powerpc/mm: Split the various pgtable-* headers based on MMU type
[linux-2.6] / arch / powerpc / include / asm / pgtable-ppc64.h
1 #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2 #define _ASM_POWERPC_PGTABLE_PPC64_H_
3 /*
4  * This file contains the functions and defines necessary to modify and use
5  * the ppc64 hashed page table.
6  */
7
8 #ifndef __ASSEMBLY__
9 #include <linux/stddef.h>
10 #include <asm/tlbflush.h>
11 #endif /* __ASSEMBLY__ */
12
13 #ifdef CONFIG_PPC_64K_PAGES
14 #include <asm/pgtable-ppc64-64k.h>
15 #else
16 #include <asm/pgtable-ppc64-4k.h>
17 #endif
18
19 #define FIRST_USER_ADDRESS      0
20
21 /*
22  * Size of EA range mapped by our pagetables.
23  */
24 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
25                             PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
26 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
27
28
29 /* Some sanity checking */
30 #if TASK_SIZE_USER64 > PGTABLE_RANGE
31 #error TASK_SIZE_USER64 exceeds pagetable range
32 #endif
33
34 #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
35 #error TASK_SIZE_USER64 exceeds user VSID range
36 #endif
37
38 /*
39  * Define the address range of the vmalloc VM area.
40  */
41 #define VMALLOC_START ASM_CONST(0xD000000000000000)
42 #define VMALLOC_SIZE  (PGTABLE_RANGE >> 1)
43 #define VMALLOC_END   (VMALLOC_START + VMALLOC_SIZE)
44
45 /*
46  * Define the address ranges for MMIO and IO space :
47  *
48  *  ISA_IO_BASE = VMALLOC_END, 64K reserved area
49  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
50  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
51  */
52 #define FULL_IO_SIZE    0x80000000ul
53 #define  ISA_IO_BASE    (VMALLOC_END)
54 #define  ISA_IO_END     (VMALLOC_END + 0x10000ul)
55 #define  PHB_IO_BASE    (ISA_IO_END)
56 #define  PHB_IO_END     (VMALLOC_END + FULL_IO_SIZE)
57 #define IOREMAP_BASE    (PHB_IO_END)
58 #define IOREMAP_END     (VMALLOC_START + PGTABLE_RANGE)
59
60 /*
61  * Region IDs
62  */
63 #define REGION_SHIFT            60UL
64 #define REGION_MASK             (0xfUL << REGION_SHIFT)
65 #define REGION_ID(ea)           (((unsigned long)(ea)) >> REGION_SHIFT)
66
67 #define VMALLOC_REGION_ID       (REGION_ID(VMALLOC_START))
68 #define KERNEL_REGION_ID        (REGION_ID(PAGE_OFFSET))
69 #define VMEMMAP_REGION_ID       (0xfUL)
70 #define USER_REGION_ID          (0UL)
71
72 /*
73  * Defines the address of the vmemap area, in its own region
74  */
75 #define VMEMMAP_BASE            (VMEMMAP_REGION_ID << REGION_SHIFT)
76 #define vmemmap                 ((struct page *)VMEMMAP_BASE)
77
78
79 /*
80  * Include the PTE bits definitions
81  */
82 #include <asm/pte-hash64.h>
83
84 /* To make some generic powerpc code happy */
85 #ifndef _PAGE_HWEXEC
86 #define _PAGE_HWEXEC            0
87 #endif
88
89 /* Some other useful definitions */
90 #define PTE_RPN_MAX     (1UL << (64 - PTE_RPN_SHIFT))
91 #define PTE_RPN_MASK    (~((1UL<<PTE_RPN_SHIFT)-1))
92
93 /* _PAGE_CHG_MASK masks of bits that are to be preserved accross
94  * pgprot changes
95  */
96 #define _PAGE_CHG_MASK  (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
97                          _PAGE_ACCESSED | _PAGE_SPECIAL)
98
99
100
101 /* __pgprot defined in arch/powerpc/include/asm/page.h */
102 #define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
103
104 #define PAGE_SHARED     __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
105 #define PAGE_SHARED_X   __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
106 #define PAGE_COPY       __pgprot(_PAGE_BASE | _PAGE_USER)
107 #define PAGE_COPY_X     __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
108 #define PAGE_READONLY   __pgprot(_PAGE_BASE | _PAGE_USER)
109 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
110 #define PAGE_KERNEL     __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
111 #define PAGE_KERNEL_CI  __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
112                                _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
113 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
114
115 #define PAGE_AGP        __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
116 #define HAVE_PAGE_AGP
117
118 /* We always have _PAGE_SPECIAL on 64 bit */
119 #define __HAVE_ARCH_PTE_SPECIAL
120
121
122 /*
123  * POWER4 and newer have per page execute protection, older chips can only
124  * do this on a segment (256MB) basis.
