2 * Copyright (c) 2005-2007 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
43 #include "firmware_exports.h"
47 #define SGE_RX_SM_BUF_SIZE 1536
49 #define SGE_RX_COPY_THRES 256
50 #define SGE_RX_PULL_LEN 128
53 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
54 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
57 #define FL0_PG_CHUNK_SIZE 2048
59 #define SGE_RX_DROP_THRES 16
62 * Period of the Tx buffer reclaim timer. This timer does not need to run
63 * frequently as Tx buffers are usually reclaimed by new Tx packets.
65 #define TX_RECLAIM_PERIOD (HZ / 4)
67 /* WR size in bytes */
68 #define WR_LEN (WR_FLITS * 8)
71 * Types of Tx queues in each queue set. Order here matters, do not change.
73 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
75 /* Values for sge_txq.flags */
77 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
78 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
82 __be64 flit[TX_DESC_FLITS];
92 struct tx_sw_desc { /* SW state per Tx descriptor */
94 u8 eop; /* set if last descriptor for packet */
95 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
96 u8 fragidx; /* first page fragment associated with descriptor */
97 s8 sflit; /* start flit of first SGL entry in descriptor */
100 struct rx_sw_desc { /* SW state per Rx descriptor */
103 struct fl_pg_chunk pg_chunk;
105 DECLARE_PCI_UNMAP_ADDR(dma_addr);
108 struct rsp_desc { /* response queue descriptor */
109 struct rss_header rss_hdr;
117 * Holds unmapping information for Tx packets that need deferred unmapping.
118 * This structure lives at skb->head and must be allocated by callers.
120 struct deferred_unmap_info {
121 struct pci_dev *pdev;
122 dma_addr_t addr[MAX_SKB_FRAGS + 1];
126 * Maps a number of flits to the number of Tx descriptors that can hold them.
129 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
131 * HW allows up to 4 descriptors to be combined into a WR.
133 static u8 flit_desc_map[] = {
135 #if SGE_NUM_GENBITS == 1
136 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
137 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
138 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
139 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
140 #elif SGE_NUM_GENBITS == 2
141 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
142 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
143 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
144 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
146 # error "SGE_NUM_GENBITS must be 1 or 2"
150 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
152 return container_of(q, struct sge_qset, fl[qidx]);
155 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
157 return container_of(q, struct sge_qset, rspq);
160 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
162 return container_of(q, struct sge_qset, txq[qidx]);
166 * refill_rspq - replenish an SGE response queue
167 * @adapter: the adapter
168 * @q: the response queue to replenish
169 * @credits: how many new responses to make available
171 * Replenishes a response queue by making the supplied number of responses
174 static inline void refill_rspq(struct adapter *adapter,
175 const struct sge_rspq *q, unsigned int credits)
178 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
179 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
183 * need_skb_unmap - does the platform need unmapping of sk_buffs?
185 * Returns true if the platfrom needs sk_buff unmapping. The compiler
186 * optimizes away unecessary code if this returns true.
188 static inline int need_skb_unmap(void)
191 * This structure is used to tell if the platfrom needs buffer
192 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
195 DECLARE_PCI_UNMAP_ADDR(addr);
198 return sizeof(struct dummy) != 0;
202 * unmap_skb - unmap a packet main body and its page fragments
204 * @q: the Tx queue containing Tx descriptors for the packet
205 * @cidx: index of Tx descriptor
206 * @pdev: the PCI device
208 * Unmap the main body of an sk_buff and its page fragments, if any.
209 * Because of the fairly complicated structure of our SGLs and the desire
210 * to conserve space for metadata, the information necessary to unmap an
211 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
212 * descriptors (the physical addresses of the various data buffers), and
213 * the SW descriptor state (assorted indices). The send functions
214 * initialize the indices for the first packet descriptor so we can unmap
215 * the buffers held in the first Tx descriptor here, and we have enough
216 * information at this point to set the state for the next Tx descriptor.
218 * Note that it is possible to clean up the first descriptor of a packet
219 * before the send routines have written the next descriptors, but this
220 * race does not cause any problem. We just end up writing the unmapping
221 * info for the descriptor first.
223 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
224 unsigned int cidx, struct pci_dev *pdev)
226 const struct sg_ent *sgp;
227 struct tx_sw_desc *d = &q->sdesc[cidx];
228 int nfrags, frag_idx, curflit, j = d->addr_idx;
230 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
231 frag_idx = d->fragidx;
233 if (frag_idx == 0 && skb_headlen(skb)) {
234 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
235 skb_headlen(skb), PCI_DMA_TODEVICE);
239 curflit = d->sflit + 1 + j;
240 nfrags = skb_shinfo(skb)->nr_frags;
242 while (frag_idx < nfrags && curflit < WR_FLITS) {
243 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
244 skb_shinfo(skb)->frags[frag_idx].size,
255 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
256 d = cidx + 1 == q->size ? q->sdesc : d + 1;
257 d->fragidx = frag_idx;
259 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
264 * free_tx_desc - reclaims Tx descriptors and their buffers
265 * @adapter: the adapter
266 * @q: the Tx queue to reclaim descriptors from
267 * @n: the number of descriptors to reclaim
269 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
270 * Tx buffers. Called with the Tx queue lock held.
272 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
275 struct tx_sw_desc *d;
276 struct pci_dev *pdev = adapter->pdev;
277 unsigned int cidx = q->cidx;
279 const int need_unmap = need_skb_unmap() &&
280 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
284 if (d->skb) { /* an SGL is present */
286 unmap_skb(d->skb, q, cidx, pdev);
291 if (++cidx == q->size) {
300 * reclaim_completed_tx - reclaims completed Tx descriptors
301 * @adapter: the adapter
302 * @q: the Tx queue to reclaim completed descriptors from
304 * Reclaims Tx descriptors that the SGE has indicated it has processed,
305 * and frees the associated buffers if possible. Called with the Tx
308 static inline void reclaim_completed_tx(struct adapter *adapter,
311 unsigned int reclaim = q->processed - q->cleaned;
314 free_tx_desc(adapter, q, reclaim);
315 q->cleaned += reclaim;
316 q->in_use -= reclaim;
321 * should_restart_tx - are there enough resources to restart a Tx queue?
324 * Checks if there are enough descriptors to restart a suspended Tx queue.
326 static inline int should_restart_tx(const struct sge_txq *q)
328 unsigned int r = q->processed - q->cleaned;
330 return q->in_use - r < (q->size >> 1);
334 * free_rx_bufs - free the Rx buffers on an SGE free list
335 * @pdev: the PCI device associated with the adapter
336 * @rxq: the SGE free list to clean up
338 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
339 * this queue should be stopped before calling this function.
341 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
343 unsigned int cidx = q->cidx;
345 while (q->credits--) {
346 struct rx_sw_desc *d = &q->sdesc[cidx];
348 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
349 q->buf_size, PCI_DMA_FROMDEVICE);
351 put_page(d->pg_chunk.page);
352 d->pg_chunk.page = NULL;
357 if (++cidx == q->size)
361 if (q->pg_chunk.page) {
362 __free_page(q->pg_chunk.page);
363 q->pg_chunk.page = NULL;
368 * add_one_rx_buf - add a packet buffer to a free-buffer list
369 * @va: buffer start VA
370 * @len: the buffer length
371 * @d: the HW Rx descriptor to write
372 * @sd: the SW Rx descriptor to write
373 * @gen: the generation bit value
374 * @pdev: the PCI device associated with the adapter
376 * Add a buffer of the given length to the supplied HW and SW Rx
379 static inline void add_one_rx_buf(void *va, unsigned int len,
380 struct rx_desc *d, struct rx_sw_desc *sd,
381 unsigned int gen, struct pci_dev *pdev)
385 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
386 pci_unmap_addr_set(sd, dma_addr, mapping);
388 d->addr_lo = cpu_to_be32(mapping);
389 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
391 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
392 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
395 static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp)
397 if (!q->pg_chunk.page) {
398 q->pg_chunk.page = alloc_page(gfp);
399 if (unlikely(!q->pg_chunk.page))
401 q->pg_chunk.va = page_address(q->pg_chunk.page);
402 q->pg_chunk.offset = 0;
404 sd->pg_chunk = q->pg_chunk;
406 q->pg_chunk.offset += q->buf_size;
407 if (q->pg_chunk.offset == PAGE_SIZE)
408 q->pg_chunk.page = NULL;
410 q->pg_chunk.va += q->buf_size;
411 get_page(q->pg_chunk.page);
417 * refill_fl - refill an SGE free-buffer list
418 * @adapter: the adapter
419 * @q: the free-list to refill
420 * @n: the number of new buffers to allocate
421 * @gfp: the gfp flags for allocating new buffers
423 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
424 * allocated with the supplied gfp flags. The caller must assure that
425 * @n does not exceed the queue's capacity.
