Merge branch 'topic/hwdep-cleanup' into for-linus
[linux-2.6] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24
25 /*
26  * dbs is used in this file as a shortform for demandbased switching
27  * It helps to keep variable names smaller, simpler
28  */
29
30 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
31 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
32 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
33 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
34 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
35 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
36
37 /*
38  * The polling frequency of this governor depends on the capability of
39  * the processor. Default polling frequency is 1000 times the transition
40  * latency of the processor. The governor will work on any processor with
41  * transition latency <= 10mS, using appropriate sampling
42  * rate.
43  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
44  * this governor will not work.
45  * All times here are in uS.
46  */
47 static unsigned int def_sampling_rate;
48 #define MIN_SAMPLING_RATE_RATIO                 (2)
49 /* for correct statistics, we need at least 10 ticks between each measure */
50 #define MIN_STAT_SAMPLING_RATE                  \
51                         (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
52 #define MIN_SAMPLING_RATE                       \
53                         (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
54 #define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
55 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (1000)
56 #define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
57
58 static void do_dbs_timer(struct work_struct *work);
59
60 /* Sampling types */
61 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
62
63 struct cpu_dbs_info_s {
64         cputime64_t prev_cpu_idle;
65         cputime64_t prev_cpu_wall;
66         cputime64_t prev_cpu_nice;
67         struct cpufreq_policy *cur_policy;
68         struct delayed_work work;
69         struct cpufreq_frequency_table *freq_table;
70         unsigned int freq_lo;
71         unsigned int freq_lo_jiffies;
72         unsigned int freq_hi_jiffies;
73         int cpu;
74         unsigned int enable:1,
75                      sample_type:1;
76 };
77 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
78
79 static unsigned int dbs_enable; /* number of CPUs using this policy */
80
81 /*
82  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
83  * lock and dbs_mutex. cpu_hotplug lock should always be held before
84  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
85  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
86  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
87  * is recursive for the same process. -Venki
88  */
89 static DEFINE_MUTEX(dbs_mutex);
90
91 static struct workqueue_struct  *kondemand_wq;
92
93 static struct dbs_tuners {
94         unsigned int sampling_rate;
95         unsigned int up_threshold;
96         unsigned int down_differential;
97         unsigned int ignore_nice;
98         unsigned int powersave_bias;
99 } dbs_tuners_ins = {
100         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
101         .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
102         .ignore_nice = 0,
103         .powersave_bias = 0,
104 };
105
106 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
107                                                         cputime64_t *wall)
108 {
109         cputime64_t idle_time;
110         cputime64_t cur_wall_time;
111         cputime64_t busy_time;
112
113         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
114         busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
115                         kstat_cpu(cpu).cpustat.system);
116
117         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
118         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
119         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
120         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
121
122         idle_time = cputime64_sub(cur_wall_time, busy_time);
123         if (wall)
124                 *wall = cur_wall_time;
125
126         return idle_time;
127 }
128
129 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
130 {
131         u64 idle_time = get_cpu_idle_time_us(cpu, wall);
132
133         if (idle_time == -1ULL)
134                 return get_cpu_idle_time_jiffy(cpu, wall);
135
136         return idle_time;
137 }
138
139 /*
140  * Find right freq to be set now with powersave_bias on.
141  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
142  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
143  */
144 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
145                                           unsigned int freq_next,
146                                           unsigned int relation)
147 {
148         unsigned int freq_req, freq_reduc, freq_avg;
149         unsigned int freq_hi, freq_lo;
150         unsigned int index = 0;
151         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
152         struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
153
154         if (!dbs_info->freq_table) {
155                 dbs_info->freq_lo = 0;
156                 dbs_info->freq_lo_jiffies = 0;
157                 return freq_next;
158         }
159
160         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
161                         relation, &index);
162         freq_req = dbs_info->freq_table[index].frequency;
163         freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
164         freq_avg = freq_req - freq_reduc;
165
166         /* Find freq bounds for freq_avg in freq_table */
167         index = 0;
168         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
169                         CPUFREQ_RELATION_H, &index);
170         freq_lo = dbs_info->freq_table[index].frequency;
171         index = 0;
172         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
173                         CPUFREQ_RELATION_L, &index);
174         freq_hi = dbs_info->freq_table[index].frequency;
175
176         /* Find out how long we have to be in hi and lo freqs */
177         if (freq_hi == freq_lo) {
178                 dbs_info->freq_lo = 0;
179                 dbs_info->freq_lo_jiffies = 0;
180                 return freq_lo;
181         }
182         jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
183         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
184         jiffies_hi += ((freq_hi - freq_lo) / 2);
185         jiffies_hi /= (freq_hi - freq_lo);
186         jiffies_lo = jiffies_total - jiffies_hi;
187         dbs_info->freq_lo = freq_lo;
188         dbs_info->freq_lo_jiffies = jiffies_lo;
189         dbs_info->freq_hi_jiffies = jiffies_hi;
190         return freq_hi;
191 }
192
193 static void ondemand_powersave_bias_init(void)
194 {
195         int i;
196         for_each_online_cpu(i) {
197                 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
198                 dbs_info->freq_table = cpufreq_frequency_get_table(i);
199                 dbs_info->freq_lo = 0;
200         }
201 }
202
203 /************************** sysfs interface ************************/
204 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
205 {
206         return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
207 }
208
209 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
210 {
211         return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
212 }
213
214 #define define_one_ro(_name)            \
215 static struct freq_attr _name =         \
216 __ATTR(_name, 0444, show_##_name, NULL)
217
218 define_one_ro(sampling_rate_max);
219 define_one_ro(sampling_rate_min);
220
221 /* cpufreq_ondemand Governor Tunables */
222 #define show_one(file_name, object)                                     \
223 static ssize_t show_##file_name                                         \
224 (struct cpufreq_policy *unused, char *buf)                              \
225 {                                                                       \
226         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
227 }
228 show_one(sampling_rate, sampling_rate);
229 show_one(up_threshold, up_threshold);
230 show_one(ignore_nice_load, ignore_nice);
231 show_one(powersave_bias, powersave_bias);
232
233 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
234                 const char *buf, size_t count)
235 {
236         unsigned int input;
237         int ret;
238         ret = sscanf(buf, "%u", &input);
239
240         mutex_lock(&dbs_mutex);
241         if (ret != 1 || input > MAX_SAMPLING_RATE
242                      || input < MIN_SAMPLING_RATE) {
243                 mutex_unlock(&dbs_mutex);
244                 return -EINVAL;
245         }
246
247         dbs_tuners_ins.sampling_rate = input;
248         mutex_unlock(&dbs_mutex);
249
250         return count;
251 }
252
253 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
254                 const char *buf, size_t count)
255 {
256         unsigned int input;
257         int ret;
258         ret = sscanf(buf, "%u", &input);
259
260         mutex_lock(&dbs_mutex);
261         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
262                         input < MIN_FREQUENCY_UP_THRESHOLD) {
263                 mutex_unlock(&dbs_mutex);
264                 return -EINVAL;
265         }
266
267         dbs_tuners_ins.up_threshold = input;
268         mutex_unlock(&dbs_mutex);
269
270         return count;
271 }
272
273 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
274                 const char *buf, size_t count)
275 {
276         unsigned int input;
277         int ret;
278
279         unsigned int j;
280
281         ret = sscanf(buf, "%u", &input);
282         if ( ret != 1 )
283                 return -EINVAL;
284
285         if ( input > 1 )
286                 input = 1;
287
288         mutex_lock(&dbs_mutex);
289         if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
290                 mutex_unlock(&dbs_mutex);
291                 return count;
292         }
293         dbs_tuners_ins.ignore_nice = input;
294
295         /* we need to re-evaluate prev_cpu_idle */
296         for_each_online_cpu(j) {
297                 struct cpu_dbs_info_s *dbs_info;
298                 dbs_info = &per_cpu(cpu_dbs_info, j);
299                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
300                                                 &dbs_info->prev_cpu_wall);
301                 if (dbs_tuners_ins.ignore_nice)
