[PATCH] fs/lockd/host.c: make 2 functions static
[linux-2.6] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb_ch9.h>
6
7 #define USB_MAJOR                       180
8 #define USB_DEVICE_MAJOR                189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>        /* for mdelay() */
15 #include <linux/interrupt.h>    /* for in_interrupt() */
16 #include <linux/list.h>         /* for struct list_head */
17 #include <linux/kref.h>         /* for struct kref */
18 #include <linux/device.h>       /* for struct device */
19 #include <linux/fs.h>           /* for struct file_operations */
20 #include <linux/completion.h>   /* for struct completion */
21 #include <linux/sched.h>        /* for current && schedule_timeout */
22 #include <linux/mutex.h>        /* for struct mutex */
23
24 struct usb_device;
25 struct usb_driver;
26
27 /*-------------------------------------------------------------------------*/
28
29 /*
30  * Host-side wrappers for standard USB descriptors ... these are parsed
31  * from the data provided by devices.  Parsing turns them from a flat
32  * sequence of descriptors into a hierarchy:
33  *
34  *  - devices have one (usually) or more configs;
35  *  - configs have one (often) or more interfaces;
36  *  - interfaces have one (usually) or more settings;
37  *  - each interface setting has zero or (usually) more endpoints.
38  *
39  * And there might be other descriptors mixed in with those.
40  *
41  * Devices may also have class-specific or vendor-specific descriptors.
42  */
43
44 struct ep_device;
45
46 /**
47  * struct usb_host_endpoint - host-side endpoint descriptor and queue
48  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49  * @urb_list: urbs queued to this endpoint; maintained by usbcore
50  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51  *      with one or more transfer descriptors (TDs) per urb
52  * @ep_dev: ep_device for sysfs info
53  * @extra: descriptors following this endpoint in the configuration
54  * @extralen: how many bytes of "extra" are valid
55  *
56  * USB requests are always queued to a given endpoint, identified by a
57  * descriptor within an active interface in a given USB configuration.
58  */
59 struct usb_host_endpoint {
60         struct usb_endpoint_descriptor  desc;
61         struct list_head                urb_list;
62         void                            *hcpriv;
63         struct ep_device                *ep_dev;        /* For sysfs info */
64
65         unsigned char *extra;   /* Extra descriptors */
66         int extralen;
67 };
68
69 /* host-side wrapper for one interface setting's parsed descriptors */
70 struct usb_host_interface {
71         struct usb_interface_descriptor desc;
72
73         /* array of desc.bNumEndpoint endpoints associated with this
74          * interface setting.  these will be in no particular order.
75          */
76         struct usb_host_endpoint *endpoint;
77
78         char *string;           /* iInterface string, if present */
79         unsigned char *extra;   /* Extra descriptors */
80         int extralen;
81 };
82
83 enum usb_interface_condition {
84         USB_INTERFACE_UNBOUND = 0,
85         USB_INTERFACE_BINDING,
86         USB_INTERFACE_BOUND,
87         USB_INTERFACE_UNBINDING,
88 };
89
90 /**
91  * struct usb_interface - what usb device drivers talk to
92  * @altsetting: array of interface structures, one for each alternate
93  *      setting that may be selected.  Each one includes a set of
94  *      endpoint configurations.  They will be in no particular order.
95  * @num_altsetting: number of altsettings defined.
96  * @cur_altsetting: the current altsetting.
97  * @driver: the USB driver that is bound to this interface.
98  * @minor: the minor number assigned to this interface, if this
99  *      interface is bound to a driver that uses the USB major number.
100  *      If this interface does not use the USB major, this field should
101  *      be unused.  The driver should set this value in the probe()
102  *      function of the driver, after it has been assigned a minor
103  *      number from the USB core by calling usb_register_dev().
104  * @condition: binding state of the interface: not bound, binding
105  *      (in probe()), bound to a driver, or unbinding (in disconnect())
106  * @is_active: flag set when the interface is bound and not suspended.
107  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
108  *      capability during autosuspend.
109  * @dev: driver model's view of this device
110  * @class_dev: driver model's class view of this device.
111  * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
112  *      allowed unless the counter is 0.
113  *
114  * USB device drivers attach to interfaces on a physical device.  Each
115  * interface encapsulates a single high level function, such as feeding
116  * an audio stream to a speaker or reporting a change in a volume control.
117  * Many USB devices only have one interface.  The protocol used to talk to
118  * an interface's endpoints can be defined in a usb "class" specification,
119  * or by a product's vendor.  The (default) control endpoint is part of
120  * every interface, but is never listed among the interface's descriptors.
121  *
122  * The driver that is bound to the interface can use standard driver model
123  * calls such as dev_get_drvdata() on the dev member of this structure.
124  *
125  * Each interface may have alternate settings.  The initial configuration
126  * of a device sets altsetting 0, but the device driver can change
127  * that setting using usb_set_interface().  Alternate settings are often
128  * used to control the the use of periodic endpoints, such as by having
129  * different endpoints use different amounts of reserved USB bandwidth.
130  * All standards-conformant USB devices that use isochronous endpoints
131  * will use them in non-default settings.
132  *
133  * The USB specification says that alternate setting numbers must run from
134  * 0 to one less than the total number of alternate settings.  But some
135  * devices manage to mess this up, and the structures aren't necessarily
136  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
137  * look up an alternate setting in the altsetting array based on its number.
138  */
139 struct usb_interface {
140         /* array of alternate settings for this interface,
141          * stored in no particular order */
142         struct usb_host_interface *altsetting;
143
144         struct usb_host_interface *cur_altsetting;      /* the currently
145                                          * active alternate setting */
146         unsigned num_altsetting;        /* number of alternate settings */
147
148         int minor;                      /* minor number this interface is
149                                          * bound to */
150         enum usb_interface_condition condition;         /* state of binding */
151         unsigned is_active:1;           /* the interface is not suspended */
152         unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
153
154         struct device dev;              /* interface specific device info */
155         struct class_device *class_dev;
156         int pm_usage_cnt;               /* usage counter for autosuspend */
157 };
158 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
159 #define interface_to_usbdev(intf) \
160         container_of(intf->dev.parent, struct usb_device, dev)
161
162 static inline void *usb_get_intfdata (struct usb_interface *intf)
163 {
164         return dev_get_drvdata (&intf->dev);
165 }
166
167 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
168 {
169         dev_set_drvdata(&intf->dev, data);
170 }
171
172 struct usb_interface *usb_get_intf(struct usb_interface *intf);
173 void usb_put_intf(struct usb_interface *intf);
174
175 /* this maximum is arbitrary */
176 #define USB_MAXINTERFACES       32
177
178 /**
179  * struct usb_interface_cache - long-term representation of a device interface
180  * @num_altsetting: number of altsettings defined.
