2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 #define BITS_PER_BYTE 8
20 #define OFDM_PLCP_BITS 22
21 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
22 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
28 #define HT_LTF(_ns) (4 * (_ns))
29 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
30 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
31 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
32 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34 #define OFDM_SIFS_TIME 16
36 static u32 bits_per_symbol[][2] = {
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 { 52, 108 }, /* 8: BPSK */
47 { 104, 216 }, /* 9: QPSK 1/2 */
48 { 156, 324 }, /* 10: QPSK 3/4 */
49 { 208, 432 }, /* 11: 16-QAM 1/2 */
50 { 312, 648 }, /* 12: 16-QAM 3/4 */
51 { 416, 864 }, /* 13: 64-QAM 2/3 */
52 { 468, 972 }, /* 14: 64-QAM 3/4 */
53 { 520, 1080 }, /* 15: 64-QAM 5/6 */
56 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
58 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
59 struct ath_atx_tid *tid,
60 struct list_head *bf_head);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 struct list_head *bf_q,
63 int txok, int sendbar);
64 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
65 struct list_head *head);
66 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
68 /*********************/
69 /* Aggregation logic */
70 /*********************/
72 static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno)
74 struct ath_atx_tid *tid;
75 tid = ATH_AN_2_TID(an, tidno);
77 if (tid->state & AGGR_ADDBA_COMPLETE ||
78 tid->state & AGGR_ADDBA_PROGRESS)
84 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
86 struct ath_atx_ac *ac = tid->ac;
95 list_add_tail(&tid->list, &ac->tid_q);
101 list_add_tail(&ac->list, &txq->axq_acq);
104 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
106 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
108 spin_lock_bh(&txq->axq_lock);
110 spin_unlock_bh(&txq->axq_lock);
113 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
115 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
117 ASSERT(tid->paused > 0);
118 spin_lock_bh(&txq->axq_lock);
125 if (list_empty(&tid->buf_q))
128 ath_tx_queue_tid(txq, tid);
129 ath_txq_schedule(sc, txq);
131 spin_unlock_bh(&txq->axq_lock);
134 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
136 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
138 struct list_head bf_head;
139 INIT_LIST_HEAD(&bf_head);
141 ASSERT(tid->paused > 0);
142 spin_lock_bh(&txq->axq_lock);
146 if (tid->paused > 0) {
147 spin_unlock_bh(&txq->axq_lock);
151 while (!list_empty(&tid->buf_q)) {
152 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
153 ASSERT(!bf_isretried(bf));
154 list_move_tail(&bf->list, &bf_head);
155 ath_tx_send_normal(sc, txq, tid, &bf_head);
158 spin_unlock_bh(&txq->axq_lock);
161 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
166 index = ATH_BA_INDEX(tid->seq_start, seqno);
167 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
169 tid->tx_buf[cindex] = NULL;
171 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
172 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
173 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
177 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
182 if (bf_isretried(bf))
185 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
186 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
188 ASSERT(tid->tx_buf[cindex] == NULL);
189 tid->tx_buf[cindex] = bf;
191 if (index >= ((tid->baw_tail - tid->baw_head) &
192 (ATH_TID_MAX_BUFS - 1))) {
193 tid->baw_tail = cindex;
194 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
199 * TODO: For frame(s) that are in the retry state, we will reuse the
200 * sequence number(s) without setting the retry bit. The
201 * alternative is to give up on these and BAR the receiver's window
204 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
205 struct ath_atx_tid *tid)
209 struct list_head bf_head;
210 INIT_LIST_HEAD(&bf_head);
213 if (list_empty(&tid->buf_q))
216 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
217 list_move_tail(&bf->list, &bf_head);
219 if (bf_isretried(bf))
220 ath_tx_update_baw(sc, tid, bf->bf_seqno);
222 spin_unlock(&txq->axq_lock);
223 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
224 spin_lock(&txq->axq_lock);
227 tid->seq_next = tid->seq_start;
228 tid->baw_tail = tid->baw_head;
231 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
234 struct ieee80211_hdr *hdr;
236 bf->bf_state.bf_type |= BUF_RETRY;
240 hdr = (struct ieee80211_hdr *)skb->data;
241 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
244 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
248 spin_lock_bh(&sc->tx.txbuflock);
249 ASSERT(!list_empty((&sc->tx.txbuf)));
250 tbf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
251 list_del(&tbf->list);
252 spin_unlock_bh(&sc->tx.txbuflock);
254 ATH_TXBUF_RESET(tbf);
256 tbf->bf_mpdu = bf->bf_mpdu;
257 tbf->bf_buf_addr = bf->bf_buf_addr;
258 *(tbf->bf_desc) = *(bf->bf_desc);
259 tbf->bf_state = bf->bf_state;
260 tbf->bf_dmacontext = bf->bf_dmacontext;
265 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
266 struct ath_buf *bf, struct list_head *bf_q,
269 struct ath_node *an = NULL;
271 struct ieee80211_tx_info *tx_info;
272 struct ath_atx_tid *tid = NULL;
273 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
274 struct ath_desc *ds = bf_last->bf_desc;
275 struct list_head bf_head, bf_pending;
277 u32 ba[WME_BA_BMP_SIZE >> 5];
278 int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
280 skb = (struct sk_buff *)bf->bf_mpdu;
281 tx_info = IEEE80211_SKB_CB(skb);
283 if (tx_info->control.sta) {
284 an = (struct ath_node *)tx_info->control.sta->drv_priv;
285 tid = ATH_AN_2_TID(an, bf->bf_tidno);
288 isaggr = bf_isaggr(bf);
289 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
291 if (isaggr && txok) {
292 if (ATH_DS_TX_BA(ds)) {
293 seq_st = ATH_DS_BA_SEQ(ds);
294 memcpy(ba, ATH_DS_BA_BITMAP(ds),
295 WME_BA_BMP_SIZE >> 3);
298 * AR5416 can become deaf/mute when BA
299 * issue happens. Chip needs to be reset.
300 * But AP code may have sychronization issues
301 * when perform internal reset in this routine.
302 * Only enable reset in STA mode for now.
