[PATCH] kretprobe instance recycled by parent process
[linux-2.6] / arch / i386 / kernel / setup.c
1 /*
2  *  linux/arch/i386/kernel/setup.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *
6  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7  *
8  *  Memory region support
9  *      David Parsons <orc@pell.chi.il.us>, July-August 1999
10  *
11  *  Added E820 sanitization routine (removes overlapping memory regions);
12  *  Brian Moyle <bmoyle@mvista.com>, February 2001
13  *
14  * Moved CPU detection code to cpu/${cpu}.c
15  *    Patrick Mochel <mochel@osdl.org>, March 2002
16  *
17  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
18  *  Alex Achenbach <xela@slit.de>, December 2002.
19  *
20  */
21
22 /*
23  * This file handles the architecture-dependent parts of initialization
24  */
25
26 #include <linux/config.h>
27 #include <linux/sched.h>
28 #include <linux/mm.h>
29 #include <linux/mmzone.h>
30 #include <linux/tty.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/apm_bios.h>
34 #include <linux/initrd.h>
35 #include <linux/bootmem.h>
36 #include <linux/seq_file.h>
37 #include <linux/console.h>
38 #include <linux/mca.h>
39 #include <linux/root_dev.h>
40 #include <linux/highmem.h>
41 #include <linux/module.h>
42 #include <linux/efi.h>
43 #include <linux/init.h>
44 #include <linux/edd.h>
45 #include <linux/nodemask.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 #include <linux/dmi.h>
49
50 #include <video/edid.h>
51
52 #include <asm/apic.h>
53 #include <asm/e820.h>
54 #include <asm/mpspec.h>
55 #include <asm/setup.h>
56 #include <asm/arch_hooks.h>
57 #include <asm/sections.h>
58 #include <asm/io_apic.h>
59 #include <asm/ist.h>
60 #include <asm/io.h>
61 #include "setup_arch_pre.h"
62 #include <bios_ebda.h>
63
64 /* Forward Declaration. */
65 void __init find_max_pfn(void);
66
67 /* This value is set up by the early boot code to point to the value
68    immediately after the boot time page tables.  It contains a *physical*
69    address, and must not be in the .bss segment! */
70 unsigned long init_pg_tables_end __initdata = ~0UL;
71
72 int disable_pse __devinitdata = 0;
73
74 /*
75  * Machine setup..
76  */
77
78 #ifdef CONFIG_EFI
79 int efi_enabled = 0;
80 EXPORT_SYMBOL(efi_enabled);
81 #endif
82
83 /* cpu data as detected by the assembly code in head.S */
84 struct cpuinfo_x86 new_cpu_data __initdata = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
85 /* common cpu data for all cpus */
86 struct cpuinfo_x86 boot_cpu_data __read_mostly = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
87 EXPORT_SYMBOL(boot_cpu_data);
88
89 unsigned long mmu_cr4_features;
90
91 #ifdef  CONFIG_ACPI
92         int acpi_disabled = 0;
93 #else
94         int acpi_disabled = 1;
95 #endif
96 EXPORT_SYMBOL(acpi_disabled);
97
98 #ifdef  CONFIG_ACPI
99 int __initdata acpi_force = 0;
100 extern acpi_interrupt_flags     acpi_sci_flags;
101 #endif
102
103 /* for MCA, but anyone else can use it if they want */
104 unsigned int machine_id;
105 #ifdef CONFIG_MCA
106 EXPORT_SYMBOL(machine_id);
107 #endif
108 unsigned int machine_submodel_id;
109 unsigned int BIOS_revision;
110 unsigned int mca_pentium_flag;
111
112 /* For PCI or other memory-mapped resources */
113 unsigned long pci_mem_start = 0x10000000;
114 #ifdef CONFIG_PCI
115 EXPORT_SYMBOL(pci_mem_start);
116 #endif
117
118 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
119 int bootloader_type;
120
121 /* user-defined highmem size */
122 static unsigned int highmem_pages = -1;
123
124 /*
125  * Setup options
126  */
127 struct drive_info_struct { char dummy[32]; } drive_info;
128 #if defined(CONFIG_BLK_DEV_IDE) || defined(CONFIG_BLK_DEV_HD) || \
129     defined(CONFIG_BLK_DEV_IDE_MODULE) || defined(CONFIG_BLK_DEV_HD_MODULE)
130 EXPORT_SYMBOL(drive_info);
131 #endif
132 struct screen_info screen_info;
133 EXPORT_SYMBOL(screen_info);
134 struct apm_info apm_info;
135 EXPORT_SYMBOL(apm_info);
136 struct sys_desc_table_struct {
137         unsigned short length;
138         unsigned char table[0];
139 };
140 struct edid_info edid_info;
141 EXPORT_SYMBOL_GPL(edid_info);
142 struct ist_info ist_info;
143 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
144         defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
145 EXPORT_SYMBOL(ist_info);
146 #endif
147 struct e820map e820;
148
149 extern void early_cpu_init(void);
150 extern void generic_apic_probe(char *);
151 extern int root_mountflags;
152
153 unsigned long saved_videomode;
154
155 #define RAMDISK_IMAGE_START_MASK        0x07FF
156 #define RAMDISK_PROMPT_FLAG             0x8000
157 #define RAMDISK_LOAD_FLAG               0x4000  
158
159 static char command_line[COMMAND_LINE_SIZE];
160
161 unsigned char __initdata boot_params[PARAM_SIZE];
162
163 static struct resource data_resource = {
164         .name   = "Kernel data",
165         .start  = 0,
166         .end    = 0,
167         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
168 };
169
170 static struct resource code_resource = {
171         .name   = "Kernel code",
172         .start  = 0,
173         .end    = 0,
174         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
175 };
176
177 static struct resource system_rom_resource = {
178         .name   = "System ROM",
179         .start  = 0xf0000,
180         .end    = 0xfffff,
181         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
182 };
183
184 static struct resource extension_rom_resource = {
185         .name   = "Extension ROM",
186         .start  = 0xe0000,
187         .end    = 0xeffff,
188         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
189 };
190
191 static struct resource adapter_rom_resources[] = { {
192         .name   = "Adapter ROM",
193         .start  = 0xc8000,
194         .end    = 0,
195         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
196 }, {
197         .name   = "Adapter ROM",
198         .start  = 0,
199         .end    = 0,
200         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
201 }, {
202         .name   = "Adapter ROM",
203         .start  = 0,
204         .end    = 0,
205         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
206 }, {
207         .name   = "Adapter ROM",
208         .start  = 0,
209         .end    = 0,
210         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
211 }, {
212         .name   = "Adapter ROM",
213         .start  = 0,
214         .end    = 0,
215         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
216 }, {
217         .name   = "Adapter ROM",
218         .start  = 0,
219         .end    = 0,
220         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
221 } };
222
223 #define ADAPTER_ROM_RESOURCES \
