2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 * far_offset (stored in bit 16 of layout )
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
42 * near_copies and far_copies must be at least one, and their product is at most
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
51 * Number of guaranteed r10bios in case of extreme VM load:
53 #define NR_RAID10_BIOS 256
55 static void unplug_slaves(mddev_t *mddev);
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
64 int size = offsetof(struct r10bio_s, devs[conf->copies]);
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
67 r10_bio = kzalloc(size, gfp_flags);
69 unplug_slaves(conf->mddev);
74 static void r10bio_pool_free(void *r10_bio, void *data)
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
101 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
103 unplug_slaves(conf->mddev);
107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108 nalloc = conf->copies; /* resync */
110 nalloc = 2; /* recovery */
115 for (j = nalloc ; j-- ; ) {
116 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
119 r10_bio->devs[j].bio = bio;
122 * Allocate RESYNC_PAGES data pages and attach them
125 for (j = 0 ; j < nalloc; j++) {
126 bio = r10_bio->devs[j].bio;
127 for (i = 0; i < RESYNC_PAGES; i++) {
128 page = alloc_page(gfp_flags);
132 bio->bi_io_vec[i].bv_page = page;
140 safe_put_page(bio->bi_io_vec[i-1].bv_page);
142 for (i = 0; i < RESYNC_PAGES ; i++)
143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
146 while ( ++j < nalloc )
147 bio_put(r10_bio->devs[j].bio);
148 r10bio_pool_free(r10_bio, conf);
152 static void r10buf_pool_free(void *__r10_bio, void *data)
156 r10bio_t *r10bio = __r10_bio;
159 for (j=0; j < conf->copies; j++) {
160 struct bio *bio = r10bio->devs[j].bio;
162 for (i = 0; i < RESYNC_PAGES; i++) {
163 safe_put_page(bio->bi_io_vec[i].bv_page);
164 bio->bi_io_vec[i].bv_page = NULL;
169 r10bio_pool_free(r10bio, conf);
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
176 for (i = 0; i < conf->copies; i++) {
177 struct bio **bio = & r10_bio->devs[i].bio;
178 if (*bio && *bio != IO_BLOCKED)
184 static void free_r10bio(r10bio_t *r10_bio)
186 conf_t *conf = mddev_to_conf(r10_bio->mddev);
189 * Wake up any possible resync thread that waits for the device
194 put_all_bios(conf, r10_bio);
195 mempool_free(r10_bio, conf->r10bio_pool);
198 static void put_buf(r10bio_t *r10_bio)
200 conf_t *conf = mddev_to_conf(r10_bio->mddev);
202 mempool_free(r10_bio, conf->r10buf_pool);
207 static void reschedule_retry(r10bio_t *r10_bio)
210 mddev_t *mddev = r10_bio->mddev;
211 conf_t *conf = mddev_to_conf(mddev);
213 spin_lock_irqsave(&conf->device_lock, flags);
214 list_add(&r10_bio->retry_list, &conf->retry_list);
216 spin_unlock_irqrestore(&conf->device_lock, flags);
218 md_wakeup_thread(mddev->thread);
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
226 static void raid_end_bio_io(r10bio_t *r10_bio)
228 struct bio *bio = r10_bio->master_bio;
231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232 free_r10bio(r10_bio);
236 * Update disk head position estimator based on IRQ completion info.
238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
240 conf_t *conf = mddev_to_conf(r10_bio->mddev);
242 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243 r10_bio->devs[slot].addr + (r10_bio->sectors);
246 static void raid10_end_read_request(struct bio *bio, int error)
248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
251 conf_t *conf = mddev_to_conf(r10_bio->mddev);
254 slot = r10_bio->read_slot;
255 dev = r10_bio->devs[slot].devnum;
257 * this branch is our 'one mirror IO has finished' event handler:
259 update_head_pos(slot, r10_bio);
263 * Set R10BIO_Uptodate in our master bio, so that
264 * we will return a good error code to the higher
265 * levels even if IO on some other mirrored buffer fails.
267 * The 'master' represents the composite IO operation to
268 * user-side. So if something waits for IO, then it will
269 * wait for the 'master' bio.
271 set_bit(R10BIO_Uptodate, &r10_bio->state);
272 raid_end_bio_io(r10_bio);
277 char b[BDEVNAME_SIZE];
278 if (printk_ratelimit())
279 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
280 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
281 reschedule_retry(r10_bio);
284 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
287 static void raid10_end_write_request(struct bio *bio, int error)
289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
292 conf_t *conf = mddev_to_conf(r10_bio->mddev);
294 for (slot = 0; slot < conf->copies; slot++)
295 if (r10_bio->devs[slot].bio == bio)
297 dev = r10_bio->devs[slot].devnum;
300 * this branch is our 'one mirror IO has finished' event handler:
303 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
304 /* an I/O failed, we can't clear the bitmap */
305 set_bit(R10BIO_Degraded, &r10_bio->state);
308 * Set R10BIO_Uptodate in our master bio, so that
309 * we will return a good error code for to the higher
310 * levels even if IO on some other mirrored buffer fails.
312 * The 'master' represents the composite IO operation to
313 * user-side. So if something waits for IO, then it will
314 * wait for the 'master' bio.
316 set_bit(R10BIO_Uptodate, &r10_bio->state);
318 update_head_pos(slot, r10_bio);
322 * Let's see if all mirrored write operations have finished
325 if (atomic_dec_and_test(&r10_bio->remaining)) {
326 /* clear the bitmap if all writes complete successfully */
327 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
329 !test_bit(R10BIO_Degraded, &r10_bio->state),
331 md_write_end(r10_bio->mddev);
332 raid_end_bio_io(r10_bio);
335 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
340 * RAID10 layout manager
341 * Aswell as the chunksize and raid_disks count, there are two
342 * parameters: near_copies and far_copies.
343 * near_copies * far_copies must be <= raid_disks.
344 * Normally one of these will be 1.
345 * If both are 1, we get raid0.
346 * If near_copies == raid_disks, we get raid1.
348 * Chunks are layed out in raid0 style with near_copies copies of the
349 * first chunk, followed by near_copies copies of the next chunk and
351 * If far_copies > 1, then after 1/far_copies of the array has been assigned
352 * as described above, we start again with a device offset of near_copies.
353 * So we effectively have another copy of the whole array further down all
354 * the drives, but with blocks on different drives.
355 * With this layout, and block is never stored twice on the one device.