427 static void refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
430 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
431 struct rx_desc *d = &q->desc[q->pidx];
435 if (unlikely(alloc_pg_chunk(q, sd, gfp))) {
436 nomem: q->alloc_failed++;
439 buf_start = sd->pg_chunk.va;
441 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
447 buf_start = skb->data;
450 add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen,
454 if (++q->pidx == q->size) {
463 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
466 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
468 refill_fl(adap, fl, min(16U, fl->size - fl->credits), GFP_ATOMIC);
472 * recycle_rx_buf - recycle a receive buffer
473 * @adapter: the adapter
474 * @q: the SGE free list
475 * @idx: index of buffer to recycle
477 * Recycles the specified buffer on the given free list by adding it at
478 * the next available slot on the list.
480 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
483 struct rx_desc *from = &q->desc[idx];
484 struct rx_desc *to = &q->desc[q->pidx];
486 q->sdesc[q->pidx] = q->sdesc[idx];
487 to->addr_lo = from->addr_lo; /* already big endian */
488 to->addr_hi = from->addr_hi; /* likewise */
490 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
491 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
494 if (++q->pidx == q->size) {
498 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
502 * alloc_ring - allocate resources for an SGE descriptor ring
503 * @pdev: the PCI device
504 * @nelem: the number of descriptors
505 * @elem_size: the size of each descriptor
506 * @sw_size: the size of the SW state associated with each ring element
507 * @phys: the physical address of the allocated ring
508 * @metadata: address of the array holding the SW state for the ring
510 * Allocates resources for an SGE descriptor ring, such as Tx queues,
511 * free buffer lists, or response queues. Each SGE ring requires
512 * space for its HW descriptors plus, optionally, space for the SW state
513 * associated with each HW entry (the metadata). The function returns
514 * three values: the virtual address for the HW ring (the return value
515 * of the function), the physical address of the HW ring, and the address
518 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
519 size_t sw_size, dma_addr_t * phys, void *metadata)
521 size_t len = nelem * elem_size;
523 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
528 s = kcalloc(nelem, sw_size, GFP_KERNEL);
531 dma_free_coherent(&pdev->dev, len, p, *phys);
536 *(void **)metadata = s;
542 * free_qset - free the resources of an SGE queue set
543 * @adapter: the adapter owning the queue set
546 * Release the HW and SW resources associated with an SGE queue set, such
547 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
548 * queue set must be quiesced prior to calling this.
550 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
553 struct pci_dev *pdev = adapter->pdev;
555 if (q->tx_reclaim_timer.function)
556 del_timer_sync(&q->tx_reclaim_timer);
558 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
560 spin_lock(&adapter->sge.reg_lock);
561 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
562 spin_unlock(&adapter->sge.reg_lock);
563 free_rx_bufs(pdev, &q->fl[i]);
564 kfree(q->fl[i].sdesc);
565 dma_free_coherent(&pdev->dev,
567 sizeof(struct rx_desc), q->fl[i].desc,
571 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
572 if (q->txq[i].desc) {
573 spin_lock(&adapter->sge.reg_lock);
574 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
575 spin_unlock(&adapter->sge.reg_lock);
576 if (q->txq[i].sdesc) {
577 free_tx_desc(adapter, &q->txq[i],
579 kfree(q->txq[i].sdesc);
581 dma_free_coherent(&pdev->dev,
583 sizeof(struct tx_desc),
584 q->txq[i].desc, q->txq[i].phys_addr);
585 __skb_queue_purge(&q->txq[i].sendq);
589 spin_lock(&adapter->sge.reg_lock);
590 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
591 spin_unlock(&adapter->sge.reg_lock);
592 dma_free_coherent(&pdev->dev,
593 q->rspq.size * sizeof(struct rsp_desc),
594 q->rspq.desc, q->rspq.phys_addr);
597 memset(q, 0, sizeof(*q));
601 * init_qset_cntxt - initialize an SGE queue set context info
603 * @id: the queue set id
605 * Initializes the TIDs and context ids for the queues of a queue set.
607 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
609 qs->rspq.cntxt_id = id;
610 qs->fl[0].cntxt_id = 2 * id;
611 qs->fl[1].cntxt_id = 2 * id + 1;
612 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
613 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
614 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
615 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
616 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
620 * sgl_len - calculates the size of an SGL of the given capacity
621 * @n: the number of SGL entries
623 * Calculates the number of flits needed for a scatter/gather list that
624 * can hold the given number of entries.
626 static inline unsigned int sgl_len(unsigned int n)
628 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
629 return (3 * n) / 2 + (n & 1);
633 * flits_to_desc - returns the num of Tx descriptors for the given flits
634 * @n: the number of flits
636 * Calculates the number of Tx descriptors needed for the supplied number
639 static inline unsigned int flits_to_desc(unsigned int n)
641 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
642 return flit_desc_map[n];
646 * get_packet - return the next ingress packet buffer from a free list
647 * @adap: the adapter that received the packet
648 * @fl: the SGE free list holding the packet
649 * @len: the packet length including any SGE padding
650 * @drop_thres: # of remaining buffers before we start dropping packets
652 * Get the next packet from a free list and complete setup of the
653 * sk_buff. If the packet is small we make a copy and recycle the
654 * original buffer, otherwise we use the original buffer itself. If a
655 * positive drop threshold is supplied packets are dropped and their
656 * buffers recycled if (a) the number of remaining buffers is under the
657 * threshold and the packet is too big to copy, or (b) the packet should
658 * be copied but there is no memory for the copy.
660 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
661 unsigned int len, unsigned int drop_thres)
663 struct sk_buff *skb = NULL;
664 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
666 prefetch(sd->skb->data);
669 if (len <= SGE_RX_COPY_THRES) {
670 skb = alloc_skb(len, GFP_ATOMIC);
671 if (likely(skb != NULL)) {
673 pci_dma_sync_single_for_cpu(adap->pdev,
674 pci_unmap_addr(sd, dma_addr), len,
676 memcpy(skb->data, sd->skb->data, len);
677 pci_dma_sync_single_for_device(adap->pdev,
678 pci_unmap_addr(sd, dma_addr), len,
680 } else if (!drop_thres)
683 recycle_rx_buf(adap, fl, fl->cidx);
687 if (unlikely(fl->credits < drop_thres))
691 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
692 fl->buf_size, PCI_DMA_FROMDEVICE);
695 __refill_fl(adap, fl);
700 * get_packet_pg - return the next ingress packet buffer from a free list
701 * @adap: the adapter that received the packet
702 * @fl: the SGE free list holding the packet
703 * @len: the packet length including any SGE padding
704 * @drop_thres: # of remaining buffers before we start dropping packets
706 * Get the next packet from a free list populated with page chunks.
707 * If the packet is small we make a copy and recycle the original buffer,
708 * otherwise we attach the original buffer as a page fragment to a fresh
709 * sk_buff. If a positive drop threshold is supplied packets are dropped
710 * and their buffers recycled if (a) the number of remaining buffers is
711 * under the threshold and the packet is too big to copy, or (b) there's
714 * Note: this function is similar to @get_packet but deals with Rx buffers
715 * that are page chunks rather than sk_buffs.
717 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
718 unsigned int len, unsigned int drop_thres)
720 struct sk_buff *skb = NULL;
721 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
723 if (len <= SGE_RX_COPY_THRES) {
724 skb = alloc_skb(len, GFP_ATOMIC);
725 if (likely(skb != NULL)) {
727 pci_dma_sync_single_for_cpu(adap->pdev,
728 pci_unmap_addr(sd, dma_addr), len,
730 memcpy(skb->data, sd->pg_chunk.va, len);
731 pci_dma_sync_single_for_device(adap->pdev,
732 pci_unmap_addr(sd, dma_addr), len,
734 } else if (!drop_thres)
738 recycle_rx_buf(adap, fl, fl->cidx);
742 if (unlikely(fl->credits <= drop_thres))
745 skb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
746 if (unlikely(!skb)) {
752 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
753 fl->buf_size, PCI_DMA_FROMDEVICE);
754 __skb_put(skb, SGE_RX_PULL_LEN);
755 memcpy(skb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
756 skb_fill_page_desc(skb, 0, sd->pg_chunk.page,
757 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
758 len - SGE_RX_PULL_LEN);
760 skb->data_len = len - SGE_RX_PULL_LEN;
761 skb->truesize += skb->data_len;
765 * We do not refill FLs here, we let the caller do it to overlap a
772 * get_imm_packet - return the next ingress packet buffer from a response
773 * @resp: the response descriptor containing the packet data
775 * Return a packet containing the immediate data of the given response.