125  *
126  * Also, write permissions imply read permissions.
127  * This is the closest we can get..
128  *
129  * Note due to the way vm flags are laid out, the bits are XWR
130  */
131 #define __P000  PAGE_NONE
132 #define __P001  PAGE_READONLY
133 #define __P010  PAGE_COPY
134 #define __P011  PAGE_COPY
135 #define __P100  PAGE_READONLY_X
136 #define __P101  PAGE_READONLY_X
137 #define __P110  PAGE_COPY_X
138 #define __P111  PAGE_COPY_X
139
140 #define __S000  PAGE_NONE
141 #define __S001  PAGE_READONLY
142 #define __S010  PAGE_SHARED
143 #define __S011  PAGE_SHARED
144 #define __S100  PAGE_READONLY_X
145 #define __S101  PAGE_READONLY_X
146 #define __S110  PAGE_SHARED_X
147 #define __S111  PAGE_SHARED_X
148
149 #ifdef CONFIG_PPC_MM_SLICES
150 #define HAVE_ARCH_UNMAPPED_AREA
151 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
152 #endif /* CONFIG_PPC_MM_SLICES */
153
154 #ifndef __ASSEMBLY__
155
156 /*
157  * This is the default implementation of various PTE accessors, it's
158  * used in all cases except Book3S with 64K pages where we have a
159  * concept of sub-pages
160  */
161 #ifndef __real_pte
162
163 #ifdef STRICT_MM_TYPECHECKS
164 #define __real_pte(e,p)         ((real_pte_t){(e)})
165 #define __rpte_to_pte(r)        ((r).pte)
166 #else
167 #define __real_pte(e,p)         (e)
168 #define __rpte_to_pte(r)        (__pte(r))
169 #endif
170 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12)
171
172 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
173         do {                                                             \
174                 index = 0;                                               \
175                 shift = mmu_psize_defs[psize].shift;                     \
176
177 #define pte_iterate_hashed_end() } while(0)
178
179 #ifdef CONFIG_PPC_HAS_HASH_64K
180 #define pte_pagesize_index(mm, addr, pte)       get_slice_psize(mm, addr)
181 #else
182 #define pte_pagesize_index(mm, addr, pte)       MMU_PAGE_4K
183 #endif
184
185 #endif /* __real_pte */
186
187
188 /*
189  * Conversion functions: convert a page and protection to a page entry,
190  * and a page entry and page directory to the page they refer to.
