4 * Copyright © 2006 Red Hat, Inc.
5 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
10 #include <linux/device.h>
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/pci.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
19 #define CAFE_NAND_CTRL1 0x00
20 #define CAFE_NAND_CTRL2 0x04
21 #define CAFE_NAND_CTRL3 0x08
22 #define CAFE_NAND_STATUS 0x0c
23 #define CAFE_NAND_IRQ 0x10
24 #define CAFE_NAND_IRQ_MASK 0x14
25 #define CAFE_NAND_DATA_LEN 0x18
26 #define CAFE_NAND_ADDR1 0x1c
27 #define CAFE_NAND_ADDR2 0x20
28 #define CAFE_NAND_TIMING1 0x24
29 #define CAFE_NAND_TIMING2 0x28
30 #define CAFE_NAND_TIMING3 0x2c
31 #define CAFE_NAND_NONMEM 0x30
32 #define CAFE_NAND_DMA_CTRL 0x40
33 #define CAFE_NAND_DMA_ADDR0 0x44
34 #define CAFE_NAND_DMA_ADDR1 0x48
35 #define CAFE_NAND_READ_DATA 0x1000
36 #define CAFE_NAND_WRITE_DATA 0x2000
39 struct nand_chip nand;
49 unsigned char *dmabuf;
53 static int usedma = 1;
54 module_param(usedma, int, 0644);
56 static int skipbbt = 0;
57 module_param(skipbbt, int, 0644);
60 module_param(debug, int, 0644);
62 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
65 static int cafe_device_ready(struct mtd_info *mtd)
67 struct cafe_priv *cafe = mtd->priv;
68 int result = !!(readl(cafe->mmio + CAFE_NAND_STATUS) | 0x40000000);
70 uint32_t irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
71 writel(irqs, cafe->mmio+CAFE_NAND_IRQ);
72 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
73 result?"":" not", irqs, readl(cafe->mmio + CAFE_NAND_IRQ),
74 readl(cafe->mmio + 0x3008), readl(cafe->mmio + 0x300c));
79 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
81 struct cafe_priv *cafe = mtd->priv;
84 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
86 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
89 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
93 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
95 struct cafe_priv *cafe = mtd->priv;
98 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
100 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
102 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
104 cafe->datalen += len;
107 static uint8_t cafe_read_byte(struct mtd_info *mtd)
109 struct cafe_priv *cafe = mtd->priv;
112 cafe_read_buf(mtd, &d, 1);
113 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
118 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
119 int column, int page_addr)
121 struct cafe_priv *cafe = mtd->priv;
124 uint32_t doneint = 0x80000000;
127 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
128 command, column, page_addr);
130 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
131 /* Second half of a command we already calculated */
132 writel(cafe->ctl2 | 0x100 | command, cafe->mmio + 0x04);
134 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
135 cafe->ctl1, cafe->nr_data);
138 /* Reset ECC engine */
139 writel(0, cafe->mmio + CAFE_NAND_CTRL2);
141 /* Emulate NAND_CMD_READOOB on large-page chips */
142 if (mtd->writesize > 512 &&
143 command == NAND_CMD_READOOB) {
144 column += mtd->writesize;
145 command = NAND_CMD_READ0;
148 /* FIXME: Do we need to send read command before sending data
149 for small-page chips, to position the buffer correctly? */
152 writel(column, cafe->mmio + 0x1c);
156 } else if (page_addr != -1) {
157 writel(page_addr & 0xffff, cafe->mmio + 0x1c);
160 writel(page_addr, cafe->mmio+0x20);
162 if (mtd->size > mtd->writesize << 16)
166 cafe->data_pos = cafe->datalen = 0;
168 /* Set command valid bit */
169 ctl1 = 0x80000000 | command;
171 /* Set RD or WR bits as appropriate */
172 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
173 ctl1 |= (1<<26); /* rd */
174 /* Always 5 bytes, for now */
176 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
178 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
179 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
180 ctl1 |= 1<<26; /* rd */
181 /* For now, assume just read to end of page */
182 cafe->datalen = mtd->writesize + mtd->oobsize - column;
183 } else if (command == NAND_CMD_SEQIN)
184 ctl1 |= 1<<25; /* wr */
186 /* Set number of address bytes */
188 ctl1 |= ((adrbytes-1)|8) << 27;
190 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
191 /* Ignore the first command of a pair; the hardware
192 deals with them both at once, later */
195 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
196 cafe->ctl1, cafe->datalen);
199 /* RNDOUT and READ0 commands need a following byte */
200 if (command == NAND_CMD_RNDOUT)
201 writel(cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, cafe->mmio + CAFE_NAND_CTRL2);
202 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
203 writel(cafe->ctl2 | 0x100 | NAND_CMD_READSTART, cafe->mmio + CAFE_NAND_CTRL2);
206 // ECC on read only works if we ...
