2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock);
44 * Region tracking -- allows tracking of reservations and instantiated pages
45 * across the pages in a mapping.
48 struct list_head link;
53 static long region_add(struct list_head *head, long f, long t)
55 struct file_region *rg, *nrg, *trg;
57 /* Locate the region we are either in or before. */
58 list_for_each_entry(rg, head, link)
62 /* Round our left edge to the current segment if it encloses us. */
66 /* Check for and consume any regions we now overlap with. */
68 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
69 if (&rg->link == head)
74 /* If this area reaches higher then extend our area to
75 * include it completely. If this is not the first area
76 * which we intend to reuse, free it. */
89 static long region_chg(struct list_head *head, long f, long t)
91 struct file_region *rg, *nrg;
94 /* Locate the region we are before or in. */
95 list_for_each_entry(rg, head, link)
99 /* If we are below the current region then a new region is required.
100 * Subtle, allocate a new region at the position but make it zero
101 * size such that we can guarantee to record the reservation. */
102 if (&rg->link == head || t < rg->from) {
103 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
108 INIT_LIST_HEAD(&nrg->link);
109 list_add(&nrg->link, rg->link.prev);
114 /* Round our left edge to the current segment if it encloses us. */
119 /* Check for and consume any regions we now overlap with. */
120 list_for_each_entry(rg, rg->link.prev, link) {
121 if (&rg->link == head)
126 /* We overlap with this area, if it extends futher than
127 * us then we must extend ourselves. Account for its
128 * existing reservation. */
133 chg -= rg->to - rg->from;
138 static long region_truncate(struct list_head *head, long end)
140 struct file_region *rg, *trg;
143 /* Locate the region we are either in or before. */
144 list_for_each_entry(rg, head, link)
147 if (&rg->link == head)
150 /* If we are in the middle of a region then adjust it. */
151 if (end > rg->from) {
154 rg = list_entry(rg->link.next, typeof(*rg), link);
157 /* Drop any remaining regions. */
158 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
159 if (&rg->link == head)
161 chg += rg->to - rg->from;
169 * Convert the address within this vma to the page offset within
170 * the mapping, in base page units.
172 static pgoff_t vma_page_offset(struct vm_area_struct *vma,
173 unsigned long address)
175 return ((address - vma->vm_start) >> PAGE_SHIFT) +
176 (vma->vm_pgoff >> PAGE_SHIFT);
180 * Convert the address within this vma to the page offset within
181 * the mapping, in pagecache page units; huge pages here.
183 static pgoff_t vma_pagecache_offset(struct vm_area_struct *vma,
184 unsigned long address)
186 return ((address - vma->vm_start) >> HPAGE_SHIFT) +
187 (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
190 #define HPAGE_RESV_OWNER (1UL << (BITS_PER_LONG - 1))
191 #define HPAGE_RESV_UNMAPPED (1UL << (BITS_PER_LONG - 2))
192 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
194 * These helpers are used to track how many pages are reserved for
195 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
196 * is guaranteed to have their future faults succeed.
198 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
199 * the reserve counters are updated with the hugetlb_lock held. It is safe
200 * to reset the VMA at fork() time as it is not in use yet and there is no
201 * chance of the global counters getting corrupted as a result of the values.
203 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
205 return (unsigned long)vma->vm_private_data;
208 static void set_vma_private_data(struct vm_area_struct *vma,
211 vma->vm_private_data = (void *)value;
214 static unsigned long vma_resv_huge_pages(struct vm_area_struct *vma)
216 VM_BUG_ON(!is_vm_hugetlb_page(vma));
217 if (!(vma->vm_flags & VM_SHARED))
218 return get_vma_private_data(vma) & ~HPAGE_RESV_MASK;
222 static void set_vma_resv_huge_pages(struct vm_area_struct *vma,
223 unsigned long reserve)
225 VM_BUG_ON(!is_vm_hugetlb_page(vma));
226 VM_BUG_ON(vma->vm_flags & VM_SHARED);
228 set_vma_private_data(vma,
229 (get_vma_private_data(vma) & HPAGE_RESV_MASK) | reserve);
232 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
234 VM_BUG_ON(!is_vm_hugetlb_page(vma));
235 VM_BUG_ON(vma->vm_flags & VM_SHARED);