181  * @ref: reference counter.
182  * @altsetting: variable-length array of interface structures, one for
183  *      each alternate setting that may be selected.  Each one includes a
184  *      set of endpoint configurations.  They will be in no particular order.
185  *
186  * These structures persist for the lifetime of a usb_device, unlike
187  * struct usb_interface (which persists only as long as its configuration
188  * is installed).  The altsetting arrays can be accessed through these
189  * structures at any time, permitting comparison of configurations and
190  * providing support for the /proc/bus/usb/devices pseudo-file.
191  */
192 struct usb_interface_cache {
193         unsigned num_altsetting;        /* number of alternate settings */
194         struct kref ref;                /* reference counter */
195
196         /* variable-length array of alternate settings for this interface,
197          * stored in no particular order */
198         struct usb_host_interface altsetting[0];
199 };
200 #define ref_to_usb_interface_cache(r) \
201                 container_of(r, struct usb_interface_cache, ref)
202 #define altsetting_to_usb_interface_cache(a) \
203                 container_of(a, struct usb_interface_cache, altsetting[0])
204
205 /**
206  * struct usb_host_config - representation of a device's configuration
207  * @desc: the device's configuration descriptor.
208  * @string: pointer to the cached version of the iConfiguration string, if
209  *      present for this configuration.
210  * @interface: array of pointers to usb_interface structures, one for each
211  *      interface in the configuration.  The number of interfaces is stored
212  *      in desc.bNumInterfaces.  These pointers are valid only while the
213  *      the configuration is active.
214  * @intf_cache: array of pointers to usb_interface_cache structures, one
215  *      for each interface in the configuration.  These structures exist
216  *      for the entire life of the device.
217  * @extra: pointer to buffer containing all extra descriptors associated
218  *      with this configuration (those preceding the first interface
219  *      descriptor).
220  * @extralen: length of the extra descriptors buffer.
221  *
222  * USB devices may have multiple configurations, but only one can be active
223  * at any time.  Each encapsulates a different operational environment;
224  * for example, a dual-speed device would have separate configurations for
225  * full-speed and high-speed operation.  The number of configurations
226  * available is stored in the device descriptor as bNumConfigurations.
227  *
228  * A configuration can contain multiple interfaces.  Each corresponds to
229  * a different function of the USB device, and all are available whenever
230  * the configuration is active.  The USB standard says that interfaces
231  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
232  * of devices get this wrong.  In addition, the interface array is not
233  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
234  * look up an interface entry based on its number.
235  *
236  * Device drivers should not attempt to activate configurations.  The choice
237  * of which configuration to install is a policy decision based on such
238  * considerations as available power, functionality provided, and the user's
239  * desires (expressed through userspace tools).  However, drivers can call
240  * usb_reset_configuration() to reinitialize the current configuration and
241  * all its interfaces.
242  */
243 struct usb_host_config {
244         struct usb_config_descriptor    desc;
245
246         char *string;           /* iConfiguration string, if present */
247         /* the interfaces associated with this configuration,
248          * stored in no particular order */
249         struct usb_interface *interface[USB_MAXINTERFACES];
250
251         /* Interface information available even when this is not the
252          * active configuration */
253         struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
254
255         unsigned char *extra;   /* Extra descriptors */
256         int extralen;
257 };
258
259 int __usb_get_extra_descriptor(char *buffer, unsigned size,
260         unsigned char type, void **ptr);
261 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
262         __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
263                 type,(void**)ptr)
264
265 /* ----------------------------------------------------------------------- */
266
267 /* USB device number allocation bitmap */
268 struct usb_devmap {
269         unsigned long devicemap[128 / (8*sizeof(unsigned long))];
270 };
271
272 /*
273  * Allocated per bus (tree of devices) we have:
274  */
275 struct usb_bus {
276         struct device *controller;      /* host/master side hardware */
277         int busnum;                     /* Bus number (in order of reg) */
278         char *bus_name;                 /* stable id (PCI slot_name etc) */
279         u8 uses_dma;                    /* Does the host controller use DMA? */
280         u8 otg_port;                    /* 0, or number of OTG/HNP port */
281         unsigned is_b_host:1;           /* true during some HNP roleswitches */
282         unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
283
284         int devnum_next;                /* Next open device number in
285                                          * round-robin allocation */
286
287         struct usb_devmap devmap;       /* device address allocation map */
288         struct usb_device *root_hub;    /* Root hub */
289         struct list_head bus_list;      /* list of busses */
290
291         int bandwidth_allocated;        /* on this bus: how much of the time
292                                          * reserved for periodic (intr/iso)
293                                          * requests is used, on average?
294                                          * Units: microseconds/frame.
295                                          * Limits: Full/low speed reserve 90%,
296                                          * while high speed reserves 80%.
297                                          */
298         int bandwidth_int_reqs;         /* number of Interrupt requests */
299         int bandwidth_isoc_reqs;        /* number of Isoc. requests */
300
301         struct dentry *usbfs_dentry;    /* usbfs dentry entry for the bus */
302
303         struct class_device *class_dev; /* class device for this bus */
304
305 #if defined(CONFIG_USB_MON)
306         struct mon_bus *mon_bus;        /* non-null when associated */
307         int monitored;                  /* non-zero when monitored */
308 #endif
309 };
310
311 /* ----------------------------------------------------------------------- */
312
313 /* This is arbitrary.
314  * From USB 2.0 spec Table 11-13, offset 7, a hub can
315  * have up to 255 ports. The most yet reported is 10.
316  *
317  * Current Wireless USB host hardware (Intel i1480 for example) allows
318  * up to 22 devices to connect. Upcoming hardware might raise that
319  * limit. Because the arrays need to add a bit for hub status data, we
320  * do 31, so plus one evens out to four bytes.
321  */
322 #define USB_MAXCHILDREN         (31)
323
324 struct usb_tt;
325
326 /*
327  * struct usb_device - kernel's representation of a USB device
328  *
329  * FIXME: Write the kerneldoc!
330  *
331  * Usbcore drivers should not set usbdev->state directly.  Instead use
332  * usb_set_device_state().