777 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
779 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
782 __skb_put(skb, IMMED_PKT_SIZE);
783 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
789 * calc_tx_descs - calculate the number of Tx descriptors for a packet
792 * Returns the number of Tx descriptors needed for the given Ethernet
793 * packet. Ethernet packets require addition of WR and CPL headers.
795 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
799 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
802 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
803 if (skb_shinfo(skb)->gso_size)
805 return flits_to_desc(flits);
809 * make_sgl - populate a scatter/gather list for a packet
811 * @sgp: the SGL to populate
812 * @start: start address of skb main body data to include in the SGL
813 * @len: length of skb main body data to include in the SGL
814 * @pdev: the PCI device
816 * Generates a scatter/gather list for the buffers that make up a packet
817 * and returns the SGL size in 8-byte words. The caller must size the SGL
820 static inline unsigned int make_sgl(const struct sk_buff *skb,
821 struct sg_ent *sgp, unsigned char *start,
822 unsigned int len, struct pci_dev *pdev)
825 unsigned int i, j = 0, nfrags;
828 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
829 sgp->len[0] = cpu_to_be32(len);
830 sgp->addr[0] = cpu_to_be64(mapping);
834 nfrags = skb_shinfo(skb)->nr_frags;
835 for (i = 0; i < nfrags; i++) {
836 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
838 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
839 frag->size, PCI_DMA_TODEVICE);
840 sgp->len[j] = cpu_to_be32(frag->size);
841 sgp->addr[j] = cpu_to_be64(mapping);
848 return ((nfrags + (len != 0)) * 3) / 2 + j;
852 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
856 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
857 * where the HW is going to sleep just after we checked, however,
858 * then the interrupt handler will detect the outstanding TX packet
859 * and ring the doorbell for us.
861 * When GTS is disabled we unconditionally ring the doorbell.
863 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
866 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
867 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
868 set_bit(TXQ_LAST_PKT_DB, &q->flags);
869 t3_write_reg(adap, A_SG_KDOORBELL,
870 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
873 wmb(); /* write descriptors before telling HW */
874 t3_write_reg(adap, A_SG_KDOORBELL,
875 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
879 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
881 #if SGE_NUM_GENBITS == 2
882 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
887 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
888 * @ndesc: number of Tx descriptors spanned by the SGL
889 * @skb: the packet corresponding to the WR
890 * @d: first Tx descriptor to be written
891 * @pidx: index of above descriptors
892 * @q: the SGE Tx queue
894 * @flits: number of flits to the start of the SGL in the first descriptor
895 * @sgl_flits: the SGL size in flits
896 * @gen: the Tx descriptor generation
897 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
898 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
900 * Write a work request header and an associated SGL. If the SGL is
901 * small enough to fit into one Tx descriptor it has already been written
902 * and we just need to write the WR header. Otherwise we distribute the
903 * SGL across the number of descriptors it spans.
905 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
906 struct tx_desc *d, unsigned int pidx,
907 const struct sge_txq *q,
908 const struct sg_ent *sgl,
909 unsigned int flits, unsigned int sgl_flits,
910 unsigned int gen, __be32 wr_hi,
913 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
914 struct tx_sw_desc *sd = &q->sdesc[pidx];
917 if (need_skb_unmap()) {
923 if (likely(ndesc == 1)) {
925 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
926 V_WR_SGLSFLT(flits)) | wr_hi;
928 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
929 V_WR_GEN(gen)) | wr_lo;
932 unsigned int ogen = gen;
933 const u64 *fp = (const u64 *)sgl;
934 struct work_request_hdr *wp = wrp;
936 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
937 V_WR_SGLSFLT(flits)) | wr_hi;
940 unsigned int avail = WR_FLITS - flits;
942 if (avail > sgl_flits)
944 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
954 if (++pidx == q->size) {
962 wrp = (struct work_request_hdr *)d;
963 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
964 V_WR_SGLSFLT(1)) | wr_hi;
965 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
967 V_WR_GEN(gen)) | wr_lo;
972 wrp->wr_hi |= htonl(F_WR_EOP);
974 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
975 wr_gen2((struct tx_desc *)wp, ogen);
981 * write_tx_pkt_wr - write a TX_PKT work request
983 * @skb: the packet to send
984 * @pi: the egress interface
985 * @pidx: index of the first Tx descriptor to write
986 * @gen: the generation value to use
988 * @ndesc: number of descriptors the packet will occupy
989 * @compl: the value of the COMPL bit to use
991 * Generate a TX_PKT work request to send the supplied packet.
993 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
994 const struct port_info *pi,
995 unsigned int pidx, unsigned int gen,
996 struct sge_txq *q, unsigned int ndesc,
999 unsigned int flits, sgl_flits, cntrl, tso_info;
1000 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1001 struct tx_desc *d = &q->desc[pidx];
1002 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1004 cpl->len = htonl(skb->len | 0x80000000);
1005 cntrl = V_TXPKT_INTF(pi->port_id);
1007 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1008 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1010 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1013 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1016 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1017 hdr->cntrl = htonl(cntrl);
1018 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1019 CPL_ETH_II : CPL_ETH_II_VLAN;
1020 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1021 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1022 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1023 hdr->lso_info = htonl(tso_info);
1026 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1027 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1028 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1029 cpl->cntrl = htonl(cntrl);
1031 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1032 q->sdesc[pidx].skb = NULL;
1034 skb_copy_from_linear_data(skb, &d->flit[2],
1037 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1039 flits = (skb->len + 7) / 8 + 2;
1040 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1041 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1042 | F_WR_SOP | F_WR_EOP | compl);
1044 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1045 V_WR_TID(q->token));
1054 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1055 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1057 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1058 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1059 htonl(V_WR_TID(q->token)));
1063 * eth_xmit - add a packet to the Ethernet Tx queue
1065 * @dev: the egress net device
1067 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1069 int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1071 unsigned int ndesc, pidx, credits, gen, compl;
1072 const struct port_info *pi = netdev_priv(dev);
1073 struct adapter *adap = pi->adapter;
1074 struct sge_qset *qs = pi->qs;
1075 struct sge_txq *q = &qs->txq[TXQ_ETH];
1078 * The chip min packet length is 9 octets but play safe and reject
1079 * anything shorter than an Ethernet header.
1081 if (unlikely(skb->len < ETH_HLEN)) {
1083 return NETDEV_TX_OK;
1086 spin_lock(&q->lock);
1087 reclaim_completed_tx(adap, q);
1089 credits = q->size - q->in_use;
1090 ndesc = calc_tx_descs(skb);
1092 if (unlikely(credits < ndesc)) {
1093 if (!netif_queue_stopped(dev)) {
1094 netif_stop_queue(dev);
1095 set_bit(TXQ_ETH, &qs->txq_stopped);
1097 dev_err(&adap->pdev->dev,
1098 "%s: Tx ring %u full while queue awake!\n",
1099 dev->name, q->cntxt_id & 7);
1101 spin_unlock(&q->lock);
1102 return NETDEV_TX_BUSY;
1106 if (unlikely(credits - ndesc < q->stop_thres)) {
1108 netif_stop_queue(dev);
1109 set_bit(TXQ_ETH, &qs->txq_stopped);
1111 if (should_restart_tx(q) &&
1112 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1114 netif_wake_queue(dev);
1120 q->unacked += ndesc;
1121 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1125 if (q->pidx >= q->size) {
1130 /* update port statistics */
1131 if (skb->ip_summed == CHECKSUM_COMPLETE)
1132 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1133 if (skb_shinfo(skb)->gso_size)
1134 qs->port_stats[SGE_PSTAT_TSO]++;
1135 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1136 qs->port_stats[SGE_PSTAT_VLANINS]++;
1138 dev->trans_start = jiffies;
1139 spin_unlock(&q->lock);
1142 * We do not use Tx completion interrupts to free DMAd Tx packets.