191  *
192  * mk_pte takes a (struct page *) as input
193  */
194 #define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
195
196 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
197 {
198         pte_t pte;
199
200
201         pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
202         return pte;
203 }
204
205 #define pte_modify(_pte, newprot) \
206   (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
207
208 #define pte_none(pte)           ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
209 #define pte_present(pte)        (pte_val(pte) & _PAGE_PRESENT)
210
211 /* pte_clear moved to later in this file */
212
213 #define pte_pfn(x)              ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
214 #define pte_page(x)             pfn_to_page(pte_pfn(x))
215
216 #define PMD_BAD_BITS            (PTE_TABLE_SIZE-1)
217 #define PUD_BAD_BITS            (PMD_TABLE_SIZE-1)
218
219 #define pmd_set(pmdp, pmdval)   (pmd_val(*(pmdp)) = (pmdval))
220 #define pmd_none(pmd)           (!pmd_val(pmd))
221 #define pmd_bad(pmd)            (!is_kernel_addr(pmd_val(pmd)) \
222                                  || (pmd_val(pmd) & PMD_BAD_BITS))
223 #define pmd_present(pmd)        (pmd_val(pmd) != 0)
224 #define pmd_clear(pmdp)         (pmd_val(*(pmdp)) = 0)
225 #define pmd_page_vaddr(pmd)     (pmd_val(pmd) & ~PMD_MASKED_BITS)
226 #define pmd_page(pmd)           virt_to_page(pmd_page_vaddr(pmd))
227
228 #define pud_set(pudp, pudval)   (pud_val(*(pudp)) = (pudval))
229 #define pud_none(pud)           (!pud_val(pud))
230 #define pud_bad(pud)            (!is_kernel_addr(pud_val(pud)) \
231                                  || (pud_val(pud) & PUD_BAD_BITS))
232 #define pud_present(pud)        (pud_val(pud) != 0)
233 #define pud_clear(pudp)         (pud_val(*(pudp)) = 0)
234 #define pud_page_vaddr(pud)     (pud_val(pud) & ~PUD_MASKED_BITS)
235 #define pud_page(pud)           virt_to_page(pud_page_vaddr(pud))
236
237 #define pgd_set(pgdp, pudp)     ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
238
239 /*
240  * Find an entry in a page-table-directory.  We combine the address region
241  * (the high order N bits) and the pgd portion of the address.
242  */
243 /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
244 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
245
246 #define pgd_offset(mm, address)  ((mm)->pgd + pgd_index(address))
247
248 #define pmd_offset(pudp,addr) \
249   (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
250
251 #define pte_offset_kernel(dir,addr) \
252   (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
253
254 #define pte_offset_map(dir,addr)        pte_offset_kernel((dir), (addr))
255 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
256 #define pte_unmap(pte)                  do { } while(0)
257 #define pte_unmap_nested(pte)           do { } while(0)
258
259 /* to find an entry in a kernel page-table-directory */
260 /* This now only contains the vmalloc pages */
261 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
262
263 /*
264  * The following only work if pte_present() is true.
265  * Undefined behaviour if not..
266  */
267 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
268 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
269 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
270 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
271 static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
272
273 static inline pte_t pte_wrprotect(pte_t pte) {
274         pte_val(pte) &= ~(_PAGE_RW); return pte; }
275 static inline pte_t pte_mkclean(pte_t pte) {
276         pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
277 static inline pte_t pte_mkold(pte_t pte) {
278         pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
279 static inline pte_t pte_mkwrite(pte_t pte) {
280         pte_val(pte) |= _PAGE_RW; return pte; }
281 static inline pte_t pte_mkdirty(pte_t pte) {
282         pte_val(pte) |= _PAGE_DIRTY; return pte; }
283 static inline pte_t pte_mkyoung(pte_t pte) {
284         pte_val(pte) |= _PAGE_ACCESSED; return pte; }
285 static inline pte_t pte_mkhuge(pte_t pte) {
286         return pte; }
287 static inline pte_t pte_mkspecial(pte_t pte) {
288         pte_val(pte) |= _PAGE_SPECIAL; return pte; }
289 static inline pgprot_t pte_pgprot(pte_t pte)
290 {
291         return __pgprot(pte_val(pte) & PAGE_PROT_BITS);
292 }
293
294 /* Atomic PTE updates */
295 static inline unsigned long pte_update(struct mm_struct *mm,
296                                        unsigned long addr,
297                                        pte_t *ptep, unsigned long clr,
298                                        int huge)
299 {
300         unsigned long old, tmp;
301
302         __asm__ __volatile__(
303         "1:     ldarx   %0,0,%3         # pte_update\n\
304         andi.   %1,%0,%6\n\
305         bne-    1b \n\
306         andc    %1,%0,%4 \n\
307         stdcx.  %1,0,%3 \n\
308         bne-    1b"
309         : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
310         : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
311         : "cc" );
312
313         /* huge pages use the old page table lock */
314         if (!huge)
315                 assert_pte_locked(mm, addr);
316
317         if (old & _PAGE_HASHPTE)
318                 hpte_need_flush(mm, addr, ptep, old, huge);
319         return old;
320 }
321
322 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