237 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
240 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
242 VM_BUG_ON(!is_vm_hugetlb_page(vma));
244 return (get_vma_private_data(vma) & flag) != 0;
247 /* Decrement the reserved pages in the hugepage pool by one */
248 static void decrement_hugepage_resv_vma(struct vm_area_struct *vma)
250 if (vma->vm_flags & VM_NORESERVE)
253 if (vma->vm_flags & VM_SHARED) {
254 /* Shared mappings always use reserves */
258 * Only the process that called mmap() has reserves for
261 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
262 unsigned long flags, reserve;
264 flags = (unsigned long)vma->vm_private_data &
266 reserve = (unsigned long)vma->vm_private_data - 1;
267 vma->vm_private_data = (void *)(reserve | flags);
272 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
273 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
275 VM_BUG_ON(!is_vm_hugetlb_page(vma));
276 if (!(vma->vm_flags & VM_SHARED))
277 vma->vm_private_data = (void *)0;
280 /* Returns true if the VMA has associated reserve pages */
281 static int vma_has_private_reserves(struct vm_area_struct *vma)
283 if (vma->vm_flags & VM_SHARED)
285 if (!vma_resv_huge_pages(vma))
290 static void clear_huge_page(struct page *page, unsigned long addr)
295 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
297 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
301 static void copy_huge_page(struct page *dst, struct page *src,
302 unsigned long addr, struct vm_area_struct *vma)
307 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
309 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
313 static void enqueue_huge_page(struct page *page)
315 int nid = page_to_nid(page);
316 list_add(&page->lru, &hugepage_freelists[nid]);
318 free_huge_pages_node[nid]++;
321 static struct page *dequeue_huge_page(void)
324 struct page *page = NULL;
326 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
327 if (!list_empty(&hugepage_freelists[nid])) {
328 page = list_entry(hugepage_freelists[nid].next,
330 list_del(&page->lru);
332 free_huge_pages_node[nid]--;
339 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
340 unsigned long address, int avoid_reserve)
343 struct page *page = NULL;
344 struct mempolicy *mpol;
345 nodemask_t *nodemask;
346 struct zonelist *zonelist = huge_zonelist(vma, address,
347 htlb_alloc_mask, &mpol, &nodemask);
352 * A child process with MAP_PRIVATE mappings created by their parent
353 * have no page reserves. This check ensures that reservations are
354 * not "stolen". The child may still get SIGKILLed
356 if (!vma_has_private_reserves(vma) &&
357 free_huge_pages - resv_huge_pages == 0)
360 /* If reserves cannot be used, ensure enough pages are in the pool */
361 if (avoid_reserve && free_huge_pages - resv_huge_pages == 0)
364 for_each_zone_zonelist_nodemask(zone, z, zonelist,
365 MAX_NR_ZONES - 1, nodemask) {
366 nid = zone_to_nid(zone);
367 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
368 !list_empty(&hugepage_freelists[nid])) {
369 page = list_entry(hugepage_freelists[nid].next,
371 list_del(&page->lru);
373 free_huge_pages_node[nid]--;
376 decrement_hugepage_resv_vma(vma);
385 static void update_and_free_page(struct page *page)
389 nr_huge_pages_node[page_to_nid(page)]--;
390 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
391 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
392 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
393 1 << PG_private | 1<< PG_writeback);
395 set_compound_page_dtor(page, NULL);
396 set_page_refcounted(page);
397 arch_release_hugepage(page);
398 __free_pages(page, HUGETLB_PAGE_ORDER);
401 static void free_huge_page(struct page *page)
403 int nid = page_to_nid(page);
404 struct address_space *mapping;
406 mapping = (struct address_space *) page_private(page);
407 set_page_private(page, 0);
408 BUG_ON(page_count(page));
409 INIT_LIST_HEAD(&page->lru);
411 spin_lock(&hugetlb_lock);
412 if (surplus_huge_pages_node[nid]) {
413 update_and_free_page(page);
414 surplus_huge_pages--;
415 surplus_huge_pages_node[nid]--;
417 enqueue_huge_page(page);
419 spin_unlock(&hugetlb_lock);
421 hugetlb_put_quota(mapping, 1);
425 * Increment or decrement surplus_huge_pages. Keep node-specific counters
426 * balanced by operating on them in a round-robin fashion.
427 * Returns 1 if an adjustment was made.