357 * raid10_find_phys finds the sector offset of a given virtual sector
358 * on each device that it is on.
360 * raid10_find_virt does the reverse mapping, from a device and a
361 * sector offset to a virtual address
364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
374 /* now calculate first sector/dev */
375 chunk = r10bio->sector >> conf->chunk_shift;
376 sector = r10bio->sector & conf->chunk_mask;
378 chunk *= conf->near_copies;
380 dev = sector_div(stripe, conf->raid_disks);
381 if (conf->far_offset)
382 stripe *= conf->far_copies;
384 sector += stripe << conf->chunk_shift;
386 /* and calculate all the others */
387 for (n=0; n < conf->near_copies; n++) {
390 r10bio->devs[slot].addr = sector;
391 r10bio->devs[slot].devnum = d;
394 for (f = 1; f < conf->far_copies; f++) {
395 d += conf->near_copies;
396 if (d >= conf->raid_disks)
397 d -= conf->raid_disks;
399 r10bio->devs[slot].devnum = d;
400 r10bio->devs[slot].addr = s;
404 if (dev >= conf->raid_disks) {
406 sector += (conf->chunk_mask + 1);
409 BUG_ON(slot != conf->copies);
412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
414 sector_t offset, chunk, vchunk;
416 offset = sector & conf->chunk_mask;
417 if (conf->far_offset) {
419 chunk = sector >> conf->chunk_shift;
420 fc = sector_div(chunk, conf->far_copies);
421 dev -= fc * conf->near_copies;
423 dev += conf->raid_disks;
425 while (sector >= conf->stride) {
426 sector -= conf->stride;
427 if (dev < conf->near_copies)
428 dev += conf->raid_disks - conf->near_copies;
430 dev -= conf->near_copies;
432 chunk = sector >> conf->chunk_shift;
434 vchunk = chunk * conf->raid_disks + dev;
435 sector_div(vchunk, conf->near_copies);
436 return (vchunk << conf->chunk_shift) + offset;
440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
442 * @bio: the buffer head that's been built up so far
443 * @biovec: the request that could be merged to it.
445 * Return amount of bytes we can accept at this offset
446 * If near_copies == raid_disk, there are no striping issues,
447 * but in that case, the function isn't called at all.
449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio,
450 struct bio_vec *bio_vec)
452 mddev_t *mddev = q->queuedata;
453 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
455 unsigned int chunk_sectors = mddev->chunk_size >> 9;
456 unsigned int bio_sectors = bio->bi_size >> 9;
458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
459 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
460 if (max <= bio_vec->bv_len && bio_sectors == 0)
461 return bio_vec->bv_len;
467 * This routine returns the disk from which the requested read should
468 * be done. There is a per-array 'next expected sequential IO' sector
469 * number - if this matches on the next IO then we use the last disk.
470 * There is also a per-disk 'last know head position' sector that is
471 * maintained from IRQ contexts, both the normal and the resync IO
472 * completion handlers update this position correctly. If there is no
473 * perfect sequential match then we pick the disk whose head is closest.
475 * If there are 2 mirrors in the same 2 devices, performance degrades
476 * because position is mirror, not device based.
478 * The rdev for the device selected will have nr_pending incremented.
482 * FIXME: possibly should rethink readbalancing and do it differently
483 * depending on near_copies / far_copies geometry.
485 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
487 const unsigned long this_sector = r10_bio->sector;
488 int disk, slot, nslot;
489 const int sectors = r10_bio->sectors;
490 sector_t new_distance, current_distance;
493 raid10_find_phys(conf, r10_bio);
496 * Check if we can balance. We can balance on the whole
497 * device if no resync is going on (recovery is ok), or below
498 * the resync window. We take the first readable disk when
499 * above the resync window.
501 if (conf->mddev->recovery_cp < MaxSector
502 && (this_sector + sectors >= conf->next_resync)) {
503 /* make sure that disk is operational */
505 disk = r10_bio->devs[slot].devnum;
507 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
508 r10_bio->devs[slot].bio == IO_BLOCKED ||
509 !test_bit(In_sync, &rdev->flags)) {
511 if (slot == conf->copies) {
516 disk = r10_bio->devs[slot].devnum;
522 /* make sure the disk is operational */
524 disk = r10_bio->devs[slot].devnum;
525 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
526 r10_bio->devs[slot].bio == IO_BLOCKED ||
527 !test_bit(In_sync, &rdev->flags)) {
529 if (slot == conf->copies) {
533 disk = r10_bio->devs[slot].devnum;
537 current_distance = abs(r10_bio->devs[slot].addr -
538 conf->mirrors[disk].head_position);
540 /* Find the disk whose head is closest */
542 for (nslot = slot; nslot < conf->copies; nslot++) {
543 int ndisk = r10_bio->devs[nslot].devnum;
546 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
547 r10_bio->devs[nslot].bio == IO_BLOCKED ||
548 !test_bit(In_sync, &rdev->flags))
551 /* This optimisation is debatable, and completely destroys
552 * sequential read speed for 'far copies' arrays. So only
553 * keep it for 'near' arrays, and review those later.
555 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
560 new_distance = abs(r10_bio->devs[nslot].addr -
561 conf->mirrors[ndisk].head_position);
562 if (new_distance < current_distance) {
563 current_distance = new_distance;
570 r10_bio->read_slot = slot;
571 /* conf->next_seq_sect = this_sector + sectors;*/
573 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
574 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
582 static void unplug_slaves(mddev_t *mddev)
584 conf_t *conf = mddev_to_conf(mddev);
588 for (i=0; i<mddev->raid_disks; i++) {
589 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
590 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
591 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
593 atomic_inc(&rdev->nr_pending);
596 if (r_queue->unplug_fn)
597 r_queue->unplug_fn(r_queue);
599 rdev_dec_pending(rdev, mddev);
606 static void raid10_unplug(struct request_queue *q)
608 mddev_t *mddev = q->queuedata;
610 unplug_slaves(q->queuedata);
611 md_wakeup_thread(mddev->thread);
614 static int raid10_congested(void *data, int bits)
616 mddev_t *mddev = data;
617 conf_t *conf = mddev_to_conf(mddev);
621 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
622 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
623 if (rdev && !test_bit(Faulty, &rdev->flags)) {
624 struct request_queue *q = bdev_get_queue(rdev->bdev);
626 ret |= bdi_congested(&q->backing_dev_info, bits);
635 * Sometimes we need to suspend IO while we do something else,
636 * either some resync/recovery, or reconfigure the array.