323                                               unsigned long addr, pte_t *ptep)
324 {
325         unsigned long old;
326
327         if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
328                 return 0;
329         old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
330         return (old & _PAGE_ACCESSED) != 0;
331 }
332 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
333 #define ptep_test_and_clear_young(__vma, __addr, __ptep)                   \
334 ({                                                                         \
335         int __r;                                                           \
336         __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
337         __r;                                                               \
338 })
339
340 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
341 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
342                                       pte_t *ptep)
343 {
344         unsigned long old;
345
346         if ((pte_val(*ptep) & _PAGE_RW) == 0)
347                 return;
348         old = pte_update(mm, addr, ptep, _PAGE_RW, 0);
349 }
350
351 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
352                                            unsigned long addr, pte_t *ptep)
353 {
354         unsigned long old;
355
356         if ((pte_val(*ptep) & _PAGE_RW) == 0)
357                 return;
358         old = pte_update(mm, addr, ptep, _PAGE_RW, 1);
359 }
360
361 /*
362  * We currently remove entries from the hashtable regardless of whether
363  * the entry was young or dirty. The generic routines only flush if the
364  * entry was young or dirty which is not good enough.
365  *
366  * We should be more intelligent about this but for the moment we override
367  * these functions and force a tlb flush unconditionally
368  */
369 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
370 #define ptep_clear_flush_young(__vma, __address, __ptep)                \
371 ({                                                                      \
372         int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
373                                                   __ptep);              \
374         __young;                                                        \
375 })
376
377 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
378 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
379                                        unsigned long addr, pte_t *ptep)
380 {
381         unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
382         return __pte(old);
383 }
384
385 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
386                              pte_t * ptep)
387 {
388         pte_update(mm, addr, ptep, ~0UL, 0);
389 }
390
391
392 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
393  * function doesn't need to flush the hash entry
394  */
395 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
396 {
397         unsigned long bits = pte_val(entry) &
398                 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
399         unsigned long old, tmp;
400
401         __asm__ __volatile__(
402         "1:     ldarx   %0,0,%4\n\
403                 andi.   %1,%0,%6\n\
404                 bne-    1b \n\
405                 or      %0,%3,%0\n\
406                 stdcx.  %0,0,%4\n\
407                 bne-    1b"
408         :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
409         :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
410         :"cc");
411 }
412
413 #define __HAVE_ARCH_PTE_SAME
414 #define pte_same(A,B)   (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
415
416 #define pte_ERROR(e) \
417         printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
418 #define pmd_ERROR(e) \
419         printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
420 #define pgd_ERROR(e) \
421         printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
422
423 /* Encode and de-code a swap entry */
424 #define __swp_type(entry)       (((entry).val >> 1) & 0x3f)
425 #define __swp_offset(entry)     ((entry).val >> 8)
426 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
427 #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
428 #define __swp_entry_to_pte(x)   ((pte_t) { (x).val << PTE_RPN_SHIFT })
429 #define pte_to_pgoff(pte)       (pte_val(pte) >> PTE_RPN_SHIFT)
430 #define pgoff_to_pte(off)       ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
431 #define PTE_FILE_MAX_BITS       (BITS_PER_LONG - PTE_RPN_SHIFT)
432
433 void pgtable_cache_init(void);
434
435 /*
436  * find_linux_pte returns the address of a linux pte for a given
437  * effective address and directory.  If not found, it returns zero.
438  */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
439 {
440         pgd_t *pg;
441         pud_t *pu;
442         pmd_t *pm;
443         pte_t *pt = NULL;
444
445         pg = pgdir + pgd_index(ea);
446         if (!pgd_none(*pg)) {
447                 pu = pud_offset(pg, ea);
448                 if (!pud_none(*pu)) {
449                         pm = pmd_offset(pu, ea);
450                         if (pmd_present(*pm))
451                                 pt = pte_offset_kernel(pm, ea);
452                 }
453         }
454         return pt;
455 }
456
457 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long address);
458
459 #endif /* __ASSEMBLY__ */
460
461 #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */