Merge git://git.kernel.org/pub/scm/linux/kernel/git/agk/linux-2.6-dm
[linux-2.6] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 #include <linux/memory.h>
47
48 #include <asm-generic/sections.h>
49 #include <asm/cacheflush.h>
50 #include <asm/errno.h>
51 #include <asm/uaccess.h>
52
53 #define KPROBE_HASH_BITS 6
54 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
55
56
57 /*
58  * Some oddball architectures like 64bit powerpc have function descriptors
59  * so this must be overridable.
60  */
61 #ifndef kprobe_lookup_name
62 #define kprobe_lookup_name(name, addr) \
63         addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64 #endif
65
66 static int kprobes_initialized;
67 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
69
70 /* NOTE: change this value only with kprobe_mutex held */
71 static bool kprobes_all_disarmed;
72
73 static DEFINE_MUTEX(kprobe_mutex);      /* Protects kprobe_table */
74 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75 static struct {
76         spinlock_t lock ____cacheline_aligned_in_smp;
77 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
78
79 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
80 {
81         return &(kretprobe_table_locks[hash].lock);
82 }
83
84 /*
85  * Normally, functions that we'd want to prohibit kprobes in, are marked
86  * __kprobes. But, there are cases where such functions already belong to
87  * a different section (__sched for preempt_schedule)
88  *
89  * For such cases, we now have a blacklist
90  */
91 static struct kprobe_blackpoint kprobe_blacklist[] = {
92         {"preempt_schedule",},
93         {NULL}    /* Terminator */
94 };
95
96 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
97 /*
98  * kprobe->ainsn.insn points to the copy of the instruction to be
99  * single-stepped. x86_64, POWER4 and above have no-exec support and
100  * stepping on the instruction on a vmalloced/kmalloced/data page
101  * is a recipe for disaster
102  */
103 #define INSNS_PER_PAGE  (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
104
105 struct kprobe_insn_page {
106         struct hlist_node hlist;
107         kprobe_opcode_t *insns;         /* Page of instruction slots */
108         char slot_used[INSNS_PER_PAGE];
109         int nused;
110         int ngarbage;
111 };
112
113 enum kprobe_slot_state {
114         SLOT_CLEAN = 0,
115         SLOT_DIRTY = 1,
116         SLOT_USED = 2,
117 };
118
119 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
120 static struct hlist_head kprobe_insn_pages;
121 static int kprobe_garbage_slots;
122 static int collect_garbage_slots(void);
123
124 static int __kprobes check_safety(void)
125 {
126         int ret = 0;
127 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
128         ret = freeze_processes();
129         if (ret == 0) {
130                 struct task_struct *p, *q;
131                 do_each_thread(p, q) {
132                         if (p != current && p->state == TASK_RUNNING &&
133                             p->pid != 0) {
134                                 printk("Check failed: %s is running\n",p->comm);
135                                 ret = -1;
136                                 goto loop_end;
137                         }
138                 } while_each_thread(p, q);
139         }
140 loop_end:
141         thaw_processes();
142 #else
143         synchronize_sched();
144 #endif
145         return ret;
146 }
147
148 /**
149  * __get_insn_slot() - Find a slot on an executable page for an instruction.
150  * We allocate an executable page if there's no room on existing ones.
151  */
152 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
153 {
154         struct kprobe_insn_page *kip;
155         struct hlist_node *pos;
156
157  retry:
158         hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
159                 if (kip->nused < INSNS_PER_PAGE) {
160                         int i;
161                         for (i = 0; i < INSNS_PER_PAGE; i++) {
162                                 if (kip->slot_used[i] == SLOT_CLEAN) {
163                                         kip->slot_used[i] = SLOT_USED;
164                                         kip->nused++;
165                                         return kip->insns + (i * MAX_INSN_SIZE);
166                                 }
167                         }
168                         /* Surprise!  No unused slots.  Fix kip->nused. */
169                         kip->nused = INSNS_PER_PAGE;
170                 }
171         }
172
173         /* If there are any garbage slots, collect it and try again. */
174         if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
175                 goto retry;
176         }
177         /* All out of space.  Need to allocate a new page. Use slot 0. */
178         kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
179         if (!kip)
180                 return NULL;
181
182         /*
183          * Use module_alloc so this page is within +/- 2GB of where the
184          * kernel image and loaded module images reside. This is required
185          * so x86_64 can correctly handle the %rip-relative fixups.
186          */
187         kip->insns = module_alloc(PAGE_SIZE);
188         if (!kip->insns) {
189                 kfree(kip);
190                 return NULL;
191         }
192         INIT_HLIST_NODE(&kip->hlist);
193         hlist_add_head(&kip->hlist, &kprobe_insn_pages);
194         memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
195         kip->slot_used[0] = SLOT_USED;
196         kip->nused = 1;
197         kip->ngarbage = 0;
198         return kip->insns;
199 }
200
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
202 {
203         kprobe_opcode_t *ret;
204         mutex_lock(&kprobe_insn_mutex);
205         ret = __get_insn_slot();
206         mutex_unlock(&kprobe_insn_mutex);
207         return ret;
208 }
209
210 /* Return 1 if all garbages are collected, otherwise 0. */
211 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
212 {
213         kip->slot_used[idx] = SLOT_CLEAN;
214         kip->nused--;
215         if (kip->nused == 0) {
216                 /*
217                  * Page is no longer in use.  Free it unless
218                  * it's the last one.  We keep the last one
219                  * so as not to have to set it up again the
220                  * next time somebody inserts a probe.