637 * To do this we raise a 'barrier'.
638 * The 'barrier' is a counter that can be raised multiple times
639 * to count how many activities are happening which preclude
641 * We can only raise the barrier if there is no pending IO.
642 * i.e. if nr_pending == 0.
643 * We choose only to raise the barrier if no-one is waiting for the
644 * barrier to go down. This means that as soon as an IO request
645 * is ready, no other operations which require a barrier will start
646 * until the IO request has had a chance.
648 * So: regular IO calls 'wait_barrier'. When that returns there
649 * is no backgroup IO happening, It must arrange to call
650 * allow_barrier when it has finished its IO.
651 * backgroup IO calls must call raise_barrier. Once that returns
652 * there is no normal IO happeing. It must arrange to call
653 * lower_barrier when the particular background IO completes.
655 #define RESYNC_DEPTH 32
657 static void raise_barrier(conf_t *conf, int force)
659 BUG_ON(force && !conf->barrier);
660 spin_lock_irq(&conf->resync_lock);
662 /* Wait until no block IO is waiting (unless 'force') */
663 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
665 raid10_unplug(conf->mddev->queue));
667 /* block any new IO from starting */
670 /* No wait for all pending IO to complete */
671 wait_event_lock_irq(conf->wait_barrier,
672 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
674 raid10_unplug(conf->mddev->queue));
676 spin_unlock_irq(&conf->resync_lock);
679 static void lower_barrier(conf_t *conf)
682 spin_lock_irqsave(&conf->resync_lock, flags);
684 spin_unlock_irqrestore(&conf->resync_lock, flags);
685 wake_up(&conf->wait_barrier);
688 static void wait_barrier(conf_t *conf)
690 spin_lock_irq(&conf->resync_lock);
693 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
695 raid10_unplug(conf->mddev->queue));
699 spin_unlock_irq(&conf->resync_lock);
702 static void allow_barrier(conf_t *conf)
705 spin_lock_irqsave(&conf->resync_lock, flags);
707 spin_unlock_irqrestore(&conf->resync_lock, flags);
708 wake_up(&conf->wait_barrier);
711 static void freeze_array(conf_t *conf)
713 /* stop syncio and normal IO and wait for everything to
715 * We increment barrier and nr_waiting, and then
716 * wait until barrier+nr_pending match nr_queued+2
718 spin_lock_irq(&conf->resync_lock);
721 wait_event_lock_irq(conf->wait_barrier,
722 conf->barrier+conf->nr_pending == conf->nr_queued+2,
724 raid10_unplug(conf->mddev->queue));
725 spin_unlock_irq(&conf->resync_lock);
728 static void unfreeze_array(conf_t *conf)
730 /* reverse the effect of the freeze */
731 spin_lock_irq(&conf->resync_lock);
734 wake_up(&conf->wait_barrier);
735 spin_unlock_irq(&conf->resync_lock);
738 static int make_request(struct request_queue *q, struct bio * bio)
740 mddev_t *mddev = q->queuedata;
741 conf_t *conf = mddev_to_conf(mddev);
742 mirror_info_t *mirror;
744 struct bio *read_bio;
746 int chunk_sects = conf->chunk_mask + 1;
747 const int rw = bio_data_dir(bio);
748 const int do_sync = bio_sync(bio);
752 if (unlikely(bio_barrier(bio))) {
753 bio_endio(bio, -EOPNOTSUPP);
757 /* If this request crosses a chunk boundary, we need to
758 * split it. This will only happen for 1 PAGE (or less) requests.
760 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
762 conf->near_copies < conf->raid_disks)) {
764 /* Sanity check -- queue functions should prevent this happening */
765 if (bio->bi_vcnt != 1 ||
768 /* This is a one page bio that upper layers
769 * refuse to split for us, so we need to split it.
771 bp = bio_split(bio, bio_split_pool,
772 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
773 if (make_request(q, &bp->bio1))
774 generic_make_request(&bp->bio1);
775 if (make_request(q, &bp->bio2))
776 generic_make_request(&bp->bio2);
778 bio_pair_release(bp);
781 printk("raid10_make_request bug: can't convert block across chunks"
782 " or bigger than %dk %llu %d\n", chunk_sects/2,
783 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
789 md_write_start(mddev, bio);
792 * Register the new request and wait if the reconstruction
793 * thread has put up a bar for new requests.
794 * Continue immediately if no resync is active currently.
798 disk_stat_inc(mddev->gendisk, ios[rw]);
799 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
801 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
803 r10_bio->master_bio = bio;
804 r10_bio->sectors = bio->bi_size >> 9;
806 r10_bio->mddev = mddev;
807 r10_bio->sector = bio->bi_sector;
812 * read balancing logic:
814 int disk = read_balance(conf, r10_bio);
815 int slot = r10_bio->read_slot;
817 raid_end_bio_io(r10_bio);
820 mirror = conf->mirrors + disk;
822 read_bio = bio_clone(bio, GFP_NOIO);
824 r10_bio->devs[slot].bio = read_bio;
826 read_bio->bi_sector = r10_bio->devs[slot].addr +
827 mirror->rdev->data_offset;
828 read_bio->bi_bdev = mirror->rdev->bdev;
829 read_bio->bi_end_io = raid10_end_read_request;
830 read_bio->bi_rw = READ | do_sync;
831 read_bio->bi_private = r10_bio;
833 generic_make_request(read_bio);
840 /* first select target devices under spinlock and
841 * inc refcount on their rdev. Record them by setting
844 raid10_find_phys(conf, r10_bio);
846 for (i = 0; i < conf->copies; i++) {
847 int d = r10_bio->devs[i].devnum;
848 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
850 !test_bit(Faulty, &rdev->flags)) {
851 atomic_inc(&rdev->nr_pending);
852 r10_bio->devs[i].bio = bio;
854 r10_bio->devs[i].bio = NULL;
855 set_bit(R10BIO_Degraded, &r10_bio->state);
860 atomic_set(&r10_bio->remaining, 0);
863 for (i = 0; i < conf->copies; i++) {
865 int d = r10_bio->devs[i].devnum;
866 if (!r10_bio->devs[i].bio)
869 mbio = bio_clone(bio, GFP_NOIO);
870 r10_bio->devs[i].bio = mbio;
872 mbio->bi_sector = r10_bio->devs[i].addr+
873 conf->mirrors[d].rdev->data_offset;
874 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
875 mbio->bi_end_io = raid10_end_write_request;
876 mbio->bi_rw = WRITE | do_sync;
877 mbio->bi_private = r10_bio;
879 atomic_inc(&r10_bio->remaining);
880 bio_list_add(&bl, mbio);
883 if (unlikely(!atomic_read(&r10_bio->remaining))) {
884 /* the array is dead */
886 raid_end_bio_io(r10_bio);
890 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
891 spin_lock_irqsave(&conf->device_lock, flags);
892 bio_list_merge(&conf->pending_bio_list, &bl);
893 blk_plug_device(mddev->queue);
894 spin_unlock_irqrestore(&conf->device_lock, flags);
897 md_wakeup_thread(mddev->thread);
902 static void status(struct seq_file *seq, mddev_t *mddev)
904 conf_t *conf = mddev_to_conf(mddev);
907 if (conf->near_copies < conf->raid_disks)
908 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
909 if (conf->near_copies > 1)
910 seq_printf(seq, " %d near-copies", conf->near_copies);
911 if (conf->far_copies > 1) {
912 if (conf->far_offset)
913 seq_printf(seq, " %d offset-copies", conf->far_copies);
915 seq_printf(seq, " %d far-copies", conf->far_copies);
917 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
918 conf->raid_disks - mddev->degraded);
919 for (i = 0; i < conf->raid_disks; i++)
920 seq_printf(seq, "%s",
921 conf->mirrors[i].rdev &&
922 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
923 seq_printf(seq, "]");
926 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
928 char b[BDEVNAME_SIZE];
929 conf_t *conf = mddev_to_conf(mddev);
932 * If it is not operational, then we have already marked it as dead
933 * else if it is the last working disks, ignore the error, let the
934 * next level up know.