333  */
334 struct usb_device {
335         int             devnum;         /* Address on USB bus */
336         char            devpath [16];   /* Use in messages: /port/port/... */
337         enum usb_device_state   state;  /* configured, not attached, etc */
338         enum usb_device_speed   speed;  /* high/full/low (or error) */
339
340         struct usb_tt   *tt;            /* low/full speed dev, highspeed hub */
341         int             ttport;         /* device port on that tt hub */
342
343         unsigned int toggle[2];         /* one bit for each endpoint
344                                          * ([0] = IN, [1] = OUT) */
345
346         struct usb_device *parent;      /* our hub, unless we're the root */
347         struct usb_bus *bus;            /* Bus we're part of */
348         struct usb_host_endpoint ep0;
349
350         struct device dev;              /* Generic device interface */
351
352         struct usb_device_descriptor descriptor;/* Descriptor */
353         struct usb_host_config *config; /* All of the configs */
354
355         struct usb_host_config *actconfig;/* the active configuration */
356         struct usb_host_endpoint *ep_in[16];
357         struct usb_host_endpoint *ep_out[16];
358
359         char **rawdescriptors;          /* Raw descriptors for each config */
360
361         unsigned short bus_mA;          /* Current available from the bus */
362         u8 portnum;                     /* Parent port number (origin 1) */
363         u8 level;                       /* Number of USB hub ancestors */
364
365         unsigned discon_suspended:1;    /* Disconnected while suspended */
366         unsigned have_langid:1;         /* whether string_langid is valid */
367         int string_langid;              /* language ID for strings */
368
369         /* static strings from the device */
370         char *product;                  /* iProduct string, if present */
371         char *manufacturer;             /* iManufacturer string, if present */
372         char *serial;                   /* iSerialNumber string, if present */
373
374         struct list_head filelist;
375         struct class_device *class_dev;
376         struct dentry *usbfs_dentry;    /* usbfs dentry entry for the device */
377
378         /*
379          * Child devices - these can be either new devices
380          * (if this is a hub device), or different instances
381          * of this same device.
382          *
383          * Each instance needs its own set of data structures.
384          */
385
386         int maxchild;                   /* Number of ports if hub */
387         struct usb_device *children[USB_MAXCHILDREN];
388
389         int pm_usage_cnt;               /* usage counter for autosuspend */
390 #ifdef CONFIG_PM
391         struct delayed_work autosuspend; /* for delayed autosuspends */
392         struct mutex pm_mutex;          /* protects PM operations */
393
394         unsigned auto_pm:1;             /* autosuspend/resume in progress */
395         unsigned do_remote_wakeup:1;    /* remote wakeup should be enabled */
396 #endif
397 };
398 #define to_usb_device(d) container_of(d, struct usb_device, dev)
399
400 extern struct usb_device *usb_get_dev(struct usb_device *dev);
401 extern void usb_put_dev(struct usb_device *dev);
402
403 /* USB device locking */
404 #define usb_lock_device(udev)           down(&(udev)->dev.sem)
405 #define usb_unlock_device(udev)         up(&(udev)->dev.sem)
406 #define usb_trylock_device(udev)        down_trylock(&(udev)->dev.sem)
407 extern int usb_lock_device_for_reset(struct usb_device *udev,
408                                      const struct usb_interface *iface);
409
410 /* USB port reset for device reinitialization */
411 extern int usb_reset_device(struct usb_device *dev);
412 extern int usb_reset_composite_device(struct usb_device *dev,
413                 struct usb_interface *iface);
414
415 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
416
417 /* USB autosuspend and autoresume */
418 #ifdef CONFIG_USB_SUSPEND
419 extern int usb_autopm_set_interface(struct usb_interface *intf);
420 extern int usb_autopm_get_interface(struct usb_interface *intf);
421 extern void usb_autopm_put_interface(struct usb_interface *intf);
422
423 static inline void usb_autopm_enable(struct usb_interface *intf)
424 {
425         intf->pm_usage_cnt = 0;
426         usb_autopm_set_interface(intf);
427 }
428
429 static inline void usb_autopm_disable(struct usb_interface *intf)
430 {
431         intf->pm_usage_cnt = 1;
432         usb_autopm_set_interface(intf);
433 }
434
435 #else
436
437 static inline int usb_autopm_set_interface(struct usb_interface *intf)
438 { return 0; }
439
440 static inline int usb_autopm_get_interface(struct usb_interface *intf)
441 { return 0; }
442
443 static inline void usb_autopm_put_interface(struct usb_interface *intf)
444 { }
445 static inline void usb_autopm_enable(struct usb_interface *intf)
446 { }
447 static inline void usb_autopm_disable(struct usb_interface *intf)
448 { }
449 #endif
450
451 /*-------------------------------------------------------------------------*/
452
453 /* for drivers using iso endpoints */
454 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
455
456 /* used these for multi-interface device registration */
457 extern int usb_driver_claim_interface(struct usb_driver *driver,
458                         struct usb_interface *iface, void* priv);
459
460 /**
461  * usb_interface_claimed - returns true iff an interface is claimed
462  * @iface: the interface being checked
463  *
464  * Returns true (nonzero) iff the interface is claimed, else false (zero).
465  * Callers must own the driver model's usb bus readlock.  So driver
466  * probe() entries don't need extra locking, but other call contexts
467  * may need to explicitly claim that lock.
468  *
469  */
470 static inline int usb_interface_claimed(struct usb_interface *iface) {
471         return (iface->dev.driver != NULL);
472 }
473
474 extern void usb_driver_release_interface(struct usb_driver *driver,
475                         struct usb_interface *iface);
476 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
477                                          const struct usb_device_id *id);
478
479 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
480                 int minor);
481 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
482                 unsigned ifnum);
483 extern struct usb_host_interface *usb_altnum_to_altsetting(
484                 const struct usb_interface *intf, unsigned int altnum);
485
486
487 /**
488  * usb_make_path - returns stable device path in the usb tree
489  * @dev: the device whose path is being constructed
490  * @buf: where to put the string
491  * @size: how big is "buf"?
492  *
493  * Returns length of the string (> 0) or negative if size was too small.
494  *
495  * This identifier is intended to be "stable", reflecting physical paths in
496  * hardware such as physical bus addresses for host controllers or ports on
497  * USB hubs.  That makes it stay the same until systems are physically
498  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
499  * controllers.  Adding and removing devices, including virtual root hubs
500  * in host controller driver modules, does not change these path identifers;
501  * neither does rebooting or re-enumerating.  These are more useful identifiers
502  * than changeable ("unstable") ones like bus numbers or device addresses.
503  *
504  * With a partial exception for devices connected to USB 2.0 root hubs, these
505  * identifiers are also predictable.  So long as the device tree isn't changed,
506  * plugging any USB device into a given hub port always gives it the same path.
507  * Because of the use of "companion" controllers, devices connected to ports on
508  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
509  * high speed, and a different one if they are full or low speed.
