Btrfs: process the delayed reference queue in clusters
[linux-2.6] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "ref-cache.h"
29 #include "tree-log.h"
30
31 #define BTRFS_ROOT_TRANS_TAG 0
32
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35         WARN_ON(transaction->use_count == 0);
36         transaction->use_count--;
37         if (transaction->use_count == 0) {
38                 list_del_init(&transaction->list);
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 /*
45  * either allocate a new transaction or hop into the existing one
46  */
47 static noinline int join_transaction(struct btrfs_root *root)
48 {
49         struct btrfs_transaction *cur_trans;
50         cur_trans = root->fs_info->running_transaction;
51         if (!cur_trans) {
52                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
53                                              GFP_NOFS);
54                 BUG_ON(!cur_trans);
55                 root->fs_info->generation++;
56                 root->fs_info->last_alloc = 0;
57                 root->fs_info->last_data_alloc = 0;
58                 cur_trans->num_writers = 1;
59                 cur_trans->num_joined = 0;
60                 cur_trans->transid = root->fs_info->generation;
61                 init_waitqueue_head(&cur_trans->writer_wait);
62                 init_waitqueue_head(&cur_trans->commit_wait);
63                 cur_trans->in_commit = 0;
64                 cur_trans->blocked = 0;
65                 cur_trans->use_count = 1;
66                 cur_trans->commit_done = 0;
67                 cur_trans->start_time = get_seconds();
68
69                 cur_trans->delayed_refs.root.rb_node = NULL;
70                 cur_trans->delayed_refs.num_entries = 0;
71                 cur_trans->delayed_refs.num_heads_ready = 0;
72                 cur_trans->delayed_refs.num_heads = 0;
73                 cur_trans->delayed_refs.flushing = 0;
74                 cur_trans->delayed_refs.run_delayed_start = 0;
75                 spin_lock_init(&cur_trans->delayed_refs.lock);
76
77                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
78                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
79                 extent_io_tree_init(&cur_trans->dirty_pages,
80                                      root->fs_info->btree_inode->i_mapping,
81                                      GFP_NOFS);
82                 spin_lock(&root->fs_info->new_trans_lock);
83                 root->fs_info->running_transaction = cur_trans;
84                 spin_unlock(&root->fs_info->new_trans_lock);
85         } else {
86                 cur_trans->num_writers++;
87                 cur_trans->num_joined++;
88         }
89
90         return 0;
91 }
92
93 /*
94  * this does all the record keeping required to make sure that a reference
95  * counted root is properly recorded in a given transaction.  This is required
96  * to make sure the old root from before we joined the transaction is deleted
97  * when the transaction commits
98  */
99 noinline int btrfs_record_root_in_trans(struct btrfs_root *root)
100 {
101         struct btrfs_dirty_root *dirty;
102         u64 running_trans_id = root->fs_info->running_transaction->transid;
103         if (root->ref_cows && root->last_trans < running_trans_id) {
104                 WARN_ON(root == root->fs_info->extent_root);
105                 if (root->root_item.refs != 0) {
106                         radix_tree_tag_set(&root->fs_info->fs_roots_radix,
107                                    (unsigned long)root->root_key.objectid,
108                                    BTRFS_ROOT_TRANS_TAG);
109
110                         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
111                         BUG_ON(!dirty);
112                         dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
113                         BUG_ON(!dirty->root);
114                         dirty->latest_root = root;
115                         INIT_LIST_HEAD(&dirty->list);
116
117                         root->commit_root = btrfs_root_node(root);
118
119                         memcpy(dirty->root, root, sizeof(*root));
120                         spin_lock_init(&dirty->root->node_lock);
121                         spin_lock_init(&dirty->root->list_lock);
122                         mutex_init(&dirty->root->objectid_mutex);
123                         mutex_init(&dirty->root->log_mutex);
124                         INIT_LIST_HEAD(&dirty->root->dead_list);
125                         dirty->root->node = root->commit_root;
126                         dirty->root->commit_root = NULL;
127
128                         spin_lock(&root->list_lock);
129                         list_add(&dirty->root->dead_list, &root->dead_list);
130                         spin_unlock(&root->list_lock);
131
132                         root->dirty_root = dirty;
133                 } else {
134                         WARN_ON(1);
135                 }
136                 root->last_trans = running_trans_id;
137         }
138         return 0;
139 }
140
141 /* wait for commit against the current transaction to become unblocked
142  * when this is done, it is safe to start a new transaction, but the current
143  * transaction might not be fully on disk.