935 * else mark the drive as failed
937 if (test_bit(In_sync, &rdev->flags)
938 && conf->raid_disks-mddev->degraded == 1)
940 * Don't fail the drive, just return an IO error.
941 * The test should really be more sophisticated than
942 * "working_disks == 1", but it isn't critical, and
943 * can wait until we do more sophisticated "is the drive
944 * really dead" tests...
947 if (test_and_clear_bit(In_sync, &rdev->flags)) {
949 spin_lock_irqsave(&conf->device_lock, flags);
951 spin_unlock_irqrestore(&conf->device_lock, flags);
953 * if recovery is running, make sure it aborts.
955 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
957 set_bit(Faulty, &rdev->flags);
958 set_bit(MD_CHANGE_DEVS, &mddev->flags);
959 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
960 " Operation continuing on %d devices\n",
961 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
964 static void print_conf(conf_t *conf)
969 printk("RAID10 conf printout:\n");
974 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
977 for (i = 0; i < conf->raid_disks; i++) {
978 char b[BDEVNAME_SIZE];
979 tmp = conf->mirrors + i;
981 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
982 i, !test_bit(In_sync, &tmp->rdev->flags),
983 !test_bit(Faulty, &tmp->rdev->flags),
984 bdevname(tmp->rdev->bdev,b));
988 static void close_sync(conf_t *conf)
993 mempool_destroy(conf->r10buf_pool);
994 conf->r10buf_pool = NULL;
997 /* check if there are enough drives for
998 * every block to appear on atleast one
1000 static int enough(conf_t *conf)
1005 int n = conf->copies;
1008 if (conf->mirrors[first].rdev)
1010 first = (first+1) % conf->raid_disks;
1014 } while (first != 0);
1018 static int raid10_spare_active(mddev_t *mddev)
1021 conf_t *conf = mddev->private;
1025 * Find all non-in_sync disks within the RAID10 configuration
1026 * and mark them in_sync
1028 for (i = 0; i < conf->raid_disks; i++) {
1029 tmp = conf->mirrors + i;
1031 && !test_bit(Faulty, &tmp->rdev->flags)
1032 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1033 unsigned long flags;
1034 spin_lock_irqsave(&conf->device_lock, flags);
1036 spin_unlock_irqrestore(&conf->device_lock, flags);
1045 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1047 conf_t *conf = mddev->private;
1052 if (mddev->recovery_cp < MaxSector)
1053 /* only hot-add to in-sync arrays, as recovery is
1054 * very different from resync
1060 if (rdev->saved_raid_disk >= 0 &&
1061 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1062 mirror = rdev->saved_raid_disk;
1065 for ( ; mirror < mddev->raid_disks; mirror++)
1066 if ( !(p=conf->mirrors+mirror)->rdev) {
1068 blk_queue_stack_limits(mddev->queue,
1069 rdev->bdev->bd_disk->queue);
1070 /* as we don't honour merge_bvec_fn, we must never risk
1071 * violating it, so limit ->max_sector to one PAGE, as
1072 * a one page request is never in violation.
1074 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1075 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1076 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1078 p->head_position = 0;
1079 rdev->raid_disk = mirror;
1081 if (rdev->saved_raid_disk != mirror)
1083 rcu_assign_pointer(p->rdev, rdev);
1091 static int raid10_remove_disk(mddev_t *mddev, int number)
1093 conf_t *conf = mddev->private;
1096 mirror_info_t *p = conf->mirrors+ number;
1101 if (test_bit(In_sync, &rdev->flags) ||
1102 atomic_read(&rdev->nr_pending)) {
1108 if (atomic_read(&rdev->nr_pending)) {
1109 /* lost the race, try later */
1121 static void end_sync_read(struct bio *bio, int error)
1123 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1124 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1127 for (i=0; i<conf->copies; i++)
1128 if (r10_bio->devs[i].bio == bio)
1130 BUG_ON(i == conf->copies);
1131 update_head_pos(i, r10_bio);
1132 d = r10_bio->devs[i].devnum;
1134 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1135 set_bit(R10BIO_Uptodate, &r10_bio->state);
1137 atomic_add(r10_bio->sectors,
1138 &conf->mirrors[d].rdev->corrected_errors);
1139 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1140 md_error(r10_bio->mddev,
1141 conf->mirrors[d].rdev);
1144 /* for reconstruct, we always reschedule after a read.