510  */
511 static inline int usb_make_path (struct usb_device *dev, char *buf,
512                 size_t size)
513 {
514         int actual;
515         actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
516                         dev->devpath);
517         return (actual >= (int)size) ? -1 : actual;
518 }
519
520 /*-------------------------------------------------------------------------*/
521
522 /**
523  * usb_endpoint_dir_in - check if the endpoint has IN direction
524  * @epd: endpoint to be checked
525  *
526  * Returns true if the endpoint is of type IN, otherwise it returns false.
527  */
528 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
529 {
530         return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
531 }
532
533 /**
534  * usb_endpoint_dir_out - check if the endpoint has OUT direction
535  * @epd: endpoint to be checked
536  *
537  * Returns true if the endpoint is of type OUT, otherwise it returns false.
538  */
539 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
540 {
541         return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
542 }
543
544 /**
545  * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
546  * @epd: endpoint to be checked
547  *
548  * Returns true if the endpoint is of type bulk, otherwise it returns false.
549  */
550 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
551 {
552         return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
553                 USB_ENDPOINT_XFER_BULK);
554 }
555
556 /**
557  * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
558  * @epd: endpoint to be checked
559  *
560  * Returns true if the endpoint is of type interrupt, otherwise it returns
561  * false.
562  */
563 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
564 {
565         return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
566                 USB_ENDPOINT_XFER_INT);
567 }
568
569 /**
570  * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
571  * @epd: endpoint to be checked
572  *
573  * Returns true if the endpoint is of type isochronous, otherwise it returns
574  * false.
575  */
576 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
577 {
578         return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
579                 USB_ENDPOINT_XFER_ISOC);
580 }
581
582 /**
583  * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
584  * @epd: endpoint to be checked
585  *
586  * Returns true if the endpoint has bulk transfer type and IN direction,
587  * otherwise it returns false.
588  */
589 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
590 {
591         return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
592 }
593
594 /**
595  * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
596  * @epd: endpoint to be checked
597  *
598  * Returns true if the endpoint has bulk transfer type and OUT direction,
599  * otherwise it returns false.
600  */
601 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
602 {
603         return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
604 }
605
606 /**
607  * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
608  * @epd: endpoint to be checked
609  *
610  * Returns true if the endpoint has interrupt transfer type and IN direction,
611  * otherwise it returns false.
612  */
613 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
614 {
615         return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
616 }
617
618 /**
619  * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
620  * @epd: endpoint to be checked
621  *
622  * Returns true if the endpoint has interrupt transfer type and OUT direction,
623  * otherwise it returns false.
624  */
625 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
626 {
627         return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
628 }
629
630 /**
631  * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
632  * @epd: endpoint to be checked
633  *
634  * Returns true if the endpoint has isochronous transfer type and IN direction,
635  * otherwise it returns false.
636  */
637 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
638 {
639         return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
640 }
641
642 /**
643  * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
644  * @epd: endpoint to be checked
645  *
646  * Returns true if the endpoint has isochronous transfer type and OUT direction,
647  * otherwise it returns false.
648  */
649 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
650 {
651         return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
652 }
653
654 /*-------------------------------------------------------------------------*/
655
656 #define USB_DEVICE_ID_MATCH_DEVICE \
657                 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
658 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
659                 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
660 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
661                 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
662 #define USB_DEVICE_ID_MATCH_DEV_INFO \
663                 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
664                 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
665                 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
666 #define USB_DEVICE_ID_MATCH_INT_INFO \
667                 (USB_DEVICE_ID_MATCH_INT_CLASS | \
668                 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
669                 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
670
671 /**
672  * USB_DEVICE - macro used to describe a specific usb device
673  * @vend: the 16 bit USB Vendor ID
674  * @prod: the 16 bit USB Product ID
675  *
676  * This macro is used to create a struct usb_device_id that matches a
677  * specific device.
678  */
679 #define USB_DEVICE(vend,prod) \
680         .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
681                         .idProduct = (prod)
682 /**
683  * USB_DEVICE_VER - macro used to describe a specific usb device with a
684  *              version range
685  * @vend: the 16 bit USB Vendor ID
686  * @prod: the 16 bit USB Product ID
687  * @lo: the bcdDevice_lo value
688  * @hi: the bcdDevice_hi value
689  *
690  * This macro is used to create a struct usb_device_id that matches a
691  * specific device, with a version range.
692  */
693 #define USB_DEVICE_VER(vend,prod,lo,hi) \
694         .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
695         .idVendor = (vend), .idProduct = (prod), \
696         .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
697
698 /**
699  * USB_DEVICE_INFO - macro used to describe a class of usb devices
700  * @cl: bDeviceClass value
701  * @sc: bDeviceSubClass value
702  * @pr: bDeviceProtocol value
703  *
704  * This macro is used to create a struct usb_device_id that matches a
705  * specific class of devices.
706  */
707 #define USB_DEVICE_INFO(cl,sc,pr) \
708         .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
709         .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
710
711 /**
712  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 
713  * @cl: bInterfaceClass value
714  * @sc: bInterfaceSubClass value
715  * @pr: bInterfaceProtocol value
716  *
717  * This macro is used to create a struct usb_device_id that matches a
718  * specific class of interfaces.
719  */
720 #define USB_INTERFACE_INFO(cl,sc,pr) \
721         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
722         .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
723
724 /* ----------------------------------------------------------------------- */
725
726 struct usb_dynids {
727         spinlock_t lock;
728         struct list_head list;
729 };
730
731 /**
732  * struct usbdrv_wrap - wrapper for driver-model structure
733  * @driver: The driver-model core driver structure.
734  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
735  */
736 struct usbdrv_wrap {
737         struct device_driver driver;
738         int for_devices;
739 };
740
741 /**
742  * struct usb_driver - identifies USB interface driver to usbcore
743  * @name: The driver name should be unique among USB drivers,
744  *      and should normally be the same as the module name.
745  * @probe: Called to see if the driver is willing to manage a particular
746  *      interface on a device.  If it is, probe returns zero and uses
747  *      dev_set_drvdata() to associate driver-specific data with the
748  *      interface.  It may also use usb_set_interface() to specify the
749  *      appropriate altsetting.  If unwilling to manage the interface,
750  *      return a negative errno value.
751  * @disconnect: Called when the interface is no longer accessible, usually
752  *      because its device has been (or is being) disconnected or the
753  *      driver module is being unloaded.
754  * @ioctl: Used for drivers that want to talk to userspace through
755  *      the "usbfs" filesystem.  This lets devices provide ways to
756  *      expose information to user space regardless of where they
757  *      do (or don't) show up otherwise in the filesystem.
758  * @suspend: Called when the device is going to be suspended by the system.
759  * @resume: Called when the device is being resumed by the system.
760  * @pre_reset: Called by usb_reset_composite_device() when the device
761  *      is about to be reset.
