priv(netdev));
2186 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2189 struct sk_buff *skb;
2191 /* Use driver resources to perform internal MAC or PHY
2192 * loopback test. A single packet is prepared and transmitted
2193 * in loopback mode, and the test passes if the received
2194 * packet compares byte-for-byte to the transmitted packet. */
2196 if((err = e100_rx_alloc_list(nic)))
2198 if((err = e100_alloc_cbs(nic)))
2201 /* ICH PHY loopback is broken so do MAC loopback instead */
2202 if(nic->flags & ich && loopback_mode == lb_phy)
2203 loopback_mode = lb_mac;
2205 nic->loopback = loopback_mode;
2206 if((err = e100_hw_init(nic)))
2207 goto err_loopback_none;
2209 if(loopback_mode == lb_phy)
2210 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2213 e100_start_receiver(nic, NULL);
2215 if(!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2217 goto err_loopback_none;
2219 skb_put(skb, ETH_DATA_LEN);
2220 memset(skb->data, 0xFF, ETH_DATA_LEN);
2221 e100_xmit_frame(skb, nic->netdev);
2225 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2226 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2228 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2229 skb->data, ETH_DATA_LEN))
2233 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2234 nic->loopback = lb_none;
2235 e100_clean_cbs(nic);
2238 e100_rx_clean_list(nic);
2242 #define MII_LED_CONTROL 0x1B
2243 static void e100_blink_led(unsigned long data)
2245 struct nic *nic = (struct nic *)data;
2253 nic->leds = (nic->leds & led_on) ? led_off :
2254 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2255 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
2256 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2259 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2261 struct nic *nic = netdev_priv(netdev);
2262 return mii_ethtool_gset(&nic->mii, cmd);
2265 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2267 struct nic *nic = netdev_priv(netdev);
2270 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2271 err = mii_ethtool_sset(&nic->mii, cmd);
2272 e100_exec_cb(nic, NULL, e100_configure);
2277 static void e100_get_drvinfo(struct net_device *netdev,
2278 struct ethtool_drvinfo *info)
2280 struct nic *nic = netdev_priv(netdev);
2281 strcpy(info->driver, DRV_NAME);
2282 strcpy(info->version, DRV_VERSION);
2283 strcpy(info->fw_version, "N/A");
2284 strcpy(info->bus_info, pci_name(nic->pdev));
2287 #define E100_PHY_REGS 0x1C
2288 static int e100_get_regs_len(struct net_device *netdev)
2290 struct nic *nic = netdev_priv(netdev);
2291 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2294 static void e100_get_regs(struct net_device *netdev,
2295 struct ethtool_regs *regs, void *p)
2297 struct nic *nic = netdev_priv(netdev);
2301 regs->version = (1 << 24) | nic->pdev->revision;
2302 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2303 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2304 ioread16(&nic->csr->scb.status);
2305 for(i = E100_PHY_REGS; i >= 0; i--)
2306 buff[1 + E100_PHY_REGS - i] =
2307 mdio_read(netdev, nic->mii.phy_id, i);
2308 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2309 e100_exec_cb(nic, NULL, e100_dump);
2311 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2312 sizeof(nic->mem->dump_buf));
2315 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2317 struct nic *nic = netdev_priv(netdev);
2318 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2319 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2322 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2324 struct nic *nic = netdev_priv(netdev);
2326 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2327 !device_can_wakeup(&nic->pdev->dev))
2331 nic->flags |= wol_magic;
2333 nic->flags &= ~wol_magic;
2335 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2337 e100_exec_cb(nic, NULL, e100_configure);
2342 static u32 e100_get_msglevel(struct net_device *netdev)
2344 struct nic *nic = netdev_priv(netdev);
2345 return nic->msg_enable;
2348 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2350 struct nic *nic = netdev_priv(netdev);
2351 nic->msg_enable = value;
2354 static int e100_nway_reset(struct net_device *netdev)