224         (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
225
226 static struct resource video_rom_resource = {
227         .name   = "Video ROM",
228         .start  = 0xc0000,
229         .end    = 0xc7fff,
230         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
231 };
232
233 static struct resource video_ram_resource = {
234         .name   = "Video RAM area",
235         .start  = 0xa0000,
236         .end    = 0xbffff,
237         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
238 };
239
240 static struct resource standard_io_resources[] = { {
241         .name   = "dma1",
242         .start  = 0x0000,
243         .end    = 0x001f,
244         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
245 }, {
246         .name   = "pic1",
247         .start  = 0x0020,
248         .end    = 0x0021,
249         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
250 }, {
251         .name   = "timer0",
252         .start  = 0x0040,
253         .end    = 0x0043,
254         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
255 }, {
256         .name   = "timer1",
257         .start  = 0x0050,
258         .end    = 0x0053,
259         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
260 }, {
261         .name   = "keyboard",
262         .start  = 0x0060,
263         .end    = 0x006f,
264         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
265 }, {
266         .name   = "dma page reg",
267         .start  = 0x0080,
268         .end    = 0x008f,
269         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
270 }, {
271         .name   = "pic2",
272         .start  = 0x00a0,
273         .end    = 0x00a1,
274         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
275 }, {
276         .name   = "dma2",
277         .start  = 0x00c0,
278         .end    = 0x00df,
279         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
280 }, {
281         .name   = "fpu",
282         .start  = 0x00f0,
283         .end    = 0x00ff,
284         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
285 } };
286
287 #define STANDARD_IO_RESOURCES \
288         (sizeof standard_io_resources / sizeof standard_io_resources[0])
289
290 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
291
292 static int __init romchecksum(unsigned char *rom, unsigned long length)
293 {
294         unsigned char *p, sum = 0;
295
296         for (p = rom; p < rom + length; p++)
297                 sum += *p;
298         return sum == 0;
299 }
300
301 static void __init probe_roms(void)
302 {
303         unsigned long start, length, upper;
304         unsigned char *rom;
305         int           i;
306
307         /* video rom */
308         upper = adapter_rom_resources[0].start;
309         for (start = video_rom_resource.start; start < upper; start += 2048) {
310                 rom = isa_bus_to_virt(start);
311                 if (!romsignature(rom))
312                         continue;
313
314                 video_rom_resource.start = start;
315
316                 /* 0 < length <= 0x7f * 512, historically */
317                 length = rom[2] * 512;
318
319                 /* if checksum okay, trust length byte */
320                 if (length && romchecksum(rom, length))
321                         video_rom_resource.end = start + length - 1;
322
323                 request_resource(&iomem_resource, &video_rom_resource);
324                 break;
325         }
326
327         start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
328         if (start < upper)
329                 start = upper;
330
331         /* system rom */
332         request_resource(&iomem_resource, &system_rom_resource);
333         upper = system_rom_resource.start;
334
335         /* check for extension rom (ignore length byte!) */
336         rom = isa_bus_to_virt(extension_rom_resource.start);
337         if (romsignature(rom)) {
338                 length = extension_rom_resource.end - extension_rom_resource.start + 1;
339                 if (romchecksum(rom, length)) {
340                         request_resource(&iomem_resource, &extension_rom_resource);
341                         upper = extension_rom_resource.start;
342                 }
343         }
344
345         /* check for adapter roms on 2k boundaries */
346         for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
347                 rom = isa_bus_to_virt(start);
348                 if (!romsignature(rom))
349                         continue;
350
351                 /* 0 < length <= 0x7f * 512, historically */
352                 length = rom[2] * 512;
353
354                 /* but accept any length that fits if checksum okay */
355                 if (!length || start + length > upper || !romchecksum(rom, length))
356                         continue;
357
358                 adapter_rom_resources[i].start = start;
359                 adapter_rom_resources[i].end = start + length - 1;
360                 request_resource(&iomem_resource, &adapter_rom_resources[i]);
361
362                 start = adapter_rom_resources[i++].end & ~2047UL;
363         }
364 }
365
366 static void __init limit_regions(unsigned long long size)
367 {
368         unsigned long long current_addr = 0;
369         int i;
370
371         if (efi_enabled) {
372                 efi_memory_desc_t *md;
373                 void *p;
374
375                 for (p = memmap.map, i = 0; p < memmap.map_end;
376                         p += memmap.desc_size, i++) {
377                         md = p;
378                         current_addr = md->phys_addr + (md->num_pages << 12);
379                         if (md->type == EFI_CONVENTIONAL_MEMORY) {
380                                 if (current_addr >= size) {
381                                         md->num_pages -=
382                                                 (((current_addr-size) + PAGE_SIZE-1) >> PAGE_SHIFT);
383                                         memmap.nr_map = i + 1;
384                                         return;
385                                 }
386                         }
387                 }
388         }
389         for (i = 0; i < e820.nr_map; i++) {
390                 current_addr = e820.map[i].addr + e820.map[i].size;
391                 if (current_addr < size)
392                         continue;
393
394                 if (e820.map[i].type != E820_RAM)
395                         continue;
396
397                 if (e820.map[i].addr >= size) {
398                         /*
399                          * This region starts past the end of the
400                          * requested size, skip it completely.