207 // if (cafe->datalen == 2112)
208 // cafe->datalen = 2062;
209 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
210 cafe->datalen, ctl1, readl(cafe->mmio+CAFE_NAND_CTRL2));
211 /* NB: The datasheet lies -- we really should be subtracting 1 here */
212 writel(cafe->datalen, cafe->mmio + CAFE_NAND_DATA_LEN);
213 writel(0x90000000, cafe->mmio + CAFE_NAND_IRQ);
214 if (usedma && (ctl1 & (3<<25))) {
215 uint32_t dmactl = 0xc0000000 + cafe->datalen;
216 /* If WR or RD bits set, set up DMA */
217 if (ctl1 & (1<<26)) {
220 /* ... so it's done when the DMA is done, not just
222 doneint = 0x10000000;
224 writel(dmactl, cafe->mmio + 0x40);
227 printk("DMA setup is %x, status %x, ctl1 %x\n", readl(cafe->mmio + 0x40), readl(cafe->mmio + 0x0c), readl(cafe->mmio));
228 printk("DMA setup is %x, status %x, ctl1 %x\n", readl(cafe->mmio + 0x40), readl(cafe->mmio + 0x0c), readl(cafe->mmio));
233 printk("About to write command %08x\n", ctl1);
234 for (i=0; i< 0x5c; i+=4)
235 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
237 writel(ctl1, cafe->mmio + CAFE_NAND_CTRL1);
238 /* Apply this short delay always to ensure that we do wait tWB in
239 * any case on any machine. */
247 irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
252 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
255 writel(doneint, cafe->mmio + CAFE_NAND_IRQ);
256 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", command, 50000-c, irqs, readl(cafe->mmio + CAFE_NAND_IRQ));
260 cafe->ctl2 &= ~(1<<8);
261 cafe->ctl2 &= ~(1<<30);
265 case NAND_CMD_CACHEDPROG:
266 case NAND_CMD_PAGEPROG:
267 case NAND_CMD_ERASE1:
268 case NAND_CMD_ERASE2:
271 case NAND_CMD_STATUS:
272 case NAND_CMD_DEPLETE1:
273 case NAND_CMD_RNDOUT:
274 case NAND_CMD_STATUS_ERROR:
275 case NAND_CMD_STATUS_ERROR0:
276 case NAND_CMD_STATUS_ERROR1:
277 case NAND_CMD_STATUS_ERROR2:
278 case NAND_CMD_STATUS_ERROR3:
279 writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
282 nand_wait_ready(mtd);
283 writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
286 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
288 //struct cafe_priv *cafe = mtd->priv;
289 // cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
291 static int cafe_nand_interrupt(int irq, void *id, struct pt_regs *regs)
293 struct mtd_info *mtd = id;
294 struct cafe_priv *cafe = mtd->priv;
295 uint32_t irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
296 writel(irqs & ~0x90000000, cafe->mmio + CAFE_NAND_IRQ);
300 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, readl(cafe->mmio + CAFE_NAND_IRQ));
304 static void cafe_nand_bug(struct mtd_info *mtd)
309 static int cafe_nand_write_oob(struct mtd_info *mtd,
310 struct nand_chip *chip, int page)
314 WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);
316 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
317 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
318 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
319 status = chip->waitfunc(mtd, chip);
321 return status & NAND_STATUS_FAIL ? -EIO : 0;
324 /* Don't use -- use nand_read_oob_std for now */
325 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
326 int page, int sndcmd)
328 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
329 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
333 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
334 * @mtd: mtd info structure
335 * @chip: nand chip info structure
336 * @buf: buffer to store read data
338 * The hw generator calculates the error syndrome automatically. Therefor
339 * we need a special oob layout and handling.