2356 struct nic *nic = netdev_priv(netdev);
2357 return mii_nway_restart(&nic->mii);
2360 static u32 e100_get_link(struct net_device *netdev)
2362 struct nic *nic = netdev_priv(netdev);
2363 return mii_link_ok(&nic->mii);
2366 static int e100_get_eeprom_len(struct net_device *netdev)
2368 struct nic *nic = netdev_priv(netdev);
2369 return nic->eeprom_wc << 1;
2372 #define E100_EEPROM_MAGIC 0x1234
2373 static int e100_get_eeprom(struct net_device *netdev,
2374 struct ethtool_eeprom *eeprom, u8 *bytes)
2376 struct nic *nic = netdev_priv(netdev);
2378 eeprom->magic = E100_EEPROM_MAGIC;
2379 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2384 static int e100_set_eeprom(struct net_device *netdev,
2385 struct ethtool_eeprom *eeprom, u8 *bytes)
2387 struct nic *nic = netdev_priv(netdev);
2389 if(eeprom->magic != E100_EEPROM_MAGIC)
2392 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2394 return e100_eeprom_save(nic, eeprom->offset >> 1,
2395 (eeprom->len >> 1) + 1);
2398 static void e100_get_ringparam(struct net_device *netdev,
2399 struct ethtool_ringparam *ring)
2401 struct nic *nic = netdev_priv(netdev);
2402 struct param_range *rfds = &nic->params.rfds;
2403 struct param_range *cbs = &nic->params.cbs;
2405 ring->rx_max_pending = rfds->max;
2406 ring->tx_max_pending = cbs->max;
2407 ring->rx_mini_max_pending = 0;
2408 ring->rx_jumbo_max_pending = 0;
2409 ring->rx_pending = rfds->count;
2410 ring->tx_pending = cbs->count;
2411 ring->rx_mini_pending = 0;
2412 ring->rx_jumbo_pending = 0;
2415 static int e100_set_ringparam(struct net_device *netdev,
2416 struct ethtool_ringparam *ring)
2418 struct nic *nic = netdev_priv(netdev);
2419 struct param_range *rfds = &nic->params.rfds;
2420 struct param_range *cbs = &nic->params.cbs;
2422 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2425 if(netif_running(netdev))
2427 rfds->count = max(ring->rx_pending, rfds->min);
2428 rfds->count = min(rfds->count, rfds->max);
2429 cbs->count = max(ring->tx_pending, cbs->min);
2430 cbs->count = min(cbs->count, cbs->max);
2431 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2432 rfds->count, cbs->count);
2433 if(netif_running(netdev))
2439 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2440 "Link test (on/offline)",
2441 "Eeprom test (on/offline)",
2442 "Self test (offline)",
2443 "Mac loopback (offline)",
2444 "Phy loopback (offline)",
2446 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2448 static void e100_diag_test(struct net_device *netdev,
2449 struct ethtool_test *test, u64 *data)
2451 struct ethtool_cmd cmd;
2452 struct nic *nic = netdev_priv(netdev);
2455 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2456 data[0] = !mii_link_ok(&nic->mii);
2457 data[1] = e100_eeprom_load(nic);
2458 if(test->flags & ETH_TEST_FL_OFFLINE) {
2460 /* save speed, duplex & autoneg settings */
2461 err = mii_ethtool_gset(&nic->mii, &cmd);
2463 if(netif_running(netdev))
2465 data[2] = e100_self_test(nic);
2466 data[3] = e100_loopback_test(nic, lb_mac);
2467 data[4] = e100_loopback_test(nic, lb_phy);
2469 /* restore speed, duplex & autoneg settings */
2470 err = mii_ethtool_sset(&nic->mii, &cmd);
2472 if(netif_running(netdev))
2475 for(i = 0; i < E100_TEST_LEN; i++)
2476 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2478 msleep_interruptible(4 * 1000);
2481 static int e100_phys_id(struct net_device *netdev, u32 data)
2483 struct nic *nic = netdev_priv(netdev);
2485 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2486 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2487 mod_timer(&nic->blink_timer, jiffies);
2488 msleep_interruptible(data * 1000);
2489 del_timer_sync(&nic->blink_timer);
2490 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2495 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2496 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2497 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2498 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2499 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2500 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2501 "tx_heartbeat_errors", "tx_window_errors",
2502 /* device-specific stats */