221                  */
222                 hlist_del(&kip->hlist);
223                 if (hlist_empty(&kprobe_insn_pages)) {
224                         INIT_HLIST_NODE(&kip->hlist);
225                         hlist_add_head(&kip->hlist,
226                                        &kprobe_insn_pages);
227                 } else {
228                         module_free(NULL, kip->insns);
229                         kfree(kip);
230                 }
231                 return 1;
232         }
233         return 0;
234 }
235
236 static int __kprobes collect_garbage_slots(void)
237 {
238         struct kprobe_insn_page *kip;
239         struct hlist_node *pos, *next;
240         int safety;
241
242         /* Ensure no-one is preepmted on the garbages */
243         mutex_unlock(&kprobe_insn_mutex);
244         safety = check_safety();
245         mutex_lock(&kprobe_insn_mutex);
246         if (safety != 0)
247                 return -EAGAIN;
248
249         hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
250                 int i;
251                 if (kip->ngarbage == 0)
252                         continue;
253                 kip->ngarbage = 0;      /* we will collect all garbages */
254                 for (i = 0; i < INSNS_PER_PAGE; i++) {
255                         if (kip->slot_used[i] == SLOT_DIRTY &&
256                             collect_one_slot(kip, i))
257                                 break;
258                 }
259         }
260         kprobe_garbage_slots = 0;
261         return 0;
262 }
263
264 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
265 {
266         struct kprobe_insn_page *kip;
267         struct hlist_node *pos;
268
269         mutex_lock(&kprobe_insn_mutex);
270         hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
271                 if (kip->insns <= slot &&
272                     slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
273                         int i = (slot - kip->insns) / MAX_INSN_SIZE;
274                         if (dirty) {
275                                 kip->slot_used[i] = SLOT_DIRTY;
276                                 kip->ngarbage++;
277                         } else {
278                                 collect_one_slot(kip, i);
279                         }
280                         break;
281                 }
282         }
283
284         if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
285                 collect_garbage_slots();
286
287         mutex_unlock(&kprobe_insn_mutex);
288 }
289 #endif
290
291 /* We have preemption disabled.. so it is safe to use __ versions */
292 static inline void set_kprobe_instance(struct kprobe *kp)
293 {
294         __get_cpu_var(kprobe_instance) = kp;
295 }
296
297 static inline void reset_kprobe_instance(void)
298 {
299         __get_cpu_var(kprobe_instance) = NULL;
300 }
301
302 /*
303  * This routine is called either:
304  *      - under the kprobe_mutex - during kprobe_[un]register()
305  *                              OR
306  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
307  */
308 struct kprobe __kprobes *get_kprobe(void *addr)
309 {
310         struct hlist_head *head;
311         struct hlist_node *node;
312         struct kprobe *p;
313
314         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
315         hlist_for_each_entry_rcu(p, node, head, hlist) {
316                 if (p->addr == addr)
317                         return p;
318         }
319         return NULL;
320 }
321
322 /* Arm a kprobe with text_mutex */
323 static void __kprobes arm_kprobe(struct kprobe *kp)
324 {
325         mutex_lock(&text_mutex);
326         arch_arm_kprobe(kp);
327         mutex_unlock(&text_mutex);
328 }
329
330 /* Disarm a kprobe with text_mutex */
331 static void __kprobes disarm_kprobe(struct kprobe *kp)
332 {
333         mutex_lock(&text_mutex);
334         arch_disarm_kprobe(kp);
335         mutex_unlock(&text_mutex);
336 }
337
338 /*
339  * Aggregate handlers for multiple kprobes support - these handlers
340  * take care of invoking the individual kprobe handlers on p->list
341  */
342 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
343 {
344         struct kprobe *kp;
345
346         list_for_each_entry_rcu(kp, &p->list, list) {
347                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
348                         set_kprobe_instance(kp);
349                         if (kp->pre_handler(kp, regs))
350                                 return 1;
351                 }
352                 reset_kprobe_instance();
353         }
354         return 0;
355 }
356
357 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
358                                         unsigned long flags)
359 {
360         struct kprobe *kp;
361
362         list_for_each_entry_rcu(kp, &p->list, list) {
363                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
364                         set_kprobe_instance(kp);
365                         kp->post_handler(kp, regs, flags);
366                         reset_kprobe_instance();
367                 }
368         }
369 }
370
371 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
372                                         int trapnr)
373 {
374         struct kprobe *cur = __get_cpu_var(kprobe_instance);
375
376         /*
377          * if we faulted "during" the execution of a user specified
378          * probe handler, invoke just that probe's fault handler
379          */
380         if (cur && cur->fault_handler) {
381                 if (cur->fault_handler(cur, regs, trapnr))
382                         return 1;
383         }
384         return 0;
385 }
386
387 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
388 {
389         struct kprobe *cur = __get_cpu_var(kprobe_instance);
390         int ret = 0;
391
392         if (cur && cur->break_handler) {
393                 if (cur->break_handler(cur, regs))
394                         ret = 1;
395         }
396         reset_kprobe_instance();
397         return ret;
398 }
399
400 /* Walks the list and increments nmissed count for multiprobe case */
401 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
402 {
403         struct kprobe *kp;
404         if (p->pre_handler != aggr_pre_handler) {
405                 p->nmissed++;
406         } else {
407                 list_for_each_entry_rcu(kp, &p->list, list)
408                         kp->nmissed++;
409         }
410         return;
411 }
412
413 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
414                                 struct hlist_head *head)
415 {
416         struct kretprobe *rp = ri->rp;
417
418         /* remove rp inst off the rprobe_inst_table */
419         hlist_del(&ri->hlist);
420         INIT_HLIST_NODE(&ri->hlist);
421         if (likely(rp)) {
422                 spin_lock(&rp->lock);
423                 hlist_add_head(&ri->hlist, &rp->free_instances);
424                 spin_unlock(&rp->lock);
425         } else
426                 /* Unregistering */
427                 hlist_add_head(&ri->hlist, head);
428 }
429
430 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
431                          struct hlist_head **head, unsigned long *flags)
432 {
433         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
434         spinlock_t *hlist_lock;
435
436         *head = &kretprobe_inst_table[hash];
437         hlist_lock = kretprobe_table_lock_ptr(hash);
438         spin_lock_irqsave(hlist_lock, *flags);
439 }
440
441 static void __kprobes kretprobe_table_lock(unsigned long hash,
442         unsigned long *flags)
443 {
444         spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
445         spin_lock_irqsave(hlist_lock, *flags);
446 }
447
448 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
449         unsigned long *flags)
450 {
451         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
452         spinlock_t *hlist_lock;
453
454         hlist_lock = kretprobe_table_lock_ptr(hash);
455         spin_unlock_irqrestore(hlist_lock, *flags);
456 }
457
458 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
459 {
460         spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
461         spin_unlock_irqrestore(hlist_lock, *flags);
462 }
463
464 /*
465  * This function is called from finish_task_switch when task tk becomes dead,
466  * so that we can recycle any function-return probe instances associated
467  * with this task. These left over instances represent probed functions
468  * that have been called but will never return.