762  * @post_reset: Called by usb_reset_composite_device() after the device
763  *      has been reset.
764  * @id_table: USB drivers use ID table to support hotplugging.
765  *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
766  *      or your driver's probe function will never get called.
767  * @dynids: used internally to hold the list of dynamically added device
768  *      ids for this driver.
769  * @drvwrap: Driver-model core structure wrapper.
770  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
771  *      added to this driver by preventing the sysfs file from being created.
772  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
773  *      for interfaces bound to this driver.
774  *
775  * USB interface drivers must provide a name, probe() and disconnect()
776  * methods, and an id_table.  Other driver fields are optional.
777  *
778  * The id_table is used in hotplugging.  It holds a set of descriptors,
779  * and specialized data may be associated with each entry.  That table
780  * is used by both user and kernel mode hotplugging support.
781  *
782  * The probe() and disconnect() methods are called in a context where
783  * they can sleep, but they should avoid abusing the privilege.  Most
784  * work to connect to a device should be done when the device is opened,
785  * and undone at the last close.  The disconnect code needs to address
786  * concurrency issues with respect to open() and close() methods, as
787  * well as forcing all pending I/O requests to complete (by unlinking
788  * them as necessary, and blocking until the unlinks complete).
789  */
790 struct usb_driver {
791         const char *name;
792
793         int (*probe) (struct usb_interface *intf,
794                       const struct usb_device_id *id);
795
796         void (*disconnect) (struct usb_interface *intf);
797
798         int (*ioctl) (struct usb_interface *intf, unsigned int code,
799                         void *buf);
800
801         int (*suspend) (struct usb_interface *intf, pm_message_t message);
802         int (*resume) (struct usb_interface *intf);
803
804         void (*pre_reset) (struct usb_interface *intf);
805         void (*post_reset) (struct usb_interface *intf);
806
807         const struct usb_device_id *id_table;
808
809         struct usb_dynids dynids;
810         struct usbdrv_wrap drvwrap;
811         unsigned int no_dynamic_id:1;
812         unsigned int supports_autosuspend:1;
813 };
814 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
815
816 /**
817  * struct usb_device_driver - identifies USB device driver to usbcore
818  * @name: The driver name should be unique among USB drivers,
819  *      and should normally be the same as the module name.
820  * @probe: Called to see if the driver is willing to manage a particular
821  *      device.  If it is, probe returns zero and uses dev_set_drvdata()
822  *      to associate driver-specific data with the device.  If unwilling
823  *      to manage the device, return a negative errno value.
824  * @disconnect: Called when the device is no longer accessible, usually
825  *      because it has been (or is being) disconnected or the driver's
826  *      module is being unloaded.
827  * @suspend: Called when the device is going to be suspended by the system.
828  * @resume: Called when the device is being resumed by the system.
829  * @drvwrap: Driver-model core structure wrapper.
830  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
831  *      for devices bound to this driver.
832  *
833  * USB drivers must provide all the fields listed above except drvwrap.
834  */
835 struct usb_device_driver {
836         const char *name;
837
838         int (*probe) (struct usb_device *udev);
839         void (*disconnect) (struct usb_device *udev);
840
841         int (*suspend) (struct usb_device *udev, pm_message_t message);
842         int (*resume) (struct usb_device *udev);
843         struct usbdrv_wrap drvwrap;
844         unsigned int supports_autosuspend:1;
845 };
846 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
847                 drvwrap.driver)
848
849 extern struct bus_type usb_bus_type;
850
851 /**
852  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
853  * @name: the usb class device name for this driver.  Will show up in sysfs.
854  * @fops: pointer to the struct file_operations of this driver.
855  * @minor_base: the start of the minor range for this driver.
856  *
857  * This structure is used for the usb_register_dev() and
858  * usb_unregister_dev() functions, to consolidate a number of the
859  * parameters used for them.
860  */
861 struct usb_class_driver {
862         char *name;
863         const struct file_operations *fops;
864         int minor_base;
865 };
866
867 /*
868  * use these in module_init()/module_exit()
869  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
870  */
871 extern int usb_register_driver(struct usb_driver *, struct module *);
872 static inline int usb_register(struct usb_driver *driver)
873 {
874         return usb_register_driver(driver, THIS_MODULE);
875 }
876 extern void usb_deregister(struct usb_driver *);
877
878 extern int usb_register_device_driver(struct usb_device_driver *,
879                         struct module *);
880 extern void usb_deregister_device_driver(struct usb_device_driver *);
881
882 extern int usb_register_dev(struct usb_interface *intf,
883                             struct usb_class_driver *class_driver);
884 extern void usb_deregister_dev(struct usb_interface *intf,
885                                struct usb_class_driver *class_driver);
886
887 extern int usb_disabled(void);
888
889 /* ----------------------------------------------------------------------- */
890
891 /*
892  * URB support, for asynchronous request completions
893  */
894
895 /*
896  * urb->transfer_flags:
897  */
898 #define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
899 #define URB_ISO_ASAP            0x0002  /* iso-only, urb->start_frame
900                                          * ignored */
901 #define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
902 #define URB_NO_SETUP_DMA_MAP    0x0008  /* urb->setup_dma valid on submit */
903 #define URB_NO_FSBR             0x0020  /* UHCI-specific */
904 #define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
905 #define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
906                                          * needed */
907
908 struct usb_iso_packet_descriptor {
909         unsigned int offset;
910         unsigned int length;            /* expected length */
911         unsigned int actual_length;
912         unsigned int status;
913 };
914
915 struct urb;
916
917 typedef void (*usb_complete_t)(struct urb *);
918
919 /**
920  * struct urb - USB Request Block
921  * @urb_list: For use by current owner of the URB.
922  * @pipe: Holds endpoint number, direction, type, and more.
923  *      Create these values with the eight macros available;
924  *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
925  *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
926  *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
927  *      numbers range from zero to fifteen.  Note that "in" endpoint two
928  *      is a different endpoint (and pipe) from "out" endpoint two.
929  *      The current configuration controls the existence, type, and
930  *      maximum packet size of any given endpoint.
931  * @dev: Identifies the USB device to perform the request.
932  * @status: This is read in non-iso completion functions to get the
933  *      status of the particular request.  ISO requests only use it
934  *      to tell whether the URB was unlinked; detailed status for
935  *      each frame is in the fields of the iso_frame-desc.
936  * @transfer_flags: A variety of flags may be used to affect how URB
937  *      submission, unlinking, or operation are handled.  Different
938  *      kinds of URB can use different flags.
939  * @transfer_buffer:  This identifies the buffer to (or from) which
940  *      the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
941  *      is set).  This buffer must be suitable for DMA; allocate it with
942  *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
943  *      of this buffer will be modified.  This buffer is used for the data
944  *      stage of control transfers.
