3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
33 #include <asm/pgtable.h>
35 #include <asm/mmu_context.h>
36 #include <asm/system.h>
37 #include <asm/uaccess.h>
38 #include <asm/tlbflush.h>
39 #include <asm/kdebug.h>
40 #include <asm/siginfo.h>
43 ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
45 /* Hook to register for page fault notifications */
46 int register_page_fault_notifier(struct notifier_block *nb)
48 return atomic_notifier_chain_register(¬ify_page_fault_chain, nb);
51 int unregister_page_fault_notifier(struct notifier_block *nb)
53 return atomic_notifier_chain_unregister(¬ify_page_fault_chain, nb);
56 static inline int notify_page_fault(enum die_val val, const char *str,
57 struct pt_regs *regs, long err, int trap, int sig)
59 struct die_args args = {
66 return atomic_notifier_call_chain(¬ify_page_fault_chain, val, &args);
69 static inline int notify_page_fault(enum die_val val, const char *str,
70 struct pt_regs *regs, long err, int trap, int sig)
77 * Check whether the instruction at regs->nip is a store using
78 * an update addressing form which will update r1.
80 static int store_updates_sp(struct pt_regs *regs)
84 if (get_user(inst, (unsigned int __user *)regs->nip))
86 /* check for 1 in the rA field */
87 if (((inst >> 16) & 0x1f) != 1)
89 /* check major opcode */
97 case 62: /* std or stdu */
98 return (inst & 3) == 1;
100 /* check minor opcode */
101 switch ((inst >> 1) & 0x3ff) {
102 case 181: /* stdux */
103 case 183: /* stwux */
104 case 247: /* stbux */
105 case 439: /* sthux */
106 case 695: /* stfsux */
107 case 759: /* stfdux */
114 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
115 static void do_dabr(struct pt_regs *regs, unsigned long address,
116 unsigned long error_code)
120 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
121 11, SIGSEGV) == NOTIFY_STOP)
124 if (debugger_dabr_match(regs))
130 /* Deliver the signal to userspace */
131 info.si_signo = SIGTRAP;
133 info.si_code = TRAP_HWBKPT;
134 info.si_addr = (void __user *)address;
135 force_sig_info(SIGTRAP, &info, current);
137 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
140 * For 600- and 800-family processors, the error_code parameter is DSISR
141 * for a data fault, SRR1 for an instruction fault. For 400-family processors
142 * the error_code parameter is ESR for a data fault, 0 for an instruction
144 * For 64-bit processors, the error_code parameter is
145 * - DSISR for a non-SLB data access fault,
146 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
149 * The return value is 0 if the fault was handled, or the signal
150 * number if this is a kernel fault that can't be handled here.
152 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
153 unsigned long error_code)
155 struct vm_area_struct * vma;
156 struct mm_struct *mm = current->mm;
158 int code = SEGV_MAPERR;
160 int trap = TRAP(regs);
161 int is_exec = trap == 0x400;
163 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
165 * Fortunately the bit assignments in SRR1 for an instruction
166 * fault and DSISR for a data fault are mostly the same for the
167 * bits we are interested in. But there are some bits which
168 * indicate errors in DSISR but can validly be set in SRR1.
171 error_code &= 0x48200000;
173 is_write = error_code & DSISR_ISSTORE;
175 is_write = error_code & ESR_DST;
176 #endif /* CONFIG_4xx || CONFIG_BOOKE */
178 if (notify_page_fault(DIE_PAGE_FAULT, "page_fault", regs, error_code,
179 11, SIGSEGV) == NOTIFY_STOP)
183 if (debugger_fault_handler(regs))
187 /* On a kernel SLB miss we can only check for a valid exception entry */
188 if (!user_mode(regs) && (address >= TASK_SIZE))
191 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
192 if (error_code & DSISR_DABRMATCH) {
194 do_dabr(regs, address, error_code);
197 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
199 if (in_atomic() || mm == NULL) {
200 if (!user_mode(regs))
202 /* in_atomic() in user mode is really bad,
203 as is current->mm == NULL. */
204 printk(KERN_EMERG "Page fault in user mode with"
205 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
206 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
207 regs->nip, regs->msr);
208 die("Weird page fault", regs, SIGSEGV);
211 /* When running in the kernel we expect faults to occur only to
212 * addresses in user space. All other faults represent errors in the
213 * kernel and should generate an OOPS. Unfortunately, in the case of an
214 * erroneous fault occurring in a code path which already holds mmap_sem
215 * we will deadlock attempting to validate the fault against the
216 * address space. Luckily the kernel only validly references user
217 * space from well defined areas of code, which are listed in the
220 * As the vast majority of faults will be valid we will only perform
221 * the source reference check when there is a possibility of a deadlock.
222 * Attempt to lock the address space, if we cannot we then validate the
223 * source. If this is invalid we can skip the address space check,
224 * thus avoiding the deadlock.