144  */
145 static void wait_current_trans(struct btrfs_root *root)
146 {
147         struct btrfs_transaction *cur_trans;
148
149         cur_trans = root->fs_info->running_transaction;
150         if (cur_trans && cur_trans->blocked) {
151                 DEFINE_WAIT(wait);
152                 cur_trans->use_count++;
153                 while (1) {
154                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
155                                         TASK_UNINTERRUPTIBLE);
156                         if (cur_trans->blocked) {
157                                 mutex_unlock(&root->fs_info->trans_mutex);
158                                 schedule();
159                                 mutex_lock(&root->fs_info->trans_mutex);
160                                 finish_wait(&root->fs_info->transaction_wait,
161                                             &wait);
162                         } else {
163                                 finish_wait(&root->fs_info->transaction_wait,
164                                             &wait);
165                                 break;
166                         }
167                 }
168                 put_transaction(cur_trans);
169         }
170 }
171
172 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
173                                              int num_blocks, int wait)
174 {
175         struct btrfs_trans_handle *h =
176                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
177         int ret;
178
179         mutex_lock(&root->fs_info->trans_mutex);
180         if (!root->fs_info->log_root_recovering &&
181             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
182                 wait_current_trans(root);
183         ret = join_transaction(root);
184         BUG_ON(ret);
185
186         btrfs_record_root_in_trans(root);
187         h->transid = root->fs_info->running_transaction->transid;
188         h->transaction = root->fs_info->running_transaction;
189         h->blocks_reserved = num_blocks;
190         h->blocks_used = 0;
191         h->block_group = 0;
192         h->alloc_exclude_nr = 0;
193         h->alloc_exclude_start = 0;
194         h->delayed_ref_updates = 0;
195         root->fs_info->running_transaction->use_count++;
196         mutex_unlock(&root->fs_info->trans_mutex);
197         return h;
198 }
199
200 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
201                                                    int num_blocks)
202 {
203         return start_transaction(root, num_blocks, 1);
204 }
205 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
206                                                    int num_blocks)
207 {
208         return start_transaction(root, num_blocks, 0);
209 }
210
211 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
212                                                          int num_blocks)
213 {
214         return start_transaction(r, num_blocks, 2);
215 }
216
217 /* wait for a transaction commit to be fully complete */
218 static noinline int wait_for_commit(struct btrfs_root *root,
219                                     struct btrfs_transaction *commit)
220 {
221         DEFINE_WAIT(wait);
222         mutex_lock(&root->fs_info->trans_mutex);
223         while (!commit->commit_done) {
224                 prepare_to_wait(&commit->commit_wait, &wait,
225                                 TASK_UNINTERRUPTIBLE);
226                 if (commit->commit_done)
227                         break;
228                 mutex_unlock(&root->fs_info->trans_mutex);
229                 schedule();
230                 mutex_lock(&root->fs_info->trans_mutex);
231         }
232         mutex_unlock(&root->fs_info->trans_mutex);
233         finish_wait(&commit->commit_wait, &wait);
234         return 0;
235 }
236
237 /*
238  * rate limit against the drop_snapshot code.  This helps to slow down new
239  * operations if the drop_snapshot code isn't able to keep up.
240  */
241 static void throttle_on_drops(struct btrfs_root *root)
242 {
243         struct btrfs_fs_info *info = root->fs_info;
244         int harder_count = 0;
245
246 harder:
247         if (atomic_read(&info->throttles)) {
248                 DEFINE_WAIT(wait);
249                 int thr;
250                 thr = atomic_read(&info->throttle_gen);
251
252                 do {
253                         prepare_to_wait(&info->transaction_throttle,
254                                         &wait, TASK_UNINTERRUPTIBLE);
255                         if (!atomic_read(&info->throttles)) {
256                                 finish_wait(&info->transaction_throttle, &wait);
257                                 break;
258                         }
259                         schedule();
260                         finish_wait(&info->transaction_throttle, &wait);
261                 } while (thr == atomic_read(&info->throttle_gen));
262                 harder_count++;
263
264                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
265                     harder_count < 2)
266                         goto harder;
267
268                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
269                     harder_count < 10)
270                         goto harder;
271
272                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
273                     harder_count < 20)
274                         goto harder;
275         }
276 }
277
278 void btrfs_throttle(struct btrfs_root *root)
279 {
280         mutex_lock(&root->fs_info->trans_mutex);
281         if (!root->fs_info->open_ioctl_trans)
282                 wait_current_trans(root);
283         mutex_unlock(&root->fs_info->trans_mutex);
284
285         throttle_on_drops(root);
286 }
287
288 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
289                           struct btrfs_root *root, int throttle)
290 {
291         struct btrfs_transaction *cur_trans;
292         struct btrfs_fs_info *info = root->fs_info;
293         int count = 0;
294
295         while (count < 4) {