1145 * for resync, only after all reads
1147 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1148 atomic_dec_and_test(&r10_bio->remaining)) {
1149 /* we have read all the blocks,
1150 * do the comparison in process context in raid10d
1152 reschedule_retry(r10_bio);
1154 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1157 static void end_sync_write(struct bio *bio, int error)
1159 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1160 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1161 mddev_t *mddev = r10_bio->mddev;
1162 conf_t *conf = mddev_to_conf(mddev);
1165 for (i = 0; i < conf->copies; i++)
1166 if (r10_bio->devs[i].bio == bio)
1168 d = r10_bio->devs[i].devnum;
1171 md_error(mddev, conf->mirrors[d].rdev);
1172 update_head_pos(i, r10_bio);
1174 while (atomic_dec_and_test(&r10_bio->remaining)) {
1175 if (r10_bio->master_bio == NULL) {
1176 /* the primary of several recovery bios */
1177 md_done_sync(mddev, r10_bio->sectors, 1);
1181 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1186 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1190 * Note: sync and recover and handled very differently for raid10
1191 * This code is for resync.
1192 * For resync, we read through virtual addresses and read all blocks.
1193 * If there is any error, we schedule a write. The lowest numbered
1194 * drive is authoritative.
1195 * However requests come for physical address, so we need to map.
1196 * For every physical address there are raid_disks/copies virtual addresses,
1197 * which is always are least one, but is not necessarly an integer.
1198 * This means that a physical address can span multiple chunks, so we may
1199 * have to submit multiple io requests for a single sync request.
1202 * We check if all blocks are in-sync and only write to blocks that
1205 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1207 conf_t *conf = mddev_to_conf(mddev);
1209 struct bio *tbio, *fbio;
1211 atomic_set(&r10_bio->remaining, 1);
1213 /* find the first device with a block */
1214 for (i=0; i<conf->copies; i++)
1215 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1218 if (i == conf->copies)
1222 fbio = r10_bio->devs[i].bio;
1224 /* now find blocks with errors */
1225 for (i=0 ; i < conf->copies ; i++) {
1227 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1229 tbio = r10_bio->devs[i].bio;
1231 if (tbio->bi_end_io != end_sync_read)
1235 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1236 /* We know that the bi_io_vec layout is the same for
1237 * both 'first' and 'i', so we just compare them.
1238 * All vec entries are PAGE_SIZE;
1240 for (j = 0; j < vcnt; j++)
1241 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1242 page_address(tbio->bi_io_vec[j].bv_page),
1247 mddev->resync_mismatches += r10_bio->sectors;
1249 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1250 /* Don't fix anything. */
1252 /* Ok, we need to write this bio
1253 * First we need to fixup bv_offset, bv_len and
1254 * bi_vecs, as the read request might have corrupted these
1256 tbio->bi_vcnt = vcnt;
1257 tbio->bi_size = r10_bio->sectors << 9;
1259 tbio->bi_phys_segments = 0;
1260 tbio->bi_hw_segments = 0;
1261 tbio->bi_hw_front_size = 0;
1262 tbio->bi_hw_back_size = 0;
1263 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1264 tbio->bi_flags |= 1 << BIO_UPTODATE;
1265 tbio->bi_next = NULL;
1266 tbio->bi_rw = WRITE;
1267 tbio->bi_private = r10_bio;
1268 tbio->bi_sector = r10_bio->devs[i].addr;
1270 for (j=0; j < vcnt ; j++) {
1271 tbio->bi_io_vec[j].bv_offset = 0;
1272 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1274 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1275 page_address(fbio->bi_io_vec[j].bv_page),
1278 tbio->bi_end_io = end_sync_write;
1280 d = r10_bio->devs[i].devnum;
1281 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1282 atomic_inc(&r10_bio->remaining);
1283 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1285 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1286 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1287 generic_make_request(tbio);
1291 if (atomic_dec_and_test(&r10_bio->remaining)) {
1292 md_done_sync(mddev, r10_bio->sectors, 1);
1298 * Now for the recovery code.
1299 * Recovery happens across physical sectors.
1300 * We recover all non-is_sync drives by finding the virtual address of
1301 * each, and then choose a working drive that also has that virt address.
1302 * There is a separate r10_bio for each non-in_sync drive.
1303 * Only the first two slots are in use. The first for reading,
1304 * The second for writing.
1308 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1310 conf_t *conf = mddev_to_conf(mddev);
1312 struct bio *bio, *wbio;
1315 /* move the pages across to the second bio
1316 * and submit the write request
1318 bio = r10_bio->devs[0].bio;
1319 wbio = r10_bio->devs[1].bio;
1320 for (i=0; i < wbio->bi_vcnt; i++) {
1321 struct page *p = bio->bi_io_vec[i].bv_page;
1322 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1323 wbio->bi_io_vec[i].bv_page = p;
1325 d = r10_bio->devs[1].devnum;
1327 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1328 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1329 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1330 generic_make_request(wbio);
1332 bio_endio(wbio, -EIO);
1337 * This is a kernel thread which:
1339 * 1. Retries failed read operations on working mirrors.
1340 * 2. Updates the raid superblock when problems encounter.
1341 * 3. Performs writes following reads for array synchronising.