469  */
470 void __kprobes kprobe_flush_task(struct task_struct *tk)
471 {
472         struct kretprobe_instance *ri;
473         struct hlist_head *head, empty_rp;
474         struct hlist_node *node, *tmp;
475         unsigned long hash, flags = 0;
476
477         if (unlikely(!kprobes_initialized))
478                 /* Early boot.  kretprobe_table_locks not yet initialized. */
479                 return;
480
481         hash = hash_ptr(tk, KPROBE_HASH_BITS);
482         head = &kretprobe_inst_table[hash];
483         kretprobe_table_lock(hash, &flags);
484         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
485                 if (ri->task == tk)
486                         recycle_rp_inst(ri, &empty_rp);
487         }
488         kretprobe_table_unlock(hash, &flags);
489         INIT_HLIST_HEAD(&empty_rp);
490         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
491                 hlist_del(&ri->hlist);
492                 kfree(ri);
493         }
494 }
495
496 static inline void free_rp_inst(struct kretprobe *rp)
497 {
498         struct kretprobe_instance *ri;
499         struct hlist_node *pos, *next;
500
501         hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
502                 hlist_del(&ri->hlist);
503                 kfree(ri);
504         }
505 }
506
507 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
508 {
509         unsigned long flags, hash;
510         struct kretprobe_instance *ri;
511         struct hlist_node *pos, *next;
512         struct hlist_head *head;
513
514         /* No race here */
515         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
516                 kretprobe_table_lock(hash, &flags);
517                 head = &kretprobe_inst_table[hash];
518                 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
519                         if (ri->rp == rp)
520                                 ri->rp = NULL;
521                 }
522                 kretprobe_table_unlock(hash, &flags);
523         }
524         free_rp_inst(rp);
525 }
526
527 /*
528  * Keep all fields in the kprobe consistent
529  */
530 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
531 {
532         memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
533         memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
534 }
535
536 /*
537 * Add the new probe to ap->list. Fail if this is the
538 * second jprobe at the address - two jprobes can't coexist
539 */
540 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
541 {
542         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
543         if (p->break_handler) {
544                 if (ap->break_handler)
545                         return -EEXIST;
546                 list_add_tail_rcu(&p->list, &ap->list);
547                 ap->break_handler = aggr_break_handler;
548         } else
549                 list_add_rcu(&p->list, &ap->list);
550         if (p->post_handler && !ap->post_handler)
551                 ap->post_handler = aggr_post_handler;
552
553         if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
554                 ap->flags &= ~KPROBE_FLAG_DISABLED;
555                 if (!kprobes_all_disarmed)
556                         /* Arm the breakpoint again. */
557                         arm_kprobe(ap);
558         }
559         return 0;
560 }
561
562 /*
563  * Fill in the required fields of the "manager kprobe". Replace the
564  * earlier kprobe in the hlist with the manager kprobe
565  */
566 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
567 {
568         copy_kprobe(p, ap);
569         flush_insn_slot(ap);
570         ap->addr = p->addr;
571         ap->flags = p->flags;
572         ap->pre_handler = aggr_pre_handler;
573         ap->fault_handler = aggr_fault_handler;
574         /* We don't care the kprobe which has gone. */
575         if (p->post_handler && !kprobe_gone(p))
576                 ap->post_handler = aggr_post_handler;
577         if (p->break_handler && !kprobe_gone(p))
578                 ap->break_handler = aggr_break_handler;
579
580         INIT_LIST_HEAD(&ap->list);
581         list_add_rcu(&p->list, &ap->list);
582
583         hlist_replace_rcu(&p->hlist, &ap->hlist);
584 }
585
586 /*
587  * This is the second or subsequent kprobe at the address - handle
588  * the intricacies
589  */
590 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
591                                           struct kprobe *p)
592 {
593         int ret = 0;
594         struct kprobe *ap = old_p;
595
596         if (old_p->pre_handler != aggr_pre_handler) {
597                 /* If old_p is not an aggr_probe, create new aggr_kprobe. */
598                 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
599                 if (!ap)
600                         return -ENOMEM;
601                 add_aggr_kprobe(ap, old_p);
602         }
603
604         if (kprobe_gone(ap)) {
605                 /*
606                  * Attempting to insert new probe at the same location that
607                  * had a probe in the module vaddr area which already
608                  * freed. So, the instruction slot has already been
609                  * released. We need a new slot for the new probe.
610                  */
611                 ret = arch_prepare_kprobe(ap);
612                 if (ret)
613                         /*
614                          * Even if fail to allocate new slot, don't need to
615                          * free aggr_probe. It will be used next time, or
616                          * freed by unregister_kprobe.
617                          */
618                         return ret;
619
620                 /*
621                  * Clear gone flag to prevent allocating new slot again, and
622                  * set disabled flag because it is not armed yet.
623                  */
624                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
625                             | KPROBE_FLAG_DISABLED;
626         }
627
628         copy_kprobe(ap, p);
629         return add_new_kprobe(ap, p);
630 }
631
632 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
633 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
634 {
635         struct kprobe *kp;
636
637         list_for_each_entry_rcu(kp, &p->list, list) {
638                 if (!kprobe_disabled(kp))
639                         /*
640                          * There is an active probe on the list.