2503 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2504 "tx_flow_control_pause", "rx_flow_control_pause",
2505 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2507 #define E100_NET_STATS_LEN 21
2508 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2510 static int e100_get_sset_count(struct net_device *netdev, int sset)
2514 return E100_TEST_LEN;
2516 return E100_STATS_LEN;
2522 static void e100_get_ethtool_stats(struct net_device *netdev,
2523 struct ethtool_stats *stats, u64 *data)
2525 struct nic *nic = netdev_priv(netdev);
2528 for(i = 0; i < E100_NET_STATS_LEN; i++)
2529 data[i] = ((unsigned long *)&netdev->stats)[i];
2531 data[i++] = nic->tx_deferred;
2532 data[i++] = nic->tx_single_collisions;
2533 data[i++] = nic->tx_multiple_collisions;
2534 data[i++] = nic->tx_fc_pause;
2535 data[i++] = nic->rx_fc_pause;
2536 data[i++] = nic->rx_fc_unsupported;
2537 data[i++] = nic->tx_tco_frames;
2538 data[i++] = nic->rx_tco_frames;
2541 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2545 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2548 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2553 static const struct ethtool_ops e100_ethtool_ops = {
2554 .get_settings = e100_get_settings,
2555 .set_settings = e100_set_settings,
2556 .get_drvinfo = e100_get_drvinfo,
2557 .get_regs_len = e100_get_regs_len,
2558 .get_regs = e100_get_regs,
2559 .get_wol = e100_get_wol,
2560 .set_wol = e100_set_wol,
2561 .get_msglevel = e100_get_msglevel,
2562 .set_msglevel = e100_set_msglevel,
2563 .nway_reset = e100_nway_reset,
2564 .get_link = e100_get_link,
2565 .get_eeprom_len = e100_get_eeprom_len,
2566 .get_eeprom = e100_get_eeprom,
2567 .set_eeprom = e100_set_eeprom,
2568 .get_ringparam = e100_get_ringparam,
2569 .set_ringparam = e100_set_ringparam,
2570 .self_test = e100_diag_test,
2571 .get_strings = e100_get_strings,
2572 .phys_id = e100_phys_id,
2573 .get_ethtool_stats = e100_get_ethtool_stats,
2574 .get_sset_count = e100_get_sset_count,
2577 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2579 struct nic *nic = netdev_priv(netdev);
2581 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2584 static int e100_alloc(struct nic *nic)
2586 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2588 return nic->mem ? 0 : -ENOMEM;
2591 static void e100_free(struct nic *nic)
2594 pci_free_consistent(nic->pdev, sizeof(struct mem),
2595 nic->mem, nic->dma_addr);
2600 static int e100_open(struct net_device *netdev)
2602 struct nic *nic = netdev_priv(netdev);
2605 netif_carrier_off(netdev);
2606 if((err = e100_up(nic)))
2607 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2611 static int e100_close(struct net_device *netdev)
2613 e100_down(netdev_priv(netdev));
2617 static const struct net_device_ops e100_netdev_ops = {
2618 .ndo_open = e100_open,
2619 .ndo_stop = e100_close,
2620 .ndo_start_xmit = e100_xmit_frame,
2621 .ndo_validate_addr = eth_validate_addr,
2622 .ndo_set_multicast_list = e100_set_multicast_list,
2623 .ndo_set_mac_address = e100_set_mac_address,
2624 .ndo_change_mtu = e100_change_mtu,
2625 .ndo_do_ioctl = e100_do_ioctl,
2626 .ndo_tx_timeout = e100_tx_timeout,
2627 #ifdef CONFIG_NET_POLL_CONTROLLER
2628 .ndo_poll_controller = e100_netpoll,
2632 static int __devinit e100_probe(struct pci_dev *pdev,
2633 const struct pci_device_id *ent)
2635 struct net_device *netdev;
2639 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2640 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2641 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2645 netdev->netdev_ops = &e100_netdev_ops;
2646 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2647 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2648 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2650 nic = netdev_priv(netdev);
2651 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2652 nic->netdev = netdev;
2654 nic->msg_enable = (1 << debug) - 1;
2655 pci_set_drvdata(pdev, netdev);
2657 if((err = pci_enable_device(pdev))) {
2658 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2659 goto err_out_free_dev;
2662 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2663 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2664 "base address, aborting.\n");
