2 * Rescue code, made to reside at the beginning of the
3 * flash-memory. when it starts, it checks a partition
4 * table at the first sector after the rescue sector.
5 * the partition table was generated by the product builder
6 * script and contains offsets, lengths, types and checksums
7 * for each partition that this code should check.
9 * If any of the checksums fail, we assume the flash is so
10 * corrupt that we cant use it to boot into the ftp flash
11 * loader, and instead we initialize the serial port to
12 * receive a flash-loader and new flash image. we dont include
13 * any flash code here, but just accept a certain amount of
14 * bytes from the serial port and jump into it. the downloaded
15 * code is put in the cache.
17 * The partitiontable is designed so that it is transparent to
18 * code execution - it has a relative branch opcode in the
19 * beginning that jumps over it. each entry contains extra
20 * data so we can add stuff later.
22 * Partition table format:
26 * 2 bytes [opcode 'nop']
27 * 2 bytes [opcode 'di']
28 * 4 bytes [opcode 'ba <offset>', 8-bit or 16-bit version]
29 * 2 bytes [opcode 'nop', delay slot]
31 * Table validation (at +10):
33 * 2 bytes [magic/version word for partitiontable - 0xef, 0xbe]
34 * 2 bytes [length of all entries plus the end marker]
35 * 4 bytes [checksum for the partitiontable itself]
37 * Entries, each with the following format, last has offset -1:
39 * 4 bytes [offset in bytes, from start of flash]
40 * 4 bytes [length in bytes of partition]
41 * 4 bytes [checksum, simple longword sum]
42 * 2 bytes [partition type]
43 * 2 bytes [flags, only bit 0 used, ro/rw = 1/0]
44 * 16 bytes [reserved for future use]
50 * 10 bytes [0, padding]
52 * Bit 0 in flags signifies RW or RO. The rescue code only bothers
53 * to check the checksum for RO partitions, since the others will
54 * change their data without updating the checksums. A 1 in bit 0
55 * means RO, 0 means RW. That way, it is possible to set a partition
56 * in RO mode initially, and later mark it as RW, since you can always
57 * write 0's to the flash.
59 * During the wait for serial input, the status LED will flash so the
60 * user knows something went wrong.
62 * Copyright (C) 1999-2007 Axis Communications AB
65 #ifdef CONFIG_ETRAX_AXISFLASHMAP
67 #define ASSEMBLER_MACROS_ONLY
68 #include <asm/arch/sv_addr_ag.h>
70 ;; The partitiontable is looked for at the first sector after the boot
71 ;; sector. Sector size is 65536 bytes in all flashes we use.
73 #define PTABLE_START CONFIG_ETRAX_PTABLE_SECTOR
74 #define PTABLE_MAGIC 0xbeef
76 ;; The normal Etrax100 on-chip boot ROM does serial boot at 0x380000f0.
77 ;; That is not where we put our downloaded serial boot-code.
78 ;; The length is enough for downloading code that loads the rest
79 ;; of itself (after having setup the DRAM etc).
80 ;; It is the same length as the on-chip ROM loads, so the same
81 ;; host loader can be used to load a rescued product as well as
82 ;; one booted through the Etrax serial boot code.
84 #define CODE_START 0x40000000
85 #define CODE_LENGTH 784
87 #ifdef CONFIG_ETRAX_RESCUE_SER0
88 #define SERXOFF R_SERIAL0_XOFF
89 #define SERBAUD R_SERIAL0_BAUD
90 #define SERRECC R_SERIAL0_REC_CTRL
91 #define SERRDAT R_SERIAL0_REC_DATA
92 #define SERSTAT R_SERIAL0_STATUS
94 #ifdef CONFIG_ETRAX_RESCUE_SER1
95 #define SERXOFF R_SERIAL1_XOFF
96 #define SERBAUD R_SERIAL1_BAUD
97 #define SERRECC R_SERIAL1_REC_CTRL
98 #define SERRDAT R_SERIAL1_REC_DATA
99 #define SERSTAT R_SERIAL1_STATUS
101 #ifdef CONFIG_ETRAX_RESCUE_SER2
102 #define SERXOFF R_SERIAL2_XOFF
103 #define SERBAUD R_SERIAL2_BAUD
104 #define SERRECC R_SERIAL2_REC_CTRL
105 #define SERRDAT R_SERIAL2_REC_DATA
106 #define SERSTAT R_SERIAL2_STATUS
108 #ifdef CONFIG_ETRAX_RESCUE_SER3
109 #define SERXOFF R_SERIAL3_XOFF
110 #define SERBAUD R_SERIAL3_BAUD
111 #define SERRECC R_SERIAL3_REC_CTRL
112 #define SERRDAT R_SERIAL3_REC_DATA
113 #define SERSTAT R_SERIAL3_STATUS
116 #define NOP_DI 0xf025050f
117 #define RAM_INIT_MAGIC 0x56902387
121 ;; This is the entry point of the rescue code
122 ;; 0x80000000 if loaded in flash (as it should be)
123 ;; Since etrax actually starts at address 2 when booting from flash, we
124 ;; put a nop (2 bytes) here first so we dont accidentally skip the di
129 jump in_cache ; enter cached area instead
133 ;; First put a jump test to give a possibility of upgrading the
134 ;; rescue code without erasing/reflashing the sector.
135 ;; We put a longword of -1 here and if it is not -1, we jump using
136 ;; the value as jump target. Since we can always change 1's to 0's
137 ;; without erasing the sector, it is possible to add new
138 ;; code after this and altering the jumptarget in an upgrade.