641                          * We can't disable aggr_kprobe.
642                          */
643                         return 0;
644         }
645         p->flags |= KPROBE_FLAG_DISABLED;
646         return 1;
647 }
648
649 static int __kprobes in_kprobes_functions(unsigned long addr)
650 {
651         struct kprobe_blackpoint *kb;
652
653         if (addr >= (unsigned long)__kprobes_text_start &&
654             addr < (unsigned long)__kprobes_text_end)
655                 return -EINVAL;
656         /*
657          * If there exists a kprobe_blacklist, verify and
658          * fail any probe registration in the prohibited area
659          */
660         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
661                 if (kb->start_addr) {
662                         if (addr >= kb->start_addr &&
663                             addr < (kb->start_addr + kb->range))
664                                 return -EINVAL;
665                 }
666         }
667         return 0;
668 }
669
670 /*
671  * If we have a symbol_name argument, look it up and add the offset field
672  * to it. This way, we can specify a relative address to a symbol.
673  */
674 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
675 {
676         kprobe_opcode_t *addr = p->addr;
677         if (p->symbol_name) {
678                 if (addr)
679                         return NULL;
680                 kprobe_lookup_name(p->symbol_name, addr);
681         }
682
683         if (!addr)
684                 return NULL;
685         return (kprobe_opcode_t *)(((char *)addr) + p->offset);
686 }
687
688 int __kprobes register_kprobe(struct kprobe *p)
689 {
690         int ret = 0;
691         struct kprobe *old_p;
692         struct module *probed_mod;
693         kprobe_opcode_t *addr;
694
695         addr = kprobe_addr(p);
696         if (!addr)
697                 return -EINVAL;
698         p->addr = addr;
699
700         preempt_disable();
701         if (!__kernel_text_address((unsigned long) p->addr) ||
702             in_kprobes_functions((unsigned long) p->addr)) {
703                 preempt_enable();
704                 return -EINVAL;
705         }
706
707         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
708         p->flags &= KPROBE_FLAG_DISABLED;
709
710         /*
711          * Check if are we probing a module.
712          */
713         probed_mod = __module_text_address((unsigned long) p->addr);
714         if (probed_mod) {
715                 /*
716                  * We must hold a refcount of the probed module while updating
717                  * its code to prohibit unexpected unloading.
718                  */
719                 if (unlikely(!try_module_get(probed_mod))) {
720                         preempt_enable();
721                         return -EINVAL;
722                 }
723                 /*
724                  * If the module freed .init.text, we couldn't insert
725                  * kprobes in there.
726                  */
727                 if (within_module_init((unsigned long)p->addr, probed_mod) &&
728                     probed_mod->state != MODULE_STATE_COMING) {
729                         module_put(probed_mod);
730                         preempt_enable();
731                         return -EINVAL;
732                 }
733         }
734         preempt_enable();
735
736         p->nmissed = 0;
737         INIT_LIST_HEAD(&p->list);
738         mutex_lock(&kprobe_mutex);
739         old_p = get_kprobe(p->addr);
740         if (old_p) {
741                 ret = register_aggr_kprobe(old_p, p);
742                 goto out;
743         }
744
745         mutex_lock(&text_mutex);
746         ret = arch_prepare_kprobe(p);
747         if (ret)
748                 goto out_unlock_text;
749
750         INIT_HLIST_NODE(&p->hlist);
751         hlist_add_head_rcu(&p->hlist,
752                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
753
754         if (!kprobes_all_disarmed && !kprobe_disabled(p))
755                 arch_arm_kprobe(p);
756
757 out_unlock_text:
758         mutex_unlock(&text_mutex);
759 out:
760         mutex_unlock(&kprobe_mutex);
761
762         if (probed_mod)
763                 module_put(probed_mod);
764
765         return ret;
766 }
767 EXPORT_SYMBOL_GPL(register_kprobe);
768
769 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
770 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
771 {
772         struct kprobe *old_p, *list_p;
773
774         old_p = get_kprobe(p->addr);
775         if (unlikely(!old_p))
776                 return NULL;
777
778         if (p != old_p) {
779                 list_for_each_entry_rcu(list_p, &old_p->list, list)
780                         if (list_p == p)
781                         /* kprobe p is a valid probe */
782                                 goto valid;
783                 return NULL;
784         }
785 valid:
786         return old_p;
787 }
788
789 /*
790  * Unregister a kprobe without a scheduler synchronization.
791  */
792 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
793 {
794         struct kprobe *old_p, *list_p;
795
796         old_p = __get_valid_kprobe(p);
797         if (old_p == NULL)
798                 return -EINVAL;
799
800         if (old_p == p ||
801             (old_p->pre_handler == aggr_pre_handler &&
802              list_is_singular(&old_p->list))) {
803                 /*
804                  * Only probe on the hash list. Disarm only if kprobes are
805                  * enabled and not gone - otherwise, the breakpoint would
806                  * already have been removed. We save on flushing icache.