401                          */
402                         e820.nr_map = i;
403                 } else {
404                         e820.nr_map = i + 1;
405                         e820.map[i].size -= current_addr - size;
406                 }
407                 return;
408         }
409 }
410
411 static void __init add_memory_region(unsigned long long start,
412                                   unsigned long long size, int type)
413 {
414         int x;
415
416         if (!efi_enabled) {
417                 x = e820.nr_map;
418
419                 if (x == E820MAX) {
420                     printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
421                     return;
422                 }
423
424                 e820.map[x].addr = start;
425                 e820.map[x].size = size;
426                 e820.map[x].type = type;
427                 e820.nr_map++;
428         }
429 } /* add_memory_region */
430
431 #define E820_DEBUG      1
432
433 static void __init print_memory_map(char *who)
434 {
435         int i;
436
437         for (i = 0; i < e820.nr_map; i++) {
438                 printk(" %s: %016Lx - %016Lx ", who,
439                         e820.map[i].addr,
440                         e820.map[i].addr + e820.map[i].size);
441                 switch (e820.map[i].type) {
442                 case E820_RAM:  printk("(usable)\n");
443                                 break;
444                 case E820_RESERVED:
445                                 printk("(reserved)\n");
446                                 break;
447                 case E820_ACPI:
448                                 printk("(ACPI data)\n");
449                                 break;
450                 case E820_NVS:
451                                 printk("(ACPI NVS)\n");
452                                 break;
453                 default:        printk("type %lu\n", e820.map[i].type);
454                                 break;
455                 }
456         }
457 }
458
459 /*
460  * Sanitize the BIOS e820 map.
461  *
462  * Some e820 responses include overlapping entries.  The following 
463  * replaces the original e820 map with a new one, removing overlaps.
464  *
465  */
466 struct change_member {
467         struct e820entry *pbios; /* pointer to original bios entry */
468         unsigned long long addr; /* address for this change point */
469 };
470 static struct change_member change_point_list[2*E820MAX] __initdata;
471 static struct change_member *change_point[2*E820MAX] __initdata;
472 static struct e820entry *overlap_list[E820MAX] __initdata;
473 static struct e820entry new_bios[E820MAX] __initdata;
474
475 static int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map)
476 {
477         struct change_member *change_tmp;
478         unsigned long current_type, last_type;
479         unsigned long long last_addr;
480         int chgidx, still_changing;
481         int overlap_entries;
482         int new_bios_entry;
483         int old_nr, new_nr, chg_nr;
484         int i;
