[PATCH] lockdep: clean up rwsems
[linux-2.6] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb_ch9.h>
6
7 #define USB_MAJOR                       180
8 #define USB_DEVICE_MAJOR                189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>        /* for mdelay() */
15 #include <linux/interrupt.h>    /* for in_interrupt() */
16 #include <linux/list.h>         /* for struct list_head */
17 #include <linux/kref.h>         /* for struct kref */
18 #include <linux/device.h>       /* for struct device */
19 #include <linux/fs.h>           /* for struct file_operations */
20 #include <linux/completion.h>   /* for struct completion */
21 #include <linux/sched.h>        /* for current && schedule_timeout */
22
23 struct usb_device;
24 struct usb_driver;
25
26 /*-------------------------------------------------------------------------*/
27
28 /*
29  * Host-side wrappers for standard USB descriptors ... these are parsed
30  * from the data provided by devices.  Parsing turns them from a flat
31  * sequence of descriptors into a hierarchy:
32  *
33  *  - devices have one (usually) or more configs;
34  *  - configs have one (often) or more interfaces;
35  *  - interfaces have one (usually) or more settings;
36  *  - each interface setting has zero or (usually) more endpoints.
37  *
38  * And there might be other descriptors mixed in with those.
39  *
40  * Devices may also have class-specific or vendor-specific descriptors.
41  */
42
43 struct ep_device;
44
45 /**
46  * struct usb_host_endpoint - host-side endpoint descriptor and queue
47  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
48  * @urb_list: urbs queued to this endpoint; maintained by usbcore
49  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
50  *      with one or more transfer descriptors (TDs) per urb
51  * @kobj: kobject for sysfs info
52  * @extra: descriptors following this endpoint in the configuration
53  * @extralen: how many bytes of "extra" are valid
54  *
55  * USB requests are always queued to a given endpoint, identified by a
56  * descriptor within an active interface in a given USB configuration.
57  */
58 struct usb_host_endpoint {
59         struct usb_endpoint_descriptor  desc;
60         struct list_head                urb_list;
61         void                            *hcpriv;
62         struct ep_device                *ep_dev;        /* For sysfs info */
63
64         unsigned char *extra;   /* Extra descriptors */
65         int extralen;
66 };
67
68 /* host-side wrapper for one interface setting's parsed descriptors */
69 struct usb_host_interface {
70         struct usb_interface_descriptor desc;
71
72         /* array of desc.bNumEndpoint endpoints associated with this
73          * interface setting.  these will be in no particular order.
74          */
75         struct usb_host_endpoint *endpoint;
76
77         char *string;           /* iInterface string, if present */
78         unsigned char *extra;   /* Extra descriptors */
79         int extralen;
80 };
81
82 enum usb_interface_condition {
83         USB_INTERFACE_UNBOUND = 0,
84         USB_INTERFACE_BINDING,
85         USB_INTERFACE_BOUND,
86         USB_INTERFACE_UNBINDING,
87 };
88
89 /**
90  * struct usb_interface - what usb device drivers talk to
91  * @altsetting: array of interface structures, one for each alternate
92  *      setting that may be selected.  Each one includes a set of
93  *      endpoint configurations.  They will be in no particular order.
94  * @num_altsetting: number of altsettings defined.
95  * @cur_altsetting: the current altsetting.
96  * @driver: the USB driver that is bound to this interface.
97  * @minor: the minor number assigned to this interface, if this
98  *      interface is bound to a driver that uses the USB major number.
99  *      If this interface does not use the USB major, this field should
100  *      be unused.  The driver should set this value in the probe()
101  *      function of the driver, after it has been assigned a minor
102  *      number from the USB core by calling usb_register_dev().
103  * @condition: binding state of the interface: not bound, binding
104  *      (in probe()), bound to a driver, or unbinding (in disconnect())
105  * @dev: driver model's view of this device
106  * @usb_dev: if an interface is bound to the USB major, this will point
107  *      to the sysfs representation for that device.
108  *
109  * USB device drivers attach to interfaces on a physical device.  Each
110  * interface encapsulates a single high level function, such as feeding
111  * an audio stream to a speaker or reporting a change in a volume control.
112  * Many USB devices only have one interface.  The protocol used to talk to
113  * an interface's endpoints can be defined in a usb "class" specification,
114  * or by a product's vendor.  The (default) control endpoint is part of
115  * every interface, but is never listed among the interface's descriptors.
116  *
117  * The driver that is bound to the interface can use standard driver model
118  * calls such as dev_get_drvdata() on the dev member of this structure.
119  *
120  * Each interface may have alternate settings.  The initial configuration
121  * of a device sets altsetting 0, but the device driver can change
122  * that setting using usb_set_interface().  Alternate settings are often
123  * used to control the the use of periodic endpoints, such as by having
124  * different endpoints use different amounts of reserved USB bandwidth.
125  * All standards-conformant USB devices that use isochronous endpoints
126  * will use them in non-default settings.
127  *
128  * The USB specification says that alternate setting numbers must run from
129  * 0 to one less than the total number of alternate settings.  But some
130  * devices manage to mess this up, and the structures aren't necessarily
131  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
132  * look up an alternate setting in the altsetting array based on its number.