1143 * This is good for performamce but means that we rely on new Tx
1144 * packets arriving to run the destructors of completed packets,
1145 * which open up space in their sockets' send queues. Sometimes
1146 * we do not get such new packets causing Tx to stall. A single
1147 * UDP transmitter is a good example of this situation. We have
1148 * a clean up timer that periodically reclaims completed packets
1149 * but it doesn't run often enough (nor do we want it to) to prevent
1150 * lengthy stalls. A solution to this problem is to run the
1151 * destructor early, after the packet is queued but before it's DMAd.
1152 * A cons is that we lie to socket memory accounting, but the amount
1153 * of extra memory is reasonable (limited by the number of Tx
1154 * descriptors), the packets do actually get freed quickly by new
1155 * packets almost always, and for protocols like TCP that wait for
1156 * acks to really free up the data the extra memory is even less.
1157 * On the positive side we run the destructors on the sending CPU
1158 * rather than on a potentially different completing CPU, usually a
1159 * good thing. We also run them without holding our Tx queue lock,
1160 * unlike what reclaim_completed_tx() would otherwise do.
1162 * Run the destructor before telling the DMA engine about the packet
1163 * to make sure it doesn't complete and get freed prematurely.
1165 if (likely(!skb_shared(skb)))
1168 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1169 check_ring_tx_db(adap, q);
1170 return NETDEV_TX_OK;
1174 * write_imm - write a packet into a Tx descriptor as immediate data
1175 * @d: the Tx descriptor to write
1177 * @len: the length of packet data to write as immediate data
1178 * @gen: the generation bit value to write
1180 * Writes a packet as immediate data into a Tx descriptor. The packet
1181 * contains a work request at its beginning. We must write the packet
1182 * carefully so the SGE doesn't read it accidentally before it's written
1185 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1186 unsigned int len, unsigned int gen)
1188 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1189 struct work_request_hdr *to = (struct work_request_hdr *)d;
1191 if (likely(!skb->data_len))
1192 memcpy(&to[1], &from[1], len - sizeof(*from));
1194 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1196 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1197 V_WR_BCNTLFLT(len & 7));
1199 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1200 V_WR_LEN((len + 7) / 8));
1206 * check_desc_avail - check descriptor availability on a send queue
1207 * @adap: the adapter
1208 * @q: the send queue
1209 * @skb: the packet needing the descriptors
1210 * @ndesc: the number of Tx descriptors needed
1211 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1213 * Checks if the requested number of Tx descriptors is available on an
1214 * SGE send queue. If the queue is already suspended or not enough
1215 * descriptors are available the packet is queued for later transmission.
1216 * Must be called with the Tx queue locked.
1218 * Returns 0 if enough descriptors are available, 1 if there aren't
1219 * enough descriptors and the packet has been queued, and 2 if the caller
1220 * needs to retry because there weren't enough descriptors at the
1221 * beginning of the call but some freed up in the mean time.
1223 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1224 struct sk_buff *skb, unsigned int ndesc,
1227 if (unlikely(!skb_queue_empty(&q->sendq))) {
1228 addq_exit:__skb_queue_tail(&q->sendq, skb);
1231 if (unlikely(q->size - q->in_use < ndesc)) {
1232 struct sge_qset *qs = txq_to_qset(q, qid);
1234 set_bit(qid, &qs->txq_stopped);
1235 smp_mb__after_clear_bit();
1237 if (should_restart_tx(q) &&
1238 test_and_clear_bit(qid, &qs->txq_stopped))
1248 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1249 * @q: the SGE control Tx queue
1251 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1252 * that send only immediate data (presently just the control queues) and
1253 * thus do not have any sk_buffs to release.
1255 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1257 unsigned int reclaim = q->processed - q->cleaned;
1259 q->in_use -= reclaim;
1260 q->cleaned += reclaim;
1263 static inline int immediate(const struct sk_buff *skb)
1265 return skb->len <= WR_LEN;
1269 * ctrl_xmit - send a packet through an SGE control Tx queue
1270 * @adap: the adapter
1271 * @q: the control queue
1274 * Send a packet through an SGE control Tx queue. Packets sent through
1275 * a control queue must fit entirely as immediate data in a single Tx
1276 * descriptor and have no page fragments.
1278 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1279 struct sk_buff *skb)
1282 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1284 if (unlikely(!immediate(skb))) {
1287 return NET_XMIT_SUCCESS;
1290 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1291 wrp->wr_lo = htonl(V_WR_TID(q->token));
1293 spin_lock(&q->lock);
1294 again:reclaim_completed_tx_imm(q);
1296 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1297 if (unlikely(ret)) {
1299 spin_unlock(&q->lock);
1305 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1308 if (++q->pidx >= q->size) {
1312 spin_unlock(&q->lock);
1314 t3_write_reg(adap, A_SG_KDOORBELL,
1315 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1316 return NET_XMIT_SUCCESS;
1320 * restart_ctrlq - restart a suspended control queue
1321 * @qs: the queue set cotaining the control queue
1323 * Resumes transmission on a suspended Tx control queue.
1325 static void restart_ctrlq(unsigned long data)
1327 struct sk_buff *skb;
1328 struct sge_qset *qs = (struct sge_qset *)data;
1329 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1331 spin_lock(&q->lock);
1332 again:reclaim_completed_tx_imm(q);
1334 while (q->in_use < q->size &&
1335 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1337 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1339 if (++q->pidx >= q->size) {
1346 if (!skb_queue_empty(&q->sendq)) {
1347 set_bit(TXQ_CTRL, &qs->txq_stopped);
1348 smp_mb__after_clear_bit();
1350 if (should_restart_tx(q) &&
1351 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1356 spin_unlock(&q->lock);
1358 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1359 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1363 * Send a management message through control queue 0
1365 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1369 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1376 * deferred_unmap_destructor - unmap a packet when it is freed
1379 * This is the packet destructor used for Tx packets that need to remain
1380 * mapped until they are freed rather than until their Tx descriptors are
1383 static void deferred_unmap_destructor(struct sk_buff *skb)
1386 const dma_addr_t *p;
1387 const struct skb_shared_info *si;
1388 const struct deferred_unmap_info *dui;
1390 dui = (struct deferred_unmap_info *)skb->head;
1393 if (skb->tail - skb->transport_header)
1394 pci_unmap_single(dui->pdev, *p++,
1395 skb->tail - skb->transport_header,
1398 si = skb_shinfo(skb);
1399 for (i = 0; i < si->nr_frags; i++)
1400 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1404 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1405 const struct sg_ent *sgl, int sgl_flits)
1408 struct deferred_unmap_info *dui;
1410 dui = (struct deferred_unmap_info *)skb->head;
1412 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1413 *p++ = be64_to_cpu(sgl->addr[0]);
1414 *p++ = be64_to_cpu(sgl->addr[1]);
1417 *p = be64_to_cpu(sgl->addr[0]);
1421 * write_ofld_wr - write an offload work request
1422 * @adap: the adapter
1423 * @skb: the packet to send
1425 * @pidx: index of the first Tx descriptor to write
1426 * @gen: the generation value to use
1427 * @ndesc: number of descriptors the packet will occupy
1429 * Write an offload work request to send the supplied packet. The packet
1430 * data already carry the work request with most fields populated.
1432 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1433 struct sge_txq *q, unsigned int pidx,
1434 unsigned int gen, unsigned int ndesc)
1436 unsigned int sgl_flits, flits;
1437 struct work_request_hdr *from;
1438 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1439 struct tx_desc *d = &q->desc[pidx];
1441 if (immediate(skb)) {
1442 q->sdesc[pidx].skb = NULL;
1443 write_imm(d, skb, skb->len, gen);
1447 /* Only TX_DATA builds SGLs */
1449 from = (struct work_request_hdr *)skb->data;
1450 memcpy(&d->flit[1], &from[1],
1451 skb_transport_offset(skb) - sizeof(*from));
1453 flits = skb_transport_offset(skb) / 8;
1454 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1455 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1456 skb->tail - skb->transport_header,
1458 if (need_skb_unmap()) {
1459 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1460 skb->destructor = deferred_unmap_destructor;
1463 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1464 gen, from->wr_hi, from->wr_lo);
1468 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1471 * Returns the number of Tx descriptors needed for the given offload
1472 * packet. These packets are already fully constructed.
1474 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1476 unsigned int flits, cnt;
1478 if (skb->len <= WR_LEN)
1479 return 1; /* packet fits as immediate data */
1481 flits = skb_transport_offset(skb) / 8; /* headers */
1482 cnt = skb_shinfo(skb)->nr_frags;
1483 if (skb->tail != skb->transport_header)
1485 return flits_to_desc(flits + sgl_len(cnt));
1489 * ofld_xmit - send a packet through an offload queue
1490 * @adap: the adapter
1491 * @q: the Tx offload queue
1494 * Send an offload packet through an SGE offload queue.
1496 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1497 struct sk_buff *skb)
1500 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1502 spin_lock(&q->lock);
1503 again:reclaim_completed_tx(adap, q);
1505 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1506 if (unlikely(ret)) {
1508 skb->priority = ndesc; /* save for restart */
1509 spin_unlock(&q->lock);
1519 if (q->pidx >= q->size) {
1523 spin_unlock(&q->lock);
1525 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1526 check_ring_tx_db(adap, q);
1527 return NET_XMIT_SUCCESS;
1531 * restart_offloadq - restart a suspended offload queue
1532 * @qs: the queue set cotaining the offload queue
1534 * Resumes transmission on a suspended Tx offload queue.
1536 static void restart_offloadq(unsigned long data)
1538 struct sk_buff *skb;
1539 struct sge_qset *qs = (struct sge_qset *)data;
1540 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1541 const struct port_info *pi = netdev_priv(qs->netdev);
1542 struct adapter *adap = pi->adapter;
1544 spin_lock(&q->lock);
1545 again:reclaim_completed_tx(adap, q);
1547 while ((skb = skb_peek(&q->sendq)) != NULL) {
1548 unsigned int gen, pidx;
1549 unsigned int ndesc = skb->priority;
1551 if (unlikely(q->size - q->in_use < ndesc)) {
1552 set_bit(TXQ_OFLD, &qs->txq_stopped);
1553 smp_mb__after_clear_bit();
1555 if (should_restart_tx(q) &&
1556 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1566 if (q->pidx >= q->size) {
1570 __skb_unlink(skb, &q->sendq);
1571 spin_unlock(&q->lock);
1573 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1574 spin_lock(&q->lock);
1576 spin_unlock(&q->lock);
1579 set_bit(TXQ_RUNNING, &q->flags);
1580 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1583 t3_write_reg(adap, A_SG_KDOORBELL,
1584 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1588 * queue_set - return the queue set a packet should use
1591 * Maps a packet to the SGE queue set it should use. The desired queue
1592 * set is carried in bits 1-3 in the packet's priority.
1594 static inline int queue_set(const struct sk_buff *skb)
1596 return skb->priority >> 1;
1600 * is_ctrl_pkt - return whether an offload packet is a control packet
1603 * Determines whether an offload packet should use an OFLD or a CTRL
1604 * Tx queue. This is indicated by bit 0 in the packet's priority.
1606 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1608 return skb->priority & 1;
1612 * t3_offload_tx - send an offload packet
1613 * @tdev: the offload device to send to
1616 * Sends an offload packet. We use the packet priority to select the
1617 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1618 * should be sent as regular or control, bits 1-3 select the queue set.
1620 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1622 struct adapter *adap = tdev2adap(tdev);
1623 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1625 if (unlikely(is_ctrl_pkt(skb)))
1626 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1628 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1632 * offload_enqueue - add an offload packet to an SGE offload receive queue
1633 * @q: the SGE response queue
1636 * Add a new offload packet to an SGE response queue's offload packet
1637 * queue. If the packet is the first on the queue it schedules the RX
1638 * softirq to process the queue.
1640 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1642 skb->next = skb->prev = NULL;
1644 q->rx_tail->next = skb;
1646 struct sge_qset *qs = rspq_to_qset(q);
1648 napi_schedule(&qs->napi);
1655 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1656 * @tdev: the offload device that will be receiving the packets
1657 * @q: the SGE response queue that assembled the bundle
1658 * @skbs: the partial bundle
1659 * @n: the number of packets in the bundle
1661 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1663 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1665 struct sk_buff *skbs[], int n)
1668 q->offload_bundles++;
1669 tdev->recv(tdev, skbs, n);
1674 * ofld_poll - NAPI handler for offload packets in interrupt mode
1675 * @dev: the network device doing the polling
1676 * @budget: polling budget
1678 * The NAPI handler for offload packets when a response queue is serviced
1679 * by the hard interrupt handler, i.e., when it's operating in non-polling
1680 * mode. Creates small packet batches and sends them through the offload
1681 * receive handler. Batches need to be of modest size as we do prefetches
1682 * on the packets in each.
1684 static int ofld_poll(struct napi_struct *napi, int budget)
1686 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1687 struct sge_rspq *q = &qs->rspq;
1688 struct adapter *adapter = qs->adap;
1691 while (work_done < budget) {
1692 struct sk_buff *head, *tail, *skbs[RX_BUNDLE_SIZE];
1695 spin_lock_irq(&q->lock);
1698 napi_complete(napi);
1699 spin_unlock_irq(&q->lock);
1704 q->rx_head = q->rx_tail = NULL;
1705 spin_unlock_irq(&q->lock);
1707 for (ngathered = 0; work_done < budget && head; work_done++) {
1708 prefetch(head->data);
1709 skbs[ngathered] = head;
1711 skbs[ngathered]->next = NULL;
1712 if (++ngathered == RX_BUNDLE_SIZE) {
1713 q->offload_bundles++;
1714 adapter->tdev.recv(&adapter->tdev, skbs,
1719 if (head) { /* splice remaining packets back onto Rx queue */
1720 spin_lock_irq(&q->lock);
1721 tail->next = q->rx_head;
1725 spin_unlock_irq(&q->lock);
1727 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1734 * rx_offload - process a received offload packet
1735 * @tdev: the offload device receiving the packet
1736 * @rq: the response queue that received the packet
1738 * @rx_gather: a gather list of packets if we are building a bundle
1739 * @gather_idx: index of the next available slot in the bundle
1741 * Process an ingress offload pakcet and add it to the offload ingress
1742 * queue. Returns the index of the next available slot in the bundle.
1744 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1745 struct sk_buff *skb, struct sk_buff *rx_gather[],
1746 unsigned int gather_idx)
1748 skb_reset_mac_header(skb);
1749 skb_reset_network_header(skb);
1750 skb_reset_transport_header(skb);
1753 rx_gather[gather_idx++] = skb;
1754 if (gather_idx == RX_BUNDLE_SIZE) {
1755 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1757 rq->offload_bundles++;
1760 offload_enqueue(rq, skb);
1766 * restart_tx - check whether to restart suspended Tx queues
1767 * @qs: the queue set to resume
1769 * Restarts suspended Tx queues of an SGE queue set if they have enough
1770 * free resources to resume operation.
1772 static void restart_tx(struct sge_qset *qs)
1774 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1775 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1776 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1777 qs->txq[TXQ_ETH].restarts++;
1778 if (netif_running(qs->netdev))
1779 netif_wake_queue(qs->netdev);
1782 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1783 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1784 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1785 qs->txq[TXQ_OFLD].restarts++;
1786 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1788 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1789 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1790 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1791 qs->txq[TXQ_CTRL].restarts++;
1792 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1797 * rx_eth - process an ingress ethernet packet
1798 * @adap: the adapter
1799 * @rq: the response queue that received the packet
1801 * @pad: amount of padding at the start of the buffer
1803 * Process an ingress ethernet pakcet and deliver it to the stack.
1804 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1805 * if it was immediate data in a response.
1807 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
1808 struct sk_buff *skb, int pad)
1810 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
1811 struct port_info *pi;
1813 skb_pull(skb, sizeof(*p) + pad);
1814 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
1815 skb->dev->last_rx = jiffies;
1816 pi = netdev_priv(skb->dev);
1817 if (pi->rx_csum_offload && p->csum_valid && p->csum == htons(0xffff) &&
1819 rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1820 skb->ip_summed = CHECKSUM_UNNECESSARY;
1822 skb->ip_summed = CHECKSUM_NONE;
1824 if (unlikely(p->vlan_valid)) {
1825 struct vlan_group *grp = pi->vlan_grp;
1827 rspq_to_qset(rq)->port_stats[SGE_PSTAT_VLANEX]++;
1829 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1832 dev_kfree_skb_any(skb);
1833 } else if (rq->polling)
1834 netif_receive_skb(skb);
1840 * handle_rsp_cntrl_info - handles control information in a response
1841 * @qs: the queue set corresponding to the response
1842 * @flags: the response control flags
1844 * Handles the control information of an SGE response, such as GTS
1845 * indications and completion credits for the queue set's Tx queues.
1846 * HW coalesces credits, we don't do any extra SW coalescing.
1848 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
1850 unsigned int credits;
1853 if (flags & F_RSPD_TXQ0_GTS)
1854 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
1857 credits = G_RSPD_TXQ0_CR(flags);
1859 qs->txq[TXQ_ETH].processed += credits;
1861 credits = G_RSPD_TXQ2_CR(flags);
1863 qs->txq[TXQ_CTRL].processed += credits;
1866 if (flags & F_RSPD_TXQ1_GTS)
1867 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
1869 credits = G_RSPD_TXQ1_CR(flags);
1871 qs->txq[TXQ_OFLD].processed += credits;
1875 * check_ring_db - check if we need to ring any doorbells
1876 * @adapter: the adapter
1877 * @qs: the queue set whose Tx queues are to be examined
1878 * @sleeping: indicates which Tx queue sent GTS
1880 * Checks if some of a queue set's Tx queues need to ring their doorbells
1881 * to resume transmission after idling while they still have unprocessed
1884 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
1885 unsigned int sleeping)
1887 if (sleeping & F_RSPD_TXQ0_GTS) {
1888 struct sge_txq *txq = &qs->txq[TXQ_ETH];
1890 if (txq->cleaned + txq->in_use != txq->processed &&
1891 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1892 set_bit(TXQ_RUNNING, &txq->flags);
1893 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1894 V_EGRCNTX(txq->cntxt_id));
1898 if (sleeping & F_RSPD_TXQ1_GTS) {
1899 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
1901 if (txq->cleaned + txq->in_use != txq->processed &&
1902 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1903 set_bit(TXQ_RUNNING, &txq->flags);
1904 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1905 V_EGRCNTX(txq->cntxt_id));
1911 * is_new_response - check if a response is newly written
1912 * @r: the response descriptor
1913 * @q: the response queue
1915 * Returns true if a response descriptor contains a yet unprocessed
1918 static inline int is_new_response(const struct rsp_desc *r,
1919 const struct sge_rspq *q)
1921 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
1924 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
1925 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
1926 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
1927 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
1928 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
1930 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
1931 #define NOMEM_INTR_DELAY 2500
1934 * process_responses - process responses from an SGE response queue
1935 * @adap: the adapter
1936 * @qs: the queue set to which the response queue belongs
1937 * @budget: how many responses can be processed in this round
1939 * Process responses from an SGE response queue up to the supplied budget.
1940 * Responses include received packets as well as credits and other events
1941 * for the queues that belong to the response queue's queue set.
1942 * A negative budget is effectively unlimited.
1944 * Additionally choose the interrupt holdoff time for the next interrupt
1945 * on this queue. If the system is under memory shortage use a fairly
1946 * long delay to help recovery.
1948 static int process_responses(struct adapter *adap, struct sge_qset *qs,
1951 struct sge_rspq *q = &qs->rspq;
1952 struct rsp_desc *r = &q->desc[q->cidx];
1953 int budget_left = budget;
1954 unsigned int sleeping = 0;
1955 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
1958 q->next_holdoff = q->holdoff_tmr;
1960 while (likely(budget_left && is_new_response(r, q))) {
1961 int eth, ethpad = 2;
1962 struct sk_buff *skb = NULL;
1963 u32 len, flags = ntohl(r->flags);
1964 __be32 rss_hi = *(const __be32 *)r, rss_lo = r->rss_hdr.rss_hash_val;
1966 eth = r->rss_hdr.opcode == CPL_RX_PKT;
1968 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
1969 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
1973 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
1974 skb->data[0] = CPL_ASYNC_NOTIF;
1975 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
1977 } else if (flags & F_RSPD_IMM_DATA_VALID) {
1978 skb = get_imm_packet(r);
1979 if (unlikely(!skb)) {
1981 q->next_holdoff = NOMEM_INTR_DELAY;
1983 /* consume one credit since we tried */
1989 } else if ((len = ntohl(r->len_cq)) != 0) {
1992 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
1993 if (fl->use_pages) {
1994 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
1997 #if L1_CACHE_BYTES < 128
1998 prefetch(addr + L1_CACHE_BYTES);
2000 __refill_fl(adap, fl);
2002 skb = get_packet_pg(adap, fl, G_RSPD_LEN(len),
2003 eth ? SGE_RX_DROP_THRES : 0);
2005 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2006 eth ? SGE_RX_DROP_THRES : 0);
2007 if (unlikely(!skb)) {
2011 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2014 if (++fl->cidx == fl->size)
2019 if (flags & RSPD_CTRL_MASK) {
2020 sleeping |= flags & RSPD_GTS_MASK;
2021 handle_rsp_cntrl_info(qs, flags);
2025 if (unlikely(++q->cidx == q->size)) {
2032 if (++q->credits >= (q->size / 4)) {
2033 refill_rspq(adap, q, q->credits);
2037 if (likely(skb != NULL)) {
2039 rx_eth(adap, q, skb, ethpad);
2042 /* Preserve the RSS info in csum & priority */
2044 skb->priority = rss_lo;
2045 ngathered = rx_offload(&adap->tdev, q, skb,
2053 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2055 check_ring_db(adap, qs, sleeping);
2057 smp_mb(); /* commit Tx queue .processed updates */
2058 if (unlikely(qs->txq_stopped != 0))
2061 budget -= budget_left;
2065 static inline int is_pure_response(const struct rsp_desc *r)
2067 u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2069 return (n | r->len_cq) == 0;
2073 * napi_rx_handler - the NAPI handler for Rx processing
2074 * @napi: the napi instance
2075 * @budget: how many packets we can process in this round
2077 * Handler for new data events when using NAPI.
2079 static int napi_rx_handler(struct napi_struct *napi, int budget)
2081 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2082 struct adapter *adap = qs->adap;
2083 int work_done = process_responses(adap, qs, budget);
2085 if (likely(work_done < budget)) {
2086 napi_complete(napi);
2089 * Because we don't atomically flush the following
2090 * write it is possible that in very rare cases it can
2091 * reach the device in a way that races with a new
2092 * response being written plus an error interrupt
2093 * causing the NAPI interrupt handler below to return
2094 * unhandled status to the OS. To protect against
2095 * this would require flushing the write and doing
2096 * both the write and the flush with interrupts off.
2097 * Way too expensive and unjustifiable given the
2098 * rarity of the race.
2100 * The race cannot happen at all with MSI-X.
2102 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2103 V_NEWTIMER(qs->rspq.next_holdoff) |
2104 V_NEWINDEX(qs->rspq.cidx));
2110 * Returns true if the device is already scheduled for polling.
2112 static inline int napi_is_scheduled(struct napi_struct *napi)
2114 return test_bit(NAPI_STATE_SCHED, &napi->state);
2118 * process_pure_responses - process pure responses from a response queue
2119 * @adap: the adapter
2120 * @qs: the queue set owning the response queue
2121 * @r: the first pure response to process
2123 * A simpler version of process_responses() that handles only pure (i.e.,
2124 * non data-carrying) responses. Such respones are too light-weight to
2125 * justify calling a softirq under NAPI, so we handle them specially in
2126 * the interrupt handler. The function is called with a pointer to a
2127 * response, which the caller must ensure is a valid pure response.
2129 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2131 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2134 struct sge_rspq *q = &qs->rspq;
2135 unsigned int sleeping = 0;
2138 u32 flags = ntohl(r->flags);
2141 if (unlikely(++q->cidx == q->size)) {
2148 if (flags & RSPD_CTRL_MASK) {
2149 sleeping |= flags & RSPD_GTS_MASK;
2150 handle_rsp_cntrl_info(qs, flags);
2154 if (++q->credits >= (q->size / 4)) {
2155 refill_rspq(adap, q, q->credits);
2158 } while (is_new_response(r, q) && is_pure_response(r));
2161 check_ring_db(adap, qs, sleeping);
2163 smp_mb(); /* commit Tx queue .processed updates */
2164 if (unlikely(qs->txq_stopped != 0))
2167 return is_new_response(r, q);
2171 * handle_responses - decide what to do with new responses in NAPI mode
2172 * @adap: the adapter
2173 * @q: the response queue
2175 * This is used by the NAPI interrupt handlers to decide what to do with
2176 * new SGE responses. If there are no new responses it returns -1. If
2177 * there are new responses and they are pure (i.e., non-data carrying)
2178 * it handles them straight in hard interrupt context as they are very
2179 * cheap and don't deliver any packets. Finally, if there are any data
2180 * signaling responses it schedules the NAPI handler. Returns 1 if it
2181 * schedules NAPI, 0 if all new responses were pure.
2183 * The caller must ascertain NAPI is not already running.