304 if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION)
309 INIT_LIST_HEAD(&bf_pending);
310 INIT_LIST_HEAD(&bf_head);
313 txfail = txpending = 0;
314 bf_next = bf->bf_next;
316 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
317 /* transmit completion, subframe is
318 * acked by block ack */
319 } else if (!isaggr && txok) {
320 /* transmit completion */
322 if (!(tid->state & AGGR_CLEANUP) &&
323 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
324 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
325 ath_tx_set_retry(sc, bf);
328 bf->bf_state.bf_type |= BUF_XRETRY;
334 * cleanup in progress, just fail
335 * the un-acked sub-frames
341 if (bf_next == NULL) {
342 INIT_LIST_HEAD(&bf_head);
344 ASSERT(!list_empty(bf_q));
345 list_move_tail(&bf->list, &bf_head);
350 * complete the acked-ones/xretried ones; update
353 spin_lock_bh(&txq->axq_lock);
354 ath_tx_update_baw(sc, tid, bf->bf_seqno);
355 spin_unlock_bh(&txq->axq_lock);
357 ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
359 /* retry the un-acked ones */
360 if (bf->bf_next == NULL &&
361 bf_last->bf_status & ATH_BUFSTATUS_STALE) {
364 tbf = ath_clone_txbuf(sc, bf_last);
365 ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc);
366 list_add_tail(&tbf->list, &bf_head);
369 * Clear descriptor status words for
372 ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc);
376 * Put this buffer to the temporary pending
377 * queue to retain ordering
379 list_splice_tail_init(&bf_head, &bf_pending);
385 if (tid->state & AGGR_CLEANUP) {
386 if (tid->baw_head == tid->baw_tail) {
387 tid->state &= ~AGGR_ADDBA_COMPLETE;
388 tid->addba_exchangeattempts = 0;
389 tid->state &= ~AGGR_CLEANUP;
391 /* send buffered frames as singles */
392 ath_tx_flush_tid(sc, tid);
397 /* prepend un-acked frames to the beginning of the pending frame queue */
398 if (!list_empty(&bf_pending)) {
399 spin_lock_bh(&txq->axq_lock);
400 list_splice(&bf_pending, &tid->buf_q);
401 ath_tx_queue_tid(txq, tid);
402 spin_unlock_bh(&txq->axq_lock);
406 ath_reset(sc, false);
409 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
410 struct ath_atx_tid *tid)
412 struct ath_rate_table *rate_table = sc->cur_rate_table;
414 struct ieee80211_tx_info *tx_info;
415 struct ieee80211_tx_rate *rates;
416 struct ath_tx_info_priv *tx_info_priv;
417 u32 max_4ms_framelen, frmlen;
418 u16 aggr_limit, legacy = 0, maxampdu;
421 skb = (struct sk_buff *)bf->bf_mpdu;
422 tx_info = IEEE80211_SKB_CB(skb);
423 rates = tx_info->control.rates;
424 tx_info_priv = (struct ath_tx_info_priv *)tx_info->rate_driver_data[0];
427 * Find the lowest frame length among the rate series that will have a
428 * 4ms transmit duration.
429 * TODO - TXOP limit needs to be considered.
431 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
433 for (i = 0; i < 4; i++) {
434 if (rates[i].count) {
435 if (!WLAN_RC_PHY_HT(rate_table->info[rates[i].idx].phy)) {
440 frmlen = rate_table->info[rates[i].idx].max_4ms_framelen;
441 max_4ms_framelen = min(max_4ms_framelen, frmlen);
446 * limit aggregate size by the minimum rate if rate selected is
447 * not a probe rate, if rate selected is a probe rate then
448 * avoid aggregation of this packet.
450 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
453 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_DEFAULT);
456 * h/w can accept aggregates upto 16 bit lengths (65535).
457 * The IE, however can hold upto 65536, which shows up here
458 * as zero. Ignore 65536 since we are constrained by hw.
460 maxampdu = tid->an->maxampdu;
462 aggr_limit = min(aggr_limit, maxampdu);
468 * Returns the number of delimiters to be added to
469 * meet the minimum required mpdudensity.
470 * caller should make sure that the rate is HT rate .
472 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
473 struct ath_buf *bf, u16 frmlen)
475 struct ath_rate_table *rt = sc->cur_rate_table;
476 struct sk_buff *skb = bf->bf_mpdu;
477 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
478 u32 nsymbits, nsymbols, mpdudensity;
481 int width, half_gi, ndelim, mindelim;
483 /* Select standard number of delimiters based on frame length alone */
484 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
487 * If encryption enabled, hardware requires some more padding between
489 * TODO - this could be improved to be dependent on the rate.
490 * The hardware can keep up at lower rates, but not higher rates
492 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
493 ndelim += ATH_AGGR_ENCRYPTDELIM;
496 * Convert desired mpdu density from microeconds to bytes based
497 * on highest rate in rate series (i.e. first rate) to determine
498 * required minimum length for subframe. Take into account
499 * whether high rate is 20 or 40Mhz and half or full GI.
501 mpdudensity = tid->an->mpdudensity;
504 * If there is no mpdu density restriction, no further calculation
507 if (mpdudensity == 0)
510 rix = tx_info->control.rates[0].idx;
511 flags = tx_info->control.rates[0].flags;
512 rc = rt->info[rix].ratecode;
513 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
514 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
517 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
519 nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
524 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
525 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
527 if (frmlen < minlen) {
528 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
529 ndelim = max(mindelim, ndelim);
535 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
536 struct ath_atx_tid *tid,
537 struct list_head *bf_q)
539 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
540 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
541 int rl = 0, nframes = 0, ndelim, prev_al = 0;
542 u16 aggr_limit = 0, al = 0, bpad = 0,
543 al_delta, h_baw = tid->baw_size / 2;
544 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
546 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
549 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
551 /* do not step over block-ack window */
552 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
553 status = ATH_AGGR_BAW_CLOSED;
558 aggr_limit = ath_lookup_rate(sc, bf, tid);
562 /* do not exceed aggregation limit */
563 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
566 (aggr_limit < (al + bpad + al_delta + prev_al))) {
567 status = ATH_AGGR_LIMITED;
571 /* do not exceed subframe limit */
572 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
573 status = ATH_AGGR_LIMITED;
578 /* add padding for previous frame to aggregation length */
579 al += bpad + al_delta;
582 * Get the delimiters needed to meet the MPDU
583 * density for this node.
585 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
586 bpad = PADBYTES(al_delta) + (ndelim << 2);
589 bf->bf_desc->ds_link = 0;
591 /* link buffers of this frame to the aggregate */
592 ath_tx_addto_baw(sc, tid, bf);
593 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
594 list_move_tail(&bf->list, bf_q);
596 bf_prev->bf_next = bf;
597 bf_prev->bf_desc->ds_link = bf->bf_daddr;
600 } while (!list_empty(&tid->buf_q));
602 bf_first->bf_al = al;
603 bf_first->bf_nframes = nframes;
609 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
610 struct ath_atx_tid *tid)
613 enum ATH_AGGR_STATUS status;
614 struct list_head bf_q;
617 if (list_empty(&tid->buf_q))
620 INIT_LIST_HEAD(&bf_q);
622 status = ath_tx_form_aggr(sc, tid, &bf_q);
625 * no frames picked up to be aggregated;
626 * block-ack window is not open.