302                         dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
303
304         }
305         mutex_unlock(&dbs_mutex);
306
307         return count;
308 }
309
310 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
311                 const char *buf, size_t count)
312 {
313         unsigned int input;
314         int ret;
315         ret = sscanf(buf, "%u", &input);
316
317         if (ret != 1)
318                 return -EINVAL;
319
320         if (input > 1000)
321                 input = 1000;
322
323         mutex_lock(&dbs_mutex);
324         dbs_tuners_ins.powersave_bias = input;
325         ondemand_powersave_bias_init();
326         mutex_unlock(&dbs_mutex);
327
328         return count;
329 }
330
331 #define define_one_rw(_name) \
332 static struct freq_attr _name = \
333 __ATTR(_name, 0644, show_##_name, store_##_name)
334
335 define_one_rw(sampling_rate);
336 define_one_rw(up_threshold);
337 define_one_rw(ignore_nice_load);
338 define_one_rw(powersave_bias);
339
340 static struct attribute * dbs_attributes[] = {
341         &sampling_rate_max.attr,
342         &sampling_rate_min.attr,
343         &sampling_rate.attr,
344         &up_threshold.attr,
345         &ignore_nice_load.attr,
346         &powersave_bias.attr,
347         NULL
348 };
349
350 static struct attribute_group dbs_attr_group = {
351         .attrs = dbs_attributes,
352         .name = "ondemand",
353 };
354
355 /************************** sysfs end ************************/
356
357 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
358 {
359         unsigned int max_load_freq;
360
361         struct cpufreq_policy *policy;
362         unsigned int j;
363
364         if (!this_dbs_info->enable)
365                 return;
366
367         this_dbs_info->freq_lo = 0;
368         policy = this_dbs_info->cur_policy;
369
370         /*
371          * Every sampling_rate, we check, if current idle time is less
372          * than 20% (default), then we try to increase frequency
373          * Every sampling_rate, we look for a the lowest
374          * frequency which can sustain the load while keeping idle time over
375          * 30%. If such a frequency exist, we try to decrease to this frequency.
376          *
377          * Any frequency increase takes it to the maximum frequency.
378          * Frequency reduction happens at minimum steps of
379          * 5% (default) of current frequency
380          */
381
382         /* Get Absolute Load - in terms of freq */
383         max_load_freq = 0;
384
385         for_each_cpu(j, policy->cpus) {
386                 struct cpu_dbs_info_s *j_dbs_info;
387                 cputime64_t cur_wall_time, cur_idle_time;
388                 unsigned int idle_time, wall_time;
389                 unsigned int load, load_freq;
390                 int freq_avg;
391
392                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
393
394                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
395
396                 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
397                                 j_dbs_info->prev_cpu_wall);
398                 j_dbs_info->prev_cpu_wall = cur_wall_time;
399
400                 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
401                                 j_dbs_info->prev_cpu_idle);
402                 j_dbs_info->prev_cpu_idle = cur_idle_time;
403
404                 if (dbs_tuners_ins.ignore_nice) {
405                         cputime64_t cur_nice;
406                         unsigned long cur_nice_jiffies;
407
408                         cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
409                                          j_dbs_info->prev_cpu_nice);
410                         /*
411                          * Assumption: nice time between sampling periods will
412                          * be less than 2^32 jiffies for 32 bit sys
413                          */
414                         cur_nice_jiffies = (unsigned long)
415                                         cputime64_to_jiffies64(cur_nice);
416
417                         j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
418                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
419                 }
420
421                 if (unlikely(!wall_time || wall_time < idle_time))
422                         continue;
423
424                 load = 100 * (wall_time - idle_time) / wall_time;
425
426                 freq_avg = __cpufreq_driver_getavg(policy, j);
427                 if (freq_avg <= 0)
428                         freq_avg = policy->cur;
429
430                 load_freq = load * freq_avg;
431                 if (load_freq > max_load_freq)
432                         max_load_freq = load_freq;
433         }
434
435         /* Check for frequency increase */
436         if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
437                 /* if we are already at full speed then break out early */
438                 if (!dbs_tuners_ins.powersave_bias) {
439                         if (policy->cur == policy->max)
440                                 return;
441
442                         __cpufreq_driver_target(policy, policy->max,
443                                 CPUFREQ_RELATION_H);
444                 } else {
445                         int freq = powersave_bias_target(policy, policy->max,
446                                         CPUFREQ_RELATION_H);
447                         __cpufreq_driver_target(policy, freq,
448                                 CPUFREQ_RELATION_L);
449                 }
450                 return;
451         }
452
453         /* Check for frequency decrease */
454         /* if we cannot reduce the frequency anymore, break out early */
455         if (policy->cur == policy->min)
456                 return;
457
458         /*
459          * The optimal frequency is the frequency that is the lowest that
460          * can support the current CPU usage without triggering the up
461          * policy. To be safe, we focus 10 points under the threshold.
462          */
463         if (max_load_freq <
464             (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
465              policy->cur) {
466                 unsigned int freq_next;
467                 freq_next = max_load_freq /
468                                 (dbs_tuners_ins.up_threshold -
469                                  dbs_tuners_ins.down_differential);
470
471                 if (!dbs_tuners_ins.powersave_bias) {
472                         __cpufreq_driver_target(policy, freq_next,
473                                         CPUFREQ_RELATION_L);
474                 } else {
475                         int freq = powersave_bias_target(policy, freq_next,
476                                         CPUFREQ_RELATION_L);
477                         __cpufreq_driver_target(policy, freq,
478                                 CPUFREQ_RELATION_L);
479                 }
480         }
481 }
482
483 static void do_dbs_timer(struct work_struct *work)
484 {
485         struct cpu_dbs_info_s *dbs_info =
486                 container_of(work, struct cpu_dbs_info_s, work.work);
487         unsigned int cpu = dbs_info->cpu;
488         int sample_type = dbs_info->sample_type;
489
490         /* We want all CPUs to do sampling nearly on same jiffy */
491         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
492
493         delay -= jiffies % delay;
494
495         if (lock_policy_rwsem_write(cpu) < 0)
496                 return;
497
498         if (!dbs_info->enable) {
499                 unlock_policy_rwsem_write(cpu);
500                 return;
501         }
502
503         /* Common NORMAL_SAMPLE setup */
504         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
505         if (!dbs_tuners_ins.powersave_bias ||
506             sample_type == DBS_NORMAL_SAMPLE) {
507                 dbs_check_cpu(dbs_info);
508                 if (dbs_info->freq_lo) {
509                         /* Setup timer for SUB_SAMPLE */
510                         dbs_info->sample_type = DBS_SUB_SAMPLE;
511                         delay = dbs_info->freq_hi_jiffies;
512                 }
513         } else {
514                 __cpufreq_driver_target(dbs_info->cur_policy,
515                                         dbs_info->freq_lo,
516                                         CPUFREQ_RELATION_H);
517         }
518         queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
519         unlock_policy_rwsem_write(cpu);
520 }
521
522 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
523 {
524         /* We want all CPUs to do sampling nearly on same jiffy */
525         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
526         delay -= jiffies % delay;
527
528         dbs_info->enable = 1;
529         ondemand_powersave_bias_init();
530         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
531         INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
532         queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
533                               delay);
534 }
535
536 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
537 {
538         dbs_info->enable = 0;
539         cancel_delayed_work(&dbs_info->work);
540 }
541
542 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
543                                    unsigned int event)
544 {
545         unsigned int cpu = policy->cpu;
546         struct cpu_dbs_info_s *this_dbs_info;
547         unsigned int j;
548         int rc;
549
550         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
551
552         switch (event) {
553         case CPUFREQ_GOV_START:
554                 if ((!cpu_online(cpu)) || (!policy->cur))
555                         return -EINVAL;
556
557                 if (this_dbs_info->enable) /* Already enabled */
558                         break;
559
560                 mutex_lock(&dbs_mutex);
561                 dbs_enable++;
562
563                 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
564                 if (rc) {
565                         dbs_enable--;
566                         mutex_unlock(&dbs_mutex);
567                         return rc;
568                 }
569
570                 for_each_cpu(j, policy->cpus) {
571                         struct cpu_dbs_info_s *j_dbs_info;
572                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
573                         j_dbs_info->cur_policy = policy;
574
575                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
576                                                 &j_dbs_info->prev_cpu_wall);
577                         if (dbs_tuners_ins.ignore_nice) {
578                                 j_dbs_info->prev_cpu_nice =
579                                                 kstat_cpu(j).cpustat.nice;
580                         }
581                 }
582                 this_dbs_info->cpu = cpu;
583                 /*
584                  * Start the timerschedule work, when this governor
585                  * is used for first time
586                  */
587                 if (dbs_enable == 1) {
588                         unsigned int latency;
589                         /* policy latency is in nS. Convert it to uS first */
590                         latency = policy->cpuinfo.transition_latency / 1000;
591                         if (latency == 0)
592                                 latency = 1;
593
594                         def_sampling_rate = latency *
595                                         DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
596
597                         if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
598                                 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
599
600                         dbs_tuners_ins.sampling_rate = def_sampling_rate;
601                 }
602                 dbs_timer_init(this_dbs_info);
603
604                 mutex_unlock(&dbs_mutex);
605                 break;
606
607         case CPUFREQ_GOV_STOP:
608                 mutex_lock(&dbs_mutex);
609                 dbs_timer_exit(this_dbs_info);
610                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
611                 dbs_enable--;
612                 mutex_unlock(&dbs_mutex);
613
614                 break;
615
616         case CPUFREQ_GOV_LIMITS:
617                 mutex_lock(&dbs_mutex);
618                 if (policy->max < this_dbs_info->cur_policy->cur)
619                         __cpufreq_driver_target(this_dbs_info->cur_policy,
620                                                 policy->max,
621                                                 CPUFREQ_RELATION_H);
622                 else if (policy->min > this_dbs_info->cur_policy->cur)
623                         __cpufreq_driver_target(this_dbs_info->cur_policy,
624                                                 policy->min,
625                                                 CPUFREQ_RELATION_L);
626                 mutex_unlock(&dbs_mutex);
627                 break;
628         }
629         return 0;
630 }
631
632 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
633 static
634 #endif
635 struct cpufreq_governor cpufreq_gov_ondemand = {
636         .name                   = "ondemand",
637         .governor               = cpufreq_governor_dbs,
638         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
639         .owner                  = THIS_MODULE,
640 };
641
642 static int __init cpufreq_gov_dbs_init(void)
643 {
644         int err;
645         cputime64_t wall;
646         u64 idle_time;
647         int cpu = get_cpu();
648
649         idle_time = get_cpu_idle_time_us(cpu, &wall);
650         put_cpu();
651         if (idle_time != -1ULL) {
652                 /* Idle micro accounting is supported. Use finer thresholds */
653                 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
654                 dbs_tuners_ins.down_differential =
655                                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
656         }
657
658         kondemand_wq = create_workqueue("kondemand");
659         if (!kondemand_wq) {
660                 printk(KERN_ERR "Creation of kondemand failed\n");
661                 return -EFAULT;
662         }
663         err = cpufreq_register_governor(&cpufreq_gov_ondemand);
664         if (err)
665                 destroy_workqueue(kondemand_wq);
666
667         return err;
668 }
669
670 static void __exit cpufreq_gov_dbs_exit(void)
671 {
672         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
673         destroy_workqueue(kondemand_wq);
674 }
675
676
677 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
678 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
679 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
680                    "Low Latency Frequency Transition capable processors");
681 MODULE_LICENSE("GPL");
682
683 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
684 fs_initcall(cpufreq_gov_dbs_init);
685 #else
686 module_init(cpufreq_gov_dbs_init);
687 #endif
688 module_exit(cpufreq_gov_dbs_exit);