429 static int adjust_pool_surplus(int delta)
435 VM_BUG_ON(delta != -1 && delta != 1);
437 nid = next_node(nid, node_online_map);
438 if (nid == MAX_NUMNODES)
439 nid = first_node(node_online_map);
441 /* To shrink on this node, there must be a surplus page */
442 if (delta < 0 && !surplus_huge_pages_node[nid])
444 /* Surplus cannot exceed the total number of pages */
445 if (delta > 0 && surplus_huge_pages_node[nid] >=
446 nr_huge_pages_node[nid])
449 surplus_huge_pages += delta;
450 surplus_huge_pages_node[nid] += delta;
453 } while (nid != prev_nid);
459 static struct page *alloc_fresh_huge_page_node(int nid)
463 page = alloc_pages_node(nid,
464 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
465 __GFP_REPEAT|__GFP_NOWARN,
468 if (arch_prepare_hugepage(page)) {
469 __free_pages(page, HUGETLB_PAGE_ORDER);
472 set_compound_page_dtor(page, free_huge_page);
473 spin_lock(&hugetlb_lock);
475 nr_huge_pages_node[nid]++;
476 spin_unlock(&hugetlb_lock);
477 put_page(page); /* free it into the hugepage allocator */
483 static int alloc_fresh_huge_page(void)
490 start_nid = hugetlb_next_nid;
493 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
497 * Use a helper variable to find the next node and then
498 * copy it back to hugetlb_next_nid afterwards:
499 * otherwise there's a window in which a racer might
500 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
501 * But we don't need to use a spin_lock here: it really
502 * doesn't matter if occasionally a racer chooses the
503 * same nid as we do. Move nid forward in the mask even
504 * if we just successfully allocated a hugepage so that
505 * the next caller gets hugepages on the next node.
507 next_nid = next_node(hugetlb_next_nid, node_online_map);
508 if (next_nid == MAX_NUMNODES)
509 next_nid = first_node(node_online_map);
510 hugetlb_next_nid = next_nid;
511 } while (!page && hugetlb_next_nid != start_nid);
514 count_vm_event(HTLB_BUDDY_PGALLOC);
516 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
521 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
522 unsigned long address)
528 * Assume we will successfully allocate the surplus page to
529 * prevent racing processes from causing the surplus to exceed
532 * This however introduces a different race, where a process B
533 * tries to grow the static hugepage pool while alloc_pages() is
534 * called by process A. B will only examine the per-node
535 * counters in determining if surplus huge pages can be
536 * converted to normal huge pages in adjust_pool_surplus(). A
537 * won't be able to increment the per-node counter, until the
538 * lock is dropped by B, but B doesn't drop hugetlb_lock until
539 * no more huge pages can be converted from surplus to normal
540 * state (and doesn't try to convert again). Thus, we have a
541 * case where a surplus huge page exists, the pool is grown, and
542 * the surplus huge page still exists after, even though it
543 * should just have been converted to a normal huge page. This
544 * does not leak memory, though, as the hugepage will be freed
545 * once it is out of use. It also does not allow the counters to
546 * go out of whack in adjust_pool_surplus() as we don't modify
547 * the node values until we've gotten the hugepage and only the
548 * per-node value is checked there.
550 spin_lock(&hugetlb_lock);
551 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
552 spin_unlock(&hugetlb_lock);
556 surplus_huge_pages++;
558 spin_unlock(&hugetlb_lock);
560 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
561 __GFP_REPEAT|__GFP_NOWARN,
564 spin_lock(&hugetlb_lock);
567 * This page is now managed by the hugetlb allocator and has
568 * no users -- drop the buddy allocator's reference.
570 put_page_testzero(page);
571 VM_BUG_ON(page_count(page));
572 nid = page_to_nid(page);
573 set_compound_page_dtor(page, free_huge_page);
575 * We incremented the global counters already
577 nr_huge_pages_node[nid]++;
578 surplus_huge_pages_node[nid]++;
579 __count_vm_event(HTLB_BUDDY_PGALLOC);
582 surplus_huge_pages--;
583 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
585 spin_unlock(&hugetlb_lock);
591 * Increase the hugetlb pool such that it can accomodate a reservation
594 static int gather_surplus_pages(int delta)
596 struct list_head surplus_list;
597 struct page *page, *tmp;
599 int needed, allocated;
601 needed = (resv_huge_pages + delta) - free_huge_pages;
603 resv_huge_pages += delta;
608 INIT_LIST_HEAD(&surplus_list);
612 spin_unlock(&hugetlb_lock);
613 for (i = 0; i < needed; i++) {
614 page = alloc_buddy_huge_page(NULL, 0);
617 * We were not able to allocate enough pages to
618 * satisfy the entire reservation so we free what
619 * we've allocated so far.
621 spin_lock(&hugetlb_lock);
626 list_add(&page->lru, &surplus_list);
631 * After retaking hugetlb_lock, we need to recalculate 'needed'
632 * because either resv_huge_pages or free_huge_pages may have changed.
634 spin_lock(&hugetlb_lock);
635 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
640 * The surplus_list now contains _at_least_ the number of extra pages
641 * needed to accomodate the reservation. Add the appropriate number
642 * of pages to the hugetlb pool and free the extras back to the buddy
643 * allocator. Commit the entire reservation here to prevent another
644 * process from stealing the pages as they are added to the pool but
645 * before they are reserved.