133  */
134 struct usb_interface {
135         /* array of alternate settings for this interface,
136          * stored in no particular order */
137         struct usb_host_interface *altsetting;
138
139         struct usb_host_interface *cur_altsetting;      /* the currently
140                                          * active alternate setting */
141         unsigned num_altsetting;        /* number of alternate settings */
142
143         int minor;                      /* minor number this interface is
144                                          * bound to */
145         enum usb_interface_condition condition;         /* state of binding */
146         struct device dev;              /* interface specific device info */
147         struct device *usb_dev;         /* pointer to the usb class's device, if any */
148 };
149 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
150 #define interface_to_usbdev(intf) \
151         container_of(intf->dev.parent, struct usb_device, dev)
152
153 static inline void *usb_get_intfdata (struct usb_interface *intf)
154 {
155         return dev_get_drvdata (&intf->dev);
156 }
157
158 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
159 {
160         dev_set_drvdata(&intf->dev, data);
161 }
162
163 struct usb_interface *usb_get_intf(struct usb_interface *intf);
164 void usb_put_intf(struct usb_interface *intf);
165
166 /* this maximum is arbitrary */
167 #define USB_MAXINTERFACES       32
168
169 /**
170  * struct usb_interface_cache - long-term representation of a device interface
171  * @num_altsetting: number of altsettings defined.
172  * @ref: reference counter.
173  * @altsetting: variable-length array of interface structures, one for
174  *      each alternate setting that may be selected.  Each one includes a
175  *      set of endpoint configurations.  They will be in no particular order.
176  *
177  * These structures persist for the lifetime of a usb_device, unlike
178  * struct usb_interface (which persists only as long as its configuration
179  * is installed).  The altsetting arrays can be accessed through these
180  * structures at any time, permitting comparison of configurations and
181  * providing support for the /proc/bus/usb/devices pseudo-file.
182  */
183 struct usb_interface_cache {
184         unsigned num_altsetting;        /* number of alternate settings */
185         struct kref ref;                /* reference counter */
186
187         /* variable-length array of alternate settings for this interface,
188          * stored in no particular order */
189         struct usb_host_interface altsetting[0];
190 };
191 #define ref_to_usb_interface_cache(r) \
192                 container_of(r, struct usb_interface_cache, ref)
193 #define altsetting_to_usb_interface_cache(a) \
194                 container_of(a, struct usb_interface_cache, altsetting[0])
195
196 /**
197  * struct usb_host_config - representation of a device's configuration
198  * @desc: the device's configuration descriptor.
199  * @string: pointer to the cached version of the iConfiguration string, if
200  *      present for this configuration.
201  * @interface: array of pointers to usb_interface structures, one for each
202  *      interface in the configuration.  The number of interfaces is stored
203  *      in desc.bNumInterfaces.  These pointers are valid only while the
204  *      the configuration is active.
205  * @intf_cache: array of pointers to usb_interface_cache structures, one
206  *      for each interface in the configuration.  These structures exist
207  *      for the entire life of the device.
208  * @extra: pointer to buffer containing all extra descriptors associated
209  *      with this configuration (those preceding the first interface
210  *      descriptor).
211  * @extralen: length of the extra descriptors buffer.
212  *
213  * USB devices may have multiple configurations, but only one can be active
214  * at any time.  Each encapsulates a different operational environment;
215  * for example, a dual-speed device would have separate configurations for
216  * full-speed and high-speed operation.  The number of configurations
217  * available is stored in the device descriptor as bNumConfigurations.
218  *
219  * A configuration can contain multiple interfaces.  Each corresponds to
220  * a different function of the USB device, and all are available whenever
221  * the configuration is active.  The USB standard says that interfaces
222  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
223  * of devices get this wrong.  In addition, the interface array is not
224  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
225  * look up an interface entry based on its number.
226  *
227  * Device drivers should not attempt to activate configurations.  The choice
228  * of which configuration to install is a policy decision based on such
229  * considerations as available power, functionality provided, and the user's
230  * desires (expressed through userspace tools).  However, drivers can call
231  * usb_reset_configuration() to reinitialize the current configuration and
232  * all its interfaces.
233  */
234 struct usb_host_config {
235         struct usb_config_descriptor    desc;
236
237         char *string;           /* iConfiguration string, if present */
238         /* the interfaces associated with this configuration,
239          * stored in no particular order */
240         struct usb_interface *interface[USB_MAXINTERFACES];
241
242         /* Interface information available even when this is not the
243          * active configuration */
244         struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
245
246         unsigned char *extra;   /* Extra descriptors */
247         int extralen;
248 };
249
250 int __usb_get_extra_descriptor(char *buffer, unsigned size,
251         unsigned char type, void **ptr);
252 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
253         __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
254                 type,(void**)ptr)
255
256 /* ----------------------------------------------------------------------- */
257
258 struct usb_operations;
259
260 /* USB device number allocation bitmap */
261 struct usb_devmap {
262         unsigned long devicemap[128 / (8*sizeof(unsigned long))];
263 };
264
265 /*
266  * Allocated per bus (tree of devices) we have:
267  */
268 struct usb_bus {
269         struct device *controller;      /* host/master side hardware */
270         int busnum;                     /* Bus number (in order of reg) */
271         char *bus_name;                 /* stable id (PCI slot_name etc) */
272         u8 otg_port;                    /* 0, or number of OTG/HNP port */
273         unsigned is_b_host:1;           /* true during some HNP roleswitches */
274         unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
275
276         int devnum_next;                /* Next open device number in
277                                          * round-robin allocation */
278
279         struct usb_devmap devmap;       /* device address allocation map */
280         struct usb_operations *op;      /* Operations (specific to the HC) */
281         struct usb_device *root_hub;    /* Root hub */
282         struct list_head bus_list;      /* list of busses */
283         void *hcpriv;                   /* Host Controller private data */
284
285         int bandwidth_allocated;        /* on this bus: how much of the time
286                                          * reserved for periodic (intr/iso)
287                                          * requests is used, on average?
288                                          * Units: microseconds/frame.
289                                          * Limits: Full/low speed reserve 90%,
290                                          * while high speed reserves 80%.