1344 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1346 int sect = 0; /* Offset from r10_bio->sector */
1347 int sectors = r10_bio->sectors;
1351 int sl = r10_bio->read_slot;
1355 if (s > (PAGE_SIZE>>9))
1360 int d = r10_bio->devs[sl].devnum;
1361 rdev = rcu_dereference(conf->mirrors[d].rdev);
1363 test_bit(In_sync, &rdev->flags)) {
1364 atomic_inc(&rdev->nr_pending);
1366 success = sync_page_io(rdev->bdev,
1367 r10_bio->devs[sl].addr +
1368 sect + rdev->data_offset,
1370 conf->tmppage, READ);
1371 rdev_dec_pending(rdev, mddev);
1377 if (sl == conf->copies)
1379 } while (!success && sl != r10_bio->read_slot);
1383 /* Cannot read from anywhere -- bye bye array */
1384 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1385 md_error(mddev, conf->mirrors[dn].rdev);
1390 /* write it back and re-read */
1392 while (sl != r10_bio->read_slot) {
1397 d = r10_bio->devs[sl].devnum;
1398 rdev = rcu_dereference(conf->mirrors[d].rdev);
1400 test_bit(In_sync, &rdev->flags)) {
1401 atomic_inc(&rdev->nr_pending);
1403 atomic_add(s, &rdev->corrected_errors);
1404 if (sync_page_io(rdev->bdev,
1405 r10_bio->devs[sl].addr +
1406 sect + rdev->data_offset,
1407 s<<9, conf->tmppage, WRITE)
1409 /* Well, this device is dead */
1410 md_error(mddev, rdev);
1411 rdev_dec_pending(rdev, mddev);
1416 while (sl != r10_bio->read_slot) {
1421 d = r10_bio->devs[sl].devnum;
1422 rdev = rcu_dereference(conf->mirrors[d].rdev);
1424 test_bit(In_sync, &rdev->flags)) {
1425 char b[BDEVNAME_SIZE];
1426 atomic_inc(&rdev->nr_pending);
1428 if (sync_page_io(rdev->bdev,
1429 r10_bio->devs[sl].addr +
1430 sect + rdev->data_offset,
1431 s<<9, conf->tmppage, READ) == 0)
1432 /* Well, this device is dead */
1433 md_error(mddev, rdev);
1436 "raid10:%s: read error corrected"
1437 " (%d sectors at %llu on %s)\n",
1439 (unsigned long long)(sect+
1441 bdevname(rdev->bdev, b));
1443 rdev_dec_pending(rdev, mddev);
1454 static void raid10d(mddev_t *mddev)
1458 unsigned long flags;
1459 conf_t *conf = mddev_to_conf(mddev);
1460 struct list_head *head = &conf->retry_list;
1464 md_check_recovery(mddev);
1467 char b[BDEVNAME_SIZE];
1468 spin_lock_irqsave(&conf->device_lock, flags);
1470 if (conf->pending_bio_list.head) {
1471 bio = bio_list_get(&conf->pending_bio_list);
1472 blk_remove_plug(mddev->queue);
1473 spin_unlock_irqrestore(&conf->device_lock, flags);
1474 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1475 bitmap_unplug(mddev->bitmap);
1477 while (bio) { /* submit pending writes */
1478 struct bio *next = bio->bi_next;
1479 bio->bi_next = NULL;
1480 generic_make_request(bio);
1488 if (list_empty(head))
1490 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1491 list_del(head->prev);
1493 spin_unlock_irqrestore(&conf->device_lock, flags);
1495 mddev = r10_bio->mddev;
1496 conf = mddev_to_conf(mddev);
1497 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1498 sync_request_write(mddev, r10_bio);
1500 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1501 recovery_request_write(mddev, r10_bio);
1505 /* we got a read error. Maybe the drive is bad. Maybe just
1506 * the block and we can fix it.
1507 * We freeze all other IO, and try reading the block from
1508 * other devices. When we find one, we re-write
1509 * and check it that fixes the read error.
1510 * This is all done synchronously while the array is
1513 if (mddev->ro == 0) {
1515 fix_read_error(conf, mddev, r10_bio);
1516 unfreeze_array(conf);
1519 bio = r10_bio->devs[r10_bio->read_slot].bio;
1520 r10_bio->devs[r10_bio->read_slot].bio =
1521 mddev->ro ? IO_BLOCKED : NULL;
1522 mirror = read_balance(conf, r10_bio);
1524 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1525 " read error for block %llu\n",
1526 bdevname(bio->bi_bdev,b),
1527 (unsigned long long)r10_bio->sector);
1528 raid_end_bio_io(r10_bio);
1531 const int do_sync = bio_sync(r10_bio->master_bio);
1533 rdev = conf->mirrors[mirror].rdev;
1534 if (printk_ratelimit())
1535 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1536 " another mirror\n",
1537 bdevname(rdev->bdev,b),
1538 (unsigned long long)r10_bio->sector);
1539 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1540 r10_bio->devs[r10_bio->read_slot].bio = bio;
1541 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1542 + rdev->data_offset;
1543 bio->bi_bdev = rdev->bdev;
1544 bio->bi_rw = READ | do_sync;
1545 bio->bi_private = r10_bio;
1546 bio->bi_end_io = raid10_end_read_request;
1548 generic_make_request(bio);
1552 spin_unlock_irqrestore(&conf->device_lock, flags);
1554 unplug_slaves(mddev);
1558 static int init_resync(conf_t *conf)
1562 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1563 BUG_ON(conf->r10buf_pool);
1564 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1565 if (!conf->r10buf_pool)
1567 conf->next_resync = 0;
1572 * perform a "sync" on one "block"
1574 * We need to make sure that no normal I/O request - particularly write
1575 * requests - conflict with active sync requests.
1577 * This is achieved by tracking pending requests and a 'barrier' concept
1578 * that can be installed to exclude normal IO requests.
1580 * Resync and recovery are handled very differently.
1581 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1583 * For resync, we iterate over virtual addresses, read all copies,
1584 * and update if there are differences. If only one copy is live,
1586 * For recovery, we iterate over physical addresses, read a good
1587 * value for each non-in_sync drive, and over-write.
1589 * So, for recovery we may have several outstanding complex requests for a
1590 * given address, one for each out-of-sync device. We model this by allocating
1591 * a number of r10_bio structures, one for each out-of-sync device.
1592 * As we setup these structures, we collect all bio's together into a list
1593 * which we then process collectively to add pages, and then process again
1594 * to pass to generic_make_request.
1596 * The r10_bio structures are linked using a borrowed master_bio pointer.
1597 * This link is counted in ->remaining. When the r10_bio that points to NULL
1598 * has its remaining count decremented to 0, the whole complex operation
1603 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1605 conf_t *conf = mddev_to_conf(mddev);
1607 struct bio *biolist = NULL, *bio;
1608 sector_t max_sector, nr_sectors;
1614 sector_t sectors_skipped = 0;
1615 int chunks_skipped = 0;
1617 if (!conf->r10buf_pool)
1618 if (init_resync(conf))
1622 max_sector = mddev->size << 1;
1623 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1624 max_sector = mddev->resync_max_sectors;
1625 if (sector_nr >= max_sector) {
1626 /* If we aborted, we need to abort the
1627 * sync on the 'current' bitmap chucks (there can
1628 * be several when recovering multiple devices).
1629 * as we may have started syncing it but not finished.
1630 * We can find the current address in
1631 * mddev->curr_resync, but for recovery,
1632 * we need to convert that to several
1633 * virtual addresses.
1635 if (mddev->curr_resync < max_sector) { /* aborted */
1636 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1637 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1639 else for (i=0; i<conf->raid_disks; i++) {
1641 raid10_find_virt(conf, mddev->curr_resync, i);
1642 bitmap_end_sync(mddev->bitmap, sect,
1645 } else /* completed sync */
1648 bitmap_close_sync(mddev->bitmap);
1651 return sectors_skipped;
1653 if (chunks_skipped >= conf->raid_disks) {
1654 /* if there has been nothing to do on any drive,
1655 * then there is nothing to do at all..