807                  */
808                 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
809                         disarm_kprobe(p);
810                 hlist_del_rcu(&old_p->hlist);
811         } else {
812                 if (p->break_handler && !kprobe_gone(p))
813                         old_p->break_handler = NULL;
814                 if (p->post_handler && !kprobe_gone(p)) {
815                         list_for_each_entry_rcu(list_p, &old_p->list, list) {
816                                 if ((list_p != p) && (list_p->post_handler))
817                                         goto noclean;
818                         }
819                         old_p->post_handler = NULL;
820                 }
821 noclean:
822                 list_del_rcu(&p->list);
823                 if (!kprobe_disabled(old_p)) {
824                         try_to_disable_aggr_kprobe(old_p);
825                         if (!kprobes_all_disarmed && kprobe_disabled(old_p))
826                                 disarm_kprobe(old_p);
827                 }
828         }
829         return 0;
830 }
831
832 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
833 {
834         struct kprobe *old_p;
835
836         if (list_empty(&p->list))
837                 arch_remove_kprobe(p);
838         else if (list_is_singular(&p->list)) {
839                 /* "p" is the last child of an aggr_kprobe */
840                 old_p = list_entry(p->list.next, struct kprobe, list);
841                 list_del(&p->list);
842                 arch_remove_kprobe(old_p);
843                 kfree(old_p);
844         }
845 }
846
847 int __kprobes register_kprobes(struct kprobe **kps, int num)
848 {
849         int i, ret = 0;
850
851         if (num <= 0)
852                 return -EINVAL;
853         for (i = 0; i < num; i++) {
854                 ret = register_kprobe(kps[i]);
855                 if (ret < 0) {
856                         if (i > 0)
857                                 unregister_kprobes(kps, i);
858                         break;
859                 }
860         }
861         return ret;
862 }
863 EXPORT_SYMBOL_GPL(register_kprobes);
864
865 void __kprobes unregister_kprobe(struct kprobe *p)
866 {
867         unregister_kprobes(&p, 1);
868 }
869 EXPORT_SYMBOL_GPL(unregister_kprobe);
870
871 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
872 {
873         int i;
874
875         if (num <= 0)
876                 return;
877         mutex_lock(&kprobe_mutex);
878         for (i = 0; i < num; i++)
879                 if (__unregister_kprobe_top(kps[i]) < 0)
880                         kps[i]->addr = NULL;
881         mutex_unlock(&kprobe_mutex);
882
883         synchronize_sched();
884         for (i = 0; i < num; i++)
885                 if (kps[i]->addr)
886                         __unregister_kprobe_bottom(kps[i]);
887 }
888 EXPORT_SYMBOL_GPL(unregister_kprobes);
889
890 static struct notifier_block kprobe_exceptions_nb = {
891         .notifier_call = kprobe_exceptions_notify,
892         .priority = 0x7fffffff /* we need to be notified first */
893 };
894
895 unsigned long __weak arch_deref_entry_point(void *entry)
896 {
897         return (unsigned long)entry;
898 }
899
900 int __kprobes register_jprobes(struct jprobe **jps, int num)
901 {
902         struct jprobe *jp;
903         int ret = 0, i;
904
905         if (num <= 0)
906                 return -EINVAL;
907         for (i = 0; i < num; i++) {
908                 unsigned long addr;
909                 jp = jps[i];
910                 addr = arch_deref_entry_point(jp->entry);
911
912                 if (!kernel_text_address(addr))
913                         ret = -EINVAL;
914                 else {
915                         /* Todo: Verify probepoint is a function entry point */
916                         jp->kp.pre_handler = setjmp_pre_handler;
917                         jp->kp.break_handler = longjmp_break_handler;
918                         ret = register_kprobe(&jp->kp);
919                 }
920                 if (ret < 0) {
921                         if (i > 0)
922                                 unregister_jprobes(jps, i);
923                         break;
924                 }
925         }
926         return ret;
927 }
928 EXPORT_SYMBOL_GPL(register_jprobes);
929
930 int __kprobes register_jprobe(struct jprobe *jp)
931 {
932         return register_jprobes(&jp, 1);
933 }
934 EXPORT_SYMBOL_GPL(register_jprobe);
935
936 void __kprobes unregister_jprobe(struct jprobe *jp)
937 {
938         unregister_jprobes(&jp, 1);
939 }
940 EXPORT_SYMBOL_GPL(unregister_jprobe);
941
942 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
943 {
944         int i;
945
946         if (num <= 0)
947                 return;
948         mutex_lock(&kprobe_mutex);
949         for (i = 0; i < num; i++)
950                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
951                         jps[i]->kp.addr = NULL;
952         mutex_unlock(&kprobe_mutex);
953
954         synchronize_sched();
955         for (i = 0; i < num; i++) {
956                 if (jps[i]->kp.addr)
957                         __unregister_kprobe_bottom(&jps[i]->kp);
958         }
959 }
960 EXPORT_SYMBOL_GPL(unregister_jprobes);
961
962 #ifdef CONFIG_KRETPROBES
963 /*
964  * This kprobe pre_handler is registered with every kretprobe. When probe
965  * hits it will set up the return probe.