296                 unsigned long cur = trans->delayed_ref_updates;
297                 trans->delayed_ref_updates = 0;
298                 if (cur &&
299                     trans->transaction->delayed_refs.num_heads_ready > 64) {
300                         trans->delayed_ref_updates = 0;
301                         btrfs_run_delayed_refs(trans, root, cur);
302                 } else {
303                         break;
304                 }
305                 count++;
306         }
307
308         mutex_lock(&info->trans_mutex);
309         cur_trans = info->running_transaction;
310         WARN_ON(cur_trans != trans->transaction);
311         WARN_ON(cur_trans->num_writers < 1);
312         cur_trans->num_writers--;
313
314         if (waitqueue_active(&cur_trans->writer_wait))
315                 wake_up(&cur_trans->writer_wait);
316         put_transaction(cur_trans);
317         mutex_unlock(&info->trans_mutex);
318         memset(trans, 0, sizeof(*trans));
319         kmem_cache_free(btrfs_trans_handle_cachep, trans);
320
321         if (throttle)
322                 throttle_on_drops(root);
323
324         return 0;
325 }
326
327 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
328                           struct btrfs_root *root)
329 {
330         return __btrfs_end_transaction(trans, root, 0);
331 }
332
333 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
334                                    struct btrfs_root *root)
335 {
336         return __btrfs_end_transaction(trans, root, 1);
337 }
338
339 /*
340  * when btree blocks are allocated, they have some corresponding bits set for
341  * them in one of two extent_io trees.  This is used to make sure all of
342  * those extents are on disk for transaction or log commit
343  */
344 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
345                                         struct extent_io_tree *dirty_pages)
346 {
347         int ret;
348         int err = 0;
349         int werr = 0;
350         struct page *page;
351         struct inode *btree_inode = root->fs_info->btree_inode;
352         u64 start = 0;
353         u64 end;
354         unsigned long index;
355
356         while (1) {
357                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
358                                             EXTENT_DIRTY);
359                 if (ret)
360                         break;
361                 while (start <= end) {
362                         cond_resched();
363
364                         index = start >> PAGE_CACHE_SHIFT;
365                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
366                         page = find_get_page(btree_inode->i_mapping, index);
367                         if (!page)
368                                 continue;
369
370                         btree_lock_page_hook(page);
371                         if (!page->mapping) {
372                                 unlock_page(page);
373                                 page_cache_release(page);
374                                 continue;
375                         }
376
377                         if (PageWriteback(page)) {
378                                 if (PageDirty(page))
379                                         wait_on_page_writeback(page);
380                                 else {
381                                         unlock_page(page);
382                                         page_cache_release(page);
383                                         continue;
384                                 }
385                         }
386                         err = write_one_page(page, 0);
387                         if (err)
388                                 werr = err;
389                         page_cache_release(page);
390                 }
391         }
392         while (1) {
393                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
394                                             EXTENT_DIRTY);
395                 if (ret)
396                         break;
397
398                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
399                 while (start <= end) {
400                         index = start >> PAGE_CACHE_SHIFT;
401                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
402                         page = find_get_page(btree_inode->i_mapping, index);
403                         if (!page)
404                                 continue;
405                         if (PageDirty(page)) {
406                                 btree_lock_page_hook(page);
407                                 wait_on_page_writeback(page);
408                                 err = write_one_page(page, 0);
409                                 if (err)
410                                         werr = err;
411                         }
412                         wait_on_page_writeback(page);
413                         page_cache_release(page);
414                         cond_resched();
415                 }
416         }
417         if (err)
418                 werr = err;
419         return werr;
420 }
421
422 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
423                                      struct btrfs_root *root)
424 {
425         if (!trans || !trans->transaction) {
426                 struct inode *btree_inode;
427                 btree_inode = root->fs_info->btree_inode;
428                 return filemap_write_and_wait(btree_inode->i_mapping);
429         }
430         return btrfs_write_and_wait_marked_extents(root,
431                                            &trans->transaction->dirty_pages);
432 }
433
434 /*
435  * this is used to update the root pointer in the tree of tree roots.
436  *
437  * But, in the case of the extent allocation tree, updating the root
438  * pointer may allocate blocks which may change the root of the extent
439  * allocation tree.
440  *
441  * So, this loops and repeats and makes sure the cowonly root didn't
442  * change while the root pointer was being updated in the metadata.