291                                          */
292         int bandwidth_int_reqs;         /* number of Interrupt requests */
293         int bandwidth_isoc_reqs;        /* number of Isoc. requests */
294
295         struct dentry *usbfs_dentry;    /* usbfs dentry entry for the bus */
296
297         struct class_device *class_dev; /* class device for this bus */
298         struct kref kref;               /* reference counting for this bus */
299         void (*release)(struct usb_bus *bus);
300
301 #if defined(CONFIG_USB_MON)
302         struct mon_bus *mon_bus;        /* non-null when associated */
303         int monitored;                  /* non-zero when monitored */
304 #endif
305 };
306
307 /* ----------------------------------------------------------------------- */
308
309 /* This is arbitrary.
310  * From USB 2.0 spec Table 11-13, offset 7, a hub can
311  * have up to 255 ports. The most yet reported is 10.
312  */
313 #define USB_MAXCHILDREN         (16)
314
315 struct usb_tt;
316
317 /*
318  * struct usb_device - kernel's representation of a USB device
319  *
320  * FIXME: Write the kerneldoc!
321  *
322  * Usbcore drivers should not set usbdev->state directly.  Instead use
323  * usb_set_device_state().
324  */
325 struct usb_device {
326         int             devnum;         /* Address on USB bus */
327         char            devpath [16];   /* Use in messages: /port/port/... */
328         enum usb_device_state   state;  /* configured, not attached, etc */
329         enum usb_device_speed   speed;  /* high/full/low (or error) */
330
331         struct usb_tt   *tt;            /* low/full speed dev, highspeed hub */
332         int             ttport;         /* device port on that tt hub */
333
334         unsigned int toggle[2];         /* one bit for each endpoint
335                                          * ([0] = IN, [1] = OUT) */
336
337         struct usb_device *parent;      /* our hub, unless we're the root */
338         struct usb_bus *bus;            /* Bus we're part of */
339         struct usb_host_endpoint ep0;
340
341         struct device dev;              /* Generic device interface */
342
343         struct usb_device_descriptor descriptor;/* Descriptor */
344         struct usb_host_config *config; /* All of the configs */
345
346         struct usb_host_config *actconfig;/* the active configuration */
347         struct usb_host_endpoint *ep_in[16];
348         struct usb_host_endpoint *ep_out[16];
349
350         char **rawdescriptors;          /* Raw descriptors for each config */
351
352         unsigned short bus_mA;          /* Current available from the bus */
353         u8 portnum;                     /* Parent port number (origin 1) */
354
355         int have_langid;                /* whether string_langid is valid */
356         int string_langid;              /* language ID for strings */
357
358         /* static strings from the device */
359         char *product;                  /* iProduct string, if present */
360         char *manufacturer;             /* iManufacturer string, if present */
361         char *serial;                   /* iSerialNumber string, if present */
362
363         struct list_head filelist;
364         struct device *usbfs_dev;
365         struct dentry *usbfs_dentry;    /* usbfs dentry entry for the device */
366
367         /*
368          * Child devices - these can be either new devices
369          * (if this is a hub device), or different instances
370          * of this same device.
371          *
372          * Each instance needs its own set of data structures.
373          */
374
375         int maxchild;                   /* Number of ports if hub */
376         struct usb_device *children[USB_MAXCHILDREN];
377 };
378 #define to_usb_device(d) container_of(d, struct usb_device, dev)
379
380 extern struct usb_device *usb_get_dev(struct usb_device *dev);
381 extern void usb_put_dev(struct usb_device *dev);
382
383 /* USB device locking */
384 #define usb_lock_device(udev)           down(&(udev)->dev.sem)
385 #define usb_unlock_device(udev)         up(&(udev)->dev.sem)
386 #define usb_trylock_device(udev)        down_trylock(&(udev)->dev.sem)
387 extern int usb_lock_device_for_reset(struct usb_device *udev,
388                 struct usb_interface *iface);
389
390 /* USB port reset for device reinitialization */
391 extern int usb_reset_device(struct usb_device *dev);
392 extern int usb_reset_composite_device(struct usb_device *dev,
393                 struct usb_interface *iface);
394
395 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
396
397 /*-------------------------------------------------------------------------*/
398
399 /* for drivers using iso endpoints */
400 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
401
402 /* used these for multi-interface device registration */
403 extern int usb_driver_claim_interface(struct usb_driver *driver,
404                         struct usb_interface *iface, void* priv);
405
406 /**
407  * usb_interface_claimed - returns true iff an interface is claimed
408  * @iface: the interface being checked
409  *
410  * Returns true (nonzero) iff the interface is claimed, else false (zero).
411  * Callers must own the driver model's usb bus readlock.  So driver
412  * probe() entries don't need extra locking, but other call contexts
413  * may need to explicitly claim that lock.
414  *
415  */
416 static inline int usb_interface_claimed(struct usb_interface *iface) {
417         return (iface->dev.driver != NULL);
418 }
419
420 extern void usb_driver_release_interface(struct usb_driver *driver,
421                         struct usb_interface *iface);
422 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
423                                          const struct usb_device_id *id);
424
425 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
426                 int minor);
427 extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev,
428                 unsigned ifnum);
429 extern struct usb_host_interface *usb_altnum_to_altsetting(
430                 struct usb_interface *intf, unsigned int altnum);
431
432
433 /**
434  * usb_make_path - returns stable device path in the usb tree
435  * @dev: the device whose path is being constructed
436  * @buf: where to put the string
437  * @size: how big is "buf"?
438  *
439  * Returns length of the string (> 0) or negative if size was too small.
440  *
441  * This identifier is intended to be "stable", reflecting physical paths in
442  * hardware such as physical bus addresses for host controllers or ports on
443  * USB hubs.  That makes it stay the same until systems are physically
444  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
445  * controllers.  Adding and removing devices, including virtual root hubs
446  * in host controller driver modules, does not change these path identifers;
447  * neither does rebooting or re-enumerating.  These are more useful identifiers
448  * than changeable ("unstable") ones like bus numbers or device addresses.