966  */
967 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
968                                            struct pt_regs *regs)
969 {
970         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
971         unsigned long hash, flags = 0;
972         struct kretprobe_instance *ri;
973
974         /*TODO: consider to only swap the RA after the last pre_handler fired */
975         hash = hash_ptr(current, KPROBE_HASH_BITS);
976         spin_lock_irqsave(&rp->lock, flags);
977         if (!hlist_empty(&rp->free_instances)) {
978                 ri = hlist_entry(rp->free_instances.first,
979                                 struct kretprobe_instance, hlist);
980                 hlist_del(&ri->hlist);
981                 spin_unlock_irqrestore(&rp->lock, flags);
982
983                 ri->rp = rp;
984                 ri->task = current;
985
986                 if (rp->entry_handler && rp->entry_handler(ri, regs))
987                         return 0;
988
989                 arch_prepare_kretprobe(ri, regs);
990
991                 /* XXX(hch): why is there no hlist_move_head? */
992                 INIT_HLIST_NODE(&ri->hlist);
993                 kretprobe_table_lock(hash, &flags);
994                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
995                 kretprobe_table_unlock(hash, &flags);
996         } else {
997                 rp->nmissed++;
998                 spin_unlock_irqrestore(&rp->lock, flags);
999         }
1000         return 0;
1001 }
1002
1003 int __kprobes register_kretprobe(struct kretprobe *rp)
1004 {
1005         int ret = 0;
1006         struct kretprobe_instance *inst;
1007         int i;
1008         void *addr;
1009
1010         if (kretprobe_blacklist_size) {
1011                 addr = kprobe_addr(&rp->kp);
1012                 if (!addr)
1013                         return -EINVAL;
1014
1015                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1016                         if (kretprobe_blacklist[i].addr == addr)
1017                                 return -EINVAL;
1018                 }
1019         }
1020
1021         rp->kp.pre_handler = pre_handler_kretprobe;
1022         rp->kp.post_handler = NULL;
1023         rp->kp.fault_handler = NULL;
1024         rp->kp.break_handler = NULL;
1025
1026         /* Pre-allocate memory for max kretprobe instances */
1027         if (rp->maxactive <= 0) {
1028 #ifdef CONFIG_PREEMPT
1029                 rp->maxactive = max(10, 2 * NR_CPUS);
1030 #else
1031                 rp->maxactive = NR_CPUS;
1032 #endif
1033         }
1034         spin_lock_init(&rp->lock);
1035         INIT_HLIST_HEAD(&rp->free_instances);
1036         for (i = 0; i < rp->maxactive; i++) {
1037                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1038                                rp->data_size, GFP_KERNEL);
1039                 if (inst == NULL) {
1040                         free_rp_inst(rp);
1041                         return -ENOMEM;
1042                 }
1043                 INIT_HLIST_NODE(&inst->hlist);
1044                 hlist_add_head(&inst->hlist, &rp->free_instances);
1045         }
1046
1047         rp->nmissed = 0;
1048         /* Establish function entry probe point */
1049         ret = register_kprobe(&rp->kp);
1050         if (ret != 0)
1051                 free_rp_inst(rp);
1052         return ret;
1053 }
1054 EXPORT_SYMBOL_GPL(register_kretprobe);
1055
1056 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1057 {
1058         int ret = 0, i;
1059
1060         if (num <= 0)
1061                 return -EINVAL;
1062         for (i = 0; i < num; i++) {
1063                 ret = register_kretprobe(rps[i]);
1064                 if (ret < 0) {
1065                         if (i > 0)
1066                                 unregister_kretprobes(rps, i);
1067                         break;
1068                 }
1069         }
1070         return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(register_kretprobes);
1073
1074 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1075 {
1076         unregister_kretprobes(&rp, 1);
1077 }
1078 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1079
1080 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1081 {
1082         int i;
1083
1084         if (num <= 0)
1085                 return;
1086         mutex_lock(&kprobe_mutex);
1087         for (i = 0; i < num; i++)
1088                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1089                         rps[i]->kp.addr = NULL;
1090         mutex_unlock(&kprobe_mutex);
1091
1092         synchronize_sched();
1093         for (i = 0; i < num; i++) {
1094                 if (rps[i]->kp.addr) {
1095                         __unregister_kprobe_bottom(&rps[i]->kp);
1096                         cleanup_rp_inst(rps[i]);
1097                 }
1098         }
1099 }
1100 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1101
1102 #else /* CONFIG_KRETPROBES */
1103 int __kprobes register_kretprobe(struct kretprobe *rp)
1104 {
1105         return -ENOSYS;
1106 }
1107 EXPORT_SYMBOL_GPL(register_kretprobe);
1108
1109 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1110 {
1111         return -ENOSYS;
1112 }
1113 EXPORT_SYMBOL_GPL(register_kretprobes);
1114
1115 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1116 {
1117 }
1118 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1119
1120 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1121 {
1122 }
1123 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1124
1125 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1126                                            struct pt_regs *regs)
1127 {
1128         return 0;
1129 }
1130
1131 #endif /* CONFIG_KRETPROBES */
1132
1133 /* Set the kprobe gone and remove its instruction buffer. */
1134 static void __kprobes kill_kprobe(struct kprobe *p)
1135 {
1136         struct kprobe *kp;
1137
1138         p->flags |= KPROBE_FLAG_GONE;
1139         if (p->pre_handler == aggr_pre_handler) {
1140                 /*
1141                  * If this is an aggr_kprobe, we have to list all the
1142                  * chained probes and mark them GONE.
1143                  */
1144                 list_for_each_entry_rcu(kp, &p->list, list)
1145                         kp->flags |= KPROBE_FLAG_GONE;
1146                 p->post_handler = NULL;
1147                 p->break_handler = NULL;
1148         }
1149         /*
1150          * Here, we can remove insn_slot safely, because no thread calls
1151          * the original probed function (which will be freed soon) any more.
1152          */
1153         arch_remove_kprobe(p);
1154 }
1155
1156 /* Module notifier call back, checking kprobes on the module */
1157 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1158                                              unsigned long val, void *data)
1159 {
1160         struct module *mod = data;
1161         struct hlist_head *head;
1162         struct hlist_node *node;
1163         struct kprobe *p;
1164         unsigned int i;
1165         int checkcore = (val == MODULE_STATE_GOING);
1166
1167         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1168                 return NOTIFY_DONE;
1169
1170         /*
1171          * When MODULE_STATE_GOING was notified, both of module .text and
1172          * .init.text sections would be freed. When MODULE_STATE_LIVE was
1173          * notified, only .init.text section would be freed. We need to
1174          * disable kprobes which have been inserted in the sections.
1175          */
1176         mutex_lock(&kprobe_mutex);
1177         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1178                 head = &kprobe_table[i];
1179                 hlist_for_each_entry_rcu(p, node, head, hlist)
1180                         if (within_module_init((unsigned long)p->addr, mod) ||
1181                             (checkcore &&
1182                              within_module_core((unsigned long)p->addr, mod))) {
1183                                 /*
1184                                  * The vaddr this probe is installed will soon
1185                                  * be vfreed buy not synced to disk. Hence,
1186                                  * disarming the breakpoint isn't needed.
