1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call netif_poll_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/delay.h>
44 #include <linux/init.h>
45 #include <linux/errno.h>
46 #include <linux/pci.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/mii.h>
52 #include <linux/ethtool.h>
53 #include <linux/crc32.h>
54 #include <linux/random.h>
55 #include <linux/workqueue.h>
56 #include <linux/if_vlan.h>
57 #include <linux/bitops.h>
59 #include <asm/system.h>
61 #include <asm/byteorder.h>
62 #include <asm/uaccess.h>
66 #include <asm/idprom.h>
67 #include <asm/openprom.h>
68 #include <asm/oplib.h>
72 #ifdef CONFIG_PPC_PMAC
73 #include <asm/pci-bridge.h>
75 #include <asm/machdep.h>
76 #include <asm/pmac_feature.h>
79 #include "sungem_phy.h"
82 /* Stripping FCS is causing problems, disabled for now */
85 #define DEFAULT_MSG (NETIF_MSG_DRV | \
89 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
90 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
91 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
93 #define DRV_NAME "sungem"
94 #define DRV_VERSION "0.98"
95 #define DRV_RELDATE "8/24/03"
96 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
98 static char version[] __devinitdata =
99 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
101 MODULE_AUTHOR(DRV_AUTHOR);
102 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
103 MODULE_LICENSE("GPL");
105 #define GEM_MODULE_NAME "gem"
106 #define PFX GEM_MODULE_NAME ": "
108 static struct pci_device_id gem_pci_tbl[] = {
109 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112 /* These models only differ from the original GEM in
113 * that their tx/rx fifos are of a different size and
114 * they only support 10/100 speeds. -DaveM
116 * Apple's GMAC does support gigabit on machines with
117 * the BCM54xx PHYs. -BenH
119 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
120 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
121 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
122 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
123 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
124 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
125 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
126 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
127 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
128 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
129 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
131 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
132 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
136 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
138 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
145 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
146 cmd |= (reg << 18) & MIF_FRAME_REGAD;
147 cmd |= (MIF_FRAME_TAMSB);
148 writel(cmd, gp->regs + MIF_FRAME);
151 cmd = readl(gp->regs + MIF_FRAME);
152 if (cmd & MIF_FRAME_TALSB)
161 return cmd & MIF_FRAME_DATA;
164 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
166 struct gem *gp = dev->priv;
167 return __phy_read(gp, mii_id, reg);
170 static inline u16 phy_read(struct gem *gp, int reg)
172 return __phy_read(gp, gp->mii_phy_addr, reg);
175 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
182 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
183 cmd |= (reg << 18) & MIF_FRAME_REGAD;
184 cmd |= (MIF_FRAME_TAMSB);
185 cmd |= (val & MIF_FRAME_DATA);
186 writel(cmd, gp->regs + MIF_FRAME);
189 cmd = readl(gp->regs + MIF_FRAME);
190 if (cmd & MIF_FRAME_TALSB)
197 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
199 struct gem *gp = dev->priv;
200 __phy_write(gp, mii_id, reg, val & 0xffff);
203 static inline void phy_write(struct gem *gp, int reg, u16 val)
205 __phy_write(gp, gp->mii_phy_addr, reg, val);
208 static inline void gem_enable_ints(struct gem *gp)
210 /* Enable all interrupts but TXDONE */
211 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
214 static inline void gem_disable_ints(struct gem *gp)
216 /* Disable all interrupts, including TXDONE */
217 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
220 static void gem_get_cell(struct gem *gp)
222 BUG_ON(gp->cell_enabled < 0);
224 #ifdef CONFIG_PPC_PMAC
225 if (gp->cell_enabled == 1) {
227 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
230 #endif /* CONFIG_PPC_PMAC */
233 /* Turn off the chip's clock */
234 static void gem_put_cell(struct gem *gp)
236 BUG_ON(gp->cell_enabled <= 0);
238 #ifdef CONFIG_PPC_PMAC
239 if (gp->cell_enabled == 0) {
241 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
244 #endif /* CONFIG_PPC_PMAC */
247 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
249 if (netif_msg_intr(gp))
250 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
253 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
255 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
258 if (netif_msg_intr(gp))
259 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
260 gp->dev->name, pcs_istat);
262 if (!(pcs_istat & PCS_ISTAT_LSC)) {
263 printk(KERN_ERR "%s: PCS irq but no link status change???\n",
268 /* The link status bit latches on zero, so you must
269 * read it twice in such a case to see a transition
270 * to the link being up.
272 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
273 if (!(pcs_miistat & PCS_MIISTAT_LS))
275 (readl(gp->regs + PCS_MIISTAT) &
278 if (pcs_miistat & PCS_MIISTAT_ANC) {
279 /* The remote-fault indication is only valid
280 * when autoneg has completed.
282 if (pcs_miistat & PCS_MIISTAT_RF)
283 printk(KERN_INFO "%s: PCS AutoNEG complete, "
284 "RemoteFault\n", dev->name);
286 printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
290 if (pcs_miistat & PCS_MIISTAT_LS) {
291 printk(KERN_INFO "%s: PCS link is now up.\n",
293 netif_carrier_on(gp->dev);
295 printk(KERN_INFO "%s: PCS link is now down.\n",
297 netif_carrier_off(gp->dev);
298 /* If this happens and the link timer is not running,
299 * reset so we re-negotiate.
301 if (!timer_pending(&gp->link_timer))
308 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
310 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
312 if (netif_msg_intr(gp))
313 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
314 gp->dev->name, txmac_stat);
316 /* Defer timer expiration is quite normal,
317 * don't even log the event.
319 if ((txmac_stat & MAC_TXSTAT_DTE) &&
320 !(txmac_stat & ~MAC_TXSTAT_DTE))
323 if (txmac_stat & MAC_TXSTAT_URUN) {
324 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
326 gp->net_stats.tx_fifo_errors++;
329 if (txmac_stat & MAC_TXSTAT_MPE) {
330 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
332 gp->net_stats.tx_errors++;
335 /* The rest are all cases of one of the 16-bit TX
338 if (txmac_stat & MAC_TXSTAT_NCE)
339 gp->net_stats.collisions += 0x10000;
341 if (txmac_stat & MAC_TXSTAT_ECE) {
342 gp->net_stats.tx_aborted_errors += 0x10000;
343 gp->net_stats.collisions += 0x10000;
346 if (txmac_stat & MAC_TXSTAT_LCE) {
347 gp->net_stats.tx_aborted_errors += 0x10000;
348 gp->net_stats.collisions += 0x10000;
351 /* We do not keep track of MAC_TXSTAT_FCE and
352 * MAC_TXSTAT_PCE events.
357 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
358 * so we do the following.
360 * If any part of the reset goes wrong, we return 1 and that causes the
361 * whole chip to be reset.
363 static int gem_rxmac_reset(struct gem *gp)
365 struct net_device *dev = gp->dev;
370 /* First, reset & disable MAC RX. */
371 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
372 for (limit = 0; limit < 5000; limit++) {
373 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
378 printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
379 "chip.\n", dev->name);
383 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
384 gp->regs + MAC_RXCFG);
385 for (limit = 0; limit < 5000; limit++) {
386 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
391 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
392 "chip.\n", dev->name);
396 /* Second, disable RX DMA. */
397 writel(0, gp->regs + RXDMA_CFG);
398 for (limit = 0; limit < 5000; limit++) {
399 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
404 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
405 "chip.\n", dev->name);
411 /* Execute RX reset command. */
412 writel(gp->swrst_base | GREG_SWRST_RXRST,
413 gp->regs + GREG_SWRST);
414 for (limit = 0; limit < 5000; limit++) {
415 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
420 printk(KERN_ERR "%s: RX reset command will not execute, resetting "
421 "whole chip.\n", dev->name);
425 /* Refresh the RX ring. */
426 for (i = 0; i < RX_RING_SIZE; i++) {
427 struct gem_rxd *rxd = &gp->init_block->rxd[i];
429 if (gp->rx_skbs[i] == NULL) {
430 printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
431 "whole chip.\n", dev->name);
435 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
437 gp->rx_new = gp->rx_old = 0;
439 /* Now we must reprogram the rest of RX unit. */
440 desc_dma = (u64) gp->gblock_dvma;
441 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
442 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
443 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
444 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
445 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
446 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
447 writel(val, gp->regs + RXDMA_CFG);
448 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
449 writel(((5 & RXDMA_BLANK_IPKTS) |
450 ((8 << 12) & RXDMA_BLANK_ITIME)),
451 gp->regs + RXDMA_BLANK);
453 writel(((5 & RXDMA_BLANK_IPKTS) |
454 ((4 << 12) & RXDMA_BLANK_ITIME)),
455 gp->regs + RXDMA_BLANK);
456 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
457 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
458 writel(val, gp->regs + RXDMA_PTHRESH);
459 val = readl(gp->regs + RXDMA_CFG);
460 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
461 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
462 val = readl(gp->regs + MAC_RXCFG);
463 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
468 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
470 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
473 if (netif_msg_intr(gp))
474 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
475 gp->dev->name, rxmac_stat);
477 if (rxmac_stat & MAC_RXSTAT_OFLW) {
478 u32 smac = readl(gp->regs + MAC_SMACHINE);
480 printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
482 gp->net_stats.rx_over_errors++;
483 gp->net_stats.rx_fifo_errors++;
485 ret = gem_rxmac_reset(gp);
488 if (rxmac_stat & MAC_RXSTAT_ACE)
489 gp->net_stats.rx_frame_errors += 0x10000;
491 if (rxmac_stat & MAC_RXSTAT_CCE)
492 gp->net_stats.rx_crc_errors += 0x10000;
494 if (rxmac_stat & MAC_RXSTAT_LCE)
495 gp->net_stats.rx_length_errors += 0x10000;
497 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
503 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
505 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
507 if (netif_msg_intr(gp))
508 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
509 gp->dev->name, mac_cstat);
511 /* This interrupt is just for pause frame and pause
512 * tracking. It is useful for diagnostics and debug
513 * but probably by default we will mask these events.
