2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём), Joern Engel
22 * This file includes implementation of fake MTD devices for each UBI volume.
23 * This sounds strange, but it is in fact quite useful to make MTD-oriented
24 * software (including all the legacy software) to work on top of UBI.
26 * Gluebi emulates MTD devices of "MTD_UBIVOLUME" type. Their minimal I/O unit
27 * size (mtd->writesize) is equivalent to the UBI minimal I/O unit. The
28 * eraseblock size is equivalent to the logical eraseblock size of the volume.
31 #include <asm/div64.h>
35 * gluebi_get_device - get MTD device reference.
36 * @mtd: the MTD device description object
38 * This function is called every time the MTD device is being opened and
39 * implements the MTD get_device() operation. Returns zero in case of success
40 * and a negative error code in case of failure.
42 static int gluebi_get_device(struct mtd_info *mtd)
44 struct ubi_volume *vol;
46 vol = container_of(mtd, struct ubi_volume, gluebi_mtd);
49 * We do not introduce locks for gluebi reference count because the
50 * get_device()/put_device() calls are already serialized at MTD.
52 if (vol->gluebi_refcount > 0) {
54 * The MTD device is already referenced and this is just one
55 * more reference. MTD allows many users to open the same
56 * volume simultaneously and do not distinguish between
57 * readers/writers/exclusive openers as UBI does. So we do not
58 * open the UBI volume again - just increase the reference
61 vol->gluebi_refcount += 1;
66 * This is the first reference to this UBI volume via the MTD device
67 * interface. Open the corresponding volume in read-write mode.
69 vol->gluebi_desc = ubi_open_volume(vol->ubi->ubi_num, vol->vol_id,
71 if (IS_ERR(vol->gluebi_desc))
72 return PTR_ERR(vol->gluebi_desc);
73 vol->gluebi_refcount += 1;
78 * gluebi_put_device - put MTD device reference.
79 * @mtd: the MTD device description object
81 * This function is called every time the MTD device is being put. Returns
82 * zero in case of success and a negative error code in case of failure.
84 static void gluebi_put_device(struct mtd_info *mtd)
86 struct ubi_volume *vol;
88 vol = container_of(mtd, struct ubi_volume, gluebi_mtd);
89 vol->gluebi_refcount -= 1;
90 ubi_assert(vol->gluebi_refcount >= 0);
91 if (vol->gluebi_refcount == 0)
92 ubi_close_volume(vol->gluebi_desc);
96 * gluebi_read - read operation of emulated MTD devices.
97 * @mtd: MTD device description object
98 * @from: absolute offset from where to read
99 * @len: how many bytes to read
100 * @retlen: count of read bytes is returned here
101 * @buf: buffer to store the read data
103 * This function returns zero in case of success and a negative error code in
106 static int gluebi_read(struct mtd_info *mtd, loff_t from, size_t len,
107 size_t *retlen, unsigned char *buf)
109 int err = 0, lnum, offs, total_read;
110 struct ubi_volume *vol;
111 struct ubi_device *ubi;
114 dbg_gen("read %zd bytes from offset %lld", len, from);
116 if (len < 0 || from < 0 || from + len > mtd->size)
119 vol = container_of(mtd, struct ubi_volume, gluebi_mtd);
122 offs = do_div(tmp, mtd->erasesize);
127 size_t to_read = mtd->erasesize - offs;
129 if (to_read > total_read)
130 to_read = total_read;
132 err = ubi_eba_read_leb(ubi, vol, lnum, buf, offs, to_read, 0);
138 total_read -= to_read;
142 *retlen = len - total_read;
147 * gluebi_write - write operation of emulated MTD devices.
148 * @mtd: MTD device description object
149 * @to: absolute offset where to write
150 * @len: how many bytes to write
151 * @retlen: count of written bytes is returned here
152 * @buf: buffer with data to write
154 * This function returns zero in case of success and a negative error code in
157 static int gluebi_write(struct mtd_info *mtd, loff_t to, size_t len,
158 size_t *retlen, const u_char *buf)
160 int err = 0, lnum, offs, total_written;
161 struct ubi_volume *vol;
162 struct ubi_device *ubi;
165 dbg_gen("write %zd bytes to offset %lld", len, to);
167 if (len < 0 || to < 0 || len + to > mtd->size)
170 vol = container_of(mtd, struct ubi_volume, gluebi_mtd);
176 offs = do_div(tmp, mtd->erasesize);
179 if (len % mtd->writesize || offs % mtd->writesize)
183 while (total_written) {
184 size_t to_write = mtd->erasesize - offs;
186 if (to_write > total_written)
187 to_write = total_written;
189 err = ubi_eba_write_leb(ubi, vol, lnum, buf, offs, to_write,
196 total_written -= to_write;
200 *retlen = len - total_written;
205 * gluebi_erase - erase operation of emulated MTD devices.