485
486         /*
487                 Visually we're performing the following (1,2,3,4 = memory types)...
488
489                 Sample memory map (w/overlaps):
490                    ____22__________________
491                    ______________________4_
492                    ____1111________________
493                    _44_____________________
494                    11111111________________
495                    ____________________33__
496                    ___________44___________
497                    __________33333_________
498                    ______________22________
499                    ___________________2222_
500                    _________111111111______
501                    _____________________11_
502                    _________________4______
503
504                 Sanitized equivalent (no overlap):
505                    1_______________________
506                    _44_____________________
507                    ___1____________________
508                    ____22__________________
509                    ______11________________
510                    _________1______________
511                    __________3_____________
512                    ___________44___________
513                    _____________33_________
514                    _______________2________
515                    ________________1_______
516                    _________________4______
517                    ___________________2____
518                    ____________________33__
519                    ______________________4_
520         */
521
522         /* if there's only one memory region, don't bother */
523         if (*pnr_map < 2)
524                 return -1;
525
526         old_nr = *pnr_map;
527
528         /* bail out if we find any unreasonable addresses in bios map */
529         for (i=0; i<old_nr; i++)
530                 if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
531                         return -1;
532
533         /* create pointers for initial change-point information (for sorting) */
534         for (i=0; i < 2*old_nr; i++)
535                 change_point[i] = &change_point_list[i];
536
537         /* record all known change-points (starting and ending addresses),
538            omitting those that are for empty memory regions */
539         chgidx = 0;
540         for (i=0; i < old_nr; i++)      {
541                 if (biosmap[i].size != 0) {
542                         change_point[chgidx]->addr = biosmap[i].addr;
543                         change_point[chgidx++]->pbios = &biosmap[i];
544                         change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size;
545                         change_point[chgidx++]->pbios = &biosmap[i];
546                 }
547         }
548         chg_nr = chgidx;        /* true number of change-points */
549
550         /* sort change-point list by memory addresses (low -> high) */
551         still_changing = 1;
552         while (still_changing)  {
553                 still_changing = 0;
554                 for (i=1; i < chg_nr; i++)  {
555                         /* if <current_addr> > <last_addr>, swap */
556                         /* or, if current=<start_addr> & last=<end_addr>, swap */
557                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
558                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
559                                  (change_point[i]->addr == change_point[i]->pbios->addr) &&
560                                  (change_point[i-1]->addr != change_point[i-1]->pbios->addr))
561                            )
562                         {
563                                 change_tmp = change_point[i];
564                                 change_point[i] = change_point[i-1];
565                                 change_point[i-1] = change_tmp;
566                                 still_changing=1;
567                         }
568                 }
569         }
570
571         /* create a new bios memory map, removing overlaps */
572         overlap_entries=0;       /* number of entries in the overlap table */
573         new_bios_entry=0;        /* index for creating new bios map entries */
574         last_type = 0;           /* start with undefined memory type */
575         last_addr = 0;           /* start with 0 as last starting address */
576         /* loop through change-points, determining affect on the new bios map */
577         for (chgidx=0; chgidx < chg_nr; chgidx++)
578         {
579                 /* keep track of all overlapping bios entries */
580                 if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr)
581                 {
582                         /* add map entry to overlap list (> 1 entry implies an overlap) */
583                         overlap_list[overlap_entries++]=change_point[chgidx]->pbios;
584                 }
585                 else
586                 {
587                         /* remove entry from list (order independent, so swap with last) */
588                         for (i=0; i<overlap_entries; i++)
589                         {
590                                 if (overlap_list[i] == change_point[chgidx]->pbios)
591                                         overlap_list[i] = overlap_list[overlap_entries-1];
592                         }
593                         overlap_entries--;
594                 }
595                 /* if there are overlapping entries, decide which "type" to use */
596                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
597                 current_type = 0;
598                 for (i=0; i<overlap_entries; i++)
599                         if (overlap_list[i]->type > current_type)
600                                 current_type = overlap_list[i]->type;
601                 /* continue building up new bios map based on this information */
602                 if (current_type != last_type)  {
603                         if (last_type != 0)      {
604                                 new_bios[new_bios_entry].size =
605                                         change_point[chgidx]->addr - last_addr;
606                                 /* move forward only if the new size was non-zero */
607                                 if (new_bios[new_bios_entry].size != 0)
608                                         if (++new_bios_entry >= E820MAX)
609                                                 break;  /* no more space left for new bios entries */
610                         }
611                         if (current_type != 0)  {
612                                 new_bios[new_bios_entry].addr = change_point[chgidx]->addr;
613                                 new_bios[new_bios_entry].type = current_type;
614                                 last_addr=change_point[chgidx]->addr;
615                         }
616                         last_type = current_type;
617                 }
618         }
619         new_nr = new_bios_entry;   /* retain count for new bios entries */
620
621         /* copy new bios mapping into original location */
622         memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry));
623         *pnr_map = new_nr;
624
625         return 0;
626 }
627
628 /*
629  * Copy the BIOS e820 map into a safe place.
630  *
631  * Sanity-check it while we're at it..
632  *
633  * If we're lucky and live on a modern system, the setup code
634  * will have given us a memory map that we can use to properly
635  * set up memory.  If we aren't, we'll fake a memory map.
636  *
637  * We check to see that the memory map contains at least 2 elements
638  * before we'll use it, because the detection code in setup.S may
639  * not be perfect and most every PC known to man has two memory
640  * regions: one from 0 to 640k, and one from 1mb up.  (The IBM
641  * thinkpad 560x, for example, does not cooperate with the memory
642  * detection code.)
643  */
644 static int __init copy_e820_map(struct e820entry * biosmap, int nr_map)
645 {
646         /* Only one memory region (or negative)? Ignore it */
647         if (nr_map < 2)
648                 return -1;
649
650         do {
651                 unsigned long long start = biosmap->addr;
652                 unsigned long long size = biosmap->size;
653                 unsigned long long end = start + size;
654                 unsigned long type = biosmap->type;
655
656                 /* Overflow in 64 bits? Ignore the memory map. */
657                 if (start > end)
658                         return -1;
659
660                 /*
661                  * Some BIOSes claim RAM in the 640k - 1M region.
662                  * Not right. Fix it up.
663                  */
664                 if (type == E820_RAM) {
665                         if (start < 0x100000ULL && end > 0xA0000ULL) {
666                                 if (start < 0xA0000ULL)
667                                         add_memory_region(start, 0xA0000ULL-start, type);
668                                 if (end <= 0x100000ULL)
669                                         continue;
670                                 start = 0x100000ULL;
671                                 size = end - start;
672                         }
673                 }
674                 add_memory_region(start, size, type);
675         } while (biosmap++,--nr_map);
676         return 0;
677 }
678
679 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
680 struct edd edd;
681 #ifdef CONFIG_EDD_MODULE
682 EXPORT_SYMBOL(edd);
683 #endif
684 /**
685  * copy_edd() - Copy the BIOS EDD information
686  *              from boot_params into a safe place.