515 if (mac_cstat & MAC_CSTAT_PS)
518 if (mac_cstat & MAC_CSTAT_PRCV)
519 gp->pause_last_time_recvd = (mac_cstat >> 16);
524 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
526 u32 mif_status = readl(gp->regs + MIF_STATUS);
527 u32 reg_val, changed_bits;
529 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
530 changed_bits = (mif_status & MIF_STATUS_STAT);
532 gem_handle_mif_event(gp, reg_val, changed_bits);
537 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
539 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
541 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
542 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
543 printk(KERN_ERR "%s: PCI error [%04x] ",
544 dev->name, pci_estat);
546 if (pci_estat & GREG_PCIESTAT_BADACK)
547 printk("<No ACK64# during ABS64 cycle> ");
548 if (pci_estat & GREG_PCIESTAT_DTRTO)
549 printk("<Delayed transaction timeout> ");
550 if (pci_estat & GREG_PCIESTAT_OTHER)
554 pci_estat |= GREG_PCIESTAT_OTHER;
555 printk(KERN_ERR "%s: PCI error\n", dev->name);
558 if (pci_estat & GREG_PCIESTAT_OTHER) {
561 /* Interrogate PCI config space for the
564 pci_read_config_word(gp->pdev, PCI_STATUS,
566 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
567 dev->name, pci_cfg_stat);
568 if (pci_cfg_stat & PCI_STATUS_PARITY)
569 printk(KERN_ERR "%s: PCI parity error detected.\n",
571 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
572 printk(KERN_ERR "%s: PCI target abort.\n",
574 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
575 printk(KERN_ERR "%s: PCI master acks target abort.\n",
577 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
578 printk(KERN_ERR "%s: PCI master abort.\n",
580 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
581 printk(KERN_ERR "%s: PCI system error SERR#.\n",
583 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
584 printk(KERN_ERR "%s: PCI parity error.\n",
587 /* Write the error bits back to clear them. */
588 pci_cfg_stat &= (PCI_STATUS_PARITY |
589 PCI_STATUS_SIG_TARGET_ABORT |
590 PCI_STATUS_REC_TARGET_ABORT |
591 PCI_STATUS_REC_MASTER_ABORT |
592 PCI_STATUS_SIG_SYSTEM_ERROR |
593 PCI_STATUS_DETECTED_PARITY);
594 pci_write_config_word(gp->pdev,
595 PCI_STATUS, pci_cfg_stat);
598 /* For all PCI errors, we should reset the chip. */
602 /* All non-normal interrupt conditions get serviced here.
603 * Returns non-zero if we should just exit the interrupt
604 * handler right now (ie. if we reset the card which invalidates
605 * all of the other original irq status bits).
607 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
609 if (gem_status & GREG_STAT_RXNOBUF) {
610 /* Frame arrived, no free RX buffers available. */
611 if (netif_msg_rx_err(gp))
612 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
614 gp->net_stats.rx_dropped++;
617 if (gem_status & GREG_STAT_RXTAGERR) {
618 /* corrupt RX tag framing */
619 if (netif_msg_rx_err(gp))
620 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
622 gp->net_stats.rx_errors++;
627 if (gem_status & GREG_STAT_PCS) {
628 if (gem_pcs_interrupt(dev, gp, gem_status))
632 if (gem_status & GREG_STAT_TXMAC) {
633 if (gem_txmac_interrupt(dev, gp, gem_status))
637 if (gem_status & GREG_STAT_RXMAC) {
638 if (gem_rxmac_interrupt(dev, gp, gem_status))
642 if (gem_status & GREG_STAT_MAC) {
643 if (gem_mac_interrupt(dev, gp, gem_status))
647 if (gem_status & GREG_STAT_MIF) {
648 if (gem_mif_interrupt(dev, gp, gem_status))
652 if (gem_status & GREG_STAT_PCIERR) {
653 if (gem_pci_interrupt(dev, gp, gem_status))
660 gp->reset_task_pending = 1;
661 schedule_work(&gp->reset_task);
666 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
670 if (netif_msg_intr(gp))
671 printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
672 gp->dev->name, gem_status);
675 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
676 while (entry != limit) {
683 if (netif_msg_tx_done(gp))
684 printk(KERN_DEBUG "%s: tx done, slot %d\n",
685 gp->dev->name, entry);
686 skb = gp->tx_skbs[entry];
687 if (skb_shinfo(skb)->nr_frags) {
688 int last = entry + skb_shinfo(skb)->nr_frags;
692 last &= (TX_RING_SIZE - 1);
694 walk = NEXT_TX(walk);
703 gp->tx_skbs[entry] = NULL;
704 gp->net_stats.tx_bytes += skb->len;
706 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
707 txd = &gp->init_block->txd[entry];
709 dma_addr = le64_to_cpu(txd->buffer);
710 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
712 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
713 entry = NEXT_TX(entry);
716 gp->net_stats.tx_packets++;
717 dev_kfree_skb_irq(skb);
721 if (netif_queue_stopped(dev) &&
722 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
723 netif_wake_queue(dev);
726 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
728 int cluster_start, curr, count, kick;
730 cluster_start = curr = (gp->rx_new & ~(4 - 1));
734 while (curr != limit) {
735 curr = NEXT_RX(curr);
737 struct gem_rxd *rxd =
738 &gp->init_block->rxd[cluster_start];
740 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
742 cluster_start = NEXT_RX(cluster_start);
743 if (cluster_start == curr)
752 writel(kick, gp->regs + RXDMA_KICK);
756 static int gem_rx(struct gem *gp, int work_to_do)
758 int entry, drops, work_done = 0;
761 if (netif_msg_rx_status(gp))
762 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
763 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
767 done = readl(gp->regs + RXDMA_DONE);
769 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
771 u64 status = cpu_to_le64(rxd->status_word);
775 if ((status & RXDCTRL_OWN) != 0)
778 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
781 /* When writing back RX descriptor, GEM writes status
782 * then buffer address, possibly in seperate transactions.
783 * If we don't wait for the chip to write both, we could
784 * post a new buffer to this descriptor then have GEM spam
785 * on the buffer address. We sync on the RX completion
786 * register to prevent this from happening.
789 done = readl(gp->regs + RXDMA_DONE);
794 /* We can now account for the work we're about to do */
797 skb = gp->rx_skbs[entry];
799 len = (status & RXDCTRL_BUFSZ) >> 16;
800 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
801 gp->net_stats.rx_errors++;
803 gp->net_stats.rx_length_errors++;
804 if (len & RXDCTRL_BAD)
805 gp->net_stats.rx_crc_errors++;
807 /* We'll just return it to GEM. */
809 gp->net_stats.rx_dropped++;
813 dma_addr = cpu_to_le64(rxd->buffer);
814 if (len > RX_COPY_THRESHOLD) {
815 struct sk_buff *new_skb;
817 new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
818 if (new_skb == NULL) {
822 pci_unmap_page(gp->pdev, dma_addr,
823 RX_BUF_ALLOC_SIZE(gp),
825 gp->rx_skbs[entry] = new_skb;
826 new_skb->dev = gp->dev;
827 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
828 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
829 virt_to_page(new_skb->data),
830 offset_in_page(new_skb->data),
831 RX_BUF_ALLOC_SIZE(gp),
832 PCI_DMA_FROMDEVICE));
833 skb_reserve(new_skb, RX_OFFSET);
835 /* Trim the original skb for the netif. */
838 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
840 if (copy_skb == NULL) {
845 copy_skb->dev = gp->dev;
846 skb_reserve(copy_skb, 2);
847 skb_put(copy_skb, len);
848 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
849 memcpy(copy_skb->data, skb->data, len);
850 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
852 /* We'll reuse the original ring buffer. */
856 skb->csum = ntohs((status & RXDCTRL_TCPCSUM) ^ 0xffff);
857 skb->ip_summed = CHECKSUM_HW;
858 skb->protocol = eth_type_trans(skb, gp->dev);
860 netif_receive_skb(skb);
862 gp->net_stats.rx_packets++;
863 gp->net_stats.rx_bytes += len;
864 gp->dev->last_rx = jiffies;
867 entry = NEXT_RX(entry);
870 gem_post_rxds(gp, entry);
875 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
881 static int gem_poll(struct net_device *dev, int *budget)
883 struct gem *gp = dev->priv;
887 * NAPI locking nightmare: See comment at head of driver
889 spin_lock_irqsave(&gp->lock, flags);
892 int work_to_do, work_done;
894 /* Handle anomalies */
895 if (gp->status & GREG_STAT_ABNORMAL) {
896 if (gem_abnormal_irq(dev, gp, gp->status))
900 /* Run TX completion thread */
901 spin_lock(&gp->tx_lock);
902 gem_tx(dev, gp, gp->status);
903 spin_unlock(&gp->tx_lock);
905 spin_unlock_irqrestore(&gp->lock, flags);
907 /* Run RX thread. We don't use any locking here,
908 * code willing to do bad things - like cleaning the
909 * rx ring - must call netif_poll_disable(), which
910 * schedule_timeout()'s if polling is already disabled.