628 if (list_empty(&bf_q))
631 bf = list_first_entry(&bf_q, struct ath_buf, list);
632 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
634 /* if only one frame, send as non-aggregate */
635 if (bf->bf_nframes == 1) {
636 bf->bf_state.bf_type &= ~BUF_AGGR;
637 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
638 ath_buf_set_rate(sc, bf);
639 ath_tx_txqaddbuf(sc, txq, &bf_q);
643 /* setup first desc of aggregate */
644 bf->bf_state.bf_type |= BUF_AGGR;
645 ath_buf_set_rate(sc, bf);
646 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
648 /* anchor last desc of aggregate */
649 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
651 txq->axq_aggr_depth++;
652 ath_tx_txqaddbuf(sc, txq, &bf_q);
654 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
655 status != ATH_AGGR_BAW_CLOSED);
658 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
661 struct ath_atx_tid *txtid;
664 an = (struct ath_node *)sta->drv_priv;
666 if (sc->sc_flags & SC_OP_TXAGGR) {
667 txtid = ATH_AN_2_TID(an, tid);
668 txtid->state |= AGGR_ADDBA_PROGRESS;
669 ath_tx_pause_tid(sc, txtid);
675 int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
677 struct ath_node *an = (struct ath_node *)sta->drv_priv;
678 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
679 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
681 struct list_head bf_head;
682 INIT_LIST_HEAD(&bf_head);
684 if (txtid->state & AGGR_CLEANUP)
687 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
688 txtid->addba_exchangeattempts = 0;
692 ath_tx_pause_tid(sc, txtid);
694 /* drop all software retried frames and mark this TID */
695 spin_lock_bh(&txq->axq_lock);
696 while (!list_empty(&txtid->buf_q)) {
697 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
698 if (!bf_isretried(bf)) {
700 * NB: it's based on the assumption that
701 * software retried frame will always stay
702 * at the head of software queue.
706 list_move_tail(&bf->list, &bf_head);
707 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
708 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
710 spin_unlock_bh(&txq->axq_lock);
712 if (txtid->baw_head != txtid->baw_tail) {
713 txtid->state |= AGGR_CLEANUP;
715 txtid->state &= ~AGGR_ADDBA_COMPLETE;
716 txtid->addba_exchangeattempts = 0;
717 ath_tx_flush_tid(sc, txtid);
723 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
725 struct ath_atx_tid *txtid;
728 an = (struct ath_node *)sta->drv_priv;
730 if (sc->sc_flags & SC_OP_TXAGGR) {
731 txtid = ATH_AN_2_TID(an, tid);
733 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
734 txtid->state |= AGGR_ADDBA_COMPLETE;
735 txtid->state &= ~AGGR_ADDBA_PROGRESS;
736 ath_tx_resume_tid(sc, txtid);
740 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
742 struct ath_atx_tid *txtid;
744 if (!(sc->sc_flags & SC_OP_TXAGGR))
747 txtid = ATH_AN_2_TID(an, tidno);
749 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
750 if (!(txtid->state & AGGR_ADDBA_PROGRESS) &&
751 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
752 txtid->addba_exchangeattempts++;
760 /********************/
761 /* Queue Management */
762 /********************/
764 static u32 ath_txq_depth(struct ath_softc *sc, int qnum)
766 return sc->tx.txq[qnum].axq_depth;
769 static void ath_get_beaconconfig(struct ath_softc *sc, int if_id,
770 struct ath_beacon_config *conf)
772 struct ieee80211_hw *hw = sc->hw;
774 /* fill in beacon config data */
776 conf->beacon_interval = hw->conf.beacon_int;
777 conf->listen_interval = 100;
778 conf->dtim_count = 1;
779 conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval;
782 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
785 struct ath_atx_ac *ac, *ac_tmp;
786 struct ath_atx_tid *tid, *tid_tmp;
788 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
791 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
792 list_del(&tid->list);
794 ath_tid_drain(sc, txq, tid);
799 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
801 struct ath_hal *ah = sc->sc_ah;
802 struct ath9k_tx_queue_info qi;
805 memset(&qi, 0, sizeof(qi));
806 qi.tqi_subtype = subtype;
807 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
808 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
809 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
810 qi.tqi_physCompBuf = 0;
813 * Enable interrupts only for EOL and DESC conditions.
814 * We mark tx descriptors to receive a DESC interrupt
815 * when a tx queue gets deep; otherwise waiting for the
816 * EOL to reap descriptors. Note that this is done to
817 * reduce interrupt load and this only defers reaping
818 * descriptors, never transmitting frames. Aside from
819 * reducing interrupts this also permits more concurrency.
820 * The only potential downside is if the tx queue backs
821 * up in which case the top half of the kernel may backup
822 * due to a lack of tx descriptors.
824 * The UAPSD queue is an exception, since we take a desc-
825 * based intr on the EOSP frames.
827 if (qtype == ATH9K_TX_QUEUE_UAPSD)
828 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
830 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
831 TXQ_FLAG_TXDESCINT_ENABLE;
832 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
835 * NB: don't print a message, this happens
836 * normally on parts with too few tx queues
840 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
841 DPRINTF(sc, ATH_DBG_FATAL,
842 "qnum %u out of range, max %u!\n",
843 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
844 ath9k_hw_releasetxqueue(ah, qnum);
847 if (!ATH_TXQ_SETUP(sc, qnum)) {
848 struct ath_txq *txq = &sc->tx.txq[qnum];
850 txq->axq_qnum = qnum;
851 txq->axq_link = NULL;
852 INIT_LIST_HEAD(&txq->axq_q);
853 INIT_LIST_HEAD(&txq->axq_acq);
854 spin_lock_init(&txq->axq_lock);
856 txq->axq_aggr_depth = 0;
857 txq->axq_totalqueued = 0;
858 txq->axq_linkbuf = NULL;
859 sc->tx.txqsetup |= 1<<qnum;
861 return &sc->tx.txq[qnum];
864 static int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
869 case ATH9K_TX_QUEUE_DATA:
870 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
871 DPRINTF(sc, ATH_DBG_FATAL,
872 "HAL AC %u out of range, max %zu!\n",
873 haltype, ARRAY_SIZE(sc->tx.hwq_map));
876 qnum = sc->tx.hwq_map[haltype];
878 case ATH9K_TX_QUEUE_BEACON:
879 qnum = sc->beacon.beaconq;
881 case ATH9K_TX_QUEUE_CAB:
882 qnum = sc->beacon.cabq->axq_qnum;
890 struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
892 struct ath_txq *txq = NULL;
895 qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
896 txq = &sc->tx.txq[qnum];
898 spin_lock_bh(&txq->axq_lock);
900 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
901 DPRINTF(sc, ATH_DBG_FATAL,
902 "TX queue: %d is full, depth: %d\n",
903 qnum, txq->axq_depth);
904 ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb));
906 spin_unlock_bh(&txq->axq_lock);
910 spin_unlock_bh(&txq->axq_lock);
915 int ath_txq_update(struct ath_softc *sc, int qnum,
916 struct ath9k_tx_queue_info *qinfo)
918 struct ath_hal *ah = sc->sc_ah;
920 struct ath9k_tx_queue_info qi;
922 if (qnum == sc->beacon.beaconq) {
924 * XXX: for beacon queue, we just save the parameter.