1658 return (max_sector - sector_nr) + sectors_skipped;
1661 /* make sure whole request will fit in a chunk - if chunks
1664 if (conf->near_copies < conf->raid_disks &&
1665 max_sector > (sector_nr | conf->chunk_mask))
1666 max_sector = (sector_nr | conf->chunk_mask) + 1;
1668 * If there is non-resync activity waiting for us then
1669 * put in a delay to throttle resync.
1671 if (!go_faster && conf->nr_waiting)
1672 msleep_interruptible(1000);
1674 /* Again, very different code for resync and recovery.
1675 * Both must result in an r10bio with a list of bios that
1676 * have bi_end_io, bi_sector, bi_bdev set,
1677 * and bi_private set to the r10bio.
1678 * For recovery, we may actually create several r10bios
1679 * with 2 bios in each, that correspond to the bios in the main one.
1680 * In this case, the subordinate r10bios link back through a
1681 * borrowed master_bio pointer, and the counter in the master
1682 * includes a ref from each subordinate.
1684 /* First, we decide what to do and set ->bi_end_io
1685 * To end_sync_read if we want to read, and
1686 * end_sync_write if we will want to write.
1689 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1690 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1691 /* recovery... the complicated one */
1695 for (i=0 ; i<conf->raid_disks; i++)
1696 if (conf->mirrors[i].rdev &&
1697 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1698 int still_degraded = 0;
1699 /* want to reconstruct this device */
1700 r10bio_t *rb2 = r10_bio;
1701 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1703 /* Unless we are doing a full sync, we only need
1704 * to recover the block if it is set in the bitmap
1706 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1708 if (sync_blocks < max_sync)
1709 max_sync = sync_blocks;
1712 /* yep, skip the sync_blocks here, but don't assume
1713 * that there will never be anything to do here
1715 chunks_skipped = -1;
1719 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1720 raise_barrier(conf, rb2 != NULL);
1721 atomic_set(&r10_bio->remaining, 0);
1723 r10_bio->master_bio = (struct bio*)rb2;
1725 atomic_inc(&rb2->remaining);
1726 r10_bio->mddev = mddev;
1727 set_bit(R10BIO_IsRecover, &r10_bio->state);
1728 r10_bio->sector = sect;
1730 raid10_find_phys(conf, r10_bio);
1731 /* Need to check if this section will still be
1734 for (j=0; j<conf->copies;j++) {
1735 int d = r10_bio->devs[j].devnum;
1736 if (conf->mirrors[d].rdev == NULL ||
1737 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1742 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1743 &sync_blocks, still_degraded);
1745 for (j=0; j<conf->copies;j++) {
1746 int d = r10_bio->devs[j].devnum;
1747 if (conf->mirrors[d].rdev &&
1748 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1749 /* This is where we read from */
1750 bio = r10_bio->devs[0].bio;
1751 bio->bi_next = biolist;
1753 bio->bi_private = r10_bio;
1754 bio->bi_end_io = end_sync_read;
1756 bio->bi_sector = r10_bio->devs[j].addr +
1757 conf->mirrors[d].rdev->data_offset;
1758 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1759 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1760 atomic_inc(&r10_bio->remaining);
1761 /* and we write to 'i' */
1763 for (k=0; k<conf->copies; k++)
1764 if (r10_bio->devs[k].devnum == i)
1766 BUG_ON(k == conf->copies);
1767 bio = r10_bio->devs[1].bio;
1768 bio->bi_next = biolist;
1770 bio->bi_private = r10_bio;
1771 bio->bi_end_io = end_sync_write;
1773 bio->bi_sector = r10_bio->devs[k].addr +
1774 conf->mirrors[i].rdev->data_offset;
1775 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1777 r10_bio->devs[0].devnum = d;
1778 r10_bio->devs[1].devnum = i;
1783 if (j == conf->copies) {
1784 /* Cannot recover, so abort the recovery */
1787 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1788 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1793 if (biolist == NULL) {
1795 r10bio_t *rb2 = r10_bio;
1796 r10_bio = (r10bio_t*) rb2->master_bio;
1797 rb2->master_bio = NULL;
1803 /* resync. Schedule a read for every block at this virt offset */
1806 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1807 &sync_blocks, mddev->degraded) &&
1808 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1809 /* We can skip this block */
1811 return sync_blocks + sectors_skipped;
1813 if (sync_blocks < max_sync)
1814 max_sync = sync_blocks;
1815 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1817 r10_bio->mddev = mddev;
1818 atomic_set(&r10_bio->remaining, 0);
1819 raise_barrier(conf, 0);
1820 conf->next_resync = sector_nr;
1822 r10_bio->master_bio = NULL;
1823 r10_bio->sector = sector_nr;
1824 set_bit(R10BIO_IsSync, &r10_bio->state);
1825 raid10_find_phys(conf, r10_bio);
1826 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1828 for (i=0; i<conf->copies; i++) {
1829 int d = r10_bio->devs[i].devnum;
1830 bio = r10_bio->devs[i].bio;
1831 bio->bi_end_io = NULL;
1832 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1833 if (conf->mirrors[d].rdev == NULL ||
1834 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1836 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1837 atomic_inc(&r10_bio->remaining);
1838 bio->bi_next = biolist;
1840 bio->bi_private = r10_bio;
1841 bio->bi_end_io = end_sync_read;
1843 bio->bi_sector = r10_bio->devs[i].addr +
1844 conf->mirrors[d].rdev->data_offset;
1845 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1850 for (i=0; i<conf->copies; i++) {
1851 int d = r10_bio->devs[i].devnum;
1852 if (r10_bio->devs[i].bio->bi_end_io)
1853 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1861 for (bio = biolist; bio ; bio=bio->bi_next) {
1863 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1865 bio->bi_flags |= 1 << BIO_UPTODATE;
1868 bio->bi_phys_segments = 0;
1869 bio->bi_hw_segments = 0;
1874 if (sector_nr + max_sync < max_sector)
1875 max_sector = sector_nr + max_sync;
1878 int len = PAGE_SIZE;
1880 if (sector_nr + (len>>9) > max_sector)
1881 len = (max_sector - sector_nr) << 9;
1884 for (bio= biolist ; bio ; bio=bio->bi_next) {
1885 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1886 if (bio_add_page(bio, page, len, 0) == 0) {
1889 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1890 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1891 /* remove last page from this bio */
1893 bio2->bi_size -= len;
1894 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1900 nr_sectors += len>>9;
1901 sector_nr += len>>9;
1902 } while (biolist->bi_vcnt < RESYNC_PAGES);
1904 r10_bio->sectors = nr_sectors;
1908 biolist = biolist->bi_next;
1910 bio->bi_next = NULL;
1911 r10_bio = bio->bi_private;
1912 r10_bio->sectors = nr_sectors;
1914 if (bio->bi_end_io == end_sync_read) {
1915 md_sync_acct(bio->bi_bdev, nr_sectors);
1916 generic_make_request(bio);
1920 if (sectors_skipped)
1921 /* pretend they weren't skipped, it makes
1922 * no important difference in this case
1924 md_done_sync(mddev, sectors_skipped, 1);
1926 return sectors_skipped + nr_sectors;
1928 /* There is nowhere to write, so all non-sync
1929 * drives must be failed, so try the next chunk...