1187                                  */
1188                                 kill_kprobe(p);
1189                         }
1190         }
1191         mutex_unlock(&kprobe_mutex);
1192         return NOTIFY_DONE;
1193 }
1194
1195 static struct notifier_block kprobe_module_nb = {
1196         .notifier_call = kprobes_module_callback,
1197         .priority = 0
1198 };
1199
1200 static int __init init_kprobes(void)
1201 {
1202         int i, err = 0;
1203         unsigned long offset = 0, size = 0;
1204         char *modname, namebuf[128];
1205         const char *symbol_name;
1206         void *addr;
1207         struct kprobe_blackpoint *kb;
1208
1209         /* FIXME allocate the probe table, currently defined statically */
1210         /* initialize all list heads */
1211         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1212                 INIT_HLIST_HEAD(&kprobe_table[i]);
1213                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1214                 spin_lock_init(&(kretprobe_table_locks[i].lock));
1215         }
1216
1217         /*
1218          * Lookup and populate the kprobe_blacklist.
1219          *
1220          * Unlike the kretprobe blacklist, we'll need to determine
1221          * the range of addresses that belong to the said functions,
1222          * since a kprobe need not necessarily be at the beginning
1223          * of a function.
1224          */
1225         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1226                 kprobe_lookup_name(kb->name, addr);
1227                 if (!addr)
1228                         continue;
1229
1230                 kb->start_addr = (unsigned long)addr;
1231                 symbol_name = kallsyms_lookup(kb->start_addr,
1232                                 &size, &offset, &modname, namebuf);
1233                 if (!symbol_name)
1234                         kb->range = 0;
1235                 else
1236                         kb->range = size;
1237         }
1238
1239         if (kretprobe_blacklist_size) {
1240                 /* lookup the function address from its name */
1241                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1242                         kprobe_lookup_name(kretprobe_blacklist[i].name,
1243                                            kretprobe_blacklist[i].addr);
1244                         if (!kretprobe_blacklist[i].addr)
1245                                 printk("kretprobe: lookup failed: %s\n",
1246                                        kretprobe_blacklist[i].name);
1247                 }
1248         }
1249
1250         /* By default, kprobes are armed */
1251         kprobes_all_disarmed = false;
1252
1253         err = arch_init_kprobes();
1254         if (!err)
1255                 err = register_die_notifier(&kprobe_exceptions_nb);
1256         if (!err)
1257                 err = register_module_notifier(&kprobe_module_nb);
1258
1259         kprobes_initialized = (err == 0);
1260
1261         if (!err)
1262                 init_test_probes();
1263         return err;
1264 }
1265
1266 #ifdef CONFIG_DEBUG_FS
1267 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1268                 const char *sym, int offset,char *modname)
1269 {
1270         char *kprobe_type;
1271
1272         if (p->pre_handler == pre_handler_kretprobe)
1273                 kprobe_type = "r";
1274         else if (p->pre_handler == setjmp_pre_handler)
1275                 kprobe_type = "j";
1276         else
1277                 kprobe_type = "k";
1278         if (sym)
1279                 seq_printf(pi, "%p  %s  %s+0x%x  %s %s%s\n",
1280                         p->addr, kprobe_type, sym, offset,
1281                         (modname ? modname : " "),
1282                         (kprobe_gone(p) ? "[GONE]" : ""),
1283                         ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1284                          "[DISABLED]" : ""));
1285         else
1286                 seq_printf(pi, "%p  %s  %p %s%s\n",
1287                         p->addr, kprobe_type, p->addr,
1288                         (kprobe_gone(p) ? "[GONE]" : ""),
1289                         ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1290                          "[DISABLED]" : ""));
1291 }
1292
1293 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1294 {
1295         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1296 }
1297
1298 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1299 {
1300         (*pos)++;
1301         if (*pos >= KPROBE_TABLE_SIZE)
1302                 return NULL;
1303         return pos;
1304 }
1305
1306 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1307 {
1308         /* Nothing to do */
1309 }
1310
1311 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1312 {
1313         struct hlist_head *head;
1314         struct hlist_node *node;
1315         struct kprobe *p, *kp;
1316         const char *sym = NULL;
1317         unsigned int i = *(loff_t *) v;
1318         unsigned long offset = 0;
1319         char *modname, namebuf[128];
1320
1321         head = &kprobe_table[i];
1322         preempt_disable();
1323         hlist_for_each_entry_rcu(p, node, head, hlist) {
1324                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1325                                         &offset, &modname, namebuf);
1326                 if (p->pre_handler == aggr_pre_handler) {
1327                         list_for_each_entry_rcu(kp, &p->list, list)
1328                                 report_probe(pi, kp, sym, offset, modname);
1329                 } else
1330                         report_probe(pi, p, sym, offset, modname);
1331         }
1332         preempt_enable();
1333         return 0;
1334 }
1335
1336 static struct seq_operations kprobes_seq_ops = {
1337         .start = kprobe_seq_start,
1338         .next  = kprobe_seq_next,
1339         .stop  = kprobe_seq_stop,
1340         .show  = show_kprobe_addr
1341 };
1342
1343 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1344 {
1345         return seq_open(filp, &kprobes_seq_ops);
1346 }
1347
1348 static struct file_operations debugfs_kprobes_operations = {
1349         .open           = kprobes_open,
1350         .read           = seq_read,
1351         .llseek         = seq_lseek,
1352         .release        = seq_release,
1353 };
1354
1355 /* Disable one kprobe */
1356 int __kprobes disable_kprobe(struct kprobe *kp)
1357 {
1358         int ret = 0;
1359         struct kprobe *p;
1360
