powerpc: Use one common impl. of RTAS timebase sync and use raw spinlock
[linux-2.6] / arch / powerpc / include / asm / dma.h
1 #ifndef _ASM_POWERPC_DMA_H
2 #define _ASM_POWERPC_DMA_H
3 #ifdef __KERNEL__
4
5 /*
6  * Defines for using and allocating dma channels.
7  * Written by Hennus Bergman, 1992.
8  * High DMA channel support & info by Hannu Savolainen
9  * and John Boyd, Nov. 1992.
10  * Changes for ppc sound by Christoph Nadig
11  */
12
13 /*
14  * Note: Adapted for PowerPC by Gary Thomas
15  * Modified by Cort Dougan <cort@cs.nmt.edu>
16  *
17  * None of this really applies for Power Macintoshes.  There is
18  * basically just enough here to get kernel/dma.c to compile.
19  *
20  * There may be some comments or restrictions made here which are
21  * not valid for the PReP platform.  Take what you read
22  * with a grain of salt.
23  */
24
25 #include <asm/io.h>
26 #include <linux/spinlock.h>
27 #include <asm/system.h>
28
29 #ifndef MAX_DMA_CHANNELS
30 #define MAX_DMA_CHANNELS        8
31 #endif
32
33 /* The maximum address that we can perform a DMA transfer to on this platform */
34 /* Doesn't really apply... */
35 #define MAX_DMA_ADDRESS         (~0UL)
36
37 #if !defined(CONFIG_PPC_ISERIES) || defined(CONFIG_PCI)
38
39 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
40 #define dma_outb        outb_p
41 #else
42 #define dma_outb        outb
43 #endif
44
45 #define dma_inb         inb
46
47 /*
48  * NOTES about DMA transfers:
49  *
50  *  controller 1: channels 0-3, byte operations, ports 00-1F
51  *  controller 2: channels 4-7, word operations, ports C0-DF
52  *
53  *  - ALL registers are 8 bits only, regardless of transfer size
54  *  - channel 4 is not used - cascades 1 into 2.
55  *  - channels 0-3 are byte - addresses/counts are for physical bytes
56  *  - channels 5-7 are word - addresses/counts are for physical words
57  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
58  *  - transfer count loaded to registers is 1 less than actual count
59  *  - controller 2 offsets are all even (2x offsets for controller 1)
60  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
61  *  - page registers for 0-3 use bit 0, represent 64K pages
62  *
63  * On PReP, DMA transfers are limited to the lower 16MB of _physical_ memory.
64  * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
65  * Note that addresses loaded into registers must be _physical_ addresses,
66  * not logical addresses (which may differ if paging is active).
67  *
68  *  Address mapping for channels 0-3:
69  *
70  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
71  *    |  ...  |   |  ... |   |  ... |
72  *    |  ...  |   |  ... |   |  ... |
73  *    |  ...  |   |  ... |   |  ... |
74  *   P7  ...  P0  A7 ... A0  A7 ... A0
75  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
76  *
77  *  Address mapping for channels 5-7:
78  *
79  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
80  *    |  ...  |   \   \   ... \  \  \  ... \  \
81  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
82  *    |  ...  |     \   \   ... \  \  \  ... \
83  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
84  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
85  *
86  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
87  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
88  * the hardware level, so odd-byte transfers aren't possible).
89  *
90  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
91  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
92  * and up to 128K bytes may be transferred on channels 5-7 in one operation.