925 * It will be picked up by ath_beaconq_config when
928 sc->beacon.beacon_qi = *qinfo;
932 ASSERT(sc->tx.txq[qnum].axq_qnum == qnum);
934 ath9k_hw_get_txq_props(ah, qnum, &qi);
935 qi.tqi_aifs = qinfo->tqi_aifs;
936 qi.tqi_cwmin = qinfo->tqi_cwmin;
937 qi.tqi_cwmax = qinfo->tqi_cwmax;
938 qi.tqi_burstTime = qinfo->tqi_burstTime;
939 qi.tqi_readyTime = qinfo->tqi_readyTime;
941 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
942 DPRINTF(sc, ATH_DBG_FATAL,
943 "Unable to update hardware queue %u!\n", qnum);
946 ath9k_hw_resettxqueue(ah, qnum);
952 int ath_cabq_update(struct ath_softc *sc)
954 struct ath9k_tx_queue_info qi;
955 int qnum = sc->beacon.cabq->axq_qnum;
956 struct ath_beacon_config conf;
958 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
960 * Ensure the readytime % is within the bounds.
962 if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
963 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
964 else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
965 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
967 ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
969 (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
970 ath_txq_update(sc, qnum, &qi);
976 * Drain a given TX queue (could be Beacon or Data)
978 * This assumes output has been stopped and
979 * we do not need to block ath_tx_tasklet.
981 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
983 struct ath_buf *bf, *lastbf;
984 struct list_head bf_head;
986 INIT_LIST_HEAD(&bf_head);
989 spin_lock_bh(&txq->axq_lock);
991 if (list_empty(&txq->axq_q)) {
992 txq->axq_link = NULL;
993 txq->axq_linkbuf = NULL;
994 spin_unlock_bh(&txq->axq_lock);
998 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1000 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1001 list_del(&bf->list);
1002 spin_unlock_bh(&txq->axq_lock);
1004 spin_lock_bh(&sc->tx.txbuflock);
1005 list_add_tail(&bf->list, &sc->tx.txbuf);
1006 spin_unlock_bh(&sc->tx.txbuflock);
1010 lastbf = bf->bf_lastbf;
1012 lastbf->bf_desc->ds_txstat.ts_flags =
1013 ATH9K_TX_SW_ABORTED;
1015 /* remove ath_buf's of the same mpdu from txq */
1016 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1019 spin_unlock_bh(&txq->axq_lock);
1022 ath_tx_complete_aggr(sc, txq, bf, &bf_head, 0);
1024 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
1027 /* flush any pending frames if aggregation is enabled */
1028 if (sc->sc_flags & SC_OP_TXAGGR) {
1030 spin_lock_bh(&txq->axq_lock);
1031 ath_txq_drain_pending_buffers(sc, txq);
1032 spin_unlock_bh(&txq->axq_lock);
1037 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1039 struct ath_hal *ah = sc->sc_ah;
1040 struct ath_txq *txq;
1043 if (sc->sc_flags & SC_OP_INVALID)
1046 /* Stop beacon queue */
1047 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1049 /* Stop data queues */
1050 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1051 if (ATH_TXQ_SETUP(sc, i)) {
1052 txq = &sc->tx.txq[i];
1053 ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1054 npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1061 DPRINTF(sc, ATH_DBG_XMIT, "Unable to stop TxDMA. Reset HAL!\n");
1063 spin_lock_bh(&sc->sc_resetlock);
1064 r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, true);
1066 DPRINTF(sc, ATH_DBG_FATAL,
1067 "Unable to reset hardware; reset status %u\n",
1069 spin_unlock_bh(&sc->sc_resetlock);
1072 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1073 if (ATH_TXQ_SETUP(sc, i))
1074 ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1078 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1080 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1081 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1084 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1086 struct ath_atx_ac *ac;
1087 struct ath_atx_tid *tid;
1089 if (list_empty(&txq->axq_acq))
1092 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1093 list_del(&ac->list);
1097 if (list_empty(&ac->tid_q))
1100 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1101 list_del(&tid->list);
1107 if ((txq->axq_depth % 2) == 0)
1108 ath_tx_sched_aggr(sc, txq, tid);
1111 * add tid to round-robin queue if more frames
1112 * are pending for the tid
1114 if (!list_empty(&tid->buf_q))
1115 ath_tx_queue_tid(txq, tid);
1118 } while (!list_empty(&ac->tid_q));
1120 if (!list_empty(&ac->tid_q)) {
1123 list_add_tail(&ac->list, &txq->axq_acq);
1128 int ath_tx_setup(struct ath_softc *sc, int haltype)
1130 struct ath_txq *txq;
1132 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1133 DPRINTF(sc, ATH_DBG_FATAL,
1134 "HAL AC %u out of range, max %zu!\n",
1135 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1138 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1140 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1151 * Insert a chain of ath_buf (descriptors) on a txq and
1152 * assume the descriptors are already chained together by caller.
1154 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1155 struct list_head *head)
1157 struct ath_hal *ah = sc->sc_ah;
1161 * Insert the frame on the outbound list and
1162 * pass it on to the hardware.