140 jtcd: move.d [jumptarget], $r0
141 cmp.d 0xffffffff, $r0
148 .dword 0xffffffff ; can be overwritten later to insert new code
151 #ifdef CONFIG_ETRAX_ETHERNET
152 ;; Start MII clock to make sure it is running when tranceiver is reset
153 move.d 0x3, $r0 ; enable = on, phy = mii_clk
154 move.d $r0, [R_NETWORK_GEN_CONFIG]
157 ;; We need to setup the bus registers before we start using the DRAM
158 #include "../../lib/dram_init.S"
160 ;; we now should go through the checksum-table and check the listed
161 ;; partitions for errors.
163 move.d PTABLE_START, $r3
165 cmp.d NOP_DI, $r0 ; make sure the nop/di is there...
169 ;; skip the code transparency block (10 bytes).
173 ;; check for correct magic
176 cmp.w PTABLE_MAGIC, $r0
177 bne do_rescue ; didn't recognize - trig rescue
180 ;; check for correct ptable checksum
182 movu.w [$r3+], $r2 ; ptable length
183 move.d $r2, $r8 ; save for later, length of total ptable
184 addq 28, $r8 ; account for the rest
185 move.d [$r3+], $r4 ; ptable checksum
187 jsr checksum ; r1 source, r2 length, returns in r0
190 bne do_rescue ; didn't match - trig rescue
193 ;; ptable is ok. validate each entry.
197 ploop: move.d [$r3+], $r1 ; partition offset (from ptable start)
198 bne notfirst ; check if it is the partition containing ptable
200 move.d $r8, $r1 ; for its checksum check, skip the ptable
201 move.d [$r3+], $r2 ; partition length
202 sub.d $r8, $r2 ; minus the ptable length
206 cmp.d -1, $r1 ; the end of the ptable ?
207 beq flash_ok ; if so, the flash is validated
208 move.d [$r3+], $r2 ; partition length
209 bosse: move.d [$r3+], $r5 ; checksum
210 move.d [$r3+], $r4 ; type and flags
211 addq 16, $r3 ; skip the reserved bytes
212 btstq 16, $r4 ; check ro flag
213 bpl ploop ; rw partition, skip validation
215 btstq 17, $r4 ; check bootable flag
218 move.d $r1, $r7 ; remember boot partition offset
220 add.d PTABLE_START, $r1
222 jsr checksum ; checksum the partition
225 beq ploop ; checksums matched, go to next entry
228 ;; otherwise fall through to the rescue code.
231 ;; setup port PA and PB default initial directions and data
232 ;; (so we can flash LEDs, and so that DTR and others are set)
234 move.b CONFIG_ETRAX_DEF_R_PORT_PA_DIR, $r0
235 move.b $r0, [R_PORT_PA_DIR]
236 move.b CONFIG_ETRAX_DEF_R_PORT_PA_DATA, $r0
237 move.b $r0, [R_PORT_PA_DATA]
239 move.b CONFIG_ETRAX_DEF_R_PORT_PB_DIR, $r0
240 move.b $r0, [R_PORT_PB_DIR]
241 move.b CONFIG_ETRAX_DEF_R_PORT_PB_DATA, $r0
242 move.b $r0, [R_PORT_PB_DATA]
244 ;; setup the serial port at 115200 baud
247 move.d $r0, [SERXOFF]
250 move.b $r0, [SERBAUD] ; 115.2kbaud for both transmit and receive
252 move.b 0x40, $r0 ; rec enable
253 move.b $r0, [SERRECC]
255 moveq 0, $r1 ; "timer" to clock out a LED red flash
256 move.d CODE_START, $r3 ; destination counter
257 movu.w CODE_LENGTH, $r4; length
261 #ifndef CONFIG_ETRAX_NO_LEDS
262 #ifdef CONFIG_ETRAX_PA_LEDS
263 move.b CONFIG_ETRAX_DEF_R_PORT_PA_DATA, $r2
265 #ifdef CONFIG_ETRAX_PB_LEDS
266 move.b CONFIG_ETRAX_DEF_R_PORT_PB_DATA, $r2
268 move.d (1 << CONFIG_ETRAX_LED1R) | (1 << CONFIG_ETRAX_LED2R), $r0
272 or.d $r0, $r2 ; set bit
275 1: not $r0 ; clear bit
278 #ifdef CONFIG_ETRAX_PA_LEDS
279 move.b $r2, [R_PORT_PA_DATA]
281 #ifdef CONFIG_ETRAX_PB_LEDS
282 move.b $r2, [R_PORT_PB_DATA]
284 #ifdef CONFIG_ETRAX_90000000_LEDS
285 move.b $r2, [0x90000000]
289 ;; check if we got something on the serial port
291 move.b [SERSTAT], $r0
292 btstq 0, $r0 ; data_avail
296 ;; got something - copy the byte and loop
298 move.b [SERRDAT], $r0
301 subq 1, $r4 ; decrease length
305 ;; jump into downloaded code
307 move.d RAM_INIT_MAGIC, $r8 ; Tell next product that DRAM is
312 ;; check r7, which contains either -1 or the partition to boot from
317 move.d PTABLE_START, $r7; otherwise use the ptable start
319 move.d RAM_INIT_MAGIC, $r8 ; Tell next product that DRAM is
324 ;; Helper subroutines
326 ;; Will checksum by simple addition
328 ;; r2 - length in bytes
329 ;; result will be in r0
332 moveq CONFIG_ETRAX_FLASH1_SIZE, $r6
334 ;; If the first physical flash memory is exceeded wrap to the
336 btstq 26, $r1 ; Are we addressing first flash?
341 1: test.d $r6 ; 0 = no wrapping
344 lslq 20, $r6 ; Convert MB to bytes
347 2: addu.b [$r1+], $r0
348 subq 1, $r6 ; Flash memory left
350 subq 1, $r2 ; Length left
356 3: move.d MEM_CSE1_START, $r1 ; wrap to second flash