912 work_to_do = min(*budget, dev->quota);
914 work_done = gem_rx(gp, work_to_do);
916 *budget -= work_done;
917 dev->quota -= work_done;
919 if (work_done >= work_to_do)
922 spin_lock_irqsave(&gp->lock, flags);
924 gp->status = readl(gp->regs + GREG_STAT);
925 } while (gp->status & GREG_STAT_NAPI);
927 __netif_rx_complete(dev);
930 spin_unlock_irqrestore(&gp->lock, flags);
934 static irqreturn_t gem_interrupt(int irq, void *dev_id, struct pt_regs *regs)
936 struct net_device *dev = dev_id;
937 struct gem *gp = dev->priv;
940 /* Swallow interrupts when shutting the chip down, though
941 * that shouldn't happen, we should have done free_irq() at
947 spin_lock_irqsave(&gp->lock, flags);
949 if (netif_rx_schedule_prep(dev)) {
950 u32 gem_status = readl(gp->regs + GREG_STAT);
952 if (gem_status == 0) {
953 netif_poll_enable(dev);
954 spin_unlock_irqrestore(&gp->lock, flags);
957 gp->status = gem_status;
958 gem_disable_ints(gp);
959 __netif_rx_schedule(dev);
962 spin_unlock_irqrestore(&gp->lock, flags);
964 /* If polling was disabled at the time we received that
965 * interrupt, we may return IRQ_HANDLED here while we
966 * should return IRQ_NONE. No big deal...
971 #ifdef CONFIG_NET_POLL_CONTROLLER
972 static void gem_poll_controller(struct net_device *dev)
974 /* gem_interrupt is safe to reentrance so no need
975 * to disable_irq here.
977 gem_interrupt(dev->irq, dev, NULL);
981 static void gem_tx_timeout(struct net_device *dev)
983 struct gem *gp = dev->priv;
985 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
987 printk("%s: hrm.. hw not running !\n", dev->name);
990 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
992 readl(gp->regs + TXDMA_CFG),
993 readl(gp->regs + MAC_TXSTAT),
994 readl(gp->regs + MAC_TXCFG));
995 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
997 readl(gp->regs + RXDMA_CFG),
998 readl(gp->regs + MAC_RXSTAT),
999 readl(gp->regs + MAC_RXCFG));
1001 spin_lock_irq(&gp->lock);
1002 spin_lock(&gp->tx_lock);
1004 gp->reset_task_pending = 1;
1005 schedule_work(&gp->reset_task);
1007 spin_unlock(&gp->tx_lock);
1008 spin_unlock_irq(&gp->lock);
1011 static __inline__ int gem_intme(int entry)
1013 /* Algorithm: IRQ every 1/2 of descriptors. */
1014 if (!(entry & ((TX_RING_SIZE>>1)-1)))
1020 static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
1022 struct gem *gp = dev->priv;
1025 unsigned long flags;
1028 if (skb->ip_summed == CHECKSUM_HW) {
1029 u64 csum_start_off, csum_stuff_off;
1031 csum_start_off = (u64) (skb->h.raw - skb->data);
1032 csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data);
1034 ctrl = (TXDCTRL_CENAB |
1035 (csum_start_off << 15) |
1036 (csum_stuff_off << 21));
1039 local_irq_save(flags);
1040 if (!spin_trylock(&gp->tx_lock)) {
1041 /* Tell upper layer to requeue */
1042 local_irq_restore(flags);
1043 return NETDEV_TX_LOCKED;
1045 /* We raced with gem_do_stop() */
1047 spin_unlock_irqrestore(&gp->tx_lock, flags);
1048 return NETDEV_TX_BUSY;
1051 /* This is a hard error, log it. */
1052 if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1053 netif_stop_queue(dev);
1054 spin_unlock_irqrestore(&gp->tx_lock, flags);
1055 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
1057 return NETDEV_TX_BUSY;
1061 gp->tx_skbs[entry] = skb;
1063 if (skb_shinfo(skb)->nr_frags == 0) {
1064 struct gem_txd *txd = &gp->init_block->txd[entry];
1069 mapping = pci_map_page(gp->pdev,
1070 virt_to_page(skb->data),
1071 offset_in_page(skb->data),
1072 len, PCI_DMA_TODEVICE);
1073 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1074 if (gem_intme(entry))
1075 ctrl |= TXDCTRL_INTME;
1076 txd->buffer = cpu_to_le64(mapping);
1078 txd->control_word = cpu_to_le64(ctrl);
1079 entry = NEXT_TX(entry);
1081 struct gem_txd *txd;
1084 dma_addr_t first_mapping;
1085 int frag, first_entry = entry;
1088 if (gem_intme(entry))
1089 intme |= TXDCTRL_INTME;
1091 /* We must give this initial chunk to the device last.
1092 * Otherwise we could race with the device.
1094 first_len = skb_headlen(skb);
1095 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1096 offset_in_page(skb->data),
1097 first_len, PCI_DMA_TODEVICE);
1098 entry = NEXT_TX(entry);
1100 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1101 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1106 len = this_frag->size;
1107 mapping = pci_map_page(gp->pdev,
1109 this_frag->page_offset,
1110 len, PCI_DMA_TODEVICE);
1112 if (frag == skb_shinfo(skb)->nr_frags - 1)
1113 this_ctrl |= TXDCTRL_EOF;
1115 txd = &gp->init_block->txd[entry];
1116 txd->buffer = cpu_to_le64(mapping);
1118 txd->control_word = cpu_to_le64(this_ctrl | len);
1120 if (gem_intme(entry))
1121 intme |= TXDCTRL_INTME;
1123 entry = NEXT_TX(entry);
1125 txd = &gp->init_block->txd[first_entry];
1126 txd->buffer = cpu_to_le64(first_mapping);
1129 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1133 if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
1134 netif_stop_queue(dev);
1136 if (netif_msg_tx_queued(gp))
1137 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1138 dev->name, entry, skb->len);
1140 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1141 spin_unlock_irqrestore(&gp->tx_lock, flags);
1143 dev->trans_start = jiffies;
1145 return NETDEV_TX_OK;
1148 #define STOP_TRIES 32
1150 /* Must be invoked under gp->lock and gp->tx_lock. */
1151 static void gem_reset(struct gem *gp)
1156 /* Make sure we won't get any more interrupts */
1157 writel(0xffffffff, gp->regs + GREG_IMASK);
1159 /* Reset the chip */
1160 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1161 gp->regs + GREG_SWRST);
1167 val = readl(gp->regs + GREG_SWRST);
1170 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1173 printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
1176 /* Must be invoked under gp->lock and gp->tx_lock. */
1177 static void gem_start_dma(struct gem *gp)
1181 /* We are ready to rock, turn everything on. */
1182 val = readl(gp->regs + TXDMA_CFG);
1183 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1184 val = readl(gp->regs + RXDMA_CFG);
1185 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1186 val = readl(gp->regs + MAC_TXCFG);
1187 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1188 val = readl(gp->regs + MAC_RXCFG);
1189 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1191 (void) readl(gp->regs + MAC_RXCFG);
1194 gem_enable_ints(gp);
1196 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1199 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1200 * actually stopped before about 4ms tho ...
1202 static void gem_stop_dma(struct gem *gp)
1206 /* We are done rocking, turn everything off. */
1207 val = readl(gp->regs + TXDMA_CFG);
1208 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1209 val = readl(gp->regs + RXDMA_CFG);
1210 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1211 val = readl(gp->regs + MAC_TXCFG);
1212 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1213 val = readl(gp->regs + MAC_RXCFG);
1214 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1216 (void) readl(gp->regs + MAC_RXCFG);
1218 /* Need to wait a bit ... done by the caller */
1222 /* Must be invoked under gp->lock and gp->tx_lock. */
1223 // XXX dbl check what that function should do when called on PCS PHY
1224 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1226 u32 advertise, features;
1231 if (gp->phy_type != phy_mii_mdio0 &&
1232 gp->phy_type != phy_mii_mdio1)
1235 /* Setup advertise */
1236 if (found_mii_phy(gp))
1237 features = gp->phy_mii.def->features;
1241 advertise = features & ADVERTISE_MASK;
1242 if (gp->phy_mii.advertising != 0)
1243 advertise &= gp->phy_mii.advertising;
1245 autoneg = gp->want_autoneg;
1246 speed = gp->phy_mii.speed;
1247 duplex = gp->phy_mii.duplex;
1249 /* Setup link parameters */
1252 if (ep->autoneg == AUTONEG_ENABLE) {
1253 advertise = ep->advertising;
1258 duplex = ep->duplex;
1262 /* Sanitize settings based on PHY capabilities */
1263 if ((features & SUPPORTED_Autoneg) == 0)
1265 if (speed == SPEED_1000 &&
1266 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1268 if (speed == SPEED_100 &&
1269 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1271 if (duplex == DUPLEX_FULL &&
1272 !(features & (SUPPORTED_1000baseT_Full |
1273 SUPPORTED_100baseT_Full |
1274 SUPPORTED_10baseT_Full)))
1275 duplex = DUPLEX_HALF;
1279 /* If we are asleep, we don't try to actually setup the PHY, we
1280 * just store the settings
1283 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1284 gp->phy_mii.speed = speed;
1285 gp->phy_mii.duplex = duplex;
1289 /* Configure PHY & start aneg */
1290 gp->want_autoneg = autoneg;
1292 if (found_mii_phy(gp))
1293 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1294 gp->lstate = link_aneg;
1296 if (found_mii_phy(gp))
1297 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1298 gp->lstate = link_force_ok;
1302 gp->timer_ticks = 0;
1303 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1306 /* A link-up condition has occurred, initialize and enable the
1309 * Must be invoked under gp->lock and gp->tx_lock.