1165 if (list_empty(head))
1168 bf = list_first_entry(head, struct ath_buf, list);
1170 list_splice_tail_init(head, &txq->axq_q);
1172 txq->axq_totalqueued++;
1173 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
1175 DPRINTF(sc, ATH_DBG_QUEUE,
1176 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1178 if (txq->axq_link == NULL) {
1179 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1180 DPRINTF(sc, ATH_DBG_XMIT,
1181 "TXDP[%u] = %llx (%p)\n",
1182 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1184 *txq->axq_link = bf->bf_daddr;
1185 DPRINTF(sc, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
1186 txq->axq_qnum, txq->axq_link,
1187 ito64(bf->bf_daddr), bf->bf_desc);
1189 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
1190 ath9k_hw_txstart(ah, txq->axq_qnum);
1193 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
1195 struct ath_buf *bf = NULL;
1197 spin_lock_bh(&sc->tx.txbuflock);
1199 if (unlikely(list_empty(&sc->tx.txbuf))) {
1200 spin_unlock_bh(&sc->tx.txbuflock);
1204 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
1205 list_del(&bf->list);
1207 spin_unlock_bh(&sc->tx.txbuflock);
1212 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1213 struct list_head *bf_head,
1214 struct ath_tx_control *txctl)
1218 bf = list_first_entry(bf_head, struct ath_buf, list);
1219 bf->bf_state.bf_type |= BUF_AMPDU;
1222 * Do not queue to h/w when any of the following conditions is true:
1223 * - there are pending frames in software queue
1224 * - the TID is currently paused for ADDBA/BAR request
1225 * - seqno is not within block-ack window
1226 * - h/w queue depth exceeds low water mark
1228 if (!list_empty(&tid->buf_q) || tid->paused ||
1229 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1230 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1232 * Add this frame to software queue for scheduling later
1235 list_move_tail(&bf->list, &tid->buf_q);
1236 ath_tx_queue_tid(txctl->txq, tid);
1240 /* Add sub-frame to BAW */
1241 ath_tx_addto_baw(sc, tid, bf);
1243 /* Queue to h/w without aggregation */
1246 ath_buf_set_rate(sc, bf);
1247 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1250 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1251 struct ath_atx_tid *tid,
1252 struct list_head *bf_head)
1256 bf = list_first_entry(bf_head, struct ath_buf, list);
1257 bf->bf_state.bf_type &= ~BUF_AMPDU;
1259 /* update starting sequence number for subsequent ADDBA request */
1260 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1264 ath_buf_set_rate(sc, bf);
1265 ath_tx_txqaddbuf(sc, txq, bf_head);
1268 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1270 struct ieee80211_hdr *hdr;
1271 enum ath9k_pkt_type htype;
1274 hdr = (struct ieee80211_hdr *)skb->data;
1275 fc = hdr->frame_control;
1277 if (ieee80211_is_beacon(fc))
1278 htype = ATH9K_PKT_TYPE_BEACON;
1279 else if (ieee80211_is_probe_resp(fc))
1280 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1281 else if (ieee80211_is_atim(fc))
1282 htype = ATH9K_PKT_TYPE_ATIM;
1283 else if (ieee80211_is_pspoll(fc))
1284 htype = ATH9K_PKT_TYPE_PSPOLL;
1286 htype = ATH9K_PKT_TYPE_NORMAL;
1291 static bool is_pae(struct sk_buff *skb)
1293 struct ieee80211_hdr *hdr;
1296 hdr = (struct ieee80211_hdr *)skb->data;
1297 fc = hdr->frame_control;
1299 if (ieee80211_is_data(fc)) {
1300 if (ieee80211_is_nullfunc(fc) ||
1301 /* Port Access Entity (IEEE 802.1X) */
1302 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1310 static int get_hw_crypto_keytype(struct sk_buff *skb)
1312 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1314 if (tx_info->control.hw_key) {
1315 if (tx_info->control.hw_key->alg == ALG_WEP)
1316 return ATH9K_KEY_TYPE_WEP;
1317 else if (tx_info->control.hw_key->alg == ALG_TKIP)
1318 return ATH9K_KEY_TYPE_TKIP;
1319 else if (tx_info->control.hw_key->alg == ALG_CCMP)
1320 return ATH9K_KEY_TYPE_AES;
1323 return ATH9K_KEY_TYPE_CLEAR;
1326 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1329 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1330 struct ieee80211_hdr *hdr;
1331 struct ath_node *an;
1332 struct ath_atx_tid *tid;
1336 if (!tx_info->control.sta)
1339 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1340 hdr = (struct ieee80211_hdr *)skb->data;
1341 fc = hdr->frame_control;
1343 if (ieee80211_is_data_qos(fc)) {
1344 qc = ieee80211_get_qos_ctl(hdr);
1345 bf->bf_tidno = qc[0] & 0xf;
1349 * For HT capable stations, we save tidno for later use.
1350 * We also override seqno set by upper layer with the one
1351 * in tx aggregation state.
1353 * If fragmentation is on, the sequence number is
1354 * not overridden, since it has been
1355 * incremented by the fragmentation routine.
1357 * FIXME: check if the fragmentation threshold exceeds
1360 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1361 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
1362 IEEE80211_SEQ_SEQ_SHIFT);
1363 bf->bf_seqno = tid->seq_next;
1364 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1367 static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
1368 struct ath_txq *txq)
1370 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1373 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1374 flags |= ATH9K_TXDESC_INTREQ;
1376 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1377 flags |= ATH9K_TXDESC_NOACK;
1378 if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1379 flags |= ATH9K_TXDESC_RTSENA;
1386 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1387 * width - 0 for 20 MHz, 1 for 40 MHz
1388 * half_gi - to use 4us v/s 3.6 us for symbol time
1390 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1391 int width, int half_gi, bool shortPreamble)
1393 struct ath_rate_table *rate_table = sc->cur_rate_table;
1394 u32 nbits, nsymbits, duration, nsymbols;
1396 int streams, pktlen;
1398 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1399 rc = rate_table->info[rix].ratecode;
1401 /* for legacy rates, use old function to compute packet duration */
1402 if (!IS_HT_RATE(rc))
1403 return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen,
1404 rix, shortPreamble);
1406 /* find number of symbols: PLCP + data */
1407 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1408 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1409 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1412 duration = SYMBOL_TIME(nsymbols);
1414 duration = SYMBOL_TIME_HALFGI(nsymbols);
1416 /* addup duration for legacy/ht training and signal fields */
1417 streams = HT_RC_2_STREAMS(rc);
1418 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1423 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1425 struct ath_hal *ah = sc->sc_ah;
1426 struct ath_rate_table *rt;
1427 struct ath_desc *ds = bf->bf_desc;
1428 struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
1429 struct ath9k_11n_rate_series series[4];
1430 struct sk_buff *skb;
1431 struct ieee80211_tx_info *tx_info;
1432 struct ieee80211_tx_rate *rates;
1433 struct ieee80211_hdr *hdr;
1434 struct ieee80211_hw *hw = sc->hw;
1435 int i, flags, rtsctsena = 0, enable_g_protection = 0;
1436 u32 ctsduration = 0;
1437 u8 rix = 0, cix, ctsrate = 0;
1440 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1442 skb = (struct sk_buff *)bf->bf_mpdu;
1443 hdr = (struct ieee80211_hdr *)skb->data;
1444 fc = hdr->frame_control;
1445 tx_info = IEEE80211_SKB_CB(skb);
1446 rates = tx_info->control.rates;
1448 if (ieee80211_has_morefrags(fc) ||
1449 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
1450 rates[1].count = rates[2].count = rates[3].count = 0;
1451 rates[1].idx = rates[2].idx = rates[3].idx = 0;
1452 rates[0].count = ATH_TXMAXTRY;
1455 /* get the cix for the lowest valid rix */
1456 rt = sc->cur_rate_table;
1457 for (i = 3; i >= 0; i--) {
1458 if (rates[i].count && (rates[i].idx >= 0)) {
1464 flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
1465 cix = rt->info[rix].ctrl_rate;
1467 /* All protection frames are transmited at 2Mb/s for 802.11g,
1468 * otherwise we transmit them at 1Mb/s */
1469 if (hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
1470 !conf_is_ht(&hw->conf))
1471 enable_g_protection = 1;
1474 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
1475 * just CTS. Note that this is only done for OFDM/HT unicast frames.