687  *
688  */
689 static inline void copy_edd(void)
690 {
691      memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
692      memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
693      edd.mbr_signature_nr = EDD_MBR_SIG_NR;
694      edd.edd_info_nr = EDD_NR;
695 }
696 #else
697 static inline void copy_edd(void)
698 {
699 }
700 #endif
701
702 /*
703  * Do NOT EVER look at the BIOS memory size location.
704  * It does not work on many machines.
705  */
706 #define LOWMEMSIZE()    (0x9f000)
707
708 static void __init parse_cmdline_early (char ** cmdline_p)
709 {
710         char c = ' ', *to = command_line, *from = saved_command_line;
711         int len = 0;
712         int userdef = 0;
713
714         /* Save unparsed command line copy for /proc/cmdline */
715         saved_command_line[COMMAND_LINE_SIZE-1] = '\0';
716
717         for (;;) {
718                 if (c != ' ')
719                         goto next_char;
720                 /*
721                  * "mem=nopentium" disables the 4MB page tables.
722                  * "mem=XXX[kKmM]" defines a memory region from HIGH_MEM
723                  * to <mem>, overriding the bios size.
724                  * "memmap=XXX[KkmM]@XXX[KkmM]" defines a memory region from
725                  * <start> to <start>+<mem>, overriding the bios size.
726                  *
727                  * HPA tells me bootloaders need to parse mem=, so no new
728                  * option should be mem=  [also see Documentation/i386/boot.txt]
729                  */
730                 if (!memcmp(from, "mem=", 4)) {
731                         if (to != command_line)
732                                 to--;
733                         if (!memcmp(from+4, "nopentium", 9)) {
734                                 from += 9+4;
735                                 clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
736                                 disable_pse = 1;
737                         } else {
738                                 /* If the user specifies memory size, we
739                                  * limit the BIOS-provided memory map to
740                                  * that size. exactmap can be used to specify
741                                  * the exact map. mem=number can be used to
742                                  * trim the existing memory map.
743                                  */
744                                 unsigned long long mem_size;
745  
746                                 mem_size = memparse(from+4, &from);
747                                 limit_regions(mem_size);
748                                 userdef=1;
749                         }
750                 }
751
752                 else if (!memcmp(from, "memmap=", 7)) {
753                         if (to != command_line)
754                                 to--;
755                         if (!memcmp(from+7, "exactmap", 8)) {
756 #ifdef CONFIG_CRASH_DUMP
757                                 /* If we are doing a crash dump, we
758                                  * still need to know the real mem
759                                  * size before original memory map is
760                                  * reset.
761                                  */
762                                 find_max_pfn();
763                                 saved_max_pfn = max_pfn;
764 #endif
765                                 from += 8+7;
766                                 e820.nr_map = 0;
767                                 userdef = 1;
768                         } else {
769                                 /* If the user specifies memory size, we
770                                  * limit the BIOS-provided memory map to
771                                  * that size. exactmap can be used to specify
772                                  * the exact map. mem=number can be used to
773                                  * trim the existing memory map.
774                                  */
775                                 unsigned long long start_at, mem_size;
776  
777                                 mem_size = memparse(from+7, &from);
778                                 if (*from == '@') {
779                                         start_at = memparse(from+1, &from);
780                                         add_memory_region(start_at, mem_size, E820_RAM);
781                                 } else if (*from == '#') {
782                                         start_at = memparse(from+1, &from);
783                                         add_memory_region(start_at, mem_size, E820_ACPI);
784                                 } else if (*from == '$') {
785                                         start_at = memparse(from+1, &from);
786                                         add_memory_region(start_at, mem_size, E820_RESERVED);
787                                 } else {
788                                         limit_regions(mem_size);
789                                         userdef=1;
790                                 }
791                         }
792                 }
793
794                 else if (!memcmp(from, "noexec=", 7))
795                         noexec_setup(from + 7);
796
797
798 #ifdef  CONFIG_X86_SMP
799                 /*
800                  * If the BIOS enumerates physical processors before logical,
801                  * maxcpus=N at enumeration-time can be used to disable HT.