1311 static int gem_set_link_modes(struct gem *gp)
1314 int full_duplex, speed, pause;
1320 if (found_mii_phy(gp)) {
1321 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1323 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1324 speed = gp->phy_mii.speed;
1325 pause = gp->phy_mii.pause;
1326 } else if (gp->phy_type == phy_serialink ||
1327 gp->phy_type == phy_serdes) {
1328 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1330 if (pcs_lpa & PCS_MIIADV_FD)
1335 if (netif_msg_link(gp))
1336 printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
1337 gp->dev->name, speed, (full_duplex ? "full" : "half"));
1342 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1344 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1346 /* MAC_TXCFG_NBO must be zero. */
1348 writel(val, gp->regs + MAC_TXCFG);
1350 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1352 (gp->phy_type == phy_mii_mdio0 ||
1353 gp->phy_type == phy_mii_mdio1)) {
1354 val |= MAC_XIFCFG_DISE;
1355 } else if (full_duplex) {
1356 val |= MAC_XIFCFG_FLED;
1359 if (speed == SPEED_1000)
1360 val |= (MAC_XIFCFG_GMII);
1362 writel(val, gp->regs + MAC_XIFCFG);
1364 /* If gigabit and half-duplex, enable carrier extension
1365 * mode. Else, disable it.
1367 if (speed == SPEED_1000 && !full_duplex) {
1368 val = readl(gp->regs + MAC_TXCFG);
1369 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1371 val = readl(gp->regs + MAC_RXCFG);
1372 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1374 val = readl(gp->regs + MAC_TXCFG);
1375 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1377 val = readl(gp->regs + MAC_RXCFG);
1378 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1381 if (gp->phy_type == phy_serialink ||
1382 gp->phy_type == phy_serdes) {
1383 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1385 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1389 if (netif_msg_link(gp)) {
1391 printk(KERN_INFO "%s: Pause is enabled "
1392 "(rxfifo: %d off: %d on: %d)\n",
1398 printk(KERN_INFO "%s: Pause is disabled\n",
1404 writel(512, gp->regs + MAC_STIME);
1406 writel(64, gp->regs + MAC_STIME);
1407 val = readl(gp->regs + MAC_MCCFG);
1409 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1411 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1412 writel(val, gp->regs + MAC_MCCFG);
1419 /* Must be invoked under gp->lock and gp->tx_lock. */
1420 static int gem_mdio_link_not_up(struct gem *gp)
1422 switch (gp->lstate) {
1423 case link_force_ret:
1424 if (netif_msg_link(gp))
1425 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1426 " forced mode\n", gp->dev->name);
1427 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1428 gp->last_forced_speed, DUPLEX_HALF);
1429 gp->timer_ticks = 5;
1430 gp->lstate = link_force_ok;
1433 /* We try forced modes after a failed aneg only on PHYs that don't
1434 * have "magic_aneg" bit set, which means they internally do the
1435 * while forced-mode thingy. On these, we just restart aneg
1437 if (gp->phy_mii.def->magic_aneg)
1439 if (netif_msg_link(gp))
1440 printk(KERN_INFO "%s: switching to forced 100bt\n",
1442 /* Try forced modes. */
1443 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1445 gp->timer_ticks = 5;
1446 gp->lstate = link_force_try;
1448 case link_force_try:
1449 /* Downgrade from 100 to 10 Mbps if necessary.
1450 * If already at 10Mbps, warn user about the
1451 * situation every 10 ticks.
1453 if (gp->phy_mii.speed == SPEED_100) {
1454 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1456 gp->timer_ticks = 5;
1457 if (netif_msg_link(gp))
1458 printk(KERN_INFO "%s: switching to forced 10bt\n",
1468 static void gem_link_timer(unsigned long data)
1470 struct gem *gp = (struct gem *) data;
1471 int restart_aneg = 0;
1476 spin_lock_irq(&gp->lock);
1477 spin_lock(&gp->tx_lock);
1480 /* If the reset task is still pending, we just
1481 * reschedule the link timer
1483 if (gp->reset_task_pending)
1486 if (gp->phy_type == phy_serialink ||
1487 gp->phy_type == phy_serdes) {
1488 u32 val = readl(gp->regs + PCS_MIISTAT);
1490 if (!(val & PCS_MIISTAT_LS))
1491 val = readl(gp->regs + PCS_MIISTAT);
1493 if ((val & PCS_MIISTAT_LS) != 0) {
1494 gp->lstate = link_up;
1495 netif_carrier_on(gp->dev);
1496 (void)gem_set_link_modes(gp);
1500 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1501 /* Ok, here we got a link. If we had it due to a forced
1502 * fallback, and we were configured for autoneg, we do
1503 * retry a short autoneg pass. If you know your hub is
1504 * broken, use ethtool ;)
1506 if (gp->lstate == link_force_try && gp->want_autoneg) {
1507 gp->lstate = link_force_ret;
1508 gp->last_forced_speed = gp->phy_mii.speed;
1509 gp->timer_ticks = 5;
1510 if (netif_msg_link(gp))
1511 printk(KERN_INFO "%s: Got link after fallback, retrying"
1512 " autoneg once...\n", gp->dev->name);
1513 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1514 } else if (gp->lstate != link_up) {
1515 gp->lstate = link_up;
1516 netif_carrier_on(gp->dev);
1517 if (gem_set_link_modes(gp))
1521 /* If the link was previously up, we restart the
1524 if (gp->lstate == link_up) {
1525 gp->lstate = link_down;
1526 if (netif_msg_link(gp))
1527 printk(KERN_INFO "%s: Link down\n",
1529 netif_carrier_off(gp->dev);
1530 gp->reset_task_pending = 1;
1531 schedule_work(&gp->reset_task);
1533 } else if (++gp->timer_ticks > 10) {
1534 if (found_mii_phy(gp))
1535 restart_aneg = gem_mdio_link_not_up(gp);
1541 gem_begin_auto_negotiation(gp, NULL);
1545 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1548 spin_unlock(&gp->tx_lock);
1549 spin_unlock_irq(&gp->lock);
1552 /* Must be invoked under gp->lock and gp->tx_lock. */
1553 static void gem_clean_rings(struct gem *gp)
1555 struct gem_init_block *gb = gp->init_block;
1556 struct sk_buff *skb;
1558 dma_addr_t dma_addr;
1560 for (i = 0; i < RX_RING_SIZE; i++) {
1561 struct gem_rxd *rxd;
1564 if (gp->rx_skbs[i] != NULL) {
1565 skb = gp->rx_skbs[i];
1566 dma_addr = le64_to_cpu(rxd->buffer);
1567 pci_unmap_page(gp->pdev, dma_addr,
1568 RX_BUF_ALLOC_SIZE(gp),
1569 PCI_DMA_FROMDEVICE);
1570 dev_kfree_skb_any(skb);
1571 gp->rx_skbs[i] = NULL;
1573 rxd->status_word = 0;
1578 for (i = 0; i < TX_RING_SIZE; i++) {
1579 if (gp->tx_skbs[i] != NULL) {
1580 struct gem_txd *txd;
1583 skb = gp->tx_skbs[i];
1584 gp->tx_skbs[i] = NULL;
1586 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1587 int ent = i & (TX_RING_SIZE - 1);
1589 txd = &gb->txd[ent];
1590 dma_addr = le64_to_cpu(txd->buffer);
1591 pci_unmap_page(gp->pdev, dma_addr,
1592 le64_to_cpu(txd->control_word) &
1593 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1595 if (frag != skb_shinfo(skb)->nr_frags)
1598 dev_kfree_skb_any(skb);
1603 /* Must be invoked under gp->lock and gp->tx_lock. */
1604 static void gem_init_rings(struct gem *gp)
1606 struct gem_init_block *gb = gp->init_block;
1607 struct net_device *dev = gp->dev;
1609 dma_addr_t dma_addr;
1611 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1613 gem_clean_rings(gp);
1615 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1616 (unsigned)VLAN_ETH_FRAME_LEN);
1618 for (i = 0; i < RX_RING_SIZE; i++) {
1619 struct sk_buff *skb;
1620 struct gem_rxd *rxd = &gb->rxd[i];
1622 skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
1625 rxd->status_word = 0;
1629 gp->rx_skbs[i] = skb;
1631 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1632 dma_addr = pci_map_page(gp->pdev,
1633 virt_to_page(skb->data),
1634 offset_in_page(skb->data),
1635 RX_BUF_ALLOC_SIZE(gp),
1636 PCI_DMA_FROMDEVICE);
1637 rxd->buffer = cpu_to_le64(dma_addr);
1639 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1640 skb_reserve(skb, RX_OFFSET);
1643 for (i = 0; i < TX_RING_SIZE; i++) {
1644 struct gem_txd *txd = &gb->txd[i];
1646 txd->control_word = 0;
1653 /* Init PHY interface and start link poll state machine */
1654 static void gem_init_phy(struct gem *gp)
1658 /* Revert MIF CFG setting done on stop_phy */
1659 mifcfg = readl(gp->regs + MIF_CFG);
1660 mifcfg &= ~MIF_CFG_BBMODE;
1661 writel(mifcfg, gp->regs + MIF_CFG);
1663 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1666 /* Those delay sucks, the HW seem to love them though, I'll
1667 * serisouly consider breaking some locks here to be able
1668 * to schedule instead
1670 for (i = 0; i < 3; i++) {
1671 #ifdef CONFIG_PPC_PMAC
1672 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1675 /* Some PHYs used by apple have problem getting back to us,
1676 * we do an additional reset here
1678 phy_write(gp, MII_BMCR, BMCR_RESET);
1680 if (phy_read(gp, MII_BMCR) != 0xffff)
1683 printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
1688 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1689 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1692 /* Init datapath mode register. */
1693 if (gp->phy_type == phy_mii_mdio0 ||
1694 gp->phy_type == phy_mii_mdio1) {
1695 val = PCS_DMODE_MGM;
1696 } else if (gp->phy_type == phy_serialink) {
1697 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1699 val = PCS_DMODE_ESM;
1702 writel(val, gp->regs + PCS_DMODE);
1705 if (gp->phy_type == phy_mii_mdio0 ||
1706 gp->phy_type == phy_mii_mdio1) {
1707 // XXX check for errors
1708 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1711 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1712 gp->phy_mii.def->ops->init(&gp->phy_mii);
1717 /* Reset PCS unit. */
1718 val = readl(gp->regs + PCS_MIICTRL);
1719 val |= PCS_MIICTRL_RST;
1720 writeb(val, gp->regs + PCS_MIICTRL);
1723 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1729 printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
1732 /* Make sure PCS is disabled while changing advertisement
1735 val = readl(gp->regs + PCS_CFG);
1736 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1737 writel(val, gp->regs + PCS_CFG);
1739 /* Advertise all capabilities except assymetric
1742 val = readl(gp->regs + PCS_MIIADV);
1743 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1744 PCS_MIIADV_SP | PCS_MIIADV_AP);
1745 writel(val, gp->regs + PCS_MIIADV);
1747 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1748 * and re-enable PCS.