443  */
444 static int update_cowonly_root(struct btrfs_trans_handle *trans,
445                                struct btrfs_root *root)
446 {
447         int ret;
448         u64 old_root_bytenr;
449         struct btrfs_root *tree_root = root->fs_info->tree_root;
450
451         btrfs_write_dirty_block_groups(trans, root);
452
453         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
454         BUG_ON(ret);
455
456         while (1) {
457                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
458                 if (old_root_bytenr == root->node->start)
459                         break;
460                 btrfs_set_root_bytenr(&root->root_item,
461                                        root->node->start);
462                 btrfs_set_root_level(&root->root_item,
463                                      btrfs_header_level(root->node));
464                 btrfs_set_root_generation(&root->root_item, trans->transid);
465
466                 ret = btrfs_update_root(trans, tree_root,
467                                         &root->root_key,
468                                         &root->root_item);
469                 BUG_ON(ret);
470                 btrfs_write_dirty_block_groups(trans, root);
471
472                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
473                 BUG_ON(ret);
474         }
475         return 0;
476 }
477
478 /*
479  * update all the cowonly tree roots on disk
480  */
481 int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
482                             struct btrfs_root *root)
483 {
484         struct btrfs_fs_info *fs_info = root->fs_info;
485         struct list_head *next;
486         struct extent_buffer *eb;
487         int ret;
488
489         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
490         BUG_ON(ret);
491
492         eb = btrfs_lock_root_node(fs_info->tree_root);
493         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
494         btrfs_tree_unlock(eb);
495         free_extent_buffer(eb);
496
497         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
498         BUG_ON(ret);
499
500         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
501                 next = fs_info->dirty_cowonly_roots.next;
502                 list_del_init(next);
503                 root = list_entry(next, struct btrfs_root, dirty_list);
504
505                 update_cowonly_root(trans, root);
506
507                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
508                 BUG_ON(ret);
509         }
510         return 0;
511 }
512
513 /*
514  * dead roots are old snapshots that need to be deleted.  This allocates
515  * a dirty root struct and adds it into the list of dead roots that need to
516  * be deleted
517  */
518 int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest)
519 {
520         struct btrfs_dirty_root *dirty;
521
522         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
523         if (!dirty)
524                 return -ENOMEM;
525         dirty->root = root;
526         dirty->latest_root = latest;
527
528         mutex_lock(&root->fs_info->trans_mutex);
529         list_add(&dirty->list, &latest->fs_info->dead_roots);
530         mutex_unlock(&root->fs_info->trans_mutex);
531         return 0;
532 }
533
534 /*
535  * at transaction commit time we need to schedule the old roots for
536  * deletion via btrfs_drop_snapshot.  This runs through all the
537  * reference counted roots that were modified in the current
538  * transaction and puts them into the drop list
539  */
540 static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
541                                     struct radix_tree_root *radix,
542                                     struct list_head *list)
543 {
544         struct btrfs_dirty_root *dirty;
545         struct btrfs_root *gang[8];
546         struct btrfs_root *root;
547         int i;
548         int ret;
549         int err = 0;
550         u32 refs;
551
552         while (1) {
553                 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
554                                                  ARRAY_SIZE(gang),
555                                                  BTRFS_ROOT_TRANS_TAG);
556                 if (ret == 0)
557                         break;
558                 for (i = 0; i < ret; i++) {
559                         root = gang[i];
560                         radix_tree_tag_clear(radix,
561                                      (unsigned long)root->root_key.objectid,
562                                      BTRFS_ROOT_TRANS_TAG);
563
564                         BUG_ON(!root->ref_tree);
565                         dirty = root->dirty_root;
566
567                         btrfs_free_log(trans, root);
568                         btrfs_free_reloc_root(trans, root);
569
570                         if (root->commit_root == root->node) {
571                                 WARN_ON(root->node->start !=
572                                         btrfs_root_bytenr(&root->root_item));
573
574                                 free_extent_buffer(root->commit_root);
575                                 root->commit_root = NULL;
576                                 root->dirty_root = NULL;
577
578                                 spin_lock(&root->list_lock);
579                                 list_del_init(&dirty->root->dead_list);
580                                 spin_unlock(&root->list_lock);
581
582                                 kfree(dirty->root);
583                                 kfree(dirty);
584
585                                 /* make sure to update the root on disk
586                                  * so we get any updates to the block used
587                                  * counts
588                                  */
589                                 err = btrfs_update_root(trans,
590                                                 root->fs_info->tree_root,
591                                                 &root->root_key,
592                                                 &root->root_item);
593                                 continue;
594                         }
595
596                         memset(&root->root_item.drop_progress, 0,
597                                sizeof(struct btrfs_disk_key));
598                         root->root_item.drop_level = 0;
599                         root->commit_root = NULL;
600                         root->dirty_root = NULL;
601                         root->root_key.offset = root->fs_info->generation;
602                         btrfs_set_root_bytenr(&root->root_item,
603                                               root->node->start);
604                         btrfs_set_root_level(&root->root_item,
605                                              btrfs_header_level(root->node));
606                         btrfs_set_root_generation(&root->root_item,
607                                                   root->root_key.offset);
608
609                         err = btrfs_insert_root(trans, root->fs_info->tree_root,
610                                                 &root->root_key,
611                                                 &root->root_item);
612                         if (err)
613                                 break;
614
615                         refs = btrfs_root_refs(&dirty->root->root_item);
616                         btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
617                         err = btrfs_update_root(trans, root->fs_info->tree_root,
618                                                 &dirty->root->root_key,
619                                                 &dirty->root->root_item);
620
621                         BUG_ON(err);
622                         if (refs == 1) {
623                                 list_add(&dirty->list, list);
624                         } else {
625                                 WARN_ON(1);
626                                 free_extent_buffer(dirty->root->node);
627                                 kfree(dirty->root);
628                                 kfree(dirty);
629                         }
630                 }
631         }
632         return err;
633 }
634
635 /*
636  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
637  * otherwise every leaf in the btree is read and defragged.