802                  */
803                 else if (!memcmp(from, "maxcpus=", 8)) {
804                         extern unsigned int maxcpus;
805
806                         maxcpus = simple_strtoul(from + 8, NULL, 0);
807                 }
808 #endif
809
810 #ifdef CONFIG_ACPI
811                 /* "acpi=off" disables both ACPI table parsing and interpreter */
812                 else if (!memcmp(from, "acpi=off", 8)) {
813                         disable_acpi();
814                 }
815
816                 /* acpi=force to over-ride black-list */
817                 else if (!memcmp(from, "acpi=force", 10)) {
818                         acpi_force = 1;
819                         acpi_ht = 1;
820                         acpi_disabled = 0;
821                 }
822
823                 /* acpi=strict disables out-of-spec workarounds */
824                 else if (!memcmp(from, "acpi=strict", 11)) {
825                         acpi_strict = 1;
826                 }
827
828                 /* Limit ACPI just to boot-time to enable HT */
829                 else if (!memcmp(from, "acpi=ht", 7)) {
830                         if (!acpi_force)
831                                 disable_acpi();
832                         acpi_ht = 1;
833                 }
834                 
835                 /* "pci=noacpi" disable ACPI IRQ routing and PCI scan */
836                 else if (!memcmp(from, "pci=noacpi", 10)) {
837                         acpi_disable_pci();
838                 }
839                 /* "acpi=noirq" disables ACPI interrupt routing */
840                 else if (!memcmp(from, "acpi=noirq", 10)) {
841                         acpi_noirq_set();
842                 }
843
844                 else if (!memcmp(from, "acpi_sci=edge", 13))
845                         acpi_sci_flags.trigger =  1;
846
847                 else if (!memcmp(from, "acpi_sci=level", 14))
848                         acpi_sci_flags.trigger = 3;
849
850                 else if (!memcmp(from, "acpi_sci=high", 13))
851                         acpi_sci_flags.polarity = 1;
852
853                 else if (!memcmp(from, "acpi_sci=low", 12))
854                         acpi_sci_flags.polarity = 3;
855
856 #ifdef CONFIG_X86_IO_APIC
857                 else if (!memcmp(from, "acpi_skip_timer_override", 24))
858                         acpi_skip_timer_override = 1;
859
860                 if (!memcmp(from, "disable_timer_pin_1", 19))
861                         disable_timer_pin_1 = 1;
862                 if (!memcmp(from, "enable_timer_pin_1", 18))
863                         disable_timer_pin_1 = -1;
864
865                 /* disable IO-APIC */
866                 else if (!memcmp(from, "noapic", 6))
867                         disable_ioapic_setup();
868 #endif /* CONFIG_X86_IO_APIC */
869 #endif /* CONFIG_ACPI */
870
871 #ifdef CONFIG_X86_LOCAL_APIC
872                 /* enable local APIC */
873                 else if (!memcmp(from, "lapic", 5))
874                         lapic_enable();
875
876                 /* disable local APIC */
877                 else if (!memcmp(from, "nolapic", 6))
878                         lapic_disable();
879 #endif /* CONFIG_X86_LOCAL_APIC */
880
881 #ifdef CONFIG_KEXEC
882                 /* crashkernel=size@addr specifies the location to reserve for
883                  * a crash kernel.  By reserving this memory we guarantee
884                  * that linux never set's it up as a DMA target.
885                  * Useful for holding code to do something appropriate
886                  * after a kernel panic.
887                  */
888                 else if (!memcmp(from, "crashkernel=", 12)) {
889                         unsigned long size, base;
890                         size = memparse(from+12, &from);
891                         if (*from == '@') {
892                                 base = memparse(from+1, &from);
893                                 /* FIXME: Do I want a sanity check
894                                  * to validate the memory range?
895                                  */
896                                 crashk_res.start = base;
897                                 crashk_res.end   = base + size - 1;
898                         }
899                 }
900 #endif
901 #ifdef CONFIG_PROC_VMCORE
902                 /* elfcorehdr= specifies the location of elf core header
903                  * stored by the crashed kernel.
904                  */
905                 else if (!memcmp(from, "elfcorehdr=", 11))
906                         elfcorehdr_addr = memparse(from+11, &from);
907 #endif
908
909                 /*
910                  * highmem=size forces highmem to be exactly 'size' bytes.
911                  * This works even on boxes that have no highmem otherwise.
912                  * This also works to reduce highmem size on bigger boxes.
913                  */
914                 else if (!memcmp(from, "highmem=", 8))
915                         highmem_pages = memparse(from+8, &from) >> PAGE_SHIFT;
916         
917                 /*
918                  * vmalloc=size forces the vmalloc area to be exactly 'size'
919                  * bytes. This can be used to increase (or decrease) the
920                  * vmalloc area - the default is 128m.
921                  */
922                 else if (!memcmp(from, "vmalloc=", 8))
923                         __VMALLOC_RESERVE = memparse(from+8, &from);
924
925         next_char:
926                 c = *(from++);
927                 if (!c)
928                         break;
929                 if (COMMAND_LINE_SIZE <= ++len)
930                         break;
931                 *(to++) = c;
932         }
933         *to = '\0';
934         *cmdline_p = command_line;
935         if (userdef) {
936                 printk(KERN_INFO "user-defined physical RAM map:\n");
937                 print_memory_map("user");
938         }
939 }
940
941 /*
942  * Callback for efi_memory_walk.