2666 goto err_out_disable_pdev;
2669 if((err = pci_request_regions(pdev, DRV_NAME))) {
2670 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2671 goto err_out_disable_pdev;
2674 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
2675 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2676 goto err_out_free_res;
2679 SET_NETDEV_DEV(netdev, &pdev->dev);
2682 DPRINTK(PROBE, INFO, "using i/o access mode\n");
2684 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2686 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2688 goto err_out_free_res;
2691 if(ent->driver_data)
2696 e100_get_defaults(nic);
2698 /* locks must be initialized before calling hw_reset */
2699 spin_lock_init(&nic->cb_lock);
2700 spin_lock_init(&nic->cmd_lock);
2701 spin_lock_init(&nic->mdio_lock);
2703 /* Reset the device before pci_set_master() in case device is in some
2704 * funky state and has an interrupt pending - hint: we don't have the
2705 * interrupt handler registered yet. */
2708 pci_set_master(pdev);
2710 init_timer(&nic->watchdog);
2711 nic->watchdog.function = e100_watchdog;
2712 nic->watchdog.data = (unsigned long)nic;
2713 init_timer(&nic->blink_timer);
2714 nic->blink_timer.function = e100_blink_led;
2715 nic->blink_timer.data = (unsigned long)nic;
2717 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2719 if((err = e100_alloc(nic))) {
2720 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2721 goto err_out_iounmap;
2724 if((err = e100_eeprom_load(nic)))
2729 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2730 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2731 if (!is_valid_ether_addr(netdev->perm_addr)) {
2732 if (!eeprom_bad_csum_allow) {
2733 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2734 "EEPROM, aborting.\n");
2738 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2739 "you MUST configure one.\n");
2743 /* Wol magic packet can be enabled from eeprom */
2744 if((nic->mac >= mac_82558_D101_A4) &&
2745 (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2746 nic->flags |= wol_magic;
2747 device_set_wakeup_enable(&pdev->dev, true);
2750 /* ack any pending wake events, disable PME */
2751 pci_pme_active(pdev, false);
2753 strcpy(netdev->name, "eth%d");
2754 if((err = register_netdev(netdev))) {
2755 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2759 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %pM\n",
2760 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2761 pdev->irq, netdev->dev_addr);
2768 pci_iounmap(pdev, nic->csr);
2770 pci_release_regions(pdev);
2771 err_out_disable_pdev:
2772 pci_disable_device(pdev);
2774 pci_set_drvdata(pdev, NULL);
2775 free_netdev(netdev);
2779 static void __devexit e100_remove(struct pci_dev *pdev)
2781 struct net_device *netdev = pci_get_drvdata(pdev);
2784 struct nic *nic = netdev_priv(netdev);
2785 unregister_netdev(netdev);
2787 pci_iounmap(pdev, nic->csr);
2788 free_netdev(netdev);
2789 pci_release_regions(pdev);
2790 pci_disable_device(pdev);
2791 pci_set_drvdata(pdev, NULL);
2795 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2797 struct net_device *netdev = pci_get_drvdata(pdev);
2798 struct nic *nic = netdev_priv(netdev);
2800 if (netif_running(netdev))
2802 netif_device_detach(netdev);
2804 pci_save_state(pdev);
2806 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2807 if (pci_enable_wake(pdev, PCI_D3cold, true))
2808 pci_enable_wake(pdev, PCI_D3hot, true);
2810 pci_enable_wake(pdev, PCI_D3hot, false);
2813 pci_disable_device(pdev);
2814 pci_set_power_state(pdev, PCI_D3hot);
2820 static int e100_resume(struct pci_dev *pdev)
2822 struct net_device *netdev = pci_get_drvdata(pdev);
2823 struct nic *nic = netdev_priv(netdev);
2825 pci_set_power_state(pdev, PCI_D0);
2826 pci_restore_state(pdev);
2827 /* ack any pending wake events, disable PME */
2828 pci_enable_wake(pdev, 0, 0);
2830 netif_device_attach(netdev);
2831 if (netif_running(netdev))
2836 #endif /* CONFIG_PM */
2838 static void e100_shutdown(struct pci_dev *pdev)
2840 e100_suspend(pdev, PMSG_SUSPEND);
2843 /* ------------------ PCI Error Recovery infrastructure -------------- */
2845 * e100_io_error_detected - called when PCI error is detected.