1750 val = readl(gp->regs + PCS_MIICTRL);
1751 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1752 val &= ~PCS_MIICTRL_WB;
1753 writel(val, gp->regs + PCS_MIICTRL);
1755 val = readl(gp->regs + PCS_CFG);
1756 val |= PCS_CFG_ENABLE;
1757 writel(val, gp->regs + PCS_CFG);
1759 /* Make sure serialink loopback is off. The meaning
1760 * of this bit is logically inverted based upon whether
1761 * you are in Serialink or SERDES mode.
1763 val = readl(gp->regs + PCS_SCTRL);
1764 if (gp->phy_type == phy_serialink)
1765 val &= ~PCS_SCTRL_LOOP;
1767 val |= PCS_SCTRL_LOOP;
1768 writel(val, gp->regs + PCS_SCTRL);
1771 /* Default aneg parameters */
1772 gp->timer_ticks = 0;
1773 gp->lstate = link_down;
1774 netif_carrier_off(gp->dev);
1776 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1777 spin_lock_irq(&gp->lock);
1778 gem_begin_auto_negotiation(gp, NULL);
1779 spin_unlock_irq(&gp->lock);
1782 /* Must be invoked under gp->lock and gp->tx_lock. */
1783 static void gem_init_dma(struct gem *gp)
1785 u64 desc_dma = (u64) gp->gblock_dvma;
1788 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1789 writel(val, gp->regs + TXDMA_CFG);
1791 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1792 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1793 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1795 writel(0, gp->regs + TXDMA_KICK);
1797 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1798 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1799 writel(val, gp->regs + RXDMA_CFG);
1801 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1802 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1804 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1806 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1807 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1808 writel(val, gp->regs + RXDMA_PTHRESH);
1810 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1811 writel(((5 & RXDMA_BLANK_IPKTS) |
1812 ((8 << 12) & RXDMA_BLANK_ITIME)),
1813 gp->regs + RXDMA_BLANK);
1815 writel(((5 & RXDMA_BLANK_IPKTS) |
1816 ((4 << 12) & RXDMA_BLANK_ITIME)),
1817 gp->regs + RXDMA_BLANK);
1820 /* Must be invoked under gp->lock and gp->tx_lock. */
1821 static u32 gem_setup_multicast(struct gem *gp)
1826 if ((gp->dev->flags & IFF_ALLMULTI) ||
1827 (gp->dev->mc_count > 256)) {
1828 for (i=0; i<16; i++)
1829 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1830 rxcfg |= MAC_RXCFG_HFE;
1831 } else if (gp->dev->flags & IFF_PROMISC) {
1832 rxcfg |= MAC_RXCFG_PROM;
1836 struct dev_mc_list *dmi = gp->dev->mc_list;
1839 for (i = 0; i < 16; i++)
1842 for (i = 0; i < gp->dev->mc_count; i++) {
1843 char *addrs = dmi->dmi_addr;
1850 crc = ether_crc_le(6, addrs);
1852 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1854 for (i=0; i<16; i++)
1855 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1856 rxcfg |= MAC_RXCFG_HFE;
1862 /* Must be invoked under gp->lock and gp->tx_lock. */
1863 static void gem_init_mac(struct gem *gp)
1865 unsigned char *e = &gp->dev->dev_addr[0];
1867 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1869 writel(0x00, gp->regs + MAC_IPG0);
1870 writel(0x08, gp->regs + MAC_IPG1);
1871 writel(0x04, gp->regs + MAC_IPG2);
1872 writel(0x40, gp->regs + MAC_STIME);
1873 writel(0x40, gp->regs + MAC_MINFSZ);
1875 /* Ethernet payload + header + FCS + optional VLAN tag. */
1876 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1878 writel(0x07, gp->regs + MAC_PASIZE);
1879 writel(0x04, gp->regs + MAC_JAMSIZE);
1880 writel(0x10, gp->regs + MAC_ATTLIM);
1881 writel(0x8808, gp->regs + MAC_MCTYPE);
1883 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1885 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1886 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1887 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1889 writel(0, gp->regs + MAC_ADDR3);
1890 writel(0, gp->regs + MAC_ADDR4);
1891 writel(0, gp->regs + MAC_ADDR5);
1893 writel(0x0001, gp->regs + MAC_ADDR6);
1894 writel(0xc200, gp->regs + MAC_ADDR7);
1895 writel(0x0180, gp->regs + MAC_ADDR8);
1897 writel(0, gp->regs + MAC_AFILT0);
1898 writel(0, gp->regs + MAC_AFILT1);
1899 writel(0, gp->regs + MAC_AFILT2);
1900 writel(0, gp->regs + MAC_AF21MSK);
1901 writel(0, gp->regs + MAC_AF0MSK);
1903 gp->mac_rx_cfg = gem_setup_multicast(gp);
1905 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1907 writel(0, gp->regs + MAC_NCOLL);
1908 writel(0, gp->regs + MAC_FASUCC);
1909 writel(0, gp->regs + MAC_ECOLL);
1910 writel(0, gp->regs + MAC_LCOLL);
1911 writel(0, gp->regs + MAC_DTIMER);
1912 writel(0, gp->regs + MAC_PATMPS);
1913 writel(0, gp->regs + MAC_RFCTR);
1914 writel(0, gp->regs + MAC_LERR);
1915 writel(0, gp->regs + MAC_AERR);
1916 writel(0, gp->regs + MAC_FCSERR);
1917 writel(0, gp->regs + MAC_RXCVERR);
1919 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1920 * them once a link is established.
1922 writel(0, gp->regs + MAC_TXCFG);
1923 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1924 writel(0, gp->regs + MAC_MCCFG);
1925 writel(0, gp->regs + MAC_XIFCFG);
1927 /* Setup MAC interrupts. We want to get all of the interesting
1928 * counter expiration events, but we do not want to hear about
1929 * normal rx/tx as the DMA engine tells us that.
1931 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1932 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1934 /* Don't enable even the PAUSE interrupts for now, we
1935 * make no use of those events other than to record them.
1937 writel(0xffffffff, gp->regs + MAC_MCMASK);
1939 /* Don't enable GEM's WOL in normal operations
1942 writel(0, gp->regs + WOL_WAKECSR);
1945 /* Must be invoked under gp->lock and gp->tx_lock. */
1946 static void gem_init_pause_thresholds(struct gem *gp)
1950 /* Calculate pause thresholds. Setting the OFF threshold to the
1951 * full RX fifo size effectively disables PAUSE generation which
1952 * is what we do for 10/100 only GEMs which have FIFOs too small
1953 * to make real gains from PAUSE.
1955 if (gp->rx_fifo_sz <= (2 * 1024)) {
1956 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1958 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1959 int off = (gp->rx_fifo_sz - (max_frame * 2));
1960 int on = off - max_frame;
1962 gp->rx_pause_off = off;
1963 gp->rx_pause_on = on;
1967 /* Configure the chip "burst" DMA mode & enable some
1968 * HW bug fixes on Apple version
1971 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1972 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1973 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1974 cfg |= GREG_CFG_IBURST;
1976 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1977 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1978 writel(cfg, gp->regs + GREG_CFG);
1980 /* If Infinite Burst didn't stick, then use different
1981 * thresholds (and Apple bug fixes don't exist)
1983 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1984 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1985 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1986 writel(cfg, gp->regs + GREG_CFG);
1990 static int gem_check_invariants(struct gem *gp)
1992 struct pci_dev *pdev = gp->pdev;
1995 /* On Apple's sungem, we can't rely on registers as the chip
1996 * was been powered down by the firmware. The PHY is looked
1999 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
2000 gp->phy_type = phy_mii_mdio0;
2001 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2002 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2005 mif_cfg = readl(gp->regs + MIF_CFG);
2006 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
2007 mif_cfg |= MIF_CFG_MDI0;
2008 writel(mif_cfg, gp->regs + MIF_CFG);
2009 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
2010 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
2012 /* We hard-code the PHY address so we can properly bring it out of
2013 * reset later on, we can't really probe it at this point, though
2014 * that isn't an issue.