648 resv_huge_pages += delta;
651 /* Free the needed pages to the hugetlb pool */
652 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
655 list_del(&page->lru);
656 enqueue_huge_page(page);
659 /* Free unnecessary surplus pages to the buddy allocator */
660 if (!list_empty(&surplus_list)) {
661 spin_unlock(&hugetlb_lock);
662 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
663 list_del(&page->lru);
665 * The page has a reference count of zero already, so
666 * call free_huge_page directly instead of using
667 * put_page. This must be done with hugetlb_lock
668 * unlocked which is safe because free_huge_page takes
669 * hugetlb_lock before deciding how to free the page.
671 free_huge_page(page);
673 spin_lock(&hugetlb_lock);
680 * When releasing a hugetlb pool reservation, any surplus pages that were
681 * allocated to satisfy the reservation must be explicitly freed if they were
684 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
688 unsigned long nr_pages;
691 * We want to release as many surplus pages as possible, spread
692 * evenly across all nodes. Iterate across all nodes until we
693 * can no longer free unreserved surplus pages. This occurs when
694 * the nodes with surplus pages have no free pages.
696 unsigned long remaining_iterations = num_online_nodes();
698 /* Uncommit the reservation */
699 resv_huge_pages -= unused_resv_pages;
701 nr_pages = min(unused_resv_pages, surplus_huge_pages);
703 while (remaining_iterations-- && nr_pages) {
704 nid = next_node(nid, node_online_map);
705 if (nid == MAX_NUMNODES)
706 nid = first_node(node_online_map);
708 if (!surplus_huge_pages_node[nid])
711 if (!list_empty(&hugepage_freelists[nid])) {
712 page = list_entry(hugepage_freelists[nid].next,
714 list_del(&page->lru);
715 update_and_free_page(page);
717 free_huge_pages_node[nid]--;
718 surplus_huge_pages--;
719 surplus_huge_pages_node[nid]--;
721 remaining_iterations = num_online_nodes();
727 * Determine if the huge page at addr within the vma has an associated
728 * reservation. Where it does not we will need to logically increase
729 * reservation and actually increase quota before an allocation can occur.
730 * Where any new reservation would be required the reservation change is
731 * prepared, but not committed. Once the page has been quota'd allocated
732 * an instantiated the change should be committed via vma_commit_reservation.
733 * No action is required on failure.
735 static int vma_needs_reservation(struct vm_area_struct *vma, unsigned long addr)
737 struct address_space *mapping = vma->vm_file->f_mapping;
738 struct inode *inode = mapping->host;
740 if (vma->vm_flags & VM_SHARED) {
741 pgoff_t idx = vma_pagecache_offset(vma, addr);
742 return region_chg(&inode->i_mapping->private_list,
746 if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
752 static void vma_commit_reservation(struct vm_area_struct *vma,
755 struct address_space *mapping = vma->vm_file->f_mapping;
756 struct inode *inode = mapping->host;
758 if (vma->vm_flags & VM_SHARED) {
759 pgoff_t idx = vma_pagecache_offset(vma, addr);
760 region_add(&inode->i_mapping->private_list, idx, idx + 1);
764 static struct page *alloc_huge_page(struct vm_area_struct *vma,
765 unsigned long addr, int avoid_reserve)
768 struct address_space *mapping = vma->vm_file->f_mapping;
769 struct inode *inode = mapping->host;
773 * Processes that did not create the mapping will have no reserves and
774 * will not have accounted against quota. Check that the quota can be
775 * made before satisfying the allocation
776 * MAP_NORESERVE mappings may also need pages and quota allocated
777 * if no reserve mapping overlaps.
779 chg = vma_needs_reservation(vma, addr);
783 if (hugetlb_get_quota(inode->i_mapping, chg))
784 return ERR_PTR(-ENOSPC);
786 spin_lock(&hugetlb_lock);
787 page = dequeue_huge_page_vma(vma, addr, avoid_reserve);
788 spin_unlock(&hugetlb_lock);
791 page = alloc_buddy_huge_page(vma, addr);
793 hugetlb_put_quota(inode->i_mapping, chg);
794 return ERR_PTR(-VM_FAULT_OOM);
798 set_page_refcounted(page);
799 set_page_private(page, (unsigned long) mapping);
801 vma_commit_reservation(vma, addr);
806 static int __init hugetlb_init(void)
810 if (HPAGE_SHIFT == 0)
813 for (i = 0; i < MAX_NUMNODES; ++i)
814 INIT_LIST_HEAD(&hugepage_freelists[i]);
816 hugetlb_next_nid = first_node(node_online_map);
818 for (i = 0; i < max_huge_pages; ++i) {
819 if (!alloc_fresh_huge_page())
822 max_huge_pages = free_huge_pages = nr_huge_pages = i;
823 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
826 module_init(hugetlb_init);
828 static int __init hugetlb_setup(char *s)
830 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
834 __setup("hugepages=", hugetlb_setup);
836 static unsigned int cpuset_mems_nr(unsigned int *array)
841 for_each_node_mask(node, cpuset_current_mems_allowed)
848 #ifdef CONFIG_HIGHMEM
849 static void try_to_free_low(unsigned long count)
853 for (i = 0; i < MAX_NUMNODES; ++i) {
854 struct page *page, *next;
855 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
856 if (count >= nr_huge_pages)
858 if (PageHighMem(page))
860 list_del(&page->lru);
861 update_and_free_page(page);
863 free_huge_pages_node[page_to_nid(page)]--;
868 static inline void try_to_free_low(unsigned long count)
873 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
874 static unsigned long set_max_huge_pages(unsigned long count)
876 unsigned long min_count, ret;
879 * Increase the pool size
880 * First take pages out of surplus state. Then make up the
881 * remaining difference by allocating fresh huge pages.