945  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
946  *      the device driver is saying that it provided this DMA address,
947  *      which the host controller driver should use in preference to the
948  *      transfer_buffer.
949  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
950  *      be broken up into chunks according to the current maximum packet
951  *      size for the endpoint, which is a function of the configuration
952  *      and is encoded in the pipe.  When the length is zero, neither
953  *      transfer_buffer nor transfer_dma is used.
954  * @actual_length: This is read in non-iso completion functions, and
955  *      it tells how many bytes (out of transfer_buffer_length) were
956  *      transferred.  It will normally be the same as requested, unless
957  *      either an error was reported or a short read was performed.
958  *      The URB_SHORT_NOT_OK transfer flag may be used to make such
959  *      short reads be reported as errors. 
960  * @setup_packet: Only used for control transfers, this points to eight bytes
961  *      of setup data.  Control transfers always start by sending this data
962  *      to the device.  Then transfer_buffer is read or written, if needed.
963  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
964  *      device driver has provided this DMA address for the setup packet.
965  *      The host controller driver should use this in preference to
966  *      setup_packet.
967  * @start_frame: Returns the initial frame for isochronous transfers.
968  * @number_of_packets: Lists the number of ISO transfer buffers.
969  * @interval: Specifies the polling interval for interrupt or isochronous
970  *      transfers.  The units are frames (milliseconds) for for full and low
971  *      speed devices, and microframes (1/8 millisecond) for highspeed ones.
972  * @error_count: Returns the number of ISO transfers that reported errors.
973  * @context: For use in completion functions.  This normally points to
974  *      request-specific driver context.
975  * @complete: Completion handler. This URB is passed as the parameter to the
976  *      completion function.  The completion function may then do what
977  *      it likes with the URB, including resubmitting or freeing it.
978  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 
979  *      collect the transfer status for each buffer.
980  *
981  * This structure identifies USB transfer requests.  URBs must be allocated by
982  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
983  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
984  * are submitted using usb_submit_urb(), and pending requests may be canceled
985  * using usb_unlink_urb() or usb_kill_urb().
986  *
987  * Data Transfer Buffers:
988  *
989  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
990  * taken from the general page pool.  That is provided by transfer_buffer
991  * (control requests also use setup_packet), and host controller drivers
992  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
993  * mapping operations can be expensive on some platforms (perhaps using a dma
994  * bounce buffer or talking to an IOMMU),
995  * although they're cheap on commodity x86 and ppc hardware.
996  *
997  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
998  * which tell the host controller driver that no such mapping is needed since
999  * the device driver is DMA-aware.  For example, a device driver might
1000  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1001  * When these transfer flags are provided, host controller drivers will
1002  * attempt to use the dma addresses found in the transfer_dma and/or
1003  * setup_dma fields rather than determining a dma address themselves.  (Note
1004  * that transfer_buffer and setup_packet must still be set because not all
1005  * host controllers use DMA, nor do virtual root hubs).
1006  *
1007  * Initialization:
1008  *
1009  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1010  * zero), and complete fields.  All URBs must also initialize
1011  * transfer_buffer and transfer_buffer_length.  They may provide the
1012  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1013  * to be treated as errors; that flag is invalid for write requests.
1014  *
1015  * Bulk URBs may
1016  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1017  * should always terminate with a short packet, even if it means adding an
1018  * extra zero length packet.
1019  *
1020  * Control URBs must provide a setup_packet.  The setup_packet and
1021  * transfer_buffer may each be mapped for DMA or not, independently of
1022  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1023  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1024  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1025  *
1026  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1027  * or, for highspeed devices, 125 microsecond units)
1028  * to poll for transfers.  After the URB has been submitted, the interval
1029  * field reflects how the transfer was actually scheduled.
1030  * The polling interval may be more frequent than requested.
1031  * For example, some controllers have a maximum interval of 32 milliseconds,
1032  * while others support intervals of up to 1024 milliseconds.
1033  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1034  * endpoints, as well as high speed interrupt endpoints, the encoding of
1035  * the transfer interval in the endpoint descriptor is logarithmic.
1036  * Device drivers must convert that value to linear units themselves.)
1037  *
1038  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1039  * the host controller to schedule the transfer as soon as bandwidth
1040  * utilization allows, and then set start_frame to reflect the actual frame
1041  * selected during submission.  Otherwise drivers must specify the start_frame
1042  * and handle the case where the transfer can't begin then.  However, drivers
1043  * won't know how bandwidth is currently allocated, and while they can
1044  * find the current frame using usb_get_current_frame_number () they can't
1045  * know the range for that frame number.  (Ranges for frame counter values
1046  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1047  *
1048  * Isochronous URBs have a different data transfer model, in part because
1049  * the quality of service is only "best effort".  Callers provide specially
1050  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1051  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1052  * URBs are normally queued, submitted by drivers to arrange that
1053  * transfers are at least double buffered, and then explicitly resubmitted
1054  * in completion handlers, so
1055  * that data (such as audio or video) streams at as constant a rate as the
1056  * host controller scheduler can support.
1057  *
1058  * Completion Callbacks:
1059  *
1060  * The completion callback is made in_interrupt(), and one of the first
1061  * things that a completion handler should do is check the status field.
1062  * The status field is provided for all URBs.  It is used to report
1063  * unlinked URBs, and status for all non-ISO transfers.  It should not
1064  * be examined before the URB is returned to the completion handler.
1065  *
1066  * The context field is normally used to link URBs back to the relevant
1067  * driver or request state.
1068  *
1069  * When the completion callback is invoked for non-isochronous URBs, the
1070  * actual_length field tells how many bytes were transferred.  This field
1071  * is updated even when the URB terminated with an error or was unlinked.
1072  *
1073  * ISO transfer status is reported in the status and actual_length fields
1074  * of the iso_frame_desc array, and the number of errors is reported in
1075  * error_count.  Completion callbacks for ISO transfers will normally
1076  * (re)submit URBs to ensure a constant transfer rate.
1077  *
1078  * Note that even fields marked "public" should not be touched by the driver
1079  * when the urb is owned by the hcd, that is, since the call to
1080  * usb_submit_urb() till the entry into the completion routine.