1361         mutex_lock(&kprobe_mutex);
1362
1363         /* Check whether specified probe is valid. */
1364         p = __get_valid_kprobe(kp);
1365         if (unlikely(p == NULL)) {
1366                 ret = -EINVAL;
1367                 goto out;
1368         }
1369
1370         /* If the probe is already disabled (or gone), just return */
1371         if (kprobe_disabled(kp))
1372                 goto out;
1373
1374         kp->flags |= KPROBE_FLAG_DISABLED;
1375         if (p != kp)
1376                 /* When kp != p, p is always enabled. */
1377                 try_to_disable_aggr_kprobe(p);
1378
1379         if (!kprobes_all_disarmed && kprobe_disabled(p))
1380                 disarm_kprobe(p);
1381 out:
1382         mutex_unlock(&kprobe_mutex);
1383         return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(disable_kprobe);
1386
1387 /* Enable one kprobe */
1388 int __kprobes enable_kprobe(struct kprobe *kp)
1389 {
1390         int ret = 0;
1391         struct kprobe *p;
1392
1393         mutex_lock(&kprobe_mutex);
1394
1395         /* Check whether specified probe is valid. */
1396         p = __get_valid_kprobe(kp);
1397         if (unlikely(p == NULL)) {
1398                 ret = -EINVAL;
1399                 goto out;
1400         }
1401
1402         if (kprobe_gone(kp)) {
1403                 /* This kprobe has gone, we couldn't enable it. */
1404                 ret = -EINVAL;
1405                 goto out;
1406         }
1407
1408         if (!kprobes_all_disarmed && kprobe_disabled(p))
1409                 arm_kprobe(p);
1410
1411         p->flags &= ~KPROBE_FLAG_DISABLED;
1412         if (p != kp)
1413                 kp->flags &= ~KPROBE_FLAG_DISABLED;
1414 out:
1415         mutex_unlock(&kprobe_mutex);
1416         return ret;
1417 }
1418 EXPORT_SYMBOL_GPL(enable_kprobe);
1419
1420 static void __kprobes arm_all_kprobes(void)
1421 {
1422         struct hlist_head *head;
1423         struct hlist_node *node;
1424         struct kprobe *p;
1425         unsigned int i;
1426
1427         mutex_lock(&kprobe_mutex);
1428
1429         /* If kprobes are armed, just return */
1430         if (!kprobes_all_disarmed)
1431                 goto already_enabled;
1432
1433         mutex_lock(&text_mutex);
1434         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1435                 head = &kprobe_table[i];
1436                 hlist_for_each_entry_rcu(p, node, head, hlist)
1437                         if (!kprobe_disabled(p))
1438                                 arch_arm_kprobe(p);
1439         }
1440         mutex_unlock(&text_mutex);
1441
1442         kprobes_all_disarmed = false;
1443         printk(KERN_INFO "Kprobes globally enabled\n");
1444
1445 already_enabled:
1446         mutex_unlock(&kprobe_mutex);
1447         return;
1448 }
1449
1450 static void __kprobes disarm_all_kprobes(void)
1451 {
1452         struct hlist_head *head;
1453         struct hlist_node *node;
1454         struct kprobe *p;
1455         unsigned int i;
1456
1457         mutex_lock(&kprobe_mutex);
1458
1459         /* If kprobes are already disarmed, just return */
1460         if (kprobes_all_disarmed)
1461                 goto already_disabled;
1462
1463         kprobes_all_disarmed = true;
1464         printk(KERN_INFO "Kprobes globally disabled\n");
1465         mutex_lock(&text_mutex);
1466         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1467                 head = &kprobe_table[i];
1468                 hlist_for_each_entry_rcu(p, node, head, hlist) {
1469                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1470                                 arch_disarm_kprobe(p);
1471                 }
1472         }
1473
1474         mutex_unlock(&text_mutex);
1475         mutex_unlock(&kprobe_mutex);
1476         /* Allow all currently running kprobes to complete */
1477         synchronize_sched();
1478         return;
1479
1480 already_disabled:
1481         mutex_unlock(&kprobe_mutex);
1482         return;
1483 }
1484
1485 /*
1486  * XXX: The debugfs bool file interface doesn't allow for callbacks
1487  * when the bool state is switched. We can reuse that facility when
1488  * available
1489  */
1490 static ssize_t read_enabled_file_bool(struct file *file,
1491                char __user *user_buf, size_t count, loff_t *ppos)
1492 {
1493         char buf[3];
1494
1495         if (!kprobes_all_disarmed)
1496                 buf[0] = '1';
1497         else
1498                 buf[0] = '0';
1499         buf[1] = '\n';
1500         buf[2] = 0x00;
1501         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1502 }
1503
1504 static ssize_t write_enabled_file_bool(struct file *file,
1505                const char __user *user_buf, size_t count, loff_t *ppos)
1506 {
1507         char buf[32];
1508         int buf_size;
1509
1510         buf_size = min(count, (sizeof(buf)-1));
1511         if (copy_from_user(buf, user_buf, buf_size))
1512                 return -EFAULT;
1513
1514         switch (buf[0]) {
1515         case 'y':
1516         case 'Y':
1517         case '1':
1518                 arm_all_kprobes();
1519                 break;
1520         case 'n':
1521         case 'N':
1522         case '0':
1523                 disarm_all_kprobes();
1524                 break;
1525         }
1526
1527         return count;
1528 }
1529
1530 static struct file_operations fops_kp = {
1531         .read =         read_enabled_file_bool,
1532         .write =        write_enabled_file_bool,
1533 };
1534
1535 static int __kprobes debugfs_kprobe_init(void)
1536 {
1537         struct dentry *dir, *file;
1538         unsigned int value = 1;
1539
1540         dir = debugfs_create_dir("kprobes", NULL);
1541         if (!dir)
1542                 return -ENOMEM;
1543
1544         file = debugfs_create_file("list", 0444, dir, NULL,
1545                                 &debugfs_kprobes_operations);
1546         if (!file) {
1547                 debugfs_remove(dir);
1548                 return -ENOMEM;
1549         }
1550
1551         file = debugfs_create_file("enabled", 0600, dir,
1552                                         &value, &fops_kp);
1553         if (!file) {
1554                 debugfs_remove(dir);
1555                 return -ENOMEM;
1556         }
1557
1558         return 0;
1559 }
1560
1561 late_initcall(debugfs_kprobe_init);
1562 #endif /* CONFIG_DEBUG_FS */
1563
1564 module_init(init_kprobes);
1565
1566 /* defined in arch/.../kernel/kprobes.c */
1567 EXPORT_SYMBOL_GPL(jprobe_return);