883 * We might race with alloc_buddy_huge_page() here and be unable
884 * to convert a surplus huge page to a normal huge page. That is
885 * not critical, though, it just means the overall size of the
886 * pool might be one hugepage larger than it needs to be, but
887 * within all the constraints specified by the sysctls.
889 spin_lock(&hugetlb_lock);
890 while (surplus_huge_pages && count > persistent_huge_pages) {
891 if (!adjust_pool_surplus(-1))
895 while (count > persistent_huge_pages) {
897 * If this allocation races such that we no longer need the
898 * page, free_huge_page will handle it by freeing the page
899 * and reducing the surplus.
901 spin_unlock(&hugetlb_lock);
902 ret = alloc_fresh_huge_page();
903 spin_lock(&hugetlb_lock);
910 * Decrease the pool size
911 * First return free pages to the buddy allocator (being careful
912 * to keep enough around to satisfy reservations). Then place
913 * pages into surplus state as needed so the pool will shrink
914 * to the desired size as pages become free.
916 * By placing pages into the surplus state independent of the
917 * overcommit value, we are allowing the surplus pool size to
918 * exceed overcommit. There are few sane options here. Since
919 * alloc_buddy_huge_page() is checking the global counter,
920 * though, we'll note that we're not allowed to exceed surplus
921 * and won't grow the pool anywhere else. Not until one of the
922 * sysctls are changed, or the surplus pages go out of use.
924 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
925 min_count = max(count, min_count);
926 try_to_free_low(min_count);
927 while (min_count < persistent_huge_pages) {
928 struct page *page = dequeue_huge_page();
931 update_and_free_page(page);
933 while (count < persistent_huge_pages) {
934 if (!adjust_pool_surplus(1))
938 ret = persistent_huge_pages;
939 spin_unlock(&hugetlb_lock);
943 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
944 struct file *file, void __user *buffer,
945 size_t *length, loff_t *ppos)
947 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
948 max_huge_pages = set_max_huge_pages(max_huge_pages);
952 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
953 struct file *file, void __user *buffer,
954 size_t *length, loff_t *ppos)
956 proc_dointvec(table, write, file, buffer, length, ppos);
957 if (hugepages_treat_as_movable)
958 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
960 htlb_alloc_mask = GFP_HIGHUSER;
964 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
965 struct file *file, void __user *buffer,
966 size_t *length, loff_t *ppos)
968 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
969 spin_lock(&hugetlb_lock);
970 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
971 spin_unlock(&hugetlb_lock);
975 #endif /* CONFIG_SYSCTL */
977 int hugetlb_report_meminfo(char *buf)
980 "HugePages_Total: %5lu\n"
981 "HugePages_Free: %5lu\n"
982 "HugePages_Rsvd: %5lu\n"
983 "HugePages_Surp: %5lu\n"
984 "Hugepagesize: %5lu kB\n",
992 int hugetlb_report_node_meminfo(int nid, char *buf)
995 "Node %d HugePages_Total: %5u\n"
996 "Node %d HugePages_Free: %5u\n"
997 "Node %d HugePages_Surp: %5u\n",
998 nid, nr_huge_pages_node[nid],
999 nid, free_huge_pages_node[nid],
1000 nid, surplus_huge_pages_node[nid]);
1003 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1004 unsigned long hugetlb_total_pages(void)
1006 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
1009 static int hugetlb_acct_memory(long delta)
1013 spin_lock(&hugetlb_lock);
1015 * When cpuset is configured, it breaks the strict hugetlb page
1016 * reservation as the accounting is done on a global variable. Such
1017 * reservation is completely rubbish in the presence of cpuset because
1018 * the reservation is not checked against page availability for the
1019 * current cpuset. Application can still potentially OOM'ed by kernel
1020 * with lack of free htlb page in cpuset that the task is in.