2016 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
2017 gp->mii_phy_addr = 1;
2019 gp->mii_phy_addr = 0;
2024 mif_cfg = readl(gp->regs + MIF_CFG);
2026 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2027 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
2028 /* One of the MII PHYs _must_ be present
2029 * as this chip has no gigabit PHY.
2031 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
2032 printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2038 /* Determine initial PHY interface type guess. MDIO1 is the
2039 * external PHY and thus takes precedence over MDIO0.
2042 if (mif_cfg & MIF_CFG_MDI1) {
2043 gp->phy_type = phy_mii_mdio1;
2044 mif_cfg |= MIF_CFG_PSELECT;
2045 writel(mif_cfg, gp->regs + MIF_CFG);
2046 } else if (mif_cfg & MIF_CFG_MDI0) {
2047 gp->phy_type = phy_mii_mdio0;
2048 mif_cfg &= ~MIF_CFG_PSELECT;
2049 writel(mif_cfg, gp->regs + MIF_CFG);
2051 gp->phy_type = phy_serialink;
2053 if (gp->phy_type == phy_mii_mdio1 ||
2054 gp->phy_type == phy_mii_mdio0) {
2057 for (i = 0; i < 32; i++) {
2058 gp->mii_phy_addr = i;
2059 if (phy_read(gp, MII_BMCR) != 0xffff)
2063 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2064 printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
2067 gp->phy_type = phy_serdes;
2071 /* Fetch the FIFO configurations now too. */
2072 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2073 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2075 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2076 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2077 if (gp->tx_fifo_sz != (9 * 1024) ||
2078 gp->rx_fifo_sz != (20 * 1024)) {
2079 printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2080 gp->tx_fifo_sz, gp->rx_fifo_sz);
2085 if (gp->tx_fifo_sz != (2 * 1024) ||
2086 gp->rx_fifo_sz != (2 * 1024)) {
2087 printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2088 gp->tx_fifo_sz, gp->rx_fifo_sz);
2091 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2098 /* Must be invoked under gp->lock and gp->tx_lock. */
2099 static void gem_reinit_chip(struct gem *gp)
2101 /* Reset the chip */
2104 /* Make sure ints are disabled */
2105 gem_disable_ints(gp);
2107 /* Allocate & setup ring buffers */
2110 /* Configure pause thresholds */
2111 gem_init_pause_thresholds(gp);
2113 /* Init DMA & MAC engines */
2119 /* Must be invoked with no lock held. */
2120 static void gem_stop_phy(struct gem *gp, int wol)
2123 unsigned long flags;
2125 /* Let the chip settle down a bit, it seems that helps
2126 * for sleep mode on some models
2130 /* Make sure we aren't polling PHY status change. We
2131 * don't currently use that feature though
2133 mifcfg = readl(gp->regs + MIF_CFG);
2134 mifcfg &= ~MIF_CFG_POLL;
2135 writel(mifcfg, gp->regs + MIF_CFG);
2137 if (wol && gp->has_wol) {
2138 unsigned char *e = &gp->dev->dev_addr[0];
2141 /* Setup wake-on-lan for MAGIC packet */
2142 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2143 gp->regs + MAC_RXCFG);
2144 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2145 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2146 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2148 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2149 csr = WOL_WAKECSR_ENABLE;
2150 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2151 csr |= WOL_WAKECSR_MII;
2152 writel(csr, gp->regs + WOL_WAKECSR);
2154 writel(0, gp->regs + MAC_RXCFG);
2155 (void)readl(gp->regs + MAC_RXCFG);
2156 /* Machine sleep will die in strange ways if we
2157 * dont wait a bit here, looks like the chip takes
2158 * some time to really shut down
2163 writel(0, gp->regs + MAC_TXCFG);
2164 writel(0, gp->regs + MAC_XIFCFG);
2165 writel(0, gp->regs + TXDMA_CFG);
2166 writel(0, gp->regs + RXDMA_CFG);
2169 spin_lock_irqsave(&gp->lock, flags);
2170 spin_lock(&gp->tx_lock);
2172 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2173 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2174 spin_unlock(&gp->tx_lock);
2175 spin_unlock_irqrestore(&gp->lock, flags);
2177 /* No need to take the lock here */
2179 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2180 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2182 /* According to Apple, we must set the MDIO pins to this begnign
2183 * state or we may 1) eat more current, 2) damage some PHYs
2185 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2186 writel(0, gp->regs + MIF_BBCLK);
2187 writel(0, gp->regs + MIF_BBDATA);
2188 writel(0, gp->regs + MIF_BBOENAB);
2189 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2190 (void) readl(gp->regs + MAC_XIFCFG);
2195 static int gem_do_start(struct net_device *dev)
2197 struct gem *gp = dev->priv;
2198 unsigned long flags;
2200 spin_lock_irqsave(&gp->lock, flags);
2201 spin_lock(&gp->tx_lock);
2203 /* Enable the cell */
2206 /* Init & setup chip hardware */
2207 gem_reinit_chip(gp);
2211 if (gp->lstate == link_up) {
2212 netif_carrier_on(gp->dev);
2213 gem_set_link_modes(gp);
2216 netif_wake_queue(gp->dev);
2218 spin_unlock(&gp->tx_lock);
2219 spin_unlock_irqrestore(&gp->lock, flags);
2221 if (request_irq(gp->pdev->irq, gem_interrupt,
2222 SA_SHIRQ, dev->name, (void *)dev)) {
2223 printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
2225 spin_lock_irqsave(&gp->lock, flags);
2226 spin_lock(&gp->tx_lock);
2230 gem_clean_rings(gp);
2233 spin_unlock(&gp->tx_lock);
2234 spin_unlock_irqrestore(&gp->lock, flags);
2242 static void gem_do_stop(struct net_device *dev, int wol)
2244 struct gem *gp = dev->priv;
2245 unsigned long flags;
2247 spin_lock_irqsave(&gp->lock, flags);
2248 spin_lock(&gp->tx_lock);
2252 /* Stop netif queue */
2253 netif_stop_queue(dev);
2255 /* Make sure ints are disabled */
2256 gem_disable_ints(gp);
2258 /* We can drop the lock now */
2259 spin_unlock(&gp->tx_lock);
2260 spin_unlock_irqrestore(&gp->lock, flags);
2262 /* If we are going to sleep with WOL */
2269 /* Get rid of rings */
2270 gem_clean_rings(gp);
2272 /* No irq needed anymore */
2273 free_irq(gp->pdev->irq, (void *) dev);
2275 /* Cell not needed neither if no WOL */
2277 spin_lock_irqsave(&gp->lock, flags);
2279 spin_unlock_irqrestore(&gp->lock, flags);
2283 static void gem_reset_task(void *data)
2285 struct gem *gp = (struct gem *) data;
2289 netif_poll_disable(gp->dev);
2291 spin_lock_irq(&gp->lock);
2292 spin_lock(&gp->tx_lock);
2294 if (gp->running == 0)
2298 netif_stop_queue(gp->dev);
2300 /* Reset the chip & rings */
2301 gem_reinit_chip(gp);
2302 if (gp->lstate == link_up)
2303 gem_set_link_modes(gp);
2304 netif_wake_queue(gp->dev);
2307 gp->reset_task_pending = 0;
2309 spin_unlock(&gp->tx_lock);
2310 spin_unlock_irq(&gp->lock);
2312 netif_poll_enable(gp->dev);
2318 static int gem_open(struct net_device *dev)
2320 struct gem *gp = dev->priv;
2325 /* We need the cell enabled */
2327 rc = gem_do_start(dev);
2328 gp->opened = (rc == 0);
2335 static int gem_close(struct net_device *dev)
2337 struct gem *gp = dev->priv;
2339 /* Note: we don't need to call netif_poll_disable() here because
2340 * our caller (dev_close) already did it for us
2347 gem_do_stop(dev, 0);
2355 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2357 struct net_device *dev = pci_get_drvdata(pdev);
2358 struct gem *gp = dev->priv;
2359 unsigned long flags;
2363 netif_poll_disable(dev);
2365 printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
2367 (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
2369 /* Keep the cell enabled during the entire operation */
2370 spin_lock_irqsave(&gp->lock, flags);
2371 spin_lock(&gp->tx_lock);
2373 spin_unlock(&gp->tx_lock);
2374 spin_unlock_irqrestore(&gp->lock, flags);
2376 /* If the driver is opened, we stop the MAC */
2378 /* Stop traffic, mark us closed */
2379 netif_device_detach(dev);
2381 /* Switch off MAC, remember WOL setting */
2382 gp->asleep_wol = gp->wake_on_lan;
2383 gem_do_stop(dev, gp->asleep_wol);
2387 /* Mark us asleep */
2391 /* Stop the link timer */
2392 del_timer_sync(&gp->link_timer);
2394 /* Now we release the semaphore to not block the reset task who
2395 * can take it too. We are marked asleep, so there will be no
2400 /* Wait for a pending reset task to complete */
2401 while (gp->reset_task_pending)
2403 flush_scheduled_work();
2405 /* Shut the PHY down eventually and setup WOL */
2406 gem_stop_phy(gp, gp->asleep_wol);
2408 /* Make sure bus master is disabled */
2409 pci_disable_device(gp->pdev);
2411 /* Release the cell, no need to take a lock at this point since
2412 * nothing else can happen now
2419 static int gem_resume(struct pci_dev *pdev)
2421 struct net_device *dev = pci_get_drvdata(pdev);
2422 struct gem *gp = dev->priv;
2423 unsigned long flags;
2425 printk(KERN_INFO "%s: resuming\n", dev->name);
2429 /* Keep the cell enabled during the entire operation, no need to
2430 * take a lock here tho since nothing else can happen while we are
2435 /* Make sure PCI access and bus master are enabled */
2436 if (pci_enable_device(gp->pdev)) {
2437 printk(KERN_ERR "%s: Can't re-enable chip !\n",
2439 /* Put cell and forget it for now, it will be considered as
2440 * still asleep, a new sleep cycle may bring it back
2446 pci_set_master(gp->pdev);
2448 /* Reset everything */
2451 /* Mark us woken up */
2455 /* Bring the PHY back. Again, lock is useless at this point as
2456 * nothing can be happening until we restart the whole thing
2460 /* If we were opened, bring everything back */
2465 /* Re-attach net device */
2466 netif_device_attach(dev);
2470 spin_lock_irqsave(&gp->lock, flags);
2471 spin_lock(&gp->tx_lock);
2473 /* If we had WOL enabled, the cell clock was never turned off during
2474 * sleep, so we end up beeing unbalanced. Fix that here
2479 /* This function doesn't need to hold the cell, it will be held if the
2480 * driver is open by gem_do_start().