449  *
450  * With a partial exception for devices connected to USB 2.0 root hubs, these
451  * identifiers are also predictable.  So long as the device tree isn't changed,
452  * plugging any USB device into a given hub port always gives it the same path.
453  * Because of the use of "companion" controllers, devices connected to ports on
454  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
455  * high speed, and a different one if they are full or low speed.
456  */
457 static inline int usb_make_path (struct usb_device *dev, char *buf,
458                 size_t size)
459 {
460         int actual;
461         actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
462                         dev->devpath);
463         return (actual >= (int)size) ? -1 : actual;
464 }
465
466 /*-------------------------------------------------------------------------*/
467
468 #define USB_DEVICE_ID_MATCH_DEVICE \
469                 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
470 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
471                 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
472 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
473                 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
474 #define USB_DEVICE_ID_MATCH_DEV_INFO \
475                 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
476                 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
477                 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
478 #define USB_DEVICE_ID_MATCH_INT_INFO \
479                 (USB_DEVICE_ID_MATCH_INT_CLASS | \
480                 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
481                 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
482
483 /**
484  * USB_DEVICE - macro used to describe a specific usb device
485  * @vend: the 16 bit USB Vendor ID
486  * @prod: the 16 bit USB Product ID
487  *
488  * This macro is used to create a struct usb_device_id that matches a
489  * specific device.
490  */
491 #define USB_DEVICE(vend,prod) \
492         .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
493                         .idProduct = (prod)
494 /**
495  * USB_DEVICE_VER - macro used to describe a specific usb device with a
496  *              version range
497  * @vend: the 16 bit USB Vendor ID
498  * @prod: the 16 bit USB Product ID
499  * @lo: the bcdDevice_lo value
500  * @hi: the bcdDevice_hi value
501  *
502  * This macro is used to create a struct usb_device_id that matches a
503  * specific device, with a version range.
504  */
505 #define USB_DEVICE_VER(vend,prod,lo,hi) \
506         .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
507         .idVendor = (vend), .idProduct = (prod), \
508         .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
509
510 /**
511  * USB_DEVICE_INFO - macro used to describe a class of usb devices
512  * @cl: bDeviceClass value
513  * @sc: bDeviceSubClass value
514  * @pr: bDeviceProtocol value
515  *
516  * This macro is used to create a struct usb_device_id that matches a
517  * specific class of devices.
518  */
519 #define USB_DEVICE_INFO(cl,sc,pr) \
520         .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
521         .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
522
523 /**
524  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 
525  * @cl: bInterfaceClass value
526  * @sc: bInterfaceSubClass value
527  * @pr: bInterfaceProtocol value
528  *
529  * This macro is used to create a struct usb_device_id that matches a
530  * specific class of interfaces.
531  */
532 #define USB_INTERFACE_INFO(cl,sc,pr) \
533         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
534         .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
535
536 /* ----------------------------------------------------------------------- */
537
538 struct usb_dynids {
539         spinlock_t lock;
540         struct list_head list;
541 };
542
543 /**
544  * struct usb_driver - identifies USB driver to usbcore
545  * @name: The driver name should be unique among USB drivers,
546  *      and should normally be the same as the module name.
547  * @probe: Called to see if the driver is willing to manage a particular
548  *      interface on a device.  If it is, probe returns zero and uses
549  *      dev_set_drvdata() to associate driver-specific data with the
550  *      interface.  It may also use usb_set_interface() to specify the
551  *      appropriate altsetting.  If unwilling to manage the interface,
552  *      return a negative errno value.
553  * @disconnect: Called when the interface is no longer accessible, usually
554  *      because its device has been (or is being) disconnected or the
555  *      driver module is being unloaded.
556  * @ioctl: Used for drivers that want to talk to userspace through
557  *      the "usbfs" filesystem.  This lets devices provide ways to
558  *      expose information to user space regardless of where they
559  *      do (or don't) show up otherwise in the filesystem.
560  * @suspend: Called when the device is going to be suspended by the system.
561  * @resume: Called when the device is being resumed by the system.
562  * @pre_reset: Called by usb_reset_composite_device() when the device
563  *      is about to be reset.
564  * @post_reset: Called by usb_reset_composite_device() after the device
565  *      has been reset.
566  * @id_table: USB drivers use ID table to support hotplugging.
567  *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
568  *      or your driver's probe function will never get called.
569  * @dynids: used internally to hold the list of dynamically added device
570  *      ids for this driver.
571  * @driver: the driver model core driver structure.
572  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
573  *      added to this driver by preventing the sysfs file from being created.
574  *
575  * USB drivers must provide a name, probe() and disconnect() methods,
576  * and an id_table.  Other driver fields are optional.
577  *
578  * The id_table is used in hotplugging.  It holds a set of descriptors,
579  * and specialized data may be associated with each entry.  That table
580  * is used by both user and kernel mode hotplugging support.
581  *
582  * The probe() and disconnect() methods are called in a context where
583  * they can sleep, but they should avoid abusing the privilege.  Most
584  * work to connect to a device should be done when the device is opened,
585  * and undone at the last close.  The disconnect code needs to address
586  * concurrency issues with respect to open() and close() methods, as
587  * well as forcing all pending I/O requests to complete (by unlinking
588  * them as necessary, and blocking until the unlinks complete).