638  */
639 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
640 {
641         struct btrfs_fs_info *info = root->fs_info;
642         int ret;
643         struct btrfs_trans_handle *trans;
644         unsigned long nr;
645
646         smp_mb();
647         if (root->defrag_running)
648                 return 0;
649         trans = btrfs_start_transaction(root, 1);
650         while (1) {
651                 root->defrag_running = 1;
652                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
653                 nr = trans->blocks_used;
654                 btrfs_end_transaction(trans, root);
655                 btrfs_btree_balance_dirty(info->tree_root, nr);
656                 cond_resched();
657
658                 trans = btrfs_start_transaction(root, 1);
659                 if (root->fs_info->closing || ret != -EAGAIN)
660                         break;
661         }
662         root->defrag_running = 0;
663         smp_mb();
664         btrfs_end_transaction(trans, root);
665         return 0;
666 }
667
668 /*
669  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
670  * all of them
671  */
672 static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
673                                      struct list_head *list)
674 {
675         struct btrfs_dirty_root *dirty;
676         struct btrfs_trans_handle *trans;
677         unsigned long nr;
678         u64 num_bytes;
679         u64 bytes_used;
680         u64 max_useless;
681         int ret = 0;
682         int err;
683
684         while (!list_empty(list)) {
685                 struct btrfs_root *root;
686
687                 dirty = list_entry(list->prev, struct btrfs_dirty_root, list);
688                 list_del_init(&dirty->list);
689
690                 num_bytes = btrfs_root_used(&dirty->root->root_item);
691                 root = dirty->latest_root;
692                 atomic_inc(&root->fs_info->throttles);
693
694                 while (1) {
695                         trans = btrfs_start_transaction(tree_root, 1);
696                         mutex_lock(&root->fs_info->drop_mutex);
697                         ret = btrfs_drop_snapshot(trans, dirty->root);
698                         if (ret != -EAGAIN)
699                                 break;
700                         mutex_unlock(&root->fs_info->drop_mutex);
701
702                         err = btrfs_update_root(trans,
703                                         tree_root,
704                                         &dirty->root->root_key,
705                                         &dirty->root->root_item);
706                         if (err)
707                                 ret = err;
708                         nr = trans->blocks_used;
709                         ret = btrfs_end_transaction(trans, tree_root);
710                         BUG_ON(ret);
711
712                         btrfs_btree_balance_dirty(tree_root, nr);
713                         cond_resched();
714                 }
715                 BUG_ON(ret);
716                 atomic_dec(&root->fs_info->throttles);
717                 wake_up(&root->fs_info->transaction_throttle);
718
719                 num_bytes -= btrfs_root_used(&dirty->root->root_item);
720                 bytes_used = btrfs_root_used(&root->root_item);
721                 if (num_bytes) {
722                         mutex_lock(&root->fs_info->trans_mutex);
723                         btrfs_record_root_in_trans(root);
724                         mutex_unlock(&root->fs_info->trans_mutex);
725                         btrfs_set_root_used(&root->root_item,
726                                             bytes_used - num_bytes);
727                 }
728
729                 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
730                 if (ret) {
731                         BUG();
732                         break;
733                 }
734                 mutex_unlock(&root->fs_info->drop_mutex);
735
736                 spin_lock(&root->list_lock);
737                 list_del_init(&dirty->root->dead_list);
738                 if (!list_empty(&root->dead_list)) {
739                         struct btrfs_root *oldest;
740                         oldest = list_entry(root->dead_list.prev,
741                                             struct btrfs_root, dead_list);
742                         max_useless = oldest->root_key.offset - 1;
743                 } else {
744                         max_useless = root->root_key.offset - 1;
745                 }
746                 spin_unlock(&root->list_lock);
747
748                 nr = trans->blocks_used;
749                 ret = btrfs_end_transaction(trans, tree_root);
750                 BUG_ON(ret);
751
752                 ret = btrfs_remove_leaf_refs(root, max_useless, 0);
753                 BUG_ON(ret);
754
755                 free_extent_buffer(dirty->root->node);
756                 kfree(dirty->root);
757                 kfree(dirty);
758
759                 btrfs_btree_balance_dirty(tree_root, nr);
760                 cond_resched();
761         }
762         return ret;
763 }
764
765 /*
766  * new snapshots need to be created at a very specific time in the