2484 spin_unlock(&gp->tx_lock);
2485 spin_unlock_irqrestore(&gp->lock, flags);
2487 netif_poll_enable(dev);
2493 #endif /* CONFIG_PM */
2495 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2497 struct gem *gp = dev->priv;
2498 struct net_device_stats *stats = &gp->net_stats;
2500 spin_lock_irq(&gp->lock);
2501 spin_lock(&gp->tx_lock);
2503 /* I have seen this being called while the PM was in progress,
2504 * so we shield against this
2507 stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2508 writel(0, gp->regs + MAC_FCSERR);
2510 stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
2511 writel(0, gp->regs + MAC_AERR);
2513 stats->rx_length_errors += readl(gp->regs + MAC_LERR);
2514 writel(0, gp->regs + MAC_LERR);
2516 stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2517 stats->collisions +=
2518 (readl(gp->regs + MAC_ECOLL) +
2519 readl(gp->regs + MAC_LCOLL));
2520 writel(0, gp->regs + MAC_ECOLL);
2521 writel(0, gp->regs + MAC_LCOLL);
2524 spin_unlock(&gp->tx_lock);
2525 spin_unlock_irq(&gp->lock);
2527 return &gp->net_stats;
2530 static void gem_set_multicast(struct net_device *dev)
2532 struct gem *gp = dev->priv;
2533 u32 rxcfg, rxcfg_new;
2537 spin_lock_irq(&gp->lock);
2538 spin_lock(&gp->tx_lock);
2543 netif_stop_queue(dev);
2545 rxcfg = readl(gp->regs + MAC_RXCFG);
2546 rxcfg_new = gem_setup_multicast(gp);
2548 rxcfg_new |= MAC_RXCFG_SFCS;
2550 gp->mac_rx_cfg = rxcfg_new;
2552 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2553 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2559 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2562 writel(rxcfg, gp->regs + MAC_RXCFG);
2564 netif_wake_queue(dev);
2567 spin_unlock(&gp->tx_lock);
2568 spin_unlock_irq(&gp->lock);
2571 /* Jumbo-grams don't seem to work :-( */
2572 #define GEM_MIN_MTU 68
2574 #define GEM_MAX_MTU 1500
2576 #define GEM_MAX_MTU 9000
2579 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2581 struct gem *gp = dev->priv;
2583 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2586 if (!netif_running(dev) || !netif_device_present(dev)) {
2587 /* We'll just catch it later when the
2588 * device is up'd or resumed.
2595 spin_lock_irq(&gp->lock);
2596 spin_lock(&gp->tx_lock);
2599 gem_reinit_chip(gp);
2600 if (gp->lstate == link_up)
2601 gem_set_link_modes(gp);
2603 spin_unlock(&gp->tx_lock);
2604 spin_unlock_irq(&gp->lock);
2610 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2612 struct gem *gp = dev->priv;
2614 strcpy(info->driver, DRV_NAME);
2615 strcpy(info->version, DRV_VERSION);
2616 strcpy(info->bus_info, pci_name(gp->pdev));
2619 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2621 struct gem *gp = dev->priv;
2623 if (gp->phy_type == phy_mii_mdio0 ||
2624 gp->phy_type == phy_mii_mdio1) {
2625 if (gp->phy_mii.def)
2626 cmd->supported = gp->phy_mii.def->features;
2628 cmd->supported = (SUPPORTED_10baseT_Half |
2629 SUPPORTED_10baseT_Full);
2631 /* XXX hardcoded stuff for now */
2632 cmd->port = PORT_MII;
2633 cmd->transceiver = XCVR_EXTERNAL;
2634 cmd->phy_address = 0; /* XXX fixed PHYAD */
2636 /* Return current PHY settings */
2637 spin_lock_irq(&gp->lock);
2638 cmd->autoneg = gp->want_autoneg;
2639 cmd->speed = gp->phy_mii.speed;
2640 cmd->duplex = gp->phy_mii.duplex;
2641 cmd->advertising = gp->phy_mii.advertising;
2643 /* If we started with a forced mode, we don't have a default
2644 * advertise set, we need to return something sensible so
2645 * userland can re-enable autoneg properly.
2647 if (cmd->advertising == 0)
2648 cmd->advertising = cmd->supported;
2649 spin_unlock_irq(&gp->lock);
2650 } else { // XXX PCS ?
2652 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2653 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2655 cmd->advertising = cmd->supported;
2657 cmd->duplex = cmd->port = cmd->phy_address =
2658 cmd->transceiver = cmd->autoneg = 0;
2660 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2665 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2667 struct gem *gp = dev->priv;
2669 /* Verify the settings we care about. */
2670 if (cmd->autoneg != AUTONEG_ENABLE &&
2671 cmd->autoneg != AUTONEG_DISABLE)
2674 if (cmd->autoneg == AUTONEG_ENABLE &&
2675 cmd->advertising == 0)
2678 if (cmd->autoneg == AUTONEG_DISABLE &&
2679 ((cmd->speed != SPEED_1000 &&
2680 cmd->speed != SPEED_100 &&
2681 cmd->speed != SPEED_10) ||
2682 (cmd->duplex != DUPLEX_HALF &&
2683 cmd->duplex != DUPLEX_FULL)))
2686 /* Apply settings and restart link process. */
2687 spin_lock_irq(&gp->lock);
2689 gem_begin_auto_negotiation(gp, cmd);
2691 spin_unlock_irq(&gp->lock);
2696 static int gem_nway_reset(struct net_device *dev)
2698 struct gem *gp = dev->priv;
2700 if (!gp->want_autoneg)
2703 /* Restart link process. */
2704 spin_lock_irq(&gp->lock);
2706 gem_begin_auto_negotiation(gp, NULL);
2708 spin_unlock_irq(&gp->lock);
2713 static u32 gem_get_msglevel(struct net_device *dev)
2715 struct gem *gp = dev->priv;
2716 return gp->msg_enable;
2719 static void gem_set_msglevel(struct net_device *dev, u32 value)
2721 struct gem *gp = dev->priv;
2722 gp->msg_enable = value;
2726 /* Add more when I understand how to program the chip */
2727 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2729 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2731 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2733 struct gem *gp = dev->priv;
2735 /* Add more when I understand how to program the chip */
2737 wol->supported = WOL_SUPPORTED_MASK;
2738 wol->wolopts = gp->wake_on_lan;
2745 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2747 struct gem *gp = dev->priv;
2751 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2755 static struct ethtool_ops gem_ethtool_ops = {
2756 .get_drvinfo = gem_get_drvinfo,
2757 .get_link = ethtool_op_get_link,
2758 .get_settings = gem_get_settings,
2759 .set_settings = gem_set_settings,
2760 .nway_reset = gem_nway_reset,
2761 .get_msglevel = gem_get_msglevel,
2762 .set_msglevel = gem_set_msglevel,
2763 .get_wol = gem_get_wol,
2764 .set_wol = gem_set_wol,
2767 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2769 struct gem *gp = dev->priv;
2770 struct mii_ioctl_data *data = if_mii(ifr);
2771 int rc = -EOPNOTSUPP;
2772 unsigned long flags;
2774 /* Hold the PM semaphore while doing ioctl's or we may collide
2775 * with power management.