1477 if (sc->sc_protmode != PROT_M_NONE && !(bf->bf_flags & ATH9K_TXDESC_NOACK)
1478 && (rt->info[rix].phy == WLAN_RC_PHY_OFDM ||
1479 WLAN_RC_PHY_HT(rt->info[rix].phy))) {
1480 if (sc->sc_protmode == PROT_M_RTSCTS)
1481 flags = ATH9K_TXDESC_RTSENA;
1482 else if (sc->sc_protmode == PROT_M_CTSONLY)
1483 flags = ATH9K_TXDESC_CTSENA;
1485 cix = rt->info[enable_g_protection].ctrl_rate;
1489 /* For 11n, the default behavior is to enable RTS for hw retried frames.
1490 * We enable the global flag here and let rate series flags determine
1491 * which rates will actually use RTS.
1493 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
1494 /* 802.11g protection not needed, use our default behavior */
1496 flags = ATH9K_TXDESC_RTSENA;
1499 /* Set protection if aggregate protection on */
1500 if (sc->sc_config.ath_aggr_prot &&
1501 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
1502 flags = ATH9K_TXDESC_RTSENA;
1503 cix = rt->info[enable_g_protection].ctrl_rate;
1507 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1508 if (bf_isaggr(bf) && (bf->bf_al > ah->ah_caps.rts_aggr_limit))
1509 flags &= ~(ATH9K_TXDESC_RTSENA);
1512 * CTS transmit rate is derived from the transmit rate by looking in the
1513 * h/w rate table. We must also factor in whether or not a short
1514 * preamble is to be used. NB: cix is set above where RTS/CTS is enabled
1516 ctsrate = rt->info[cix].ratecode |
1517 (bf_isshpreamble(bf) ? rt->info[cix].short_preamble : 0);
1519 for (i = 0; i < 4; i++) {
1520 if (!rates[i].count || (rates[i].idx < 0))
1525 series[i].Rate = rt->info[rix].ratecode |
1526 (bf_isshpreamble(bf) ? rt->info[rix].short_preamble : 0);
1528 series[i].Tries = rates[i].count;
1530 series[i].RateFlags = (
1531 (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) ?
1532 ATH9K_RATESERIES_RTS_CTS : 0) |
1533 ((rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ?
1534 ATH9K_RATESERIES_2040 : 0) |
1535 ((rates[i].flags & IEEE80211_TX_RC_SHORT_GI) ?
1536 ATH9K_RATESERIES_HALFGI : 0);
1538 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1539 (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0,
1540 (rates[i].flags & IEEE80211_TX_RC_SHORT_GI),
1541 bf_isshpreamble(bf));
1543 series[i].ChSel = sc->sc_tx_chainmask;
1546 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1549 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1550 ath9k_hw_set11n_ratescenario(ah, ds, lastds, !bf_ispspoll(bf),
1551 ctsrate, ctsduration,
1554 if (sc->sc_config.ath_aggr_prot && flags)
1555 ath9k_hw_set11n_burstduration(ah, ds, 8192);
1558 static int ath_tx_setup_buffer(struct ath_softc *sc, struct ath_buf *bf,
1559 struct sk_buff *skb,
1560 struct ath_tx_control *txctl)
1562 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1563 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1564 struct ath_tx_info_priv *tx_info_priv;
1568 tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
1569 if (unlikely(!tx_info_priv))
1571 tx_info->rate_driver_data[0] = tx_info_priv;
1572 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1573 fc = hdr->frame_control;
1575 ATH_TXBUF_RESET(bf);
1577 bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
1579 if (ieee80211_is_data(fc))
1580 bf->bf_state.bf_type |= BUF_DATA;
1581 if (ieee80211_is_back_req(fc))
1582 bf->bf_state.bf_type |= BUF_BAR;
1583 if (ieee80211_is_pspoll(fc))
1584 bf->bf_state.bf_type |= BUF_PSPOLL;
1585 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1586 bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE;
1587 if ((conf_is_ht(&sc->hw->conf) && !is_pae(skb) &&
1588 (tx_info->flags & IEEE80211_TX_CTL_AMPDU)))
1589 bf->bf_state.bf_type |= BUF_HT;
1591 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1593 bf->bf_keytype = get_hw_crypto_keytype(skb);
1594 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1595 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1596 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1598 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1601 if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR))
1602 assign_aggr_tid_seqno(skb, bf);
1606 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1607 skb->len, DMA_TO_DEVICE);
1608 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1610 DPRINTF(sc, ATH_DBG_CONFIG,
1611 "dma_mapping_error() on TX\n");
1615 bf->bf_buf_addr = bf->bf_dmacontext;
1619 /* FIXME: tx power */
1620 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1621 struct ath_tx_control *txctl)
1623 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
1624 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1625 struct ath_node *an = NULL;
1626 struct list_head bf_head;
1627 struct ath_desc *ds;
1628 struct ath_atx_tid *tid;
1629 struct ath_hal *ah = sc->sc_ah;
1632 frm_type = get_hw_packet_type(skb);
1634 INIT_LIST_HEAD(&bf_head);
1635 list_add_tail(&bf->list, &bf_head);
1639 ds->ds_data = bf->bf_buf_addr;
1641 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1642 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1644 ath9k_hw_filltxdesc(ah, ds,
1645 skb->len, /* segment length */
1646 true, /* first segment */
1647 true, /* last segment */
1648 ds); /* first descriptor */
1650 spin_lock_bh(&txctl->txq->axq_lock);
1652 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1653 tx_info->control.sta) {
1654 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1655 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1657 if (ath_aggr_query(sc, an, bf->bf_tidno)) {
1659 * Try aggregation if it's a unicast data frame
1660 * and the destination is HT capable.