589  */
590 struct usb_driver {
591         const char *name;
592
593         int (*probe) (struct usb_interface *intf,
594                       const struct usb_device_id *id);
595
596         void (*disconnect) (struct usb_interface *intf);
597
598         int (*ioctl) (struct usb_interface *intf, unsigned int code,
599                         void *buf);
600
601         int (*suspend) (struct usb_interface *intf, pm_message_t message);
602         int (*resume) (struct usb_interface *intf);
603
604         void (*pre_reset) (struct usb_interface *intf);
605         void (*post_reset) (struct usb_interface *intf);
606
607         const struct usb_device_id *id_table;
608
609         struct usb_dynids dynids;
610         struct device_driver driver;
611         unsigned int no_dynamic_id:1;
612 };
613 #define to_usb_driver(d) container_of(d, struct usb_driver, driver)
614
615 extern struct bus_type usb_bus_type;
616
617 /**
618  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
619  * @name: the usb class device name for this driver.  Will show up in sysfs.
620  * @fops: pointer to the struct file_operations of this driver.
621  * @minor_base: the start of the minor range for this driver.
622  *
623  * This structure is used for the usb_register_dev() and
624  * usb_unregister_dev() functions, to consolidate a number of the
625  * parameters used for them.
626  */
627 struct usb_class_driver {
628         char *name;
629         const struct file_operations *fops;
630         int minor_base;
631 };
632
633 /*
634  * use these in module_init()/module_exit()
635  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
636  */
637 int usb_register_driver(struct usb_driver *, struct module *);
638 static inline int usb_register(struct usb_driver *driver)
639 {
640         return usb_register_driver(driver, THIS_MODULE);
641 }
642 extern void usb_deregister(struct usb_driver *);
643
644 extern int usb_register_dev(struct usb_interface *intf,
645                             struct usb_class_driver *class_driver);
646 extern void usb_deregister_dev(struct usb_interface *intf,
647                                struct usb_class_driver *class_driver);
648
649 extern int usb_disabled(void);
650
651 /* ----------------------------------------------------------------------- */
652
653 /*
654  * URB support, for asynchronous request completions
655  */
656
657 /*
658  * urb->transfer_flags:
659  */
660 #define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
661 #define URB_ISO_ASAP            0x0002  /* iso-only, urb->start_frame
662                                          * ignored */
663 #define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
664 #define URB_NO_SETUP_DMA_MAP    0x0008  /* urb->setup_dma valid on submit */
665 #define URB_NO_FSBR             0x0020  /* UHCI-specific */
666 #define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
667 #define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
668                                          * needed */
669
670 struct usb_iso_packet_descriptor {
671         unsigned int offset;
672         unsigned int length;            /* expected length */
673         unsigned int actual_length;
674         unsigned int status;
675 };
676
677 struct urb;
678 struct pt_regs;
679
680 typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
681
682 /**
683  * struct urb - USB Request Block
684  * @urb_list: For use by current owner of the URB.
685  * @pipe: Holds endpoint number, direction, type, and more.
686  *      Create these values with the eight macros available;
687  *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
688  *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
689  *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
690  *      numbers range from zero to fifteen.  Note that "in" endpoint two
691  *      is a different endpoint (and pipe) from "out" endpoint two.
692  *      The current configuration controls the existence, type, and
693  *      maximum packet size of any given endpoint.
694  * @dev: Identifies the USB device to perform the request.
695  * @status: This is read in non-iso completion functions to get the
696  *      status of the particular request.  ISO requests only use it
697  *      to tell whether the URB was unlinked; detailed status for
698  *      each frame is in the fields of the iso_frame-desc.
699  * @transfer_flags: A variety of flags may be used to affect how URB
700  *      submission, unlinking, or operation are handled.  Different
701  *      kinds of URB can use different flags.
702  * @transfer_buffer:  This identifies the buffer to (or from) which
703  *      the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
704  *      is set).  This buffer must be suitable for DMA; allocate it with
705  *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
706  *      of this buffer will be modified.  This buffer is used for the data
707  *      stage of control transfers.
708  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
709  *      the device driver is saying that it provided this DMA address,
710  *      which the host controller driver should use in preference to the
711  *      transfer_buffer.
712  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
713  *      be broken up into chunks according to the current maximum packet
714  *      size for the endpoint, which is a function of the configuration
715  *      and is encoded in the pipe.  When the length is zero, neither
716  *      transfer_buffer nor transfer_dma is used.
717  * @actual_length: This is read in non-iso completion functions, and
718  *      it tells how many bytes (out of transfer_buffer_length) were
719  *      transferred.  It will normally be the same as requested, unless
720  *      either an error was reported or a short read was performed.
721  *      The URB_SHORT_NOT_OK transfer flag may be used to make such
722  *      short reads be reported as errors. 
723  * @setup_packet: Only used for control transfers, this points to eight bytes
724  *      of setup data.  Control transfers always start by sending this data
725  *      to the device.  Then transfer_buffer is read or written, if needed.
726  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
727  *      device driver has provided this DMA address for the setup packet.
728  *      The host controller driver should use this in preference to
729  *      setup_packet.
730  * @start_frame: Returns the initial frame for isochronous transfers.
731  * @number_of_packets: Lists the number of ISO transfer buffers.
732  * @interval: Specifies the polling interval for interrupt or isochronous
733  *      transfers.  The units are frames (milliseconds) for for full and low
734  *      speed devices, and microframes (1/8 millisecond) for highspeed ones.
735  * @error_count: Returns the number of ISO transfers that reported errors.
736  * @context: For use in completion functions.  This normally points to
737  *      request-specific driver context.
738  * @complete: Completion handler. This URB is passed as the parameter to the
739  *      completion function.  The completion function may then do what
740  *      it likes with the URB, including resubmitting or freeing it.
741  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 
742  *      collect the transfer status for each buffer.
743  *
744  * This structure identifies USB transfer requests.  URBs must be allocated by
745  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
746  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
747  * are submitted using usb_submit_urb(), and pending requests may be canceled
748  * using usb_unlink_urb() or usb_kill_urb().