1021 * Attempt to enforce strict accounting with cpuset is almost
1022 * impossible (or too ugly) because cpuset is too fluid that
1023 * task or memory node can be dynamically moved between cpusets.
1025 * The change of semantics for shared hugetlb mapping with cpuset is
1026 * undesirable. However, in order to preserve some of the semantics,
1027 * we fall back to check against current free page availability as
1028 * a best attempt and hopefully to minimize the impact of changing
1029 * semantics that cpuset has.
1032 if (gather_surplus_pages(delta) < 0)
1035 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1036 return_unused_surplus_pages(delta);
1043 return_unused_surplus_pages((unsigned long) -delta);
1046 spin_unlock(&hugetlb_lock);
1050 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1052 unsigned long reserve = vma_resv_huge_pages(vma);
1054 hugetlb_acct_memory(-reserve);
1058 * We cannot handle pagefaults against hugetlb pages at all. They cause
1059 * handle_mm_fault() to try to instantiate regular-sized pages in the
1060 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1063 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1069 struct vm_operations_struct hugetlb_vm_ops = {
1070 .fault = hugetlb_vm_op_fault,
1071 .close = hugetlb_vm_op_close,
1074 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1081 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1083 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1085 entry = pte_mkyoung(entry);
1086 entry = pte_mkhuge(entry);
1091 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1092 unsigned long address, pte_t *ptep)
1096 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1097 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1098 update_mmu_cache(vma, address, entry);
1103 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1104 struct vm_area_struct *vma)
1106 pte_t *src_pte, *dst_pte, entry;
1107 struct page *ptepage;
1111 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1113 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
1114 src_pte = huge_pte_offset(src, addr);
1117 dst_pte = huge_pte_alloc(dst, addr);
1121 /* If the pagetables are shared don't copy or take references */
1122 if (dst_pte == src_pte)
1125 spin_lock(&dst->page_table_lock);
1126 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1127 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1129 huge_ptep_set_wrprotect(src, addr, src_pte);
1130 entry = huge_ptep_get(src_pte);
1131 ptepage = pte_page(entry);
1133 set_huge_pte_at(dst, addr, dst_pte, entry);
1135 spin_unlock(&src->page_table_lock);
1136 spin_unlock(&dst->page_table_lock);
1144 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1145 unsigned long end, struct page *ref_page)
1147 struct mm_struct *mm = vma->vm_mm;
1148 unsigned long address;
1154 * A page gathering list, protected by per file i_mmap_lock. The
1155 * lock is used to avoid list corruption from multiple unmapping
1156 * of the same page since we are using page->lru.
1158 LIST_HEAD(page_list);
1160 WARN_ON(!is_vm_hugetlb_page(vma));
1161 BUG_ON(start & ~HPAGE_MASK);
1162 BUG_ON(end & ~HPAGE_MASK);
1164 spin_lock(&mm->page_table_lock);
1165 for (address = start; address < end; address += HPAGE_SIZE) {
1166 ptep = huge_pte_offset(mm, address);
1170 if (huge_pmd_unshare(mm, &address, ptep))
1174 * If a reference page is supplied, it is because a specific
1175 * page is being unmapped, not a range. Ensure the page we
1176 * are about to unmap is the actual page of interest.
1179 pte = huge_ptep_get(ptep);
1180 if (huge_pte_none(pte))
1182 page = pte_page(pte);
1183 if (page != ref_page)
1187 * Mark the VMA as having unmapped its page so that
1188 * future faults in this VMA will fail rather than
1189 * looking like data was lost
1191 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1194 pte = huge_ptep_get_and_clear(mm, address, ptep);
1195 if (huge_pte_none(pte))
1198 page = pte_page(pte);
1200 set_page_dirty(page);
1201 list_add(&page->lru, &page_list);
1203 spin_unlock(&mm->page_table_lock);
1204 flush_tlb_range(vma, start, end);
1205 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1206 list_del(&page->lru);
1211 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1212 unsigned long end, struct page *ref_page)
1215 * It is undesirable to test vma->vm_file as it should be non-null
1216 * for valid hugetlb area. However, vm_file will be NULL in the error
1217 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
1218 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
1219 * to clean up. Since no pte has actually been setup, it is safe to
1220 * do nothing in this case.
1223 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1224 __unmap_hugepage_range(vma, start, end, ref_page);
1225 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1230 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1231 * mappping it owns the reserve page for. The intention is to unmap the page
1232 * from other VMAs and let the children be SIGKILLed if they are faulting the
1235 int unmap_ref_private(struct mm_struct *mm,
1236 struct vm_area_struct *vma,
1238 unsigned long address)
1240 struct vm_area_struct *iter_vma;
1241 struct address_space *mapping;
1242 struct prio_tree_iter iter;
1246 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1247 * from page cache lookup which is in HPAGE_SIZE units.
