Merge /spare/repo/linux-2.6/
[linux-2.6] / arch / ia64 / sn / kernel / sn2 / sn2_smp.c
1 /*
2  * SN2 Platform specific SMP Support
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2000-2005 Silicon Graphics, Inc. All rights reserved.
9  */
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/threads.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/mmzone.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
22 #include <linux/nodemask.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25
26 #include <asm/processor.h>
27 #include <asm/irq.h>
28 #include <asm/sal.h>
29 #include <asm/system.h>
30 #include <asm/delay.h>
31 #include <asm/io.h>
32 #include <asm/smp.h>
33 #include <asm/tlb.h>
34 #include <asm/numa.h>
35 #include <asm/hw_irq.h>
36 #include <asm/current.h>
37 #include <asm/sn/sn_cpuid.h>
38 #include <asm/sn/sn_sal.h>
39 #include <asm/sn/addrs.h>
40 #include <asm/sn/shub_mmr.h>
41 #include <asm/sn/nodepda.h>
42 #include <asm/sn/rw_mmr.h>
43
44 DEFINE_PER_CPU(struct ptc_stats, ptcstats);
45 DECLARE_PER_CPU(struct ptc_stats, ptcstats);
46
47 static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
48
49 void sn2_ptc_deadlock_recovery(short *, short, int, volatile unsigned long *, unsigned long data0,
50         volatile unsigned long *, unsigned long data1);
51
52 #ifdef DEBUG_PTC
53 /*
54  * ptctest:
55  *
56  *      xyz - 3 digit hex number:
57  *              x - Force PTC purges to use shub:
58  *                      0 - no force
59  *                      1 - force
60  *              y - interupt enable
61  *                      0 - disable interrupts
62  *                      1 - leave interuupts enabled
63  *              z - type of lock:
64  *                      0 - global lock
65  *                      1 - node local lock
66  *                      2 - no lock
67  *
68  *      Note: on shub1, only ptctest == 0 is supported. Don't try other values!
69  */
70
71 static unsigned int sn2_ptctest = 0;
72
73 static int __init ptc_test(char *str)
74 {
75         get_option(&str, &sn2_ptctest);
76         return 1;
77 }
78 __setup("ptctest=", ptc_test);
79
80 static inline int ptc_lock(unsigned long *flagp)
81 {
82         unsigned long opt = sn2_ptctest & 255;
83
84         switch (opt) {
85         case 0x00:
86                 spin_lock_irqsave(&sn2_global_ptc_lock, *flagp);
87                 break;
88         case 0x01:
89                 spin_lock_irqsave(&sn_nodepda->ptc_lock, *flagp);
90                 break;
91         case 0x02:
92                 local_irq_save(*flagp);
93                 break;
94         case 0x10:
95                 spin_lock(&sn2_global_ptc_lock);
96                 break;
97         case 0x11:
98                 spin_lock(&sn_nodepda->ptc_lock);
99                 break;
100         case 0x12:
101                 break;
102         default:
103                 BUG();
104         }
105         return opt;
106 }
107
108 static inline void ptc_unlock(unsigned long flags, int opt)
109 {
110         switch (opt) {
111         case 0x00:
112                 spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
113                 break;
114         case 0x01:
115                 spin_unlock_irqrestore(&sn_nodepda->ptc_lock, flags);
116                 break;
117         case 0x02:
118                 local_irq_restore(flags);
119                 break;
120         case 0x10:
121                 spin_unlock(&sn2_global_ptc_lock);
122                 break;
123         case 0x11:
124                 spin_unlock(&sn_nodepda->ptc_lock);
125                 break;
126         case 0x12:
127                 break;
128         default:
129                 BUG();
130         }
131 }
132 #else
133
134 #define sn2_ptctest     0
135
136 static inline int ptc_lock(unsigned long *flagp)
137 {
138         spin_lock_irqsave(&sn2_global_ptc_lock, *flagp);
139         return 0;
140 }
141
142 static inline void ptc_unlock(unsigned long flags, int opt)
143 {
144         spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
145 }
146 #endif
147
148 struct ptc_stats {
149         unsigned long ptc_l;
150         unsigned long change_rid;
151         unsigned long shub_ptc_flushes;
152         unsigned long nodes_flushed;
153         unsigned long deadlocks;
154         unsigned long lock_itc_clocks;
155         unsigned long shub_itc_clocks;
156         unsigned long shub_itc_clocks_max;
157 };
158
159 static inline unsigned long wait_piowc(void)
160 {
161         volatile unsigned long *piows, zeroval;
162         unsigned long ws;
163
164         piows = pda->pio_write_status_addr;
165         zeroval = pda->pio_write_status_val;
166         do {
167                 cpu_relax();
168         } while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
169         return ws;
170 }
171
172 void sn_tlb_migrate_finish(struct mm_struct *mm)
173 {
174         if (mm == current->mm)
175                 flush_tlb_mm(mm);
176 }
177
178 /**
179  * sn2_global_tlb_purge - globally purge translation cache of virtual address range
180  * @start: start of virtual address range
181  * @end: end of virtual address range
182  * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
183  *
184  * Purges the translation caches of all processors of the given virtual address
185  * range.
186  *
187  * Note:
188  *      - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
189  *      - cpu_vm_mask is converted into a nodemask of the nodes containing the
190  *        cpus in cpu_vm_mask.
191  *      - if only one bit is set in cpu_vm_mask & it is the current cpu,
192  *        then only the local TLB needs to be flushed. This flushing can be done
193  *        using ptc.l. This is the common case & avoids the global spinlock.
194  *      - if multiple cpus have loaded the context, then flushing has to be
195  *        done with ptc.g/MMRs under protection of the global ptc_lock.
196  */
197
198 void
199 sn2_global_tlb_purge(unsigned long start, unsigned long end,
200                      unsigned long nbits)
201 {
202         int i, opt, shub1, cnode, mynasid, cpu, lcpu = 0, nasid, flushed = 0;
203         volatile unsigned long *ptc0, *ptc1;
204         unsigned long itc, itc2, flags, data0 = 0, data1 = 0;
205         struct mm_struct *mm = current->active_mm;
206         short nasids[MAX_NUMNODES], nix;
207         nodemask_t nodes_flushed;
208
209         nodes_clear(nodes_flushed);
210         i = 0;
211
212         for_each_cpu_mask(cpu, mm->cpu_vm_mask) {
213                 cnode = cpu_to_node(cpu);
214                 node_set(cnode, nodes_flushed);
215                 lcpu = cpu;
216                 i++;
217         }
218
219         preempt_disable();
220
221         if (likely(i == 1 && lcpu == smp_processor_id())) {
222                 do {
223                         ia64_ptcl(start, nbits << 2);
224                         start += (1UL << nbits);
225                 } while (start < end);
226                 ia64_srlz_i();
227                 __get_cpu_var(ptcstats).ptc_l++;
228                 preempt_enable();
229                 return;
230         }
231
232         if (atomic_read(&mm->mm_users) == 1) {
233                 flush_tlb_mm(mm);
234                 __get_cpu_var(ptcstats).change_rid++;
235                 preempt_enable();
236                 return;
237         }
238
239         itc = ia64_get_itc();
240         nix = 0;
241         for_each_node_mask(cnode, nodes_flushed)
242                 nasids[nix++] = cnodeid_to_nasid(cnode);
243
244         shub1 = is_shub1();
245         if (shub1) {
246                 data0 = (1UL << SH1_PTC_0_A_SHFT) |
247                         (nbits << SH1_PTC_0_PS_SHFT) |
248                         ((ia64_get_rr(start) >> 8) << SH1_PTC_0_RID_SHFT) |
249                         (1UL << SH1_PTC_0_START_SHFT);
250                 ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
251                 ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
252         } else {
253                 data0 = (1UL << SH2_PTC_A_SHFT) |
254                         (nbits << SH2_PTC_PS_SHFT) |
255                         (1UL << SH2_PTC_START_SHFT);
256                 ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC + 
257                         ((ia64_get_rr(start) >> 8) << SH2_PTC_RID_SHFT) );
258                 ptc1 = NULL;
259         }
260         
261
262         mynasid = get_nasid();
263
264         itc = ia64_get_itc();
265         opt = ptc_lock(&flags);
266         itc2 = ia64_get_itc();
267         __get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
268         __get_cpu_var(ptcstats).shub_ptc_flushes++;
269         __get_cpu_var(ptcstats).nodes_flushed += nix;
270
271         do {
272                 if (shub1)
273                         data1 = start | (1UL << SH1_PTC_1_START_SHFT);
274                 else
275                         data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
276                 for (i = 0; i < nix; i++) {
277                         nasid = nasids[i];
278                         if ((!(sn2_ptctest & 3)) && unlikely(nasid == mynasid)) {
279                                 ia64_ptcga(start, nbits << 2);
280                                 ia64_srlz_i();
281                         } else {
282                                 ptc0 = CHANGE_NASID(nasid, ptc0);
283                                 if (ptc1)
284                                         ptc1 = CHANGE_NASID(nasid, ptc1);
285                                 pio_atomic_phys_write_mmrs(ptc0, data0, ptc1,
286                                                            data1);
287                                 flushed = 1;
288                         }
289                 }
290                 if (flushed
291                     && (wait_piowc() &
292                                 (SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK))) {
293                         sn2_ptc_deadlock_recovery(nasids, nix, mynasid, ptc0, data0, ptc1, data1);
294                 }
295
296                 start += (1UL << nbits);
297
298         } while (start < end);
299
300         itc2 = ia64_get_itc() - itc2;
301         __get_cpu_var(ptcstats).shub_itc_clocks += itc2;
302         if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
303                 __get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
304
305         ptc_unlock(flags, opt);
306
307         preempt_enable();
308 }
309
310 /*
311  * sn2_ptc_deadlock_recovery
312  *
313  * Recover from PTC deadlocks conditions. Recovery requires stepping thru each 
314  * TLB flush transaction.  The recovery sequence is somewhat tricky & is
315  * coded in assembly language.
316  */
317 void sn2_ptc_deadlock_recovery(short *nasids, short nix, int mynasid, volatile unsigned long *ptc0, unsigned long data0,
318         volatile unsigned long *ptc1, unsigned long data1)
319 {
320         extern void sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
321                 volatile unsigned long *, unsigned long, volatile unsigned long *, unsigned long);
322         short nasid, i;
323         unsigned long *piows, zeroval;
324
325         __get_cpu_var(ptcstats).deadlocks++;
326
327         piows = (unsigned long *) pda->pio_write_status_addr;
328         zeroval = pda->pio_write_status_val;
329
330         for (i=0; i < nix; i++) {
331                 nasid = nasids[i];
332                 if (!(sn2_ptctest & 3) && nasid == mynasid)
333                         continue;
334                 ptc0 = CHANGE_NASID(nasid, ptc0);
335                 if (ptc1)
336                         ptc1 = CHANGE_NASID(nasid, ptc1);
337                 sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
338         }
339
340 }
341
342 /**
343  * sn_send_IPI_phys - send an IPI to a Nasid and slice
344  * @nasid: nasid to receive the interrupt (may be outside partition)
345  * @physid: physical cpuid to receive the interrupt.
346  * @vector: command to send
347  * @delivery_mode: delivery mechanism
348  *
349  * Sends an IPI (interprocessor interrupt) to the processor specified by
350  * @physid
351  *
352  * @delivery_mode can be one of the following
353  *
354  * %IA64_IPI_DM_INT - pend an interrupt
355  * %IA64_IPI_DM_PMI - pend a PMI
356  * %IA64_IPI_DM_NMI - pend an NMI
357  * %IA64_IPI_DM_INIT - pend an INIT interrupt
358  */
359 void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
360 {
361         long val;
362         unsigned long flags = 0;
363         volatile long *p;
364
365         p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
366         val = (1UL << SH_IPI_INT_SEND_SHFT) |
367             (physid << SH_IPI_INT_PID_SHFT) |
368             ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
369             ((long)vector << SH_IPI_INT_IDX_SHFT) |
370             (0x000feeUL << SH_IPI_INT_BASE_SHFT);
371
372         mb();
373         if (enable_shub_wars_1_1()) {
374                 spin_lock_irqsave(&sn2_global_ptc_lock, flags);
375         }
376         pio_phys_write_mmr(p, val);
377         if (enable_shub_wars_1_1()) {
378                 wait_piowc();
379                 spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
380         }
381
382 }
383
384 EXPORT_SYMBOL(sn_send_IPI_phys);
385
386 /**
387  * sn2_send_IPI - send an IPI to a processor
388  * @cpuid: target of the IPI
389  * @vector: command to send
390  * @delivery_mode: delivery mechanism
391  * @redirect: redirect the IPI?