767  * transaction commit.  This does the actual creation
768  */
769 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
770                                    struct btrfs_fs_info *fs_info,
771                                    struct btrfs_pending_snapshot *pending)
772 {
773         struct btrfs_key key;
774         struct btrfs_root_item *new_root_item;
775         struct btrfs_root *tree_root = fs_info->tree_root;
776         struct btrfs_root *root = pending->root;
777         struct extent_buffer *tmp;
778         struct extent_buffer *old;
779         int ret;
780         u64 objectid;
781
782         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
783         if (!new_root_item) {
784                 ret = -ENOMEM;
785                 goto fail;
786         }
787         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
788         if (ret)
789                 goto fail;
790
791         btrfs_record_root_in_trans(root);
792         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
793         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
794
795         key.objectid = objectid;
796         key.offset = trans->transid;
797         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
798
799         old = btrfs_lock_root_node(root);
800         btrfs_cow_block(trans, root, old, NULL, 0, &old);
801
802         btrfs_copy_root(trans, root, old, &tmp, objectid);
803         btrfs_tree_unlock(old);
804         free_extent_buffer(old);
805
806         btrfs_set_root_bytenr(new_root_item, tmp->start);
807         btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
808         btrfs_set_root_generation(new_root_item, trans->transid);
809         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
810                                 new_root_item);
811         btrfs_tree_unlock(tmp);
812         free_extent_buffer(tmp);
813         if (ret)
814                 goto fail;
815
816         key.offset = (u64)-1;
817         memcpy(&pending->root_key, &key, sizeof(key));
818 fail:
819         kfree(new_root_item);
820         return ret;
821 }
822
823 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
824                                    struct btrfs_pending_snapshot *pending)
825 {
826         int ret;
827         int namelen;
828         u64 index = 0;
829         struct btrfs_trans_handle *trans;
830         struct inode *parent_inode;
831         struct inode *inode;
832         struct btrfs_root *parent_root;
833
834         parent_inode = pending->dentry->d_parent->d_inode;
835         parent_root = BTRFS_I(parent_inode)->root;
836         trans = btrfs_join_transaction(parent_root, 1);
837
838         /*
839          * insert the directory item
840          */
841         namelen = strlen(pending->name);
842         ret = btrfs_set_inode_index(parent_inode, &index);
843         ret = btrfs_insert_dir_item(trans, parent_root,
844                             pending->name, namelen,
845                             parent_inode->i_ino,
846                             &pending->root_key, BTRFS_FT_DIR, index);
847
848         if (ret)
849                 goto fail;
850
851         btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
852         ret = btrfs_update_inode(trans, parent_root, parent_inode);
853         BUG_ON(ret);
854
855         /* add the backref first */
856         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
857                                  pending->root_key.objectid,
858                                  BTRFS_ROOT_BACKREF_KEY,
859                                  parent_root->root_key.objectid,
860                                  parent_inode->i_ino, index, pending->name,
861                                  namelen);
862
863         BUG_ON(ret);
864
865         /* now add the forward ref */
866         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
867                                  parent_root->root_key.objectid,
868                                  BTRFS_ROOT_REF_KEY,
869                                  pending->root_key.objectid,
870                                  parent_inode->i_ino, index, pending->name,
871                                  namelen);
872
873         inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
874         d_instantiate(pending->dentry, inode);
875 fail:
876         btrfs_end_transaction(trans, fs_info->fs_root);
877         return ret;
878 }
879
880 /*
881  * create all the snapshots we've scheduled for creation
882  */
883 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
884                                              struct btrfs_fs_info *fs_info)
885 {
886         struct btrfs_pending_snapshot *pending;
887         struct list_head *head = &trans->transaction->pending_snapshots;
888         int ret;
889
890         list_for_each_entry(pending, head, list) {
891                 ret = create_pending_snapshot(trans, fs_info, pending);
892                 BUG_ON(ret);
893         }
894         return 0;
895 }
896
897 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
898                                              struct btrfs_fs_info *fs_info)
899 {
900         struct btrfs_pending_snapshot *pending;
901         struct list_head *head = &trans->transaction->pending_snapshots;
902         int ret;
903
904         while (!list_empty(head)) {
905                 pending = list_entry(head->next,
906                                      struct btrfs_pending_snapshot, list);
907                 ret = finish_pending_snapshot(fs_info, pending);
908                 BUG_ON(ret);
909                 list_del(&pending->list);
910                 kfree(pending->name);
911                 kfree(pending);
912         }
913         return 0;
914 }
915
916 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
917                              struct btrfs_root *root)
918 {
919         unsigned long joined = 0;
920         unsigned long timeout = 1;
921         struct btrfs_transaction *cur_trans;
922         struct btrfs_transaction *prev_trans = NULL;
923         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
924         struct list_head dirty_fs_roots;
925         struct extent_io_tree *pinned_copy;
926         DEFINE_WAIT(wait);
927         int ret;
928
929         /* make a pass through all the delayed refs we have so far
930          * any runnings procs may add more while we are here
931          */
932         ret = btrfs_run_delayed_refs(trans, root, 0);
933         BUG_ON(ret);
934
935         /*
936          * set the flushing flag so procs in this transaction have to
937          * start sending their work down.
938          */
939         trans->transaction->delayed_refs.flushing = 1;
940
941         ret = btrfs_run_delayed_refs(trans, root, 0);
942         BUG_ON(ret);
943
944         INIT_LIST_HEAD(&dirty_fs_roots);
945         mutex_lock(&root->fs_info->trans_mutex);
946         if (trans->transaction->in_commit) {
947                 cur_trans = trans->transaction;
948                 trans->transaction->use_count++;
949                 mutex_unlock(&root->fs_info->trans_mutex);
950                 btrfs_end_transaction(trans, root);
951
952                 ret = wait_for_commit(root, cur_trans);
953                 BUG_ON(ret);
954
955                 mutex_lock(&root->fs_info->trans_mutex);
956                 put_transaction(cur_trans);
957                 mutex_unlock(&root->fs_info->trans_mutex);
958
959                 return 0;
960         }
961
962         pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
963         if (!pinned_copy)
964                 return -ENOMEM;
965
966         extent_io_tree_init(pinned_copy,
967                              root->fs_info->btree_inode->i_mapping, GFP_NOFS);
968
969         trans->transaction->in_commit = 1;
970         trans->transaction->blocked = 1;
971         cur_trans = trans->transaction;
972         if (cur_trans->list.prev != &root->fs_info->trans_list) {
973                 prev_trans = list_entry(cur_trans->list.prev,
974                                         struct btrfs_transaction, list);
975                 if (!prev_trans->commit_done) {
976                         prev_trans->use_count++;
977                         mutex_unlock(&root->fs_info->trans_mutex);
978
979                         wait_for_commit(root, prev_trans);
980
981                         mutex_lock(&root->fs_info->trans_mutex);
982                         put_transaction(prev_trans);
983                 }
984         }
985
986         do {
987                 int snap_pending = 0;
988                 joined = cur_trans->num_joined;
989                 if (!list_empty(&trans->transaction->pending_snapshots))
990                         snap_pending = 1;
991
992                 WARN_ON(cur_trans != trans->transaction);
993                 prepare_to_wait(&cur_trans->writer_wait, &wait,
994                                 TASK_UNINTERRUPTIBLE);
995
996                 if (cur_trans->num_writers > 1)
997                         timeout = MAX_SCHEDULE_TIMEOUT;
998                 else
999                         timeout = 1;
1000
1001                 mutex_unlock(&root->fs_info->trans_mutex);
1002
1003                 if (snap_pending) {
1004                         ret = btrfs_wait_ordered_extents(root, 1);
1005                         BUG_ON(ret);
1006                 }
1007
1008                 schedule_timeout(timeout);
1009
1010                 mutex_lock(&root->fs_info->trans_mutex);
1011                 finish_wait(&cur_trans->writer_wait, &wait);
1012         } while (cur_trans->num_writers > 1 ||
1013                  (cur_trans->num_joined != joined));
1014
1015         ret = create_pending_snapshots(trans, root->fs_info);
1016         BUG_ON(ret);
1017
1018         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1019         BUG_ON(ret);
1020
1021         WARN_ON(cur_trans != trans->transaction);
1022
1023         /* btrfs_commit_tree_roots is responsible for getting the
1024          * various roots consistent with each other.  Every pointer
1025          * in the tree of tree roots has to point to the most up to date
1026          * root for every subvolume and other tree.  So, we have to keep
1027          * the tree logging code from jumping in and changing any
1028          * of the trees.