943  */
944 static int __init
945 efi_find_max_pfn(unsigned long start, unsigned long end, void *arg)
946 {
947         unsigned long *max_pfn = arg, pfn;
948
949         if (start < end) {
950                 pfn = PFN_UP(end -1);
951                 if (pfn > *max_pfn)
952                         *max_pfn = pfn;
953         }
954         return 0;
955 }
956
957 static int __init
958 efi_memory_present_wrapper(unsigned long start, unsigned long end, void *arg)
959 {
960         memory_present(0, start, end);
961         return 0;
962 }
963
964 /*
965  * Find the highest page frame number we have available
966  */
967 void __init find_max_pfn(void)
968 {
969         int i;
970
971         max_pfn = 0;
972         if (efi_enabled) {
973                 efi_memmap_walk(efi_find_max_pfn, &max_pfn);
974                 efi_memmap_walk(efi_memory_present_wrapper, NULL);
975                 return;
976         }
977
978         for (i = 0; i < e820.nr_map; i++) {
979                 unsigned long start, end;
980                 /* RAM? */
981                 if (e820.map[i].type != E820_RAM)
982                         continue;
983                 start = PFN_UP(e820.map[i].addr);
984                 end = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
985                 if (start >= end)
986                         continue;
987                 if (end > max_pfn)
988                         max_pfn = end;
989                 memory_present(0, start, end);
990         }
991 }
992
993 /*
994  * Determine low and high memory ranges:
995  */
996 unsigned long __init find_max_low_pfn(void)
997 {
998         unsigned long max_low_pfn;
999
1000         max_low_pfn = max_pfn;
1001         if (max_low_pfn > MAXMEM_PFN) {
1002                 if (highmem_pages == -1)
1003                         highmem_pages = max_pfn - MAXMEM_PFN;
1004                 if (highmem_pages + MAXMEM_PFN < max_pfn)
1005                         max_pfn = MAXMEM_PFN + highmem_pages;
1006                 if (highmem_pages + MAXMEM_PFN > max_pfn) {
1007                         printk("only %luMB highmem pages available, ignoring highmem size of %uMB.\n", pages_to_mb(max_pfn - MAXMEM_PFN), pages_to_mb(highmem_pages));
1008                         highmem_pages = 0;
1009                 }
1010                 max_low_pfn = MAXMEM_PFN;
1011 #ifndef CONFIG_HIGHMEM
1012                 /* Maximum memory usable is what is directly addressable */
1013                 printk(KERN_WARNING "Warning only %ldMB will be used.\n",
1014                                         MAXMEM>>20);
1015                 if (max_pfn > MAX_NONPAE_PFN)
1016                         printk(KERN_WARNING "Use a PAE enabled kernel.\n");
1017                 else
1018                         printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
1019                 max_pfn = MAXMEM_PFN;
1020 #else /* !CONFIG_HIGHMEM */
1021 #ifndef CONFIG_X86_PAE
1022                 if (max_pfn > MAX_NONPAE_PFN) {
1023                         max_pfn = MAX_NONPAE_PFN;
1024                         printk(KERN_WARNING "Warning only 4GB will be used.\n");
1025                         printk(KERN_WARNING "Use a PAE enabled kernel.\n");
1026                 }
1027 #endif /* !CONFIG_X86_PAE */
1028 #endif /* !CONFIG_HIGHMEM */
1029         } else {
1030                 if (highmem_pages == -1)
1031                         highmem_pages = 0;
1032 #ifdef CONFIG_HIGHMEM
1033                 if (highmem_pages >= max_pfn) {
1034                         printk(KERN_ERR "highmem size specified (%uMB) is bigger than pages available (%luMB)!.\n", pages_to_mb(highmem_pages), pages_to_mb(max_pfn));
1035                         highmem_pages = 0;
1036                 }
1037                 if (highmem_pages) {
1038                         if (max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){
1039                                 printk(KERN_ERR "highmem size %uMB results in smaller than 64MB lowmem, ignoring it.\n", pages_to_mb(highmem_pages));
1040                                 highmem_pages = 0;
1041                         }
1042                         max_low_pfn -= highmem_pages;
1043                 }
1044 #else
1045                 if (highmem_pages)
1046                         printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n");
1047 #endif
1048         }
1049         return max_low_pfn;
1050 }
1051
1052 /*
1053  * Free all available memory for boot time allocation.  Used
1054  * as a callback function by efi_memory_walk()
1055  */
1056
1057 static int __init
1058 free_available_memory(unsigned long start, unsigned long end, void *arg)
1059 {
1060         /* check max_low_pfn */
1061         if (start >= (max_low_pfn << PAGE_SHIFT))
1062                 return 0;
1063         if (end >= (max_low_pfn << PAGE_SHIFT))
1064                 end = max_low_pfn << PAGE_SHIFT;
1065         if (start < end)
1066                 free_bootmem(start, end - start);
1067
1068         return 0;
1069 }
1070 /*
1071  * Register fully available low RAM pages with the bootmem allocator.
1072  */
1073 static void __init register_bootmem_low_pages(unsigned long max_low_pfn)
1074 {
1075         int i;
1076
1077         if (efi_enabled) {
1078                 efi_memmap_walk(free_available_memory, NULL);
1079                 return;
1080         }
1081         for (i = 0; i < e820.nr_map; i++) {
1082                 unsigned long curr_pfn, last_pfn, size;
1083                 /*
1084                  * Reserve usable low memory
1085                  */
1086                 if (e820.map[i].type != E820_RAM)
1087                         continue;
1088                 /*
1089                  * We are rounding up the start address of usable memory:
1090                  */
1091                 curr_pfn = PFN_UP(e820.map[i].addr);
1092                 if (curr_pfn >= max_low_pfn)
1093                         continue;
1094                 /*
1095                  * ... and at the end of the usable range downwards:
1096                  */
1097                 last_pfn = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
1098
1099                 if (last_pfn > max_low_pfn)
1100                         last_pfn = max_low_pfn;
1101
1102                 /*
1103                  * .. finally, did all the rounding and playing
1104                  * around just make the area go away?