226 if (!down_read_trylock(&mm->mmap_sem)) {
227 if (!user_mode(regs) && !search_exception_tables(regs->nip))
228 goto bad_area_nosemaphore;
230 down_read(&mm->mmap_sem);
233 vma = find_vma(mm, address);
236 if (vma->vm_start <= address)
238 if (!(vma->vm_flags & VM_GROWSDOWN))
242 * N.B. The POWER/Open ABI allows programs to access up to
243 * 288 bytes below the stack pointer.
244 * The kernel signal delivery code writes up to about 1.5kB
245 * below the stack pointer (r1) before decrementing it.
246 * The exec code can write slightly over 640kB to the stack
247 * before setting the user r1. Thus we allow the stack to
248 * expand to 1MB without further checks.
250 if (address + 0x100000 < vma->vm_end) {
251 /* get user regs even if this fault is in kernel mode */
252 struct pt_regs *uregs = current->thread.regs;
257 * A user-mode access to an address a long way below
258 * the stack pointer is only valid if the instruction
259 * is one which would update the stack pointer to the
260 * address accessed if the instruction completed,
261 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
262 * (or the byte, halfword, float or double forms).
264 * If we don't check this then any write to the area
265 * between the last mapped region and the stack will
266 * expand the stack rather than segfaulting.
268 if (address + 2048 < uregs->gpr[1]
269 && (!user_mode(regs) || !store_updates_sp(regs)))
272 if (expand_stack(vma, address))
277 #if defined(CONFIG_6xx)
278 if (error_code & 0x95700000)
279 /* an error such as lwarx to I/O controller space,
280 address matching DABR, eciwx, etc. */
282 #endif /* CONFIG_6xx */
283 #if defined(CONFIG_8xx)
284 /* The MPC8xx seems to always set 0x80000000, which is
285 * "undefined". Of those that can be set, this is the only
286 * one which seems bad.
288 if (error_code & 0x10000000)
289 /* Guarded storage error. */
291 #endif /* CONFIG_8xx */
295 /* protection fault */
296 if (error_code & DSISR_PROTFAULT)
298 if (!(vma->vm_flags & VM_EXEC))
301 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
305 /* Since 4xx/Book-E supports per-page execute permission,
306 * we lazily flush dcache to icache. */
308 if (get_pteptr(mm, address, &ptep, &pmdp)) {
309 spinlock_t *ptl = pte_lockptr(mm, pmdp);
311 if (pte_present(*ptep)) {
312 struct page *page = pte_page(*ptep);
314 if (!test_bit(PG_arch_1, &page->flags)) {
315 flush_dcache_icache_page(page);
316 set_bit(PG_arch_1, &page->flags);
318 pte_update(ptep, 0, _PAGE_HWEXEC);
320 pte_unmap_unlock(ptep, ptl);
321 up_read(&mm->mmap_sem);
324 pte_unmap_unlock(ptep, ptl);
328 } else if (is_write) {
329 if (!(vma->vm_flags & VM_WRITE))
333 /* protection fault */
334 if (error_code & 0x08000000)
336 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
341 * If for any reason at all we couldn't handle the fault,
342 * make sure we exit gracefully rather than endlessly redo
346 switch (handle_mm_fault(mm, vma, address, is_write)) {
354 case VM_FAULT_SIGBUS:
362 up_read(&mm->mmap_sem);
366 up_read(&mm->mmap_sem);
368 bad_area_nosemaphore:
369 /* User mode accesses cause a SIGSEGV */
370 if (user_mode(regs)) {
371 _exception(SIGSEGV, regs, code, address);
375 if (is_exec && (error_code & DSISR_PROTFAULT)
376 && printk_ratelimit())
377 printk(KERN_CRIT "kernel tried to execute NX-protected"
378 " page (%lx) - exploit attempt? (uid: %d)\n",
379 address, current->uid);
384 * We ran out of memory, or some other thing happened to us that made
385 * us unable to handle the page fault gracefully.
388 up_read(&mm->mmap_sem);
389 if (current->pid == 1) {
391 down_read(&mm->mmap_sem);
394 printk("VM: killing process %s\n", current->comm);
400 up_read(&mm->mmap_sem);
401 if (user_mode(regs)) {
402 info.si_signo = SIGBUS;
404 info.si_code = BUS_ADRERR;
405 info.si_addr = (void __user *)address;
406 force_sig_info(SIGBUS, &info, current);
413 * bad_page_fault is called when we have a bad access from the kernel.
414 * It is called from the DSI and ISI handlers in head.S and from some
415 * of the procedures in traps.c.
417 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
419 const struct exception_table_entry *entry;
421 /* Are we prepared to handle this fault? */
422 if ((entry = search_exception_tables(regs->nip)) != NULL) {
423 regs->nip = entry->fixup;
427 /* kernel has accessed a bad area */
429 printk(KERN_ALERT "Unable to handle kernel paging request for ");
430 switch (regs->trap) {
433 printk("data at address 0x%08lx\n", regs->dar);
437 printk("instruction fetch\n");
440 printk("unknown fault\n");
442 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
445 die("Kernel access of bad area", regs, sig);