341 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
344 struct cafe_priv *cafe = mtd->priv;
346 WARN_ON(chip->oob_poi != chip->buffers->oobrbuf);
348 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", readl(cafe->mmio + 0x3c), readl(cafe->mmio + 0x50));
350 chip->read_buf(mtd, buf, mtd->writesize);
351 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
356 static struct nand_ecclayout cafe_oobinfo_2048 = {
358 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
359 .oobfree = {{14, 50}}
362 /* Ick. The BBT code really ought to be able to work this bit out
363 for itself from the above */
364 static uint8_t cafe_bbt_pattern[] = {'B', 'b', 't', '0' };
365 static uint8_t cafe_mirror_pattern[] = {'1', 't', 'b', 'B' };
367 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
368 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
369 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
374 .pattern = cafe_bbt_pattern
377 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
378 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
379 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
384 .pattern = cafe_mirror_pattern
387 static struct nand_ecclayout cafe_oobinfo_512 = {
389 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
394 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
395 struct nand_chip *chip, const uint8_t *buf)
397 struct cafe_priv *cafe = mtd->priv;
399 WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);
401 chip->write_buf(mtd, buf, mtd->writesize);
402 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
404 /* Set up ECC autogeneration */
405 cafe->ctl2 |= (1<<27) | (1<<30);
406 if (mtd->writesize == 2048)
407 cafe->ctl2 |= (1<<29);
410 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
411 const uint8_t *buf, int page, int cached, int raw)
415 WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);
417 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
420 chip->ecc.write_page_raw(mtd, chip, buf);
422 chip->ecc.write_page(mtd, chip, buf);
425 * Cached progamming disabled for now, Not sure if its worth the
426 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
430 if (!cached || !(chip->options & NAND_CACHEPRG)) {
432 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
433 status = chip->waitfunc(mtd, chip);
435 * See if operation failed and additional status checks are
438 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
439 status = chip->errstat(mtd, chip, FL_WRITING, status,
442 if (status & NAND_STATUS_FAIL)
445 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
446 status = chip->waitfunc(mtd, chip);
449 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
450 /* Send command to read back the data */
451 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
453 if (chip->verify_buf(mtd, buf, mtd->writesize))
459 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
464 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
465 const struct pci_device_id *ent)
467 struct mtd_info *mtd;
468 struct cafe_priv *cafe;
472 err = pci_enable_device(pdev);
476 pci_set_master(pdev);
478 mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
480 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
483 cafe = (void *)(&mtd[1]);
486 mtd->owner = THIS_MODULE;
489 cafe->mmio = pci_iomap(pdev, 0, 0);
491 dev_warn(&pdev->dev, "failed to iomap\n");
495 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
496 &cafe->dmaaddr, GFP_KERNEL);
501 cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
503 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
504 cafe->nand.dev_ready = cafe_device_ready;
505 cafe->nand.read_byte = cafe_read_byte;
506 cafe->nand.read_buf = cafe_read_buf;
507 cafe->nand.write_buf = cafe_write_buf;
508 cafe->nand.select_chip = cafe_select_chip;
510 cafe->nand.chip_delay = 0;
512 /* Enable the following for a flash based bad block table */
513 cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
516 cafe->nand.options |= NAND_SKIP_BBTSCAN;
517 cafe->nand.block_bad = cafe_nand_block_bad;
520 /* Timings from Marvell's test code (not verified or calculated by us) */
521 writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
523 writel(0x01010a0a, cafe->mmio + CAFE_NAND_TIMING1);
524 writel(0x24121212, cafe->mmio + CAFE_NAND_TIMING2);
525 writel(0x11000000, cafe->mmio + CAFE_NAND_TIMING3);
527 writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING1);
528 writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING2);
529 writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING3);