1029          *
1030          * At this point in the commit, there can't be any tree-log
1031          * writers, but a little lower down we drop the trans mutex
1032          * and let new people in.  By holding the tree_log_mutex
1033          * from now until after the super is written, we avoid races
1034          * with the tree-log code.
1035          */
1036         mutex_lock(&root->fs_info->tree_log_mutex);
1037         /*
1038          * keep tree reloc code from adding new reloc trees
1039          */
1040         mutex_lock(&root->fs_info->tree_reloc_mutex);
1041
1042
1043         ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
1044                               &dirty_fs_roots);
1045         BUG_ON(ret);
1046
1047         /* add_dirty_roots gets rid of all the tree log roots, it is now
1048          * safe to free the root of tree log roots
1049          */
1050         btrfs_free_log_root_tree(trans, root->fs_info);
1051
1052         ret = btrfs_commit_tree_roots(trans, root);
1053         BUG_ON(ret);
1054
1055         cur_trans = root->fs_info->running_transaction;
1056         spin_lock(&root->fs_info->new_trans_lock);
1057         root->fs_info->running_transaction = NULL;
1058         spin_unlock(&root->fs_info->new_trans_lock);
1059         btrfs_set_super_generation(&root->fs_info->super_copy,
1060                                    cur_trans->transid);
1061         btrfs_set_super_root(&root->fs_info->super_copy,
1062                              root->fs_info->tree_root->node->start);
1063         btrfs_set_super_root_level(&root->fs_info->super_copy,
1064                            btrfs_header_level(root->fs_info->tree_root->node));
1065
1066         btrfs_set_super_chunk_root(&root->fs_info->super_copy,
1067                                    chunk_root->node->start);
1068         btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
1069                                          btrfs_header_level(chunk_root->node));
1070         btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy,
1071                                 btrfs_header_generation(chunk_root->node));
1072
1073         if (!root->fs_info->log_root_recovering) {
1074                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1075                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1076         }
1077
1078         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1079                sizeof(root->fs_info->super_copy));
1080
1081         btrfs_copy_pinned(root, pinned_copy);
1082
1083         trans->transaction->blocked = 0;
1084         wake_up(&root->fs_info->transaction_throttle);
1085         wake_up(&root->fs_info->transaction_wait);
1086
1087         mutex_unlock(&root->fs_info->trans_mutex);
1088         ret = btrfs_write_and_wait_transaction(trans, root);
1089         BUG_ON(ret);
1090         write_ctree_super(trans, root, 0);
1091
1092         /*
1093          * the super is written, we can safely allow the tree-loggers
1094          * to go about their business
1095          */
1096         mutex_unlock(&root->fs_info->tree_log_mutex);
1097
1098         btrfs_finish_extent_commit(trans, root, pinned_copy);
1099         kfree(pinned_copy);
1100
1101         btrfs_drop_dead_reloc_roots(root);
1102         mutex_unlock(&root->fs_info->tree_reloc_mutex);
1103
1104         /* do the directory inserts of any pending snapshot creations */
1105         finish_pending_snapshots(trans, root->fs_info);
1106
1107         mutex_lock(&root->fs_info->trans_mutex);
1108
1109         cur_trans->commit_done = 1;
1110         root->fs_info->last_trans_committed = cur_trans->transid;
1111         wake_up(&cur_trans->commit_wait);
1112
1113         put_transaction(cur_trans);
1114         put_transaction(cur_trans);
1115
1116         list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
1117         if (root->fs_info->closing)
1118                 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
1119
1120         mutex_unlock(&root->fs_info->trans_mutex);
1121
1122         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1123
1124         if (root->fs_info->closing)
1125                 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
1126         return ret;
1127 }
1128
1129 /*
1130  * interface function to delete all the snapshots we have scheduled for deletion
1131  */
1132 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1133 {
1134         struct list_head dirty_roots;
1135         INIT_LIST_HEAD(&dirty_roots);
1136 again:
1137         mutex_lock(&root->fs_info->trans_mutex);
1138         list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
1139         mutex_unlock(&root->fs_info->trans_mutex);
1140
1141         if (!list_empty(&dirty_roots)) {
1142                 drop_dirty_roots(root, &dirty_roots);
1143                 goto again;
1144         }
1145         return 0;
1146 }