93  *
94  */
95
96 /* 8237 DMA controllers */
97 #define IO_DMA1_BASE    0x00    /* 8 bit slave DMA, channels 0..3 */
98 #define IO_DMA2_BASE    0xC0    /* 16 bit master DMA, ch 4(=slave input)..7 */
99
100 /* DMA controller registers */
101 #define DMA1_CMD_REG            0x08    /* command register (w) */
102 #define DMA1_STAT_REG           0x08    /* status register (r) */
103 #define DMA1_REQ_REG            0x09    /* request register (w) */
104 #define DMA1_MASK_REG           0x0A    /* single-channel mask (w) */
105 #define DMA1_MODE_REG           0x0B    /* mode register (w) */
106 #define DMA1_CLEAR_FF_REG       0x0C    /* clear pointer flip-flop (w) */
107 #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
108 #define DMA1_RESET_REG          0x0D    /* Master Clear (w) */
109 #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
110 #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
111
112 #define DMA2_CMD_REG            0xD0    /* command register (w) */
113 #define DMA2_STAT_REG           0xD0    /* status register (r) */
114 #define DMA2_REQ_REG            0xD2    /* request register (w) */
115 #define DMA2_MASK_REG           0xD4    /* single-channel mask (w) */
116 #define DMA2_MODE_REG           0xD6    /* mode register (w) */
117 #define DMA2_CLEAR_FF_REG       0xD8    /* clear pointer flip-flop (w) */
118 #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
119 #define DMA2_RESET_REG          0xDA    /* Master Clear (w) */
120 #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
121 #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
122
123 #define DMA_ADDR_0              0x00    /* DMA address registers */
124 #define DMA_ADDR_1              0x02
125 #define DMA_ADDR_2              0x04
126 #define DMA_ADDR_3              0x06
127 #define DMA_ADDR_4              0xC0
128 #define DMA_ADDR_5              0xC4
129 #define DMA_ADDR_6              0xC8
130 #define DMA_ADDR_7              0xCC
131
132 #define DMA_CNT_0               0x01    /* DMA count registers */
133 #define DMA_CNT_1               0x03
134 #define DMA_CNT_2               0x05
135 #define DMA_CNT_3               0x07
136 #define DMA_CNT_4               0xC2
137 #define DMA_CNT_5               0xC6
138 #define DMA_CNT_6               0xCA
139 #define DMA_CNT_7               0xCE
140
141 #define DMA_LO_PAGE_0           0x87    /* DMA page registers */
142 #define DMA_LO_PAGE_1           0x83
143 #define DMA_LO_PAGE_2           0x81
144 #define DMA_LO_PAGE_3           0x82
145 #define DMA_LO_PAGE_5           0x8B
146 #define DMA_LO_PAGE_6           0x89
147 #define DMA_LO_PAGE_7           0x8A
148
149 #define DMA_HI_PAGE_0           0x487   /* DMA page registers */
150 #define DMA_HI_PAGE_1           0x483
151 #define DMA_HI_PAGE_2           0x481
152 #define DMA_HI_PAGE_3           0x482
153 #define DMA_HI_PAGE_5           0x48B
154 #define DMA_HI_PAGE_6           0x489
155 #define DMA_HI_PAGE_7           0x48A
156
157 #define DMA1_EXT_REG            0x40B
158 #define DMA2_EXT_REG            0x4D6
159
160 #ifndef __powerpc64__
161     /* in arch/ppc/kernel/setup.c -- Cort */
162     extern unsigned int DMA_MODE_WRITE;
163     extern unsigned int DMA_MODE_READ;
164     extern unsigned long ISA_DMA_THRESHOLD;
165 #else
166     #define DMA_MODE_READ       0x44    /* I/O to memory, no autoinit, increment, single mode */
167     #define DMA_MODE_WRITE      0x48    /* memory to I/O, no autoinit, increment, single mode */
168 #endif
169
170 #define DMA_MODE_CASCADE        0xC0    /* pass thru DREQ->HRQ, DACK<-HLDA only */
171
172 #define DMA_AUTOINIT            0x10
173
174 extern spinlock_t dma_spin_lock;
175
176 static __inline__ unsigned long claim_dma_lock(void)
177 {
178         unsigned long flags;
179         spin_lock_irqsave(&dma_spin_lock, flags);
180         return flags;
181 }
182
183 static __inline__ void release_dma_lock(unsigned long flags)
184 {
185         spin_unlock_irqrestore(&dma_spin_lock, flags);
186 }
187
188 /* enable/disable a specific DMA channel */
189 static __inline__ void enable_dma(unsigned int dmanr)
190 {
191         unsigned char ucDmaCmd = 0x00;
192
193         if (dmanr != 4) {
194                 dma_outb(0, DMA2_MASK_REG);     /* This may not be enabled */
195                 dma_outb(ucDmaCmd, DMA2_CMD_REG);       /* Enable group */
196         }
197         if (dmanr <= 3) {
198                 dma_outb(dmanr, DMA1_MASK_REG);
199                 dma_outb(ucDmaCmd, DMA1_CMD_REG);       /* Enable group */
200         } else {
201                 dma_outb(dmanr & 3, DMA2_MASK_REG);
202         }
203 }
204
205 static __inline__ void disable_dma(unsigned int dmanr)
206 {
207         if (dmanr <= 3)
208                 dma_outb(dmanr | 4, DMA1_MASK_REG);
209         else
210                 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
211 }
212
213 /* Clear the 'DMA Pointer Flip Flop'.
214  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
215  * Use this once to initialize the FF to a known state.
216  * After that, keep track of it. :-)
217  * --- In order to do that, the DMA routines below should ---
218  * --- only be used while interrupts are disabled! ---
219  */
220 static __inline__ void clear_dma_ff(unsigned int dmanr)
221 {
222         if (dmanr <= 3)
223                 dma_outb(0, DMA1_CLEAR_FF_REG);
224         else
225                 dma_outb(0, DMA2_CLEAR_FF_REG);
226 }
227
228 /* set mode (above) for a specific DMA channel */
229 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
230 {
231         if (dmanr <= 3)
232                 dma_outb(mode | dmanr, DMA1_MODE_REG);
233         else
234                 dma_outb(mode | (dmanr & 3), DMA2_MODE_REG);
235 }
236
237 /* Set only the page register bits of the transfer address.