2185 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2187 struct sge_qset *qs = rspq_to_qset(q);
2188 struct rsp_desc *r = &q->desc[q->cidx];
2190 if (!is_new_response(r, q))
2192 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2193 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2194 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2197 napi_schedule(&qs->napi);
2202 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2203 * (i.e., response queue serviced in hard interrupt).
2205 irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2207 struct sge_qset *qs = cookie;
2208 struct adapter *adap = qs->adap;
2209 struct sge_rspq *q = &qs->rspq;
2211 spin_lock(&q->lock);
2212 if (process_responses(adap, qs, -1) == 0)
2213 q->unhandled_irqs++;
2214 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2215 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2216 spin_unlock(&q->lock);
2221 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2222 * (i.e., response queue serviced by NAPI polling).
2224 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2226 struct sge_qset *qs = cookie;
2227 struct sge_rspq *q = &qs->rspq;
2229 spin_lock(&q->lock);
2231 if (handle_responses(qs->adap, q) < 0)
2232 q->unhandled_irqs++;
2233 spin_unlock(&q->lock);
2238 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2239 * SGE response queues as well as error and other async events as they all use
2240 * the same MSI vector. We use one SGE response queue per port in this mode
2241 * and protect all response queues with queue 0's lock.
2243 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2245 int new_packets = 0;
2246 struct adapter *adap = cookie;
2247 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2249 spin_lock(&q->lock);
2251 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2252 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2253 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2257 if (adap->params.nports == 2 &&
2258 process_responses(adap, &adap->sge.qs[1], -1)) {
2259 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2261 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2262 V_NEWTIMER(q1->next_holdoff) |
2263 V_NEWINDEX(q1->cidx));
2267 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2268 q->unhandled_irqs++;
2270 spin_unlock(&q->lock);
2274 static int rspq_check_napi(struct sge_qset *qs)
2276 struct sge_rspq *q = &qs->rspq;
2278 if (!napi_is_scheduled(&qs->napi) &&
2279 is_new_response(&q->desc[q->cidx], q)) {
2280 napi_schedule(&qs->napi);
2287 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2288 * by NAPI polling). Handles data events from SGE response queues as well as
2289 * error and other async events as they all use the same MSI vector. We use
2290 * one SGE response queue per port in this mode and protect all response
2291 * queues with queue 0's lock.
2293 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2296 struct adapter *adap = cookie;
2297 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2299 spin_lock(&q->lock);
2301 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2302 if (adap->params.nports == 2)
2303 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2304 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2305 q->unhandled_irqs++;
2307 spin_unlock(&q->lock);
2312 * A helper function that processes responses and issues GTS.
2314 static inline int process_responses_gts(struct adapter *adap,
2315 struct sge_rspq *rq)
2319 work = process_responses(adap, rspq_to_qset(rq), -1);
2320 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2321 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2326 * The legacy INTx interrupt handler. This needs to handle data events from
2327 * SGE response queues as well as error and other async events as they all use
2328 * the same interrupt pin. We use one SGE response queue per port in this mode
2329 * and protect all response queues with queue 0's lock.
2331 static irqreturn_t t3_intr(int irq, void *cookie)
2333 int work_done, w0, w1;
2334 struct adapter *adap = cookie;
2335 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2336 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2338 spin_lock(&q0->lock);
2340 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2341 w1 = adap->params.nports == 2 &&
2342 is_new_response(&q1->desc[q1->cidx], q1);
2344 if (likely(w0 | w1)) {
2345 t3_write_reg(adap, A_PL_CLI, 0);
2346 t3_read_reg(adap, A_PL_CLI); /* flush */
2349 process_responses_gts(adap, q0);
2352 process_responses_gts(adap, q1);
2354 work_done = w0 | w1;
2356 work_done = t3_slow_intr_handler(adap);
2358 spin_unlock(&q0->lock);
2359 return IRQ_RETVAL(work_done != 0);
2363 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2364 * Handles data events from SGE response queues as well as error and other
2365 * async events as they all use the same interrupt pin. We use one SGE
2366 * response queue per port in this mode and protect all response queues with
2369 static irqreturn_t t3b_intr(int irq, void *cookie)
2372 struct adapter *adap = cookie;
2373 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2375 t3_write_reg(adap, A_PL_CLI, 0);
2376 map = t3_read_reg(adap, A_SG_DATA_INTR);
2378 if (unlikely(!map)) /* shared interrupt, most likely */
2381 spin_lock(&q0->lock);
2383 if (unlikely(map & F_ERRINTR))
2384 t3_slow_intr_handler(adap);
2386 if (likely(map & 1))
2387 process_responses_gts(adap, q0);
2390 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2392 spin_unlock(&q0->lock);
2397 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2398 * Handles data events from SGE response queues as well as error and other
2399 * async events as they all use the same interrupt pin. We use one SGE
2400 * response queue per port in this mode and protect all response queues with
2403 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2406 struct adapter *adap = cookie;
2407 struct sge_qset *qs0 = &adap->sge.qs[0];
2408 struct sge_rspq *q0 = &qs0->rspq;
2410 t3_write_reg(adap, A_PL_CLI, 0);
2411 map = t3_read_reg(adap, A_SG_DATA_INTR);
2413 if (unlikely(!map)) /* shared interrupt, most likely */
2416 spin_lock(&q0->lock);
2418 if (unlikely(map & F_ERRINTR))
2419 t3_slow_intr_handler(adap);
2421 if (likely(map & 1))
2422 napi_schedule(&qs0->napi);
2425 napi_schedule(&adap->sge.qs[1].napi);
2427 spin_unlock(&q0->lock);
2432 * t3_intr_handler - select the top-level interrupt handler
2433 * @adap: the adapter
2434 * @polling: whether using NAPI to service response queues
2436 * Selects the top-level interrupt handler based on the type of interrupts
2437 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2440 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2442 if (adap->flags & USING_MSIX)
2443 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2444 if (adap->flags & USING_MSI)
2445 return polling ? t3_intr_msi_napi : t3_intr_msi;
2446 if (adap->params.rev > 0)
2447 return polling ? t3b_intr_napi : t3b_intr;
2451 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2452 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2453 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2454 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2456 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2457 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2461 * t3_sge_err_intr_handler - SGE async event interrupt handler
2462 * @adapter: the adapter
2464 * Interrupt handler for SGE asynchronous (non-data) events.
2466 void t3_sge_err_intr_handler(struct adapter *adapter)
2468 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2470 if (status & SGE_PARERR)
2471 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2472 status & SGE_PARERR);
2473 if (status & SGE_FRAMINGERR)
2474 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2475 status & SGE_FRAMINGERR);
2477 if (status & F_RSPQCREDITOVERFOW)
2478 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2480 if (status & F_RSPQDISABLED) {
2481 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2484 "packet delivered to disabled response queue "
2485 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2488 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2489 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2490 status & F_HIPIODRBDROPERR ? "high" : "lo");
2492 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2493 if (status & SGE_FATALERR)
2494 t3_fatal_err(adapter);
2498 * sge_timer_cb - perform periodic maintenance of an SGE qset
2499 * @data: the SGE queue set to maintain
2501 * Runs periodically from a timer to perform maintenance of an SGE queue
2502 * set. It performs two tasks:
2504 * a) Cleans up any completed Tx descriptors that may still be pending.
2505 * Normal descriptor cleanup happens when new packets are added to a Tx
2506 * queue so this timer is relatively infrequent and does any cleanup only
2507 * if the Tx queue has not seen any new packets in a while. We make a
2508 * best effort attempt to reclaim descriptors, in that we don't wait
2509 * around if we cannot get a queue's lock (which most likely is because
2510 * someone else is queueing new packets and so will also handle the clean
2511 * up). Since control queues use immediate data exclusively we don't
2512 * bother cleaning them up here.
2514 * b) Replenishes Rx queues that have run out due to memory shortage.
2515 * Normally new Rx buffers are added when existing ones are consumed but
2516 * when out of memory a queue can become empty. We try to add only a few
2517 * buffers here, the queue will be replenished fully as these new buffers
2518 * are used up if memory shortage has subsided.