392  *
393  * Sends an IPI (InterProcessor Interrupt) to the processor specified by
394  * @cpuid.  @vector specifies the command to send, while @delivery_mode can 
395  * be one of the following
396  *
397  * %IA64_IPI_DM_INT - pend an interrupt
398  * %IA64_IPI_DM_PMI - pend a PMI
399  * %IA64_IPI_DM_NMI - pend an NMI
400  * %IA64_IPI_DM_INIT - pend an INIT interrupt
401  */
402 void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
403 {
404         long physid;
405         int nasid;
406
407         physid = cpu_physical_id(cpuid);
408         nasid = cpuid_to_nasid(cpuid);
409
410         /* the following is used only when starting cpus at boot time */
411         if (unlikely(nasid == -1))
412                 ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
413
414         sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
415 }
416
417 #ifdef CONFIG_PROC_FS
418
419 #define PTC_BASENAME    "sgi_sn/ptc_statistics"
420
421 static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
422 {
423         if (*offset < NR_CPUS)
424                 return offset;
425         return NULL;
426 }
427
428 static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
429 {
430         (*offset)++;
431         if (*offset < NR_CPUS)
432                 return offset;
433         return NULL;
434 }
435
436 static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
437 {
438 }
439
440 static int sn2_ptc_seq_show(struct seq_file *file, void *data)
441 {
442         struct ptc_stats *stat;
443         int cpu;
444
445         cpu = *(loff_t *) data;
446
447         if (!cpu) {
448                 seq_printf(file, "# ptc_l change_rid shub_ptc_flushes shub_nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max\n");
449                 seq_printf(file, "# ptctest %d\n", sn2_ptctest);
450         }
451
452         if (cpu < NR_CPUS && cpu_online(cpu)) {
453                 stat = &per_cpu(ptcstats, cpu);
454                 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
455                                 stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
456                                 stat->deadlocks,
457                                 1000 * stat->lock_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
458                                 1000 * stat->shub_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
459                                 1000 * stat->shub_itc_clocks_max / per_cpu(cpu_info, cpu).cyc_per_usec);
460         }
461
462         return 0;
463 }
464
465 static struct seq_operations sn2_ptc_seq_ops = {
466         .start = sn2_ptc_seq_start,
467         .next = sn2_ptc_seq_next,
468         .stop = sn2_ptc_seq_stop,
469         .show = sn2_ptc_seq_show
470 };
471
472 int sn2_ptc_proc_open(struct inode *inode, struct file *file)
473 {
474         return seq_open(file, &sn2_ptc_seq_ops);
475 }
476
477 static struct file_operations proc_sn2_ptc_operations = {
478         .open = sn2_ptc_proc_open,
479         .read = seq_read,
480         .llseek = seq_lseek,
481         .release = seq_release,
482 };
483
484 static struct proc_dir_entry *proc_sn2_ptc;
485
486 static int __init sn2_ptc_init(void)
487 {
488         if (!(proc_sn2_ptc = create_proc_entry(PTC_BASENAME, 0444, NULL))) {
489                 printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
490                 return -EINVAL;
491         }
492         proc_sn2_ptc->proc_fops = &proc_sn2_ptc_operations;
493         spin_lock_init(&sn2_global_ptc_lock);
494         return 0;
495 }
496
497 static void __exit sn2_ptc_exit(void)
498 {
499         remove_proc_entry(PTC_BASENAME, NULL);
500 }
501
502 module_init(sn2_ptc_init);
503 module_exit(sn2_ptc_exit);
504 #endif /* CONFIG_PROC_FS */
505