1249 address = address & huge_page_mask(hstate_vma(vma));
1250 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1251 + (vma->vm_pgoff >> PAGE_SHIFT);
1252 mapping = (struct address_space *)page_private(page);
1254 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1255 /* Do not unmap the current VMA */
1256 if (iter_vma == vma)
1260 * Unmap the page from other VMAs without their own reserves.
1261 * They get marked to be SIGKILLed if they fault in these
1262 * areas. This is because a future no-page fault on this VMA
1263 * could insert a zeroed page instead of the data existing
1264 * from the time of fork. This would look like data corruption
1266 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1267 unmap_hugepage_range(iter_vma,
1268 address, address + HPAGE_SIZE,
1275 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1276 unsigned long address, pte_t *ptep, pte_t pte,
1277 struct page *pagecache_page)
1279 struct page *old_page, *new_page;
1281 int outside_reserve = 0;
1283 old_page = pte_page(pte);
1286 /* If no-one else is actually using this page, avoid the copy
1287 * and just make the page writable */
1288 avoidcopy = (page_count(old_page) == 1);
1290 set_huge_ptep_writable(vma, address, ptep);
1295 * If the process that created a MAP_PRIVATE mapping is about to
1296 * perform a COW due to a shared page count, attempt to satisfy
1297 * the allocation without using the existing reserves. The pagecache
1298 * page is used to determine if the reserve at this address was
1299 * consumed or not. If reserves were used, a partial faulted mapping
1300 * at the time of fork() could consume its reserves on COW instead
1301 * of the full address range.
1303 if (!(vma->vm_flags & VM_SHARED) &&
1304 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1305 old_page != pagecache_page)
1306 outside_reserve = 1;
1308 page_cache_get(old_page);
1309 new_page = alloc_huge_page(vma, address, outside_reserve);
1311 if (IS_ERR(new_page)) {
1312 page_cache_release(old_page);
1315 * If a process owning a MAP_PRIVATE mapping fails to COW,
1316 * it is due to references held by a child and an insufficient
1317 * huge page pool. To guarantee the original mappers
1318 * reliability, unmap the page from child processes. The child
1319 * may get SIGKILLed if it later faults.
1321 if (outside_reserve) {
1322 BUG_ON(huge_pte_none(pte));
1323 if (unmap_ref_private(mm, vma, old_page, address)) {
1324 BUG_ON(page_count(old_page) != 1);
1325 BUG_ON(huge_pte_none(pte));
1326 goto retry_avoidcopy;
1331 return -PTR_ERR(new_page);
1334 spin_unlock(&mm->page_table_lock);
1335 copy_huge_page(new_page, old_page, address, vma);
1336 __SetPageUptodate(new_page);
1337 spin_lock(&mm->page_table_lock);
1339 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
1340 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1342 huge_ptep_clear_flush(vma, address, ptep);
1343 set_huge_pte_at(mm, address, ptep,
1344 make_huge_pte(vma, new_page, 1));
1345 /* Make the old page be freed below */
1346 new_page = old_page;
1348 page_cache_release(new_page);
1349 page_cache_release(old_page);
1353 /* Return the pagecache page at a given address within a VMA */
1354 static struct page *hugetlbfs_pagecache_page(struct vm_area_struct *vma,
1355 unsigned long address)
1357 struct address_space *mapping;
1360 mapping = vma->vm_file->f_mapping;
1361 idx = vma_pagecache_offset(vma, address);
1363 return find_lock_page(mapping, idx);
1366 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1367 unsigned long address, pte_t *ptep, int write_access)
1369 int ret = VM_FAULT_SIGBUS;
1373 struct address_space *mapping;
1377 * Currently, we are forced to kill the process in the event the
1378 * original mapper has unmapped pages from the child due to a failed
1379 * COW. Warn that such a situation has occured as it may not be obvious
1381 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1383 "PID %d killed due to inadequate hugepage pool\n",
1388 mapping = vma->vm_file->f_mapping;
1389 idx = vma_pagecache_offset(vma, address);
1392 * Use page lock to guard against racing truncation
1393 * before we get page_table_lock.