2520 static void sge_timer_cb(unsigned long data)
2523 struct sge_qset *qs = (struct sge_qset *)data;
2524 struct adapter *adap = qs->adap;
2526 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2527 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2528 spin_unlock(&qs->txq[TXQ_ETH].lock);
2530 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2531 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2532 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2534 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
2535 &adap->sge.qs[0].rspq.lock;
2536 if (spin_trylock_irq(lock)) {
2537 if (!napi_is_scheduled(&qs->napi)) {
2538 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2540 if (qs->fl[0].credits < qs->fl[0].size)
2541 __refill_fl(adap, &qs->fl[0]);
2542 if (qs->fl[1].credits < qs->fl[1].size)
2543 __refill_fl(adap, &qs->fl[1]);
2545 if (status & (1 << qs->rspq.cntxt_id)) {
2547 if (qs->rspq.credits) {
2548 refill_rspq(adap, &qs->rspq, 1);
2550 qs->rspq.restarted++;
2551 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2552 1 << qs->rspq.cntxt_id);
2556 spin_unlock_irq(lock);
2558 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2562 * t3_update_qset_coalesce - update coalescing settings for a queue set
2563 * @qs: the SGE queue set
2564 * @p: new queue set parameters
2566 * Update the coalescing settings for an SGE queue set. Nothing is done
2567 * if the queue set is not initialized yet.
2569 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2571 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2572 qs->rspq.polling = p->polling;
2573 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2577 * t3_sge_alloc_qset - initialize an SGE queue set
2578 * @adapter: the adapter
2579 * @id: the queue set id
2580 * @nports: how many Ethernet ports will be using this queue set
2581 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2582 * @p: configuration parameters for this queue set
2583 * @ntxq: number of Tx queues for the queue set
2584 * @netdev: net device associated with this queue set
2586 * Allocate resources and initialize an SGE queue set. A queue set
2587 * comprises a response queue, two Rx free-buffer queues, and up to 3
2588 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2589 * queue, offload queue, and control queue.
2591 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2592 int irq_vec_idx, const struct qset_params *p,
2593 int ntxq, struct net_device *dev)
2595 int i, ret = -ENOMEM;
2596 struct sge_qset *q = &adapter->sge.qs[id];
2598 init_qset_cntxt(q, id);
2599 init_timer(&q->tx_reclaim_timer);
2600 q->tx_reclaim_timer.data = (unsigned long)q;
2601 q->tx_reclaim_timer.function = sge_timer_cb;
2603 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2604 sizeof(struct rx_desc),
2605 sizeof(struct rx_sw_desc),
2606 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2610 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2611 sizeof(struct rx_desc),
2612 sizeof(struct rx_sw_desc),
2613 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2617 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2618 sizeof(struct rsp_desc), 0,
2619 &q->rspq.phys_addr, NULL);
2623 for (i = 0; i < ntxq; ++i) {
2625 * The control queue always uses immediate data so does not
2626 * need to keep track of any sk_buffs.
2628 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2630 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2631 sizeof(struct tx_desc), sz,
2632 &q->txq[i].phys_addr,
2634 if (!q->txq[i].desc)
2638 q->txq[i].size = p->txq_size[i];
2639 spin_lock_init(&q->txq[i].lock);
2640 skb_queue_head_init(&q->txq[i].sendq);
2643 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2645 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2648 q->fl[0].gen = q->fl[1].gen = 1;
2649 q->fl[0].size = p->fl_size;
2650 q->fl[1].size = p->jumbo_size;
2653 q->rspq.size = p->rspq_size;
2654 spin_lock_init(&q->rspq.lock);
2656 q->txq[TXQ_ETH].stop_thres = nports *
2657 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2659 #if FL0_PG_CHUNK_SIZE > 0
2660 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
2662 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
2664 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
2665 q->fl[1].buf_size = is_offload(adapter) ?
2666 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
2667 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
2669 spin_lock(&adapter->sge.reg_lock);
2671 /* FL threshold comparison uses < */
2672 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2673 q->rspq.phys_addr, q->rspq.size,
2674 q->fl[0].buf_size, 1, 0);
2678 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2679 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2680 q->fl[i].phys_addr, q->fl[i].size,
2681 q->fl[i].buf_size, p->cong_thres, 1,
2687 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2688 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2689 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2695 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2696 USE_GTS, SGE_CNTXT_OFLD, id,
2697 q->txq[TXQ_OFLD].phys_addr,
2698 q->txq[TXQ_OFLD].size, 0, 1, 0);
2704 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
2706 q->txq[TXQ_CTRL].phys_addr,
2707 q->txq[TXQ_CTRL].size,
2708 q->txq[TXQ_CTRL].token, 1, 0);
2713 spin_unlock(&adapter->sge.reg_lock);
2717 t3_update_qset_coalesce(q, p);
2719 refill_fl(adapter, &q->fl[0], q->fl[0].size, GFP_KERNEL);
2720 refill_fl(adapter, &q->fl[1], q->fl[1].size, GFP_KERNEL);
2721 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
2723 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2724 V_NEWTIMER(q->rspq.holdoff_tmr));
2726 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2730 spin_unlock(&adapter->sge.reg_lock);
2732 t3_free_qset(adapter, q);
2737 * t3_free_sge_resources - free SGE resources
2738 * @adap: the adapter
2740 * Frees resources used by the SGE queue sets.
2742 void t3_free_sge_resources(struct adapter *adap)
2746 for (i = 0; i < SGE_QSETS; ++i)
2747 t3_free_qset(adap, &adap->sge.qs[i]);
2751 * t3_sge_start - enable SGE
2752 * @adap: the adapter
2754 * Enables the SGE for DMAs. This is the last step in starting packet
2757 void t3_sge_start(struct adapter *adap)
2759 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
2763 * t3_sge_stop - disable SGE operation
2764 * @adap: the adapter
2766 * Disables the DMA engine. This can be called in emeregencies (e.g.,
2767 * from error interrupts) or from normal process context. In the latter
2768 * case it also disables any pending queue restart tasklets. Note that
2769 * if it is called in interrupt context it cannot disable the restart
2770 * tasklets as it cannot wait, however the tasklets will have no effect
2771 * since the doorbells are disabled and the driver will call this again
2772 * later from process context, at which time the tasklets will be stopped
2773 * if they are still running.
2775 void t3_sge_stop(struct adapter *adap)
2777 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
2778 if (!in_interrupt()) {
2781 for (i = 0; i < SGE_QSETS; ++i) {
2782 struct sge_qset *qs = &adap->sge.qs[i];
2784 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
2785 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
2791 * t3_sge_init - initialize SGE
2792 * @adap: the adapter
2793 * @p: the SGE parameters
2795 * Performs SGE initialization needed every time after a chip reset.
2796 * We do not initialize any of the queue sets here, instead the driver
2797 * top-level must request those individually. We also do not enable DMA
2798 * here, that should be done after the queues have been set up.
2800 void t3_sge_init(struct adapter *adap, struct sge_params *p)
2802 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
2804 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
2805 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
2806 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
2807 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
2808 #if SGE_NUM_GENBITS == 1
2809 ctrl |= F_EGRGENCTRL;
2811 if (adap->params.rev > 0) {
2812 if (!(adap->flags & (USING_MSIX | USING_MSI)))
2813 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
2815 t3_write_reg(adap, A_SG_CONTROL, ctrl);
2816 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
2817 V_LORCQDRBTHRSH(512));
2818 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
2819 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
2820 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
2821 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
2822 adap->params.rev < T3_REV_C ? 1000 : 500);
2823 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
2824 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
2825 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
2826 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
2827 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
2831 * t3_sge_prep - one-time SGE initialization
2832 * @adap: the associated adapter
2833 * @p: SGE parameters
2835 * Performs one-time initialization of SGE SW state. Includes determining
2836 * defaults for the assorted SGE parameters, which admins can change until
2837 * they are used to initialize the SGE.
2839 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
2843 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
2844 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2846 for (i = 0; i < SGE_QSETS; ++i) {
2847 struct qset_params *q = p->qset + i;
2849 q->polling = adap->params.rev > 0;
2850 q->coalesce_usecs = 5;
2851 q->rspq_size = 1024;
2853 q->jumbo_size = 512;
2854 q->txq_size[TXQ_ETH] = 1024;
2855 q->txq_size[TXQ_OFLD] = 1024;
2856 q->txq_size[TXQ_CTRL] = 256;
2860 spin_lock_init(&adap->sge.reg_lock);
2864 * t3_get_desc - dump an SGE descriptor for debugging purposes
2865 * @qs: the queue set
2866 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
2867 * @idx: the descriptor index in the queue
2868 * @data: where to dump the descriptor contents
2870 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
2871 * size of the descriptor.
2873 int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
2874 unsigned char *data)
2880 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
2882 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
2883 return sizeof(struct tx_desc);
2887 if (!qs->rspq.desc || idx >= qs->rspq.size)
2889 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
2890 return sizeof(struct rsp_desc);
2894 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
2896 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
2897 return sizeof(struct rx_desc);