531 writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
532 err = request_irq(pdev->irq, &cafe_nand_interrupt, SA_SHIRQ, "CAFE NAND", mtd);
534 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
539 /* Disable master reset, enable NAND clock */
540 ctrl = readl(cafe->mmio + 0x3004);
543 writel(ctrl | 0x05, cafe->mmio + 0x3004);
544 writel(ctrl | 0x0a, cafe->mmio + 0x3004);
545 writel(0, cafe->mmio + 0x40);
547 writel(0x7006, cafe->mmio + 0x3004);
548 writel(0x700a, cafe->mmio + 0x3004);
550 /* Set up DMA address */
551 writel(cafe->dmaaddr & 0xffffffff, cafe->mmio + 0x44);
552 if (sizeof(cafe->dmaaddr) > 4)
553 writel((cafe->dmaaddr >> 16) >> 16, cafe->mmio + 0x48);
555 writel(0, cafe->mmio + 0x48);
556 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
557 readl(cafe->mmio+0x44), cafe->dmabuf);
559 /* Enable NAND IRQ in global IRQ mask register */
560 writel(0x80000007, cafe->mmio + 0x300c);
561 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
562 readl(cafe->mmio + 0x3004), readl(cafe->mmio + 0x300c));
567 memset(cafe->dmabuf, 0x5a, 2112);
568 cafe->nand.cmdfunc(mtd, NAND_CMD_READID, 0, -1);
569 cafe->nand.read_byte(mtd);
570 cafe->nand.read_byte(mtd);
571 cafe->nand.read_byte(mtd);
572 cafe->nand.read_byte(mtd);
573 cafe->nand.read_byte(mtd);
576 cafe->nand.cmdfunc(mtd, NAND_CMD_READ0, 0, 0);
577 // nand_wait_ready(mtd);
578 cafe->nand.read_byte(mtd);
579 cafe->nand.read_byte(mtd);
580 cafe->nand.read_byte(mtd);
581 cafe->nand.read_byte(mtd);
584 writel(0x84600070, cafe->mmio);
586 cafe_dev_dbg(&cafe->pdev->dev, "Status %x\n", readl(cafe->mmio + 0x30));
588 /* Scan to find existance of the device */
589 if (nand_scan_ident(mtd, 1)) {
594 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
595 if (mtd->writesize == 2048)
596 cafe->ctl2 |= 1<<29; /* 2KiB page size */
598 /* Set up ECC according to the type of chip we found */
599 if (mtd->writesize == 512 || mtd->writesize == 2048) {
600 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
601 cafe->nand.ecc.size = mtd->writesize;
602 cafe->nand.ecc.bytes = 14;
603 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
604 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
605 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
606 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
607 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
608 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
609 cafe->nand.write_page = cafe_nand_write_page;
610 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
611 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
612 cafe->nand.ecc.read_page = cafe_nand_read_page;
613 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
616 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Using software ECC\n",
618 cafe->nand.ecc.mode = NAND_ECC_NONE;
621 err = nand_scan_tail(mtd);
625 pci_set_drvdata(pdev, mtd);
630 /* Disable NAND IRQ in global IRQ mask register */
631 writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
632 free_irq(pdev->irq, mtd);
634 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
636 pci_iounmap(pdev, cafe->mmio);
643 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
645 struct mtd_info *mtd = pci_get_drvdata(pdev);
646 struct cafe_priv *cafe = mtd->priv;
649 /* Disable NAND IRQ in global IRQ mask register */
650 writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
651 free_irq(pdev->irq, mtd);
653 pci_iounmap(pdev, cafe->mmio);
654 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
658 static struct pci_device_id cafe_nand_tbl[] = {
659 { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
662 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
664 static struct pci_driver cafe_nand_pci_driver = {
666 .id_table = cafe_nand_tbl,
667 .probe = cafe_nand_probe,
668 .remove = __devexit_p(cafe_nand_remove),
670 .suspend = cafe_nand_suspend,
671 .resume = cafe_nand_resume,
675 static int cafe_nand_init(void)
677 return pci_register_driver(&cafe_nand_pci_driver);
680 static void cafe_nand_exit(void)
682 pci_unregister_driver(&cafe_nand_pci_driver);
684 module_init(cafe_nand_init);
685 module_exit(cafe_nand_exit);
687 MODULE_LICENSE("GPL");
688 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
689 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFE chip");
691 /* Correct ECC for 2048 bytes of 0xff:
692 41 a0 71 65 54 27 f3 93 ec a9 be ed 0b a1 */
694 /* dwmw2's B-test board, in case of completely screwing it:
695 Bad eraseblock 2394 at 0x12b40000
696 Bad eraseblock 2627 at 0x14860000
697 Bad eraseblock 3349 at 0x1a2a0000