2846 * @pdev: Pointer to PCI device
2847 * @state: The current pci connection state
2849 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2851 struct net_device *netdev = pci_get_drvdata(pdev);
2852 struct nic *nic = netdev_priv(netdev);
2854 /* Similar to calling e100_down(), but avoids adapter I/O. */
2857 /* Detach; put netif into a state similar to hotplug unplug. */
2858 napi_enable(&nic->napi);
2859 netif_device_detach(netdev);
2860 pci_disable_device(pdev);
2862 /* Request a slot reset. */
2863 return PCI_ERS_RESULT_NEED_RESET;
2867 * e100_io_slot_reset - called after the pci bus has been reset.
2868 * @pdev: Pointer to PCI device
2870 * Restart the card from scratch.
2872 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2874 struct net_device *netdev = pci_get_drvdata(pdev);
2875 struct nic *nic = netdev_priv(netdev);
2877 if (pci_enable_device(pdev)) {
2878 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2879 return PCI_ERS_RESULT_DISCONNECT;
2881 pci_set_master(pdev);
2883 /* Only one device per card can do a reset */
2884 if (0 != PCI_FUNC(pdev->devfn))
2885 return PCI_ERS_RESULT_RECOVERED;
2889 return PCI_ERS_RESULT_RECOVERED;
2893 * e100_io_resume - resume normal operations
2894 * @pdev: Pointer to PCI device
2896 * Resume normal operations after an error recovery
2897 * sequence has been completed.
2899 static void e100_io_resume(struct pci_dev *pdev)
2901 struct net_device *netdev = pci_get_drvdata(pdev);
2902 struct nic *nic = netdev_priv(netdev);
2904 /* ack any pending wake events, disable PME */
2905 pci_enable_wake(pdev, 0, 0);
2907 netif_device_attach(netdev);
2908 if (netif_running(netdev)) {
2910 mod_timer(&nic->watchdog, jiffies);
2914 static struct pci_error_handlers e100_err_handler = {
2915 .error_detected = e100_io_error_detected,
2916 .slot_reset = e100_io_slot_reset,
2917 .resume = e100_io_resume,
2920 static struct pci_driver e100_driver = {
2922 .id_table = e100_id_table,
2923 .probe = e100_probe,
2924 .remove = __devexit_p(e100_remove),
2926 /* Power Management hooks */
2927 .suspend = e100_suspend,
2928 .resume = e100_resume,
2930 .shutdown = e100_shutdown,
2931 .err_handler = &e100_err_handler,
2934 static int __init e100_init_module(void)
2936 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2937 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2938 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2940 return pci_register_driver(&e100_driver);
2943 static void __exit e100_cleanup_module(void)
2945 pci_unregister_driver(&e100_driver);
2948 module_init(e100_init_module);
2949 module_exit(e100_cleanup_module);