749  *
750  * Data Transfer Buffers:
751  *
752  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
753  * taken from the general page pool.  That is provided by transfer_buffer
754  * (control requests also use setup_packet), and host controller drivers
755  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
756  * mapping operations can be expensive on some platforms (perhaps using a dma
757  * bounce buffer or talking to an IOMMU),
758  * although they're cheap on commodity x86 and ppc hardware.
759  *
760  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
761  * which tell the host controller driver that no such mapping is needed since
762  * the device driver is DMA-aware.  For example, a device driver might
763  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
764  * When these transfer flags are provided, host controller drivers will
765  * attempt to use the dma addresses found in the transfer_dma and/or
766  * setup_dma fields rather than determining a dma address themselves.  (Note
767  * that transfer_buffer and setup_packet must still be set because not all
768  * host controllers use DMA, nor do virtual root hubs).
769  *
770  * Initialization:
771  *
772  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
773  * zero), and complete fields.  All URBs must also initialize
774  * transfer_buffer and transfer_buffer_length.  They may provide the
775  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
776  * to be treated as errors; that flag is invalid for write requests.
777  *
778  * Bulk URBs may
779  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
780  * should always terminate with a short packet, even if it means adding an
781  * extra zero length packet.
782  *
783  * Control URBs must provide a setup_packet.  The setup_packet and
784  * transfer_buffer may each be mapped for DMA or not, independently of
785  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
786  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
787  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
788  *
789  * Interrupt URBs must provide an interval, saying how often (in milliseconds
790  * or, for highspeed devices, 125 microsecond units)
791  * to poll for transfers.  After the URB has been submitted, the interval
792  * field reflects how the transfer was actually scheduled.
793  * The polling interval may be more frequent than requested.
794  * For example, some controllers have a maximum interval of 32 milliseconds,
795  * while others support intervals of up to 1024 milliseconds.
796  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
797  * endpoints, as well as high speed interrupt endpoints, the encoding of
798  * the transfer interval in the endpoint descriptor is logarithmic.
799  * Device drivers must convert that value to linear units themselves.)
800  *
801  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
802  * the host controller to schedule the transfer as soon as bandwidth
803  * utilization allows, and then set start_frame to reflect the actual frame
804  * selected during submission.  Otherwise drivers must specify the start_frame
805  * and handle the case where the transfer can't begin then.  However, drivers
806  * won't know how bandwidth is currently allocated, and while they can
807  * find the current frame using usb_get_current_frame_number () they can't
808  * know the range for that frame number.  (Ranges for frame counter values
809  * are HC-specific, and can go from 256 to 65536 frames from "now".)
810  *
811  * Isochronous URBs have a different data transfer model, in part because
812  * the quality of service is only "best effort".  Callers provide specially
813  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
814  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
815  * URBs are normally queued, submitted by drivers to arrange that
816  * transfers are at least double buffered, and then explicitly resubmitted
817  * in completion handlers, so
818  * that data (such as audio or video) streams at as constant a rate as the
819  * host controller scheduler can support.
820  *
821  * Completion Callbacks:
822  *
823  * The completion callback is made in_interrupt(), and one of the first
824  * things that a completion handler should do is check the status field.
825  * The status field is provided for all URBs.  It is used to report
826  * unlinked URBs, and status for all non-ISO transfers.  It should not
827  * be examined before the URB is returned to the completion handler.
828  *
829  * The context field is normally used to link URBs back to the relevant
830  * driver or request state.
831  *
832  * When the completion callback is invoked for non-isochronous URBs, the
833  * actual_length field tells how many bytes were transferred.  This field
834  * is updated even when the URB terminated with an error or was unlinked.
835  *
836  * ISO transfer status is reported in the status and actual_length fields
837  * of the iso_frame_desc array, and the number of errors is reported in
838  * error_count.  Completion callbacks for ISO transfers will normally
839  * (re)submit URBs to ensure a constant transfer rate.
840  *
841  * Note that even fields marked "public" should not be touched by the driver
842  * when the urb is owned by the hcd, that is, since the call to
843  * usb_submit_urb() till the entry into the completion routine.
844  */
845 struct urb
846 {
847         /* private: usb core and host controller only fields in the urb */
848         struct kref kref;               /* reference count of the URB */
849         spinlock_t lock;                /* lock for the URB */
850         void *hcpriv;                   /* private data for host controller */
851         int bandwidth;                  /* bandwidth for INT/ISO request */
852         atomic_t use_count;             /* concurrent submissions counter */
853         u8 reject;                      /* submissions will fail */
854
855         /* public: documented fields in the urb that can be used by drivers */
856         struct list_head urb_list;      /* list head for use by the urb's
857                                          * current owner */
858         struct usb_device *dev;         /* (in) pointer to associated device */
859         unsigned int pipe;              /* (in) pipe information */
860         int status;                     /* (return) non-ISO status */
861         unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
862         void *transfer_buffer;          /* (in) associated data buffer */
863         dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
864         int transfer_buffer_length;     /* (in) data buffer length */
865         int actual_length;              /* (return) actual transfer length */
866         unsigned char *setup_packet;    /* (in) setup packet (control only) */
867         dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
868         int start_frame;                /* (modify) start frame (ISO) */
869         int number_of_packets;          /* (in) number of ISO packets */
870         int interval;                   /* (modify) transfer interval
871                                          * (INT/ISO) */
872         int error_count;                /* (return) number of ISO errors */
873         void *context;                  /* (in) context for completion */
874         usb_complete_t complete;        /* (in) completion routine */
875         struct usb_iso_packet_descriptor iso_frame_desc[0];
876                                         /* (in) ISO ONLY */
877 };
878
879 /* ----------------------------------------------------------------------- */
880
881 /**
882  * usb_fill_control_urb - initializes a control urb
883  * @urb: pointer to the urb to initialize.
884  * @dev: pointer to the struct usb_device for this urb.