2779 spin_lock_irqsave(&gp->lock, flags);
2781 spin_unlock_irqrestore(&gp->lock, flags);
2784 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2785 data->phy_id = gp->mii_phy_addr;
2786 /* Fallthrough... */
2788 case SIOCGMIIREG: /* Read MII PHY register. */
2792 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2793 data->reg_num & 0x1f);
2798 case SIOCSMIIREG: /* Write MII PHY register. */
2799 if (!capable(CAP_NET_ADMIN))
2801 else if (!gp->running)
2804 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2811 spin_lock_irqsave(&gp->lock, flags);
2813 spin_unlock_irqrestore(&gp->lock, flags);
2820 #if (!defined(__sparc__) && !defined(CONFIG_PPC_PMAC))
2821 /* Fetch MAC address from vital product data of PCI ROM. */
2822 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2826 for (this_offset = 0x20; this_offset < len; this_offset++) {
2827 void __iomem *p = rom_base + this_offset;
2830 if (readb(p + 0) != 0x90 ||
2831 readb(p + 1) != 0x00 ||
2832 readb(p + 2) != 0x09 ||
2833 readb(p + 3) != 0x4e ||
2834 readb(p + 4) != 0x41 ||
2835 readb(p + 5) != 0x06)
2841 for (i = 0; i < 6; i++)
2842 dev_addr[i] = readb(p + i);
2848 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2851 void __iomem *p = pci_map_rom(pdev, &size);
2856 found = readb(p) == 0x55 &&
2857 readb(p + 1) == 0xaa &&
2858 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2859 pci_unmap_rom(pdev, p);
2864 /* Sun MAC prefix then 3 random bytes. */
2868 get_random_bytes(dev_addr + 3, 3);
2871 #endif /* not Sparc and not PPC */
2873 static int __devinit gem_get_device_address(struct gem *gp)
2875 #if defined(__sparc__) || defined(CONFIG_PPC_PMAC)
2876 struct net_device *dev = gp->dev;
2879 #if defined(__sparc__)
2880 struct pci_dev *pdev = gp->pdev;
2881 struct pcidev_cookie *pcp = pdev->sysdata;
2885 node = pcp->prom_node;
2886 if (prom_getproplen(node, "local-mac-address") == 6)
2887 prom_getproperty(node, "local-mac-address",
2893 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2894 #elif defined(CONFIG_PPC_PMAC)
2895 unsigned char *addr;
2897 addr = get_property(gp->of_node, "local-mac-address", NULL);
2900 printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
2903 memcpy(dev->dev_addr, addr, 6);
2905 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2910 static void gem_remove_one(struct pci_dev *pdev)
2912 struct net_device *dev = pci_get_drvdata(pdev);
2915 struct gem *gp = dev->priv;
2917 unregister_netdev(dev);
2919 /* Stop the link timer */
2920 del_timer_sync(&gp->link_timer);
2922 /* We shouldn't need any locking here */
2925 /* Wait for a pending reset task to complete */
2926 while (gp->reset_task_pending)
2928 flush_scheduled_work();
2930 /* Shut the PHY down */
2931 gem_stop_phy(gp, 0);
2935 /* Make sure bus master is disabled */
2936 pci_disable_device(gp->pdev);
2938 /* Free resources */
2939 pci_free_consistent(pdev,
2940 sizeof(struct gem_init_block),
2944 pci_release_regions(pdev);
2947 pci_set_drvdata(pdev, NULL);
2951 static int __devinit gem_init_one(struct pci_dev *pdev,
2952 const struct pci_device_id *ent)
2954 static int gem_version_printed = 0;
2955 unsigned long gemreg_base, gemreg_len;
2956 struct net_device *dev;
2958 int i, err, pci_using_dac;
2960 if (gem_version_printed++ == 0)
2961 printk(KERN_INFO "%s", version);
2963 /* Apple gmac note: during probe, the chip is powered up by
2964 * the arch code to allow the code below to work (and to let
2965 * the chip be probed on the config space. It won't stay powered
2966 * up until the interface is brought up however, so we can't rely
2967 * on register configuration done at this point.
2969 err = pci_enable_device(pdev);
2971 printk(KERN_ERR PFX "Cannot enable MMIO operation, "
2975 pci_set_master(pdev);
2977 /* Configure DMA attributes. */
2979 /* All of the GEM documentation states that 64-bit DMA addressing
2980 * is fully supported and should work just fine. However the
2981 * front end for RIO based GEMs is different and only supports
2982 * 32-bit addressing.
2984 * For now we assume the various PPC GEMs are 32-bit only as well.
2986 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2987 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2988 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
2991 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2993 printk(KERN_ERR PFX "No usable DMA configuration, "
2995 goto err_disable_device;
3000 gemreg_base = pci_resource_start(pdev, 0);
3001 gemreg_len = pci_resource_len(pdev, 0);
3003 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3004 printk(KERN_ERR PFX "Cannot find proper PCI device "
3005 "base address, aborting.\n");
3007 goto err_disable_device;
3010 dev = alloc_etherdev(sizeof(*gp));
3012 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
3014 goto err_disable_device;
3016 SET_MODULE_OWNER(dev);
3017 SET_NETDEV_DEV(dev, &pdev->dev);
3021 err = pci_request_regions(pdev, DRV_NAME);
3023 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
3025 goto err_out_free_netdev;
3029 dev->base_addr = (long) pdev;
3032 gp->msg_enable = DEFAULT_MSG;
3034 spin_lock_init(&gp->lock);
3035 spin_lock_init(&gp->tx_lock);
3036 init_MUTEX(&gp->pm_sem);
3038 init_timer(&gp->link_timer);
3039 gp->link_timer.function = gem_link_timer;
3040 gp->link_timer.data = (unsigned long) gp;
3042 INIT_WORK(&gp->reset_task, gem_reset_task, gp);
3044 gp->lstate = link_down;
3045 gp->timer_ticks = 0;
3046 netif_carrier_off(dev);
3048 gp->regs = ioremap(gemreg_base, gemreg_len);
3049 if (gp->regs == 0UL) {
3050 printk(KERN_ERR PFX "Cannot map device registers, "
3053 goto err_out_free_res;
3056 /* On Apple, we want a reference to the Open Firmware device-tree
3057 * node. We use it for clock control.
3059 #ifdef CONFIG_PPC_PMAC
3060 gp->of_node = pci_device_to_OF_node(pdev);
3063 /* Only Apple version supports WOL afaik */
3064 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
3067 /* Make sure cell is enabled */
3070 /* Make sure everything is stopped and in init state */
3073 /* Fill up the mii_phy structure (even if we won't use it) */
3074 gp->phy_mii.dev = dev;
3075 gp->phy_mii.mdio_read = _phy_read;
3076 gp->phy_mii.mdio_write = _phy_write;
3077 #ifdef CONFIG_PPC_PMAC
3078 gp->phy_mii.platform_data = gp->of_node;
3080 /* By default, we start with autoneg */
3081 gp->want_autoneg = 1;
3083 /* Check fifo sizes, PHY type, etc... */
3084 if (gem_check_invariants(gp)) {
3086 goto err_out_iounmap;
3089 /* It is guaranteed that the returned buffer will be at least
3090 * PAGE_SIZE aligned.
3092 gp->init_block = (struct gem_init_block *)
3093 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
3095 if (!gp->init_block) {
3096 printk(KERN_ERR PFX "Cannot allocate init block, "
3099 goto err_out_iounmap;
3102 if (gem_get_device_address(gp))
3103 goto err_out_free_consistent;
3105 dev->open = gem_open;
3106 dev->stop = gem_close;
3107 dev->hard_start_xmit = gem_start_xmit;
3108 dev->get_stats = gem_get_stats;
3109 dev->set_multicast_list = gem_set_multicast;
3110 dev->do_ioctl = gem_ioctl;
3111 dev->poll = gem_poll;
3113 dev->ethtool_ops = &gem_ethtool_ops;
3114 dev->tx_timeout = gem_tx_timeout;
3115 dev->watchdog_timeo = 5 * HZ;
3116 dev->change_mtu = gem_change_mtu;
3117 dev->irq = pdev->irq;
3119 #ifdef CONFIG_NET_POLL_CONTROLLER
3120 dev->poll_controller = gem_poll_controller;
3123 /* Set that now, in case PM kicks in now */
3124 pci_set_drvdata(pdev, dev);
3126 /* Detect & init PHY, start autoneg, we release the cell now
3127 * too, it will be managed by whoever needs it
3131 spin_lock_irq(&gp->lock);
3133 spin_unlock_irq(&gp->lock);
3135 /* Register with kernel */
3136 if (register_netdev(dev)) {
3137 printk(KERN_ERR PFX "Cannot register net device, "
3140 goto err_out_free_consistent;
3143 printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
3145 for (i = 0; i < 6; i++)
3146 printk("%2.2x%c", dev->dev_addr[i],
3147 i == 5 ? ' ' : ':');
3150 if (gp->phy_type == phy_mii_mdio0 ||
3151 gp->phy_type == phy_mii_mdio1)
3152 printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
3153 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
3155 /* GEM can do it all... */
3156 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
3158 dev->features |= NETIF_F_HIGHDMA;
3162 err_out_free_consistent:
3163 gem_remove_one(pdev);
3169 pci_release_regions(pdev);
3171 err_out_free_netdev:
3174 pci_disable_device(pdev);
3180 static struct pci_driver gem_driver = {
3181 .name = GEM_MODULE_NAME,
3182 .id_table = gem_pci_tbl,
3183 .probe = gem_init_one,
3184 .remove = gem_remove_one,
3186 .suspend = gem_suspend,
3187 .resume = gem_resume,
3188 #endif /* CONFIG_PM */
3191 static int __init gem_init(void)
3193 return pci_module_init(&gem_driver);
3196 static void __exit gem_cleanup(void)
3198 pci_unregister_driver(&gem_driver);
3201 module_init(gem_init);
3202 module_exit(gem_cleanup);