1396 page = find_lock_page(mapping, idx);
1398 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
1401 page = alloc_huge_page(vma, address, 0);
1403 ret = -PTR_ERR(page);
1406 clear_huge_page(page, address);
1407 __SetPageUptodate(page);
1409 if (vma->vm_flags & VM_SHARED) {
1411 struct inode *inode = mapping->host;
1413 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1421 spin_lock(&inode->i_lock);
1422 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
1423 spin_unlock(&inode->i_lock);
1428 spin_lock(&mm->page_table_lock);
1429 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
1434 if (!huge_pte_none(huge_ptep_get(ptep)))
1437 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1438 && (vma->vm_flags & VM_SHARED)));
1439 set_huge_pte_at(mm, address, ptep, new_pte);
1441 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1442 /* Optimization, do the COW without a second fault */
1443 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1446 spin_unlock(&mm->page_table_lock);
1452 spin_unlock(&mm->page_table_lock);
1458 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1459 unsigned long address, int write_access)
1464 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1466 ptep = huge_pte_alloc(mm, address);
1468 return VM_FAULT_OOM;
1471 * Serialize hugepage allocation and instantiation, so that we don't
1472 * get spurious allocation failures if two CPUs race to instantiate
1473 * the same page in the page cache.
1475 mutex_lock(&hugetlb_instantiation_mutex);
1476 entry = huge_ptep_get(ptep);
1477 if (huge_pte_none(entry)) {
1478 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1479 mutex_unlock(&hugetlb_instantiation_mutex);
1485 spin_lock(&mm->page_table_lock);
1486 /* Check for a racing update before calling hugetlb_cow */
1487 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1488 if (write_access && !pte_write(entry)) {
1490 page = hugetlbfs_pagecache_page(vma, address);
1491 ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
1497 spin_unlock(&mm->page_table_lock);
1498 mutex_unlock(&hugetlb_instantiation_mutex);
1503 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1504 struct page **pages, struct vm_area_struct **vmas,
1505 unsigned long *position, int *length, int i,
1508 unsigned long pfn_offset;
1509 unsigned long vaddr = *position;
1510 int remainder = *length;
1512 spin_lock(&mm->page_table_lock);
1513 while (vaddr < vma->vm_end && remainder) {
1518 * Some archs (sparc64, sh*) have multiple pte_ts to
1519 * each hugepage. We have to make * sure we get the
1520 * first, for the page indexing below to work.
1522 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1524 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1525 (write && !pte_write(huge_ptep_get(pte)))) {
1528 spin_unlock(&mm->page_table_lock);
1529 ret = hugetlb_fault(mm, vma, vaddr, write);
1530 spin_lock(&mm->page_table_lock);
1531 if (!(ret & VM_FAULT_ERROR))
1540 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1541 page = pte_page(huge_ptep_get(pte));
1545 pages[i] = page + pfn_offset;
1555 if (vaddr < vma->vm_end && remainder &&
1556 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1558 * We use pfn_offset to avoid touching the pageframes
1559 * of this compound page.
1564 spin_unlock(&mm->page_table_lock);
1565 *length = remainder;
1571 void hugetlb_change_protection(struct vm_area_struct *vma,
1572 unsigned long address, unsigned long end, pgprot_t newprot)
1574 struct mm_struct *mm = vma->vm_mm;
1575 unsigned long start = address;
1579 BUG_ON(address >= end);
1580 flush_cache_range(vma, address, end);
1582 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1583 spin_lock(&mm->page_table_lock);
1584 for (; address < end; address += HPAGE_SIZE) {
1585 ptep = huge_pte_offset(mm, address);
1588 if (huge_pmd_unshare(mm, &address, ptep))
1590 if (!huge_pte_none(huge_ptep_get(ptep))) {
1591 pte = huge_ptep_get_and_clear(mm, address, ptep);
1592 pte = pte_mkhuge(pte_modify(pte, newprot));
1593 set_huge_pte_at(mm, address, ptep, pte);
1596 spin_unlock(&mm->page_table_lock);
1597 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1599 flush_tlb_range(vma, start, end);
1602 int hugetlb_reserve_pages(struct inode *inode,
1604 struct vm_area_struct *vma)
1608 if (vma && vma->vm_flags & VM_NORESERVE)
1612 * Shared mappings base their reservation on the number of pages that
1613 * are already allocated on behalf of the file. Private mappings need
1614 * to reserve the full area even if read-only as mprotect() may be
1615 * called to make the mapping read-write. Assume !vma is a shm mapping
1617 if (!vma || vma->vm_flags & VM_SHARED)
1618 chg = region_chg(&inode->i_mapping->private_list, from, to);
1621 set_vma_resv_huge_pages(vma, chg);
1622 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
1628 if (hugetlb_get_quota(inode->i_mapping, chg))
1630 ret = hugetlb_acct_memory(chg);
1632 hugetlb_put_quota(inode->i_mapping, chg);
1635 if (!vma || vma->vm_flags & VM_SHARED)
1636 region_add(&inode->i_mapping->private_list, from, to);
1640 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1642 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1644 spin_lock(&inode->i_lock);
1645 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1646 spin_unlock(&inode->i_lock);
1648 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1649 hugetlb_acct_memory(-(chg - freed));