885  * @pipe: the endpoint pipe
886  * @setup_packet: pointer to the setup_packet buffer
887  * @transfer_buffer: pointer to the transfer buffer
888  * @buffer_length: length of the transfer buffer
889  * @complete: pointer to the usb_complete_t function
890  * @context: what to set the urb context to.
891  *
892  * Initializes a control urb with the proper information needed to submit
893  * it to a device.
894  */
895 static inline void usb_fill_control_urb (struct urb *urb,
896                                          struct usb_device *dev,
897                                          unsigned int pipe,
898                                          unsigned char *setup_packet,
899                                          void *transfer_buffer,
900                                          int buffer_length,
901                                          usb_complete_t complete,
902                                          void *context)
903 {
904         spin_lock_init(&urb->lock);
905         urb->dev = dev;
906         urb->pipe = pipe;
907         urb->setup_packet = setup_packet;
908         urb->transfer_buffer = transfer_buffer;
909         urb->transfer_buffer_length = buffer_length;
910         urb->complete = complete;
911         urb->context = context;
912 }
913
914 /**
915  * usb_fill_bulk_urb - macro to help initialize a bulk urb
916  * @urb: pointer to the urb to initialize.
917  * @dev: pointer to the struct usb_device for this urb.
918  * @pipe: the endpoint pipe
919  * @transfer_buffer: pointer to the transfer buffer
920  * @buffer_length: length of the transfer buffer
921  * @complete: pointer to the usb_complete_t function
922  * @context: what to set the urb context to.
923  *
924  * Initializes a bulk urb with the proper information needed to submit it
925  * to a device.
926  */
927 static inline void usb_fill_bulk_urb (struct urb *urb,
928                                       struct usb_device *dev,
929                                       unsigned int pipe,
930                                       void *transfer_buffer,
931                                       int buffer_length,
932                                       usb_complete_t complete,
933                                       void *context)
934 {
935         spin_lock_init(&urb->lock);
936         urb->dev = dev;
937         urb->pipe = pipe;
938         urb->transfer_buffer = transfer_buffer;
939         urb->transfer_buffer_length = buffer_length;
940         urb->complete = complete;
941         urb->context = context;
942 }
943
944 /**
945  * usb_fill_int_urb - macro to help initialize a interrupt urb
946  * @urb: pointer to the urb to initialize.
947  * @dev: pointer to the struct usb_device for this urb.
948  * @pipe: the endpoint pipe
949  * @transfer_buffer: pointer to the transfer buffer
950  * @buffer_length: length of the transfer buffer
951  * @complete: pointer to the usb_complete_t function
952  * @context: what to set the urb context to.
953  * @interval: what to set the urb interval to, encoded like
954  *      the endpoint descriptor's bInterval value.
955  *
956  * Initializes a interrupt urb with the proper information needed to submit
957  * it to a device.
958  * Note that high speed interrupt endpoints use a logarithmic encoding of
959  * the endpoint interval, and express polling intervals in microframes
960  * (eight per millisecond) rather than in frames (one per millisecond).
961  */
962 static inline void usb_fill_int_urb (struct urb *urb,
963                                      struct usb_device *dev,
964                                      unsigned int pipe,
965                                      void *transfer_buffer,
966                                      int buffer_length,
967                                      usb_complete_t complete,
968                                      void *context,
969                                      int interval)
970 {
971         spin_lock_init(&urb->lock);
972         urb->dev = dev;
973         urb->pipe = pipe;
974         urb->transfer_buffer = transfer_buffer;
975         urb->transfer_buffer_length = buffer_length;
976         urb->complete = complete;
977         urb->context = context;
978         if (dev->speed == USB_SPEED_HIGH)
979                 urb->interval = 1 << (interval - 1);
980         else
981                 urb->interval = interval;
982         urb->start_frame = -1;
983 }
984
985 extern void usb_init_urb(struct urb *urb);
986 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
987 extern void usb_free_urb(struct urb *urb);
988 #define usb_put_urb usb_free_urb
989 extern struct urb *usb_get_urb(struct urb *urb);
990 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
991 extern int usb_unlink_urb(struct urb *urb);
992 extern void usb_kill_urb(struct urb *urb);
993
994 #define HAVE_USB_BUFFERS
995 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
996         gfp_t mem_flags, dma_addr_t *dma);
997 void usb_buffer_free (struct usb_device *dev, size_t size,
998         void *addr, dma_addr_t dma);
999
1000 #if 0
1001 struct urb *usb_buffer_map (struct urb *urb);
1002 void usb_buffer_dmasync (struct urb *urb);
1003 void usb_buffer_unmap (struct urb *urb);
1004 #endif
1005
1006 struct scatterlist;
1007 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1008                 struct scatterlist *sg, int nents);
1009 #if 0
1010 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1011                 struct scatterlist *sg, int n_hw_ents);
1012 #endif
1013 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1014                 struct scatterlist *sg, int n_hw_ents);
1015
1016 /*-------------------------------------------------------------------*
1017  *                         SYNCHRONOUS CALL SUPPORT                  *
1018  *-------------------------------------------------------------------*/
1019
1020 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1021         __u8 request, __u8 requesttype, __u16 value, __u16 index,
1022         void *data, __u16 size, int timeout);
1023 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1024         void *data, int len, int *actual_length, int timeout);
1025 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1026         void *data, int len, int *actual_length,
1027         int timeout);
1028
1029 /* wrappers around usb_control_msg() for the most common standard requests */
1030 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1031         unsigned char descindex, void *buf, int size);
1032 extern int usb_get_status(struct usb_device *dev,
1033         int type, int target, void *data);
1034 extern int usb_string(struct usb_device *dev, int index,
1035         char *buf, size_t size);
1036
1037 /* wrappers that also update important state inside usbcore */
1038 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1039 extern int usb_reset_configuration(struct usb_device *dev);
1040 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1041
1042 /*
1043  * timeouts, in milliseconds, used for sending/receiving control messages
1044  * they typically complete within a few frames (msec) after they're issued
1045  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1046  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1047  */
1048 #define USB_CTRL_GET_TIMEOUT    5000
1049 #define USB_CTRL_SET_TIMEOUT    5000
1050
1051
1052 /**
1053  * struct usb_sg_request - support for scatter/gather I/O
1054  * @status: zero indicates success, else negative errno
1055  * @bytes: counts bytes transferred.