206 * @mtd: the MTD device description object
207 * @instr: the erase operation description
209 * This function calls the erase callback when finishes. Returns zero in case
210 * of success and a negative error code in case of failure.
212 static int gluebi_erase(struct mtd_info *mtd, struct erase_info *instr)
214 int err, i, lnum, count;
215 struct ubi_volume *vol;
216 struct ubi_device *ubi;
218 dbg_gen("erase %llu bytes at offset %llu", (unsigned long long)instr->len,
219 (unsigned long long)instr->addr);
221 if (instr->addr < 0 || instr->addr > mtd->size - mtd->erasesize)
224 if (instr->len < 0 || instr->addr + instr->len > mtd->size)
227 if (mtd_mod_by_ws(instr->addr, mtd) || mtd_mod_by_ws(instr->len, mtd))
230 lnum = mtd_div_by_eb(instr->addr, mtd);
231 count = mtd_div_by_eb(instr->len, mtd);
233 vol = container_of(mtd, struct ubi_volume, gluebi_mtd);
239 for (i = 0; i < count; i++) {
240 err = ubi_eba_unmap_leb(ubi, vol, lnum + i);
246 * MTD erase operations are synchronous, so we have to make sure the
247 * physical eraseblock is wiped out.
249 err = ubi_wl_flush(ubi);
253 instr->state = MTD_ERASE_DONE;
254 mtd_erase_callback(instr);
258 instr->state = MTD_ERASE_FAILED;
259 instr->fail_addr = (long long)lnum * mtd->erasesize;
264 * ubi_create_gluebi - initialize gluebi for an UBI volume.
265 * @ubi: UBI device description object
266 * @vol: volume description object
268 * This function is called when an UBI volume is created in order to create
269 * corresponding fake MTD device. Returns zero in case of success and a
270 * negative error code in case of failure.
272 int ubi_create_gluebi(struct ubi_device *ubi, struct ubi_volume *vol)
274 struct mtd_info *mtd = &vol->gluebi_mtd;
276 mtd->name = kmemdup(vol->name, vol->name_len + 1, GFP_KERNEL);
280 mtd->type = MTD_UBIVOLUME;
282 mtd->flags = MTD_WRITEABLE;
283 mtd->writesize = ubi->min_io_size;
284 mtd->owner = THIS_MODULE;
285 mtd->erasesize = vol->usable_leb_size;
286 mtd->read = gluebi_read;
287 mtd->write = gluebi_write;
288 mtd->erase = gluebi_erase;
289 mtd->get_device = gluebi_get_device;
290 mtd->put_device = gluebi_put_device;
293 * In case of dynamic volume, MTD device size is just volume size. In
294 * case of a static volume the size is equivalent to the amount of data
297 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
298 mtd->size = (long long)vol->usable_leb_size * vol->reserved_pebs;
300 mtd->size = vol->used_bytes;
302 if (add_mtd_device(mtd)) {
303 ubi_err("cannot not add MTD device");
308 dbg_gen("added mtd%d (\"%s\"), size %llu, EB size %u",
309 mtd->index, mtd->name, (unsigned long long)mtd->size, mtd->erasesize);
314 * ubi_destroy_gluebi - close gluebi for an UBI volume.
315 * @vol: volume description object
317 * This function is called when an UBI volume is removed in order to remove
318 * corresponding fake MTD device. Returns zero in case of success and a
319 * negative error code in case of failure.
321 int ubi_destroy_gluebi(struct ubi_volume *vol)
324 struct mtd_info *mtd = &vol->gluebi_mtd;
326 dbg_gen("remove mtd%d", mtd->index);
327 err = del_mtd_device(mtd);
335 * ubi_gluebi_updated - UBI volume was updated notifier.
336 * @vol: volume description object
338 * This function is called every time an UBI volume is updated. This function
339 * does nothing if volume @vol is dynamic, and changes MTD device size if the
340 * volume is static. This is needed because static volumes cannot be read past
343 void ubi_gluebi_updated(struct ubi_volume *vol)
345 struct mtd_info *mtd = &vol->gluebi_mtd;
347 if (vol->vol_type == UBI_STATIC_VOLUME)
348 mtd->size = vol->used_bytes;