1932 sector_t sec = max_sector - sector_nr;
1933 sectors_skipped += sec;
1935 sector_nr = max_sector;
1940 static int run(mddev_t *mddev)
1944 mirror_info_t *disk;
1946 struct list_head *tmp;
1948 sector_t stride, size;
1950 if (mddev->chunk_size == 0) {
1951 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
1955 nc = mddev->layout & 255;
1956 fc = (mddev->layout >> 8) & 255;
1957 fo = mddev->layout & (1<<16);
1958 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1959 (mddev->layout >> 17)) {
1960 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1961 mdname(mddev), mddev->layout);
1965 * copy the already verified devices into our private RAID10
1966 * bookkeeping area. [whatever we allocate in run(),
1967 * should be freed in stop()]
1969 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1970 mddev->private = conf;
1972 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1976 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1978 if (!conf->mirrors) {
1979 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1984 conf->tmppage = alloc_page(GFP_KERNEL);
1988 conf->mddev = mddev;
1989 conf->raid_disks = mddev->raid_disks;
1990 conf->near_copies = nc;
1991 conf->far_copies = fc;
1992 conf->copies = nc*fc;
1993 conf->far_offset = fo;
1994 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1995 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1996 size = mddev->size >> (conf->chunk_shift-1);
1997 sector_div(size, fc);
1998 size = size * conf->raid_disks;
1999 sector_div(size, nc);
2000 /* 'size' is now the number of chunks in the array */
2001 /* calculate "used chunks per device" in 'stride' */
2002 stride = size * conf->copies;
2004 /* We need to round up when dividing by raid_disks to
2005 * get the stride size.
2007 stride += conf->raid_disks - 1;
2008 sector_div(stride, conf->raid_disks);
2009 mddev->size = stride << (conf->chunk_shift-1);
2014 sector_div(stride, fc);
2015 conf->stride = stride << conf->chunk_shift;
2017 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2018 r10bio_pool_free, conf);
2019 if (!conf->r10bio_pool) {
2020 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2025 ITERATE_RDEV(mddev, rdev, tmp) {
2026 disk_idx = rdev->raid_disk;
2027 if (disk_idx >= mddev->raid_disks
2030 disk = conf->mirrors + disk_idx;
2034 blk_queue_stack_limits(mddev->queue,
2035 rdev->bdev->bd_disk->queue);
2036 /* as we don't honour merge_bvec_fn, we must never risk
2037 * violating it, so limit ->max_sector to one PAGE, as
2038 * a one page request is never in violation.
2040 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2041 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2042 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2044 disk->head_position = 0;
2046 spin_lock_init(&conf->device_lock);
2047 INIT_LIST_HEAD(&conf->retry_list);
2049 spin_lock_init(&conf->resync_lock);
2050 init_waitqueue_head(&conf->wait_barrier);
2052 /* need to check that every block has at least one working mirror */
2053 if (!enough(conf)) {
2054 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2059 mddev->degraded = 0;
2060 for (i = 0; i < conf->raid_disks; i++) {
2062 disk = conf->mirrors + i;
2065 !test_bit(In_sync, &disk->rdev->flags)) {
2066 disk->head_position = 0;
2072 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2073 if (!mddev->thread) {
2075 "raid10: couldn't allocate thread for %s\n",
2081 "raid10: raid set %s active with %d out of %d devices\n",
2082 mdname(mddev), mddev->raid_disks - mddev->degraded,
2085 * Ok, everything is just fine now
2087 mddev->array_size = size << (conf->chunk_shift-1);
2088 mddev->resync_max_sectors = size << conf->chunk_shift;
2090 mddev->queue->unplug_fn = raid10_unplug;
2091 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2092 mddev->queue->backing_dev_info.congested_data = mddev;
2094 /* Calculate max read-ahead size.
2095 * We need to readahead at least twice a whole stripe....
2099 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2100 stripe /= conf->near_copies;
2101 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2102 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2105 if (conf->near_copies < mddev->raid_disks)
2106 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2110 if (conf->r10bio_pool)
2111 mempool_destroy(conf->r10bio_pool);
2112 safe_put_page(conf->tmppage);
2113 kfree(conf->mirrors);
2115 mddev->private = NULL;
2120 static int stop(mddev_t *mddev)
2122 conf_t *conf = mddev_to_conf(mddev);
2124 md_unregister_thread(mddev->thread);
2125 mddev->thread = NULL;
2126 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2127 if (conf->r10bio_pool)
2128 mempool_destroy(conf->r10bio_pool);
2129 kfree(conf->mirrors);
2131 mddev->private = NULL;
2135 static void raid10_quiesce(mddev_t *mddev, int state)
2137 conf_t *conf = mddev_to_conf(mddev);
2141 raise_barrier(conf, 0);
2144 lower_barrier(conf);
2147 if (mddev->thread) {
2149 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2151 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2152 md_wakeup_thread(mddev->thread);
2156 static struct mdk_personality raid10_personality =
2160 .owner = THIS_MODULE,
2161 .make_request = make_request,
2165 .error_handler = error,
2166 .hot_add_disk = raid10_add_disk,
2167 .hot_remove_disk= raid10_remove_disk,
2168 .spare_active = raid10_spare_active,
2169 .sync_request = sync_request,
2170 .quiesce = raid10_quiesce,
2173 static int __init raid_init(void)
2175 return register_md_personality(&raid10_personality);
2178 static void raid_exit(void)
2180 unregister_md_personality(&raid10_personality);
2183 module_init(raid_init);
2184 module_exit(raid_exit);
2185 MODULE_LICENSE("GPL");
2186 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2187 MODULE_ALIAS("md-raid10");
2188 MODULE_ALIAS("md-level-10");