1056  *
1057  * These requests are initialized using usb_sg_init(), and then are used
1058  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1059  * members of the request object aren't for driver access.
1060  *
1061  * The status and bytecount values are valid only after usb_sg_wait()
1062  * returns.  If the status is zero, then the bytecount matches the total
1063  * from the request.
1064  *
1065  * After an error completion, drivers may need to clear a halt condition
1066  * on the endpoint.
1067  */
1068 struct usb_sg_request {
1069         int                     status;
1070         size_t                  bytes;
1071
1072         /* 
1073          * members below are private: to usbcore,
1074          * and are not provided for driver access!
1075          */
1076         spinlock_t              lock;
1077
1078         struct usb_device       *dev;
1079         int                     pipe;
1080         struct scatterlist      *sg;
1081         int                     nents;
1082
1083         int                     entries;
1084         struct urb              **urbs;
1085
1086         int                     count;
1087         struct completion       complete;
1088 };
1089
1090 int usb_sg_init (
1091         struct usb_sg_request   *io,
1092         struct usb_device       *dev,
1093         unsigned                pipe, 
1094         unsigned                period,
1095         struct scatterlist      *sg,
1096         int                     nents,
1097         size_t                  length,
1098         gfp_t                   mem_flags
1099 );
1100 void usb_sg_cancel (struct usb_sg_request *io);
1101 void usb_sg_wait (struct usb_sg_request *io);
1102
1103
1104 /* ----------------------------------------------------------------------- */
1105
1106 /*
1107  * For various legacy reasons, Linux has a small cookie that's paired with
1108  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1109  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1110  * an unsigned int encoded as:
1111  *
1112  *  - direction:        bit 7           (0 = Host-to-Device [Out],
1113  *                                       1 = Device-to-Host [In] ...
1114  *                                      like endpoint bEndpointAddress)
1115  *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1116  *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1117  *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1118  *                                       10 = control, 11 = bulk)
1119  *
1120  * Given the device address and endpoint descriptor, pipes are redundant.
1121  */
1122
1123 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1124 /* (yet ... they're the values used by usbfs) */
1125 #define PIPE_ISOCHRONOUS                0
1126 #define PIPE_INTERRUPT                  1
1127 #define PIPE_CONTROL                    2
1128 #define PIPE_BULK                       3
1129
1130 #define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1131 #define usb_pipeout(pipe)       (!usb_pipein(pipe))
1132
1133 #define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1134 #define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1135
1136 #define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1137 #define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1138 #define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1139 #define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1140 #define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1141
1142 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1143 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1144 #define usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1145 #define usb_settoggle(dev, ep, out, bit) \
1146                 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1147                  ((bit) << (ep)))
1148
1149
1150 static inline unsigned int __create_pipe(struct usb_device *dev,
1151                 unsigned int endpoint)
1152 {
1153         return (dev->devnum << 8) | (endpoint << 15);
1154 }
1155
1156 /* Create various pipes... */
1157 #define usb_sndctrlpipe(dev,endpoint)   \
1158         ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1159 #define usb_rcvctrlpipe(dev,endpoint)   \
1160         ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1161 #define usb_sndisocpipe(dev,endpoint)   \
1162         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1163 #define usb_rcvisocpipe(dev,endpoint)   \
1164         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1165 #define usb_sndbulkpipe(dev,endpoint)   \
1166         ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1167 #define usb_rcvbulkpipe(dev,endpoint)   \
1168         ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1169 #define usb_sndintpipe(dev,endpoint)    \
1170         ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1171 #define usb_rcvintpipe(dev,endpoint)    \
1172         ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1173
1174 /*-------------------------------------------------------------------------*/
1175
1176 static inline __u16
1177 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1178 {
1179         struct usb_host_endpoint        *ep;
1180         unsigned                        epnum = usb_pipeendpoint(pipe);
1181
1182         if (is_out) {
1183                 WARN_ON(usb_pipein(pipe));
1184                 ep = udev->ep_out[epnum];
1185         } else {
1186                 WARN_ON(usb_pipeout(pipe));
1187                 ep = udev->ep_in[epnum];
1188         }
1189         if (!ep)
1190                 return 0;
1191
1192         /* NOTE:  only 0x07ff bits are for packet size... */
1193         return le16_to_cpu(ep->desc.wMaxPacketSize);
1194 }
1195
1196 /* ----------------------------------------------------------------------- */
1197
1198 /* Events from the usb core */
1199 #define USB_DEVICE_ADD          0x0001
1200 #define USB_DEVICE_REMOVE       0x0002
1201 #define USB_BUS_ADD             0x0003
1202 #define USB_BUS_REMOVE          0x0004
1203 extern void usb_register_notify(struct notifier_block *nb);
1204 extern void usb_unregister_notify(struct notifier_block *nb);
1205
1206 #ifdef DEBUG
1207 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1208         __FILE__ , ## arg)
1209 #else
1210 #define dbg(format, arg...) do {} while (0)
1211 #endif
1212
1213 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1214         __FILE__ , ## arg)
1215 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1216         __FILE__ , ## arg)
1217 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1218         __FILE__ , ## arg)
1219
1220
1221 #endif  /* __KERNEL__ */
1222
1223 #endif