1081  */
1082 struct urb
1083 {
1084         /* private: usb core and host controller only fields in the urb */
1085         struct kref kref;               /* reference count of the URB */
1086         spinlock_t lock;                /* lock for the URB */
1087         void *hcpriv;                   /* private data for host controller */
1088         int bandwidth;                  /* bandwidth for INT/ISO request */
1089         atomic_t use_count;             /* concurrent submissions counter */
1090         u8 reject;                      /* submissions will fail */
1091
1092         /* public: documented fields in the urb that can be used by drivers */
1093         struct list_head urb_list;      /* list head for use by the urb's
1094                                          * current owner */
1095         struct usb_device *dev;         /* (in) pointer to associated device */
1096         unsigned int pipe;              /* (in) pipe information */
1097         int status;                     /* (return) non-ISO status */
1098         unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1099         void *transfer_buffer;          /* (in) associated data buffer */
1100         dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1101         int transfer_buffer_length;     /* (in) data buffer length */
1102         int actual_length;              /* (return) actual transfer length */
1103         unsigned char *setup_packet;    /* (in) setup packet (control only) */
1104         dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1105         int start_frame;                /* (modify) start frame (ISO) */
1106         int number_of_packets;          /* (in) number of ISO packets */
1107         int interval;                   /* (modify) transfer interval
1108                                          * (INT/ISO) */
1109         int error_count;                /* (return) number of ISO errors */
1110         void *context;                  /* (in) context for completion */
1111         usb_complete_t complete;        /* (in) completion routine */
1112         struct usb_iso_packet_descriptor iso_frame_desc[0];
1113                                         /* (in) ISO ONLY */
1114 };
1115
1116 /* ----------------------------------------------------------------------- */
1117
1118 /**
1119  * usb_fill_control_urb - initializes a control urb
1120  * @urb: pointer to the urb to initialize.
1121  * @dev: pointer to the struct usb_device for this urb.
1122  * @pipe: the endpoint pipe
1123  * @setup_packet: pointer to the setup_packet buffer
1124  * @transfer_buffer: pointer to the transfer buffer
1125  * @buffer_length: length of the transfer buffer
1126  * @complete_fn: pointer to the usb_complete_t function
1127  * @context: what to set the urb context to.
1128  *
1129  * Initializes a control urb with the proper information needed to submit
1130  * it to a device.
1131  */
1132 static inline void usb_fill_control_urb (struct urb *urb,
1133                                          struct usb_device *dev,
1134                                          unsigned int pipe,
1135                                          unsigned char *setup_packet,
1136                                          void *transfer_buffer,
1137                                          int buffer_length,
1138                                          usb_complete_t complete_fn,
1139                                          void *context)
1140 {
1141         spin_lock_init(&urb->lock);
1142         urb->dev = dev;
1143         urb->pipe = pipe;
1144         urb->setup_packet = setup_packet;
1145         urb->transfer_buffer = transfer_buffer;
1146         urb->transfer_buffer_length = buffer_length;
1147         urb->complete = complete_fn;
1148         urb->context = context;
1149 }
1150
1151 /**
1152  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1153  * @urb: pointer to the urb to initialize.
1154  * @dev: pointer to the struct usb_device for this urb.
1155  * @pipe: the endpoint pipe
1156  * @transfer_buffer: pointer to the transfer buffer
1157  * @buffer_length: length of the transfer buffer
1158  * @complete_fn: pointer to the usb_complete_t function
1159  * @context: what to set the urb context to.
1160  *
1161  * Initializes a bulk urb with the proper information needed to submit it
1162  * to a device.
1163  */
1164 static inline void usb_fill_bulk_urb (struct urb *urb,
1165                                       struct usb_device *dev,
1166                                       unsigned int pipe,
1167                                       void *transfer_buffer,
1168                                       int buffer_length,
1169                                       usb_complete_t complete_fn,
1170                                       void *context)
1171 {
1172         spin_lock_init(&urb->lock);
1173         urb->dev = dev;
1174         urb->pipe = pipe;
1175         urb->transfer_buffer = transfer_buffer;
1176         urb->transfer_buffer_length = buffer_length;
1177         urb->complete = complete_fn;
1178         urb->context = context;
1179 }
1180
1181 /**
1182  * usb_fill_int_urb - macro to help initialize a interrupt urb
1183  * @urb: pointer to the urb to initialize.
1184  * @dev: pointer to the struct usb_device for this urb.
1185  * @pipe: the endpoint pipe
1186  * @transfer_buffer: pointer to the transfer buffer
1187  * @buffer_length: length of the transfer buffer
1188  * @complete_fn: pointer to the usb_complete_t function
1189  * @context: what to set the urb context to.
1190  * @interval: what to set the urb interval to, encoded like
1191  *      the endpoint descriptor's bInterval value.
1192  *
1193  * Initializes a interrupt urb with the proper information needed to submit
1194  * it to a device.
1195  * Note that high speed interrupt endpoints use a logarithmic encoding of
1196  * the endpoint interval, and express polling intervals in microframes
1197  * (eight per millisecond) rather than in frames (one per millisecond).
1198  */
1199 static inline void usb_fill_int_urb (struct urb *urb,
1200                                      struct usb_device *dev,
1201                                      unsigned int pipe,
1202                                      void *transfer_buffer,
1203                                      int buffer_length,
1204                                      usb_complete_t complete_fn,
1205                                      void *context,
1206                                      int interval)
1207 {
1208         spin_lock_init(&urb->lock);
1209         urb->dev = dev;
1210         urb->pipe = pipe;
1211         urb->transfer_buffer = transfer_buffer;
1212         urb->transfer_buffer_length = buffer_length;
1213         urb->complete = complete_fn;
1214         urb->context = context;
1215         if (dev->speed == USB_SPEED_HIGH)
1216                 urb->interval = 1 << (interval - 1);
1217         else
1218                 urb->interval = interval;
1219         urb->start_frame = -1;
1220 }
1221
1222 extern void usb_init_urb(struct urb *urb);
1223 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1224 extern void usb_free_urb(struct urb *urb);
1225 #define usb_put_urb usb_free_urb
1226 extern struct urb *usb_get_urb(struct urb *urb);
1227 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1228 extern int usb_unlink_urb(struct urb *urb);
1229 extern void usb_kill_urb(struct urb *urb);
1230
1231 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1232         gfp_t mem_flags, dma_addr_t *dma);
1233 void usb_buffer_free (struct usb_device *dev, size_t size,
1234         void *addr, dma_addr_t dma);
1235
1236 #if 0
1237 struct urb *usb_buffer_map (struct urb *urb);
1238 void usb_buffer_dmasync (struct urb *urb);
1239 void usb_buffer_unmap (struct urb *urb);
1240 #endif
1241
1242 struct scatterlist;
1243 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
1244                       struct scatterlist *sg, int nents);
1245 #if 0
1246 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe,
1247                            struct scatterlist *sg, int n_hw_ents);
1248 #endif
1249 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
1250                          struct scatterlist *sg, int n_hw_ents);
1251
1252 /*-------------------------------------------------------------------*
1253  *                         SYNCHRONOUS CALL SUPPORT                  *
1254  *-------------------------------------------------------------------*/
1255
1256 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1257         __u8 request, __u8 requesttype, __u16 value, __u16 index,
1258         void *data, __u16 size, int timeout);
1259 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1260         void *data, int len, int *actual_length, int timeout);
1261 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1262         void *data, int len, int *actual_length,
1263         int timeout);
1264
1265 /* wrappers around usb_control_msg() for the most common standard requests */
1266 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1267         unsigned char descindex, void *buf, int size);
1268 extern int usb_get_status(struct usb_device *dev,
1269         int type, int target, void *data);
1270 extern int usb_string(struct usb_device *dev, int index,
1271         char *buf, size_t size);
1272
1273 /* wrappers that also update important state inside usbcore */
1274 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1275 extern int usb_reset_configuration(struct usb_device *dev);
1276 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1277
1278 /* this request isn't really synchronous, but it belongs with the others */
1279 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1280
1281 /*
1282  * timeouts, in milliseconds, used for sending/receiving control messages
1283  * they typically complete within a few frames (msec) after they're issued
1284  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1285  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1286  */
1287 #define USB_CTRL_GET_TIMEOUT    5000
1288 #define USB_CTRL_SET_TIMEOUT    5000
1289
1290
1291 /**
1292  * struct usb_sg_request - support for scatter/gather I/O
1293  * @status: zero indicates success, else negative errno
1294  * @bytes: counts bytes transferred.