1662 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1665 * Send this frame as regular when ADDBA
1666 * exchange is neither complete nor pending.
1668 ath_tx_send_normal(sc, txctl->txq,
1675 ath_buf_set_rate(sc, bf);
1676 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head);
1679 spin_unlock_bh(&txctl->txq->axq_lock);
1682 /* Upon failure caller should free skb */
1683 int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb,
1684 struct ath_tx_control *txctl)
1689 bf = ath_tx_get_buffer(sc);
1691 DPRINTF(sc, ATH_DBG_XMIT, "TX buffers are full\n");
1695 r = ath_tx_setup_buffer(sc, bf, skb, txctl);
1697 struct ath_txq *txq = txctl->txq;
1699 DPRINTF(sc, ATH_DBG_FATAL, "TX mem alloc failure\n");
1701 /* upon ath_tx_processq() this TX queue will be resumed, we
1702 * guarantee this will happen by knowing beforehand that
1703 * we will at least have to run TX completionon one buffer
1705 spin_lock_bh(&txq->axq_lock);
1706 if (ath_txq_depth(sc, txq->axq_qnum) > 1) {
1707 ieee80211_stop_queue(sc->hw,
1708 skb_get_queue_mapping(skb));
1711 spin_unlock_bh(&txq->axq_lock);
1713 spin_lock_bh(&sc->tx.txbuflock);
1714 list_add_tail(&bf->list, &sc->tx.txbuf);
1715 spin_unlock_bh(&sc->tx.txbuflock);
1720 ath_tx_start_dma(sc, bf, txctl);
1725 void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb)
1727 int hdrlen, padsize;
1728 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1729 struct ath_tx_control txctl;
1731 memset(&txctl, 0, sizeof(struct ath_tx_control));
1734 * As a temporary workaround, assign seq# here; this will likely need
1735 * to be cleaned up to work better with Beacon transmission and virtual
1738 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1739 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1740 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1741 sc->tx.seq_no += 0x10;
1742 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1743 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1746 /* Add the padding after the header if this is not already done */
1747 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1749 padsize = hdrlen % 4;
1750 if (skb_headroom(skb) < padsize) {
1751 DPRINTF(sc, ATH_DBG_XMIT, "TX CABQ padding failed\n");
1752 dev_kfree_skb_any(skb);
1755 skb_push(skb, padsize);
1756 memmove(skb->data, skb->data + padsize, hdrlen);
1759 txctl.txq = sc->beacon.cabq;
1761 DPRINTF(sc, ATH_DBG_XMIT, "transmitting CABQ packet, skb: %p\n", skb);
1763 if (ath_tx_start(sc, skb, &txctl) != 0) {
1764 DPRINTF(sc, ATH_DBG_XMIT, "CABQ TX failed\n");
1770 dev_kfree_skb_any(skb);
1777 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1778 struct ath_xmit_status *tx_status)
1780 struct ieee80211_hw *hw = sc->hw;
1781 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1782 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1783 int hdrlen, padsize;
1785 DPRINTF(sc, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1787 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
1788 tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
1789 kfree(tx_info_priv);
1790 tx_info->rate_driver_data[0] = NULL;
1793 if (tx_status->flags & ATH_TX_BAR) {
1794 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1795 tx_status->flags &= ~ATH_TX_BAR;
1798 if (!(tx_status->flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1799 /* Frame was ACKed */
1800 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1803 tx_info->status.rates[0].count = tx_status->retries + 1;
1805 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1806 padsize = hdrlen & 3;
1807 if (padsize && hdrlen >= 24) {
1809 * Remove MAC header padding before giving the frame back to
1812 memmove(skb->data + padsize, skb->data, hdrlen);
1813 skb_pull(skb, padsize);
1816 ieee80211_tx_status(hw, skb);
1819 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1820 struct list_head *bf_q,
1821 int txok, int sendbar)
1823 struct sk_buff *skb = bf->bf_mpdu;
1824 struct ath_xmit_status tx_status;
1825 unsigned long flags;
1828 * Set retry information.
1829 * NB: Don't use the information in the descriptor, because the frame
1830 * could be software retried.
1832 tx_status.retries = bf->bf_retries;
1833 tx_status.flags = 0;
1836 tx_status.flags = ATH_TX_BAR;
1839 tx_status.flags |= ATH_TX_ERROR;
1841 if (bf_isxretried(bf))
1842 tx_status.flags |= ATH_TX_XRETRY;
1845 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1846 ath_tx_complete(sc, skb, &tx_status);
1849 * Return the list of ath_buf of this mpdu to free queue
1851 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1852 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1853 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1856 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1859 struct ath_buf *bf_last = bf->bf_lastbf;
1860 struct ath_desc *ds = bf_last->bf_desc;
1862 u32 ba[WME_BA_BMP_SIZE >> 5];
1867 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
1870 isaggr = bf_isaggr(bf);
1872 seq_st = ATH_DS_BA_SEQ(ds);
1873 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
1877 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1878 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1887 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds, int nbad)
1889 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
1890 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1891 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1893 tx_info_priv->update_rc = false;
1894 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
1895 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1897 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
1898 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
1899 if (bf_isdata(bf)) {
1900 memcpy(&tx_info_priv->tx, &ds->ds_txstat,
1901 sizeof(tx_info_priv->tx));
1902 tx_info_priv->n_frames = bf->bf_nframes;
1903 tx_info_priv->n_bad_frames = nbad;
1904 tx_info_priv->update_rc = true;
1909 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
1913 spin_lock_bh(&txq->axq_lock);
1915 ath_txq_depth(sc, txq->axq_qnum) <= (ATH_TXBUF - 20)) {
1916 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1918 ieee80211_wake_queue(sc->hw, qnum);
1922 spin_unlock_bh(&txq->axq_lock);
1925 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1927 struct ath_hal *ah = sc->sc_ah;
1928 struct ath_buf *bf, *lastbf, *bf_held = NULL;
1929 struct list_head bf_head;
1930 struct ath_desc *ds;
1934 DPRINTF(sc, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
1935 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1939 spin_lock_bh(&txq->axq_lock);
1940 if (list_empty(&txq->axq_q)) {
1941 txq->axq_link = NULL;
1942 txq->axq_linkbuf = NULL;
1943 spin_unlock_bh(&txq->axq_lock);
1946 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1949 * There is a race condition that a BH gets scheduled
1950 * after sw writes TxE and before hw re-load the last
1951 * descriptor to get the newly chained one.
