2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Time operations for IP22 machines. Original code may come from
7 * Ralf Baechle or David S. Miller (sorry guys, i'm really not sure)
9 * Copyright (C) 2001 by Ladislav Michl
10 * Copyright (C) 2003, 06 Ralf Baechle (ralf@linux-mips.org)
12 #include <linux/bcd.h>
13 #include <linux/ds1286.h>
14 #include <linux/init.h>
15 #include <linux/irq.h>
16 #include <linux/kernel.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/time.h>
22 #include <asm/mipsregs.h>
26 #include <asm/sgialib.h>
27 #include <asm/sgi/ioc.h>
28 #include <asm/sgi/hpc3.h>
29 #include <asm/sgi/ip22.h>
32 * note that mktime uses month from 1 to 12 while to_tm
35 static unsigned long indy_rtc_get_time(void)
37 unsigned int yrs, mon, day, hrs, min, sec;
38 unsigned int save_control;
41 spin_lock_irqsave(&rtc_lock, flags);
42 save_control = hpc3c0->rtcregs[RTC_CMD] & 0xff;
43 hpc3c0->rtcregs[RTC_CMD] = save_control | RTC_TE;
45 sec = BCD2BIN(hpc3c0->rtcregs[RTC_SECONDS] & 0xff);
46 min = BCD2BIN(hpc3c0->rtcregs[RTC_MINUTES] & 0xff);
47 hrs = BCD2BIN(hpc3c0->rtcregs[RTC_HOURS] & 0x3f);
48 day = BCD2BIN(hpc3c0->rtcregs[RTC_DATE] & 0xff);
49 mon = BCD2BIN(hpc3c0->rtcregs[RTC_MONTH] & 0x1f);
50 yrs = BCD2BIN(hpc3c0->rtcregs[RTC_YEAR] & 0xff);
52 hpc3c0->rtcregs[RTC_CMD] = save_control;
53 spin_unlock_irqrestore(&rtc_lock, flags);
60 return mktime(yrs + 1900, mon, day, hrs, min, sec);
63 static int indy_rtc_set_time(unsigned long tim)
66 unsigned int save_control;
71 tm.tm_mon += 1; /* tm_mon starts at zero */
73 if (tm.tm_year >= 100)
76 spin_lock_irqsave(&rtc_lock, flags);
77 save_control = hpc3c0->rtcregs[RTC_CMD] & 0xff;
78 hpc3c0->rtcregs[RTC_CMD] = save_control | RTC_TE;
80 hpc3c0->rtcregs[RTC_YEAR] = BIN2BCD(tm.tm_year);
81 hpc3c0->rtcregs[RTC_MONTH] = BIN2BCD(tm.tm_mon);
82 hpc3c0->rtcregs[RTC_DATE] = BIN2BCD(tm.tm_mday);
83 hpc3c0->rtcregs[RTC_HOURS] = BIN2BCD(tm.tm_hour);
84 hpc3c0->rtcregs[RTC_MINUTES] = BIN2BCD(tm.tm_min);
85 hpc3c0->rtcregs[RTC_SECONDS] = BIN2BCD(tm.tm_sec);
86 hpc3c0->rtcregs[RTC_HUNDREDTH_SECOND] = 0;
88 hpc3c0->rtcregs[RTC_CMD] = save_control;
89 spin_unlock_irqrestore(&rtc_lock, flags);
94 static unsigned long dosample(void)
99 /* Start the counter. */
100 sgint->tcword = (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL |
102 sgint->tcnt2 = SGINT_TCSAMP_COUNTER & 0xff;
103 sgint->tcnt2 = SGINT_TCSAMP_COUNTER >> 8;
105 /* Get initial counter invariant */
106 ct0 = read_c0_count();
108 /* Latch and spin until top byte of counter2 is zero */
110 writeb(SGINT_TCWORD_CNT2 | SGINT_TCWORD_CLAT, &sgint->tcword);
111 lsb = readb(&sgint->tcnt2);
112 msb = readb(&sgint->tcnt2);
113 ct1 = read_c0_count();
116 /* Stop the counter. */
117 writeb(sgint->tcword, (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL |
118 SGINT_TCWORD_MSWST));
120 * Return the difference, this is how far the r4k counter increments
121 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
122 * clock (= 1000000 / HZ / 2).
125 return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
129 * Here we need to calibrate the cycle counter to at least be close.
131 static __init void indy_time_init(void)
133 unsigned long r4k_ticks[3];
134 unsigned long r4k_tick;
137 * Figure out the r4k offset, the algorithm is very simple and works in
138 * _all_ cases as long as the 8254 counter register itself works ok (as
139 * an interrupt driving timer it does not because of bug, this is why
140 * we are using the onchip r4k counter/compare register to serve this
141 * purpose, but for r4k_offset calculation it will work ok for us).
142 * There are other very complicated ways of performing this calculation
143 * but this one works just fine so I am not going to futz around. ;-)
145 printk(KERN_INFO "Calibrating system timer... ");
146 dosample(); /* Prime cache. */
147 dosample(); /* Prime cache. */
148 /* Zero is NOT an option. */
150 r4k_ticks[0] = dosample();
151 } while (!r4k_ticks[0]);
153 r4k_ticks[1] = dosample();
154 } while (!r4k_ticks[1]);
156 if (r4k_ticks[0] != r4k_ticks[1]) {
157 printk("warning: timer counts differ, retrying... ");
158 r4k_ticks[2] = dosample();
159 if (r4k_ticks[2] == r4k_ticks[0]
160 || r4k_ticks[2] == r4k_ticks[1])
161 r4k_tick = r4k_ticks[2];
163 printk("disagreement, using average... ");
164 r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
168 r4k_tick = r4k_ticks[0];
170 printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
171 (int) (r4k_tick / (500000 / HZ)),
172 (int) (r4k_tick % (500000 / HZ)));
174 mips_hpt_frequency = r4k_tick * HZ;
177 /* Generic SGI handler for (spurious) 8254 interrupts */
178 void indy_8254timer_irq(void)
180 int irq = SGI_8254_0_IRQ;
185 kstat_this_cpu.irqs[irq]++;
186 printk(KERN_ALERT "Oops, got 8254 interrupt.\n");
187 ArcRead(0, &c, 1, &cnt);
188 ArcEnterInteractiveMode();
192 void indy_r4k_timer_interrupt(void)
194 int irq = SGI_TIMER_IRQ;
197 kstat_this_cpu.irqs[irq]++;
198 timer_interrupt(irq, NULL);
202 void __init plat_timer_setup(struct irqaction *irq)
204 /* over-write the handler, we use our own way */
205 irq->handler = no_action;
207 /* setup irqaction */
208 setup_irq(SGI_TIMER_IRQ, irq);
211 void __init ip22_time_init(void)
213 /* setup hookup functions */
214 rtc_mips_get_time = indy_rtc_get_time;
215 rtc_mips_set_time = indy_rtc_set_time;
217 board_time_init = indy_time_init;