1295  *
1296  * These requests are initialized using usb_sg_init(), and then are used
1297  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1298  * members of the request object aren't for driver access.
1299  *
1300  * The status and bytecount values are valid only after usb_sg_wait()
1301  * returns.  If the status is zero, then the bytecount matches the total
1302  * from the request.
1303  *
1304  * After an error completion, drivers may need to clear a halt condition
1305  * on the endpoint.
1306  */
1307 struct usb_sg_request {
1308         int                     status;
1309         size_t                  bytes;
1310
1311         /* 
1312          * members below are private: to usbcore,
1313          * and are not provided for driver access!
1314          */
1315         spinlock_t              lock;
1316
1317         struct usb_device       *dev;
1318         int                     pipe;
1319         struct scatterlist      *sg;
1320         int                     nents;
1321
1322         int                     entries;
1323         struct urb              **urbs;
1324
1325         int                     count;
1326         struct completion       complete;
1327 };
1328
1329 int usb_sg_init (
1330         struct usb_sg_request   *io,
1331         struct usb_device       *dev,
1332         unsigned                pipe, 
1333         unsigned                period,
1334         struct scatterlist      *sg,
1335         int                     nents,
1336         size_t                  length,
1337         gfp_t                   mem_flags
1338 );
1339 void usb_sg_cancel (struct usb_sg_request *io);
1340 void usb_sg_wait (struct usb_sg_request *io);
1341
1342
1343 /* ----------------------------------------------------------------------- */
1344
1345 /*
1346  * For various legacy reasons, Linux has a small cookie that's paired with
1347  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1348  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1349  * an unsigned int encoded as:
1350  *
1351  *  - direction:        bit 7           (0 = Host-to-Device [Out],
1352  *                                       1 = Device-to-Host [In] ...
1353  *                                      like endpoint bEndpointAddress)
1354  *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1355  *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1356  *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1357  *                                       10 = control, 11 = bulk)
1358  *
1359  * Given the device address and endpoint descriptor, pipes are redundant.
1360  */
1361
1362 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1363 /* (yet ... they're the values used by usbfs) */
1364 #define PIPE_ISOCHRONOUS                0
1365 #define PIPE_INTERRUPT                  1
1366 #define PIPE_CONTROL                    2
1367 #define PIPE_BULK                       3
1368
1369 #define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1370 #define usb_pipeout(pipe)       (!usb_pipein(pipe))
1371
1372 #define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1373 #define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1374
1375 #define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1376 #define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1377 #define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1378 #define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1379 #define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1380
1381 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1382 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1383 #define usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1384 #define usb_settoggle(dev, ep, out, bit) \
1385                 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1386                  ((bit) << (ep)))
1387
1388
1389 static inline unsigned int __create_pipe(struct usb_device *dev,
1390                 unsigned int endpoint)
1391 {
1392         return (dev->devnum << 8) | (endpoint << 15);
1393 }
1394
1395 /* Create various pipes... */
1396 #define usb_sndctrlpipe(dev,endpoint)   \
1397         ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1398 #define usb_rcvctrlpipe(dev,endpoint)   \
1399         ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1400 #define usb_sndisocpipe(dev,endpoint)   \
1401         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1402 #define usb_rcvisocpipe(dev,endpoint)   \
1403         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1404 #define usb_sndbulkpipe(dev,endpoint)   \
1405         ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1406 #define usb_rcvbulkpipe(dev,endpoint)   \
1407         ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1408 #define usb_sndintpipe(dev,endpoint)    \
1409         ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1410 #define usb_rcvintpipe(dev,endpoint)    \
1411         ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1412
1413 /*-------------------------------------------------------------------------*/
1414
1415 static inline __u16
1416 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1417 {
1418         struct usb_host_endpoint        *ep;
1419         unsigned                        epnum = usb_pipeendpoint(pipe);
1420
1421         if (is_out) {
1422                 WARN_ON(usb_pipein(pipe));
1423                 ep = udev->ep_out[epnum];
1424         } else {
1425                 WARN_ON(usb_pipeout(pipe));
1426                 ep = udev->ep_in[epnum];
1427         }
1428         if (!ep)
1429                 return 0;
1430
1431         /* NOTE:  only 0x07ff bits are for packet size... */
1432         return le16_to_cpu(ep->desc.wMaxPacketSize);
1433 }
1434
1435 /* ----------------------------------------------------------------------- */
1436
1437 /* Events from the usb core */
1438 #define USB_DEVICE_ADD          0x0001
1439 #define USB_DEVICE_REMOVE       0x0002
1440 #define USB_BUS_ADD             0x0003
1441 #define USB_BUS_REMOVE          0x0004
1442 extern void usb_register_notify(struct notifier_block *nb);
1443 extern void usb_unregister_notify(struct notifier_block *nb);
1444
1445 #ifdef DEBUG
1446 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1447         __FILE__ , ## arg)
1448 #else
1449 #define dbg(format, arg...) do {} while (0)
1450 #endif
1451
1452 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1453         __FILE__ , ## arg)
1454 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1455         __FILE__ , ## arg)
1456 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1457         __FILE__ , ## arg)
1458
1459
1460 #endif  /* __KERNEL__ */
1461
1462 #endif