1952 * Software must keep the last DONE descriptor as a
1953 * holding descriptor - software does so by marking
1954 * it with the STALE flag.
1957 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1959 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1960 txq->axq_link = NULL;
1961 txq->axq_linkbuf = NULL;
1962 spin_unlock_bh(&txq->axq_lock);
1965 * The holding descriptor is the last
1966 * descriptor in queue. It's safe to remove
1967 * the last holding descriptor in BH context.
1969 spin_lock_bh(&sc->tx.txbuflock);
1970 list_move_tail(&bf_held->list, &sc->tx.txbuf);
1971 spin_unlock_bh(&sc->tx.txbuflock);
1975 bf = list_entry(bf_held->list.next,
1976 struct ath_buf, list);
1980 lastbf = bf->bf_lastbf;
1981 ds = lastbf->bf_desc;
1983 status = ath9k_hw_txprocdesc(ah, ds);
1984 if (status == -EINPROGRESS) {
1985 spin_unlock_bh(&txq->axq_lock);
1988 if (bf->bf_desc == txq->axq_lastdsWithCTS)
1989 txq->axq_lastdsWithCTS = NULL;
1990 if (ds == txq->axq_gatingds)
1991 txq->axq_gatingds = NULL;
1994 * Remove ath_buf's of the same transmit unit from txq,
1995 * however leave the last descriptor back as the holding
1996 * descriptor for hw.
1998 lastbf->bf_status |= ATH_BUFSTATUS_STALE;
1999 INIT_LIST_HEAD(&bf_head);
2000 if (!list_is_singular(&lastbf->list))
2001 list_cut_position(&bf_head,
2002 &txq->axq_q, lastbf->list.prev);
2006 txq->axq_aggr_depth--;
2008 txok = (ds->ds_txstat.ts_status == 0);
2009 spin_unlock_bh(&txq->axq_lock);
2012 spin_lock_bh(&sc->tx.txbuflock);
2013 list_move_tail(&bf_held->list, &sc->tx.txbuf);
2014 spin_unlock_bh(&sc->tx.txbuflock);
2017 if (!bf_isampdu(bf)) {
2019 * This frame is sent out as a single frame.
2020 * Use hardware retry status for this frame.
2022 bf->bf_retries = ds->ds_txstat.ts_longretry;
2023 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
2024 bf->bf_state.bf_type |= BUF_XRETRY;
2027 nbad = ath_tx_num_badfrms(sc, bf, txok);
2030 ath_tx_rc_status(bf, ds, nbad);
2033 ath_tx_complete_aggr(sc, txq, bf, &bf_head, txok);
2035 ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
2037 ath_wake_mac80211_queue(sc, txq);
2039 spin_lock_bh(&txq->axq_lock);
2040 if (sc->sc_flags & SC_OP_TXAGGR)
2041 ath_txq_schedule(sc, txq);
2042 spin_unlock_bh(&txq->axq_lock);
2047 void ath_tx_tasklet(struct ath_softc *sc)
2050 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2052 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2054 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2055 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2056 ath_tx_processq(sc, &sc->tx.txq[i]);
2064 int ath_tx_init(struct ath_softc *sc, int nbufs)
2069 spin_lock_init(&sc->tx.txbuflock);
2071 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2074 DPRINTF(sc, ATH_DBG_FATAL,
2075 "Failed to allocate tx descriptors: %d\n",
2080 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2081 "beacon", ATH_BCBUF, 1);
2083 DPRINTF(sc, ATH_DBG_FATAL,
2084 "Failed to allocate beacon descriptors: %d\n",
2097 int ath_tx_cleanup(struct ath_softc *sc)
2099 if (sc->beacon.bdma.dd_desc_len != 0)
2100 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2102 if (sc->tx.txdma.dd_desc_len != 0)
2103 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2108 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2110 struct ath_atx_tid *tid;
2111 struct ath_atx_ac *ac;
2114 for (tidno = 0, tid = &an->tid[tidno];
2115 tidno < WME_NUM_TID;
2119 tid->seq_start = tid->seq_next = 0;
2120 tid->baw_size = WME_MAX_BA;
2121 tid->baw_head = tid->baw_tail = 0;
2123 tid->paused = false;
2124 tid->state &= ~AGGR_CLEANUP;
2125 INIT_LIST_HEAD(&tid->buf_q);
2126 acno = TID_TO_WME_AC(tidno);
2127 tid->ac = &an->ac[acno];
2128 tid->state &= ~AGGR_ADDBA_COMPLETE;
2129 tid->state &= ~AGGR_ADDBA_PROGRESS;
2130 tid->addba_exchangeattempts = 0;
2133 for (acno = 0, ac = &an->ac[acno];
2134 acno < WME_NUM_AC; acno++, ac++) {
2136 INIT_LIST_HEAD(&ac->tid_q);
2140 ac->qnum = ath_tx_get_qnum(sc,
2141 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2144 ac->qnum = ath_tx_get_qnum(sc,
2145 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2148 ac->qnum = ath_tx_get_qnum(sc,
2149 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2152 ac->qnum = ath_tx_get_qnum(sc,
2153 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2159 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2162 struct ath_atx_ac *ac, *ac_tmp;
2163 struct ath_atx_tid *tid, *tid_tmp;
2164 struct ath_txq *txq;
2166 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2167 if (ATH_TXQ_SETUP(sc, i)) {
2168 txq = &sc->tx.txq[i];
2170 spin_lock(&txq->axq_lock);
2172 list_for_each_entry_safe(ac,
2173 ac_tmp, &txq->axq_acq, list) {
2174 tid = list_first_entry(&ac->tid_q,
2175 struct ath_atx_tid, list);
2176 if (tid && tid->an != an)
2178 list_del(&ac->list);
2181 list_for_each_entry_safe(tid,
2182 tid_tmp, &ac->tid_q, list) {
2183 list_del(&tid->list);
2185 ath_tid_drain(sc, txq, tid);
2186 tid->state &= ~AGGR_ADDBA_COMPLETE;
2187 tid->addba_exchangeattempts = 0;
2188 tid->state &= ~AGGR_CLEANUP;
2192 spin_unlock(&txq->axq_lock);