238  * This is used for successive transfers when we know the contents of
239  * the lower 16 bits of the DMA current address register, but a 64k boundary
240  * may have been crossed.
241  */
242 static __inline__ void set_dma_page(unsigned int dmanr, int pagenr)
243 {
244         switch (dmanr) {
245         case 0:
246                 dma_outb(pagenr, DMA_LO_PAGE_0);
247                 dma_outb(pagenr >> 8, DMA_HI_PAGE_0);
248                 break;
249         case 1:
250                 dma_outb(pagenr, DMA_LO_PAGE_1);
251                 dma_outb(pagenr >> 8, DMA_HI_PAGE_1);
252                 break;
253         case 2:
254                 dma_outb(pagenr, DMA_LO_PAGE_2);
255                 dma_outb(pagenr >> 8, DMA_HI_PAGE_2);
256                 break;
257         case 3:
258                 dma_outb(pagenr, DMA_LO_PAGE_3);
259                 dma_outb(pagenr >> 8, DMA_HI_PAGE_3);
260                 break;
261         case 5:
262                 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
263                 dma_outb(pagenr >> 8, DMA_HI_PAGE_5);
264                 break;
265         case 6:
266                 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
267                 dma_outb(pagenr >> 8, DMA_HI_PAGE_6);
268                 break;
269         case 7:
270                 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
271                 dma_outb(pagenr >> 8, DMA_HI_PAGE_7);
272                 break;
273         }
274 }
275
276 /* Set transfer address & page bits for specific DMA channel.
277  * Assumes dma flipflop is clear.
278  */
279 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys)
280 {
281         if (dmanr <= 3) {
282                 dma_outb(phys & 0xff,
283                          ((dmanr & 3) << 1) + IO_DMA1_BASE);
284                 dma_outb((phys >> 8) & 0xff,
285                          ((dmanr & 3) << 1) + IO_DMA1_BASE);
286         } else {
287                 dma_outb((phys >> 1) & 0xff,
288                          ((dmanr & 3) << 2) + IO_DMA2_BASE);
289                 dma_outb((phys >> 9) & 0xff,
290                          ((dmanr & 3) << 2) + IO_DMA2_BASE);
291         }
292         set_dma_page(dmanr, phys >> 16);
293 }
294
295
296 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
297  * a specific DMA channel.
298  * You must ensure the parameters are valid.
299  * NOTE: from a manual: "the number of transfers is one more
300  * than the initial word count"! This is taken into account.
301  * Assumes dma flip-flop is clear.
302  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
303  */
304 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
305 {
306         count--;
307         if (dmanr <= 3) {
308                 dma_outb(count & 0xff,
309                          ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
310                 dma_outb((count >> 8) & 0xff,
311                          ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
312         } else {
313                 dma_outb((count >> 1) & 0xff,
314                          ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
315                 dma_outb((count >> 9) & 0xff,
316                          ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
317         }
318 }
319
320
321 /* Get DMA residue count. After a DMA transfer, this
322  * should return zero. Reading this while a DMA transfer is
323  * still in progress will return unpredictable results.
324  * If called before the channel has been used, it may return 1.
325  * Otherwise, it returns the number of _bytes_ left to transfer.
326  *
327  * Assumes DMA flip-flop is clear.
328  */
329 static __inline__ int get_dma_residue(unsigned int dmanr)
330 {
331         unsigned int io_port = (dmanr <= 3)
332             ? ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE
333             : ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE;
334
335         /* using short to get 16-bit wrap around */
336         unsigned short count;
337
338         count = 1 + dma_inb(io_port);
339         count += dma_inb(io_port) << 8;
340
341         return (dmanr <= 3) ? count : (count << 1);
342 }
343
344 /* These are in kernel/dma.c: */
345
346 /* reserve a DMA channel */
347 extern int request_dma(unsigned int dmanr, const char *device_id);
348 /* release it again */
349 extern void free_dma(unsigned int dmanr);
350
351 #ifdef CONFIG_PCI
352 extern int isa_dma_bridge_buggy;
353 #else
354 #define isa_dma_bridge_buggy    (0)
355 #endif
356
357 #endif  /* !defined(CONFIG_PPC_ISERIES) || defined(CONFIG_PCI) */
358
359 #endif /* __KERNEL__ */
360 #endif  /* _ASM_POWERPC_DMA_H */