1105                  */
1106                 if (last_pfn <= curr_pfn)
1107                         continue;
1108
1109                 size = last_pfn - curr_pfn;
1110                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
1111         }
1112 }
1113
1114 /*
1115  * workaround for Dell systems that neglect to reserve EBDA
1116  */
1117 static void __init reserve_ebda_region(void)
1118 {
1119         unsigned int addr;
1120         addr = get_bios_ebda();
1121         if (addr)
1122                 reserve_bootmem(addr, PAGE_SIZE);       
1123 }
1124
1125 #ifndef CONFIG_NEED_MULTIPLE_NODES
1126 void __init setup_bootmem_allocator(void);
1127 static unsigned long __init setup_memory(void)
1128 {
1129         /*
1130          * partially used pages are not usable - thus
1131          * we are rounding upwards:
1132          */
1133         min_low_pfn = PFN_UP(init_pg_tables_end);
1134
1135         find_max_pfn();
1136
1137         max_low_pfn = find_max_low_pfn();
1138
1139 #ifdef CONFIG_HIGHMEM
1140         highstart_pfn = highend_pfn = max_pfn;
1141         if (max_pfn > max_low_pfn) {
1142                 highstart_pfn = max_low_pfn;
1143         }
1144         printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
1145                 pages_to_mb(highend_pfn - highstart_pfn));
1146 #endif
1147         printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
1148                         pages_to_mb(max_low_pfn));
1149
1150         setup_bootmem_allocator();
1151
1152         return max_low_pfn;
1153 }
1154
1155 void __init zone_sizes_init(void)
1156 {
1157         unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
1158         unsigned int max_dma, low;
1159
1160         max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
1161         low = max_low_pfn;
1162
1163         if (low < max_dma)
1164                 zones_size[ZONE_DMA] = low;
1165         else {
1166                 zones_size[ZONE_DMA] = max_dma;
1167                 zones_size[ZONE_NORMAL] = low - max_dma;
1168 #ifdef CONFIG_HIGHMEM
1169                 zones_size[ZONE_HIGHMEM] = highend_pfn - low;
1170 #endif
1171         }
1172         free_area_init(zones_size);
1173 }
1174 #else
1175 extern unsigned long __init setup_memory(void);
1176 extern void zone_sizes_init(void);
1177 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1178
1179 void __init setup_bootmem_allocator(void)
1180 {
1181         unsigned long bootmap_size;
1182         /*
1183          * Initialize the boot-time allocator (with low memory only):
1184          */
1185         bootmap_size = init_bootmem(min_low_pfn, max_low_pfn);
1186
1187         register_bootmem_low_pages(max_low_pfn);
1188
1189         /*
1190          * Reserve the bootmem bitmap itself as well. We do this in two
1191          * steps (first step was init_bootmem()) because this catches
1192          * the (very unlikely) case of us accidentally initializing the
1193          * bootmem allocator with an invalid RAM area.
1194          */
1195         reserve_bootmem(__PHYSICAL_START, (PFN_PHYS(min_low_pfn) +
1196                          bootmap_size + PAGE_SIZE-1) - (__PHYSICAL_START));
1197
1198         /*
1199          * reserve physical page 0 - it's a special BIOS page on many boxes,
1200          * enabling clean reboots, SMP operation, laptop functions.
1201          */
1202         reserve_bootmem(0, PAGE_SIZE);
1203
1204         /* reserve EBDA region, it's a 4K region */
1205         reserve_ebda_region();
1206
1207     /* could be an AMD 768MPX chipset. Reserve a page  before VGA to prevent
1208        PCI prefetch into it (errata #56). Usually the page is reserved anyways,
1209        unless you have no PS/2 mouse plugged in. */
1210         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
1211             boot_cpu_data.x86 == 6)
1212              reserve_bootmem(0xa0000 - 4096, 4096);
1213
1214 #ifdef CONFIG_SMP
1215         /*
1216          * But first pinch a few for the stack/trampoline stuff
1217          * FIXME: Don't need the extra page at 4K, but need to fix
1218          * trampoline before removing it. (see the GDT stuff)
1219          */
1220         reserve_bootmem(PAGE_SIZE, PAGE_SIZE);
1221 #endif
1222 #ifdef CONFIG_ACPI_SLEEP
1223         /*
1224          * Reserve low memory region for sleep support.
1225          */
1226         acpi_reserve_bootmem();
1227 #endif
1228 #ifdef CONFIG_X86_FIND_SMP_CONFIG
1229         /*
1230          * Find and reserve possible boot-time SMP configuration:
1231          */
1232         find_smp_config();
1233 #endif
1234
1235 #ifdef CONFIG_BLK_DEV_INITRD
1236         if (LOADER_TYPE && INITRD_START) {
1237                 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
1238                         reserve_bootmem(INITRD_START, INITRD_SIZE);
1239                         initrd_start =
1240                                 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
1241                         initrd_end = initrd_start+INITRD_SIZE;
1242                 }
1243                 else {
1244                         printk(KERN_ERR "initrd extends beyond end of memory "
1245                             "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
1246                             INITRD_START + INITRD_SIZE,
1247                             max_low_pfn << PAGE_SHIFT);
1248                         initrd_start = 0;
1249                 }
1250         }
1251 #endif
1252 #ifdef CONFIG_KEXEC
1253         if (crashk_res.start != crashk_res.end)
1254                 reserve_bootmem(crashk_res.start,
1255                         crashk_res.end - crashk_res.start + 1);
1256 #endif
1257 }
1258
1259 /*
1260  * The node 0 pgdat is initialized before all of these because
1261  * it's needed for bootmem.  node>0 pgdats have their virtual
1262  * space allocated before the pagetables are in place to access
1263  * them, so they can't be cleared then.
1264  *
1265  * This should all compile down to nothing when NUMA is off.
1266  */
1267 void __init remapped_pgdat_init(void)
1268 {
1269         int nid;
1270
1271         for_each_online_node(nid) {
1272                 if (nid != 0)
1273                         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1274         }
1275 }
1276
1277 /*
1278  * Request address space for all standard RAM and ROM resources
1279  * and also for regions reported as reserved by the e820.
1280  */
1281 static void __init
1282 legacy_init_iomem_resources(struct resource *code_resource, struct resource *data_resource)
1283 {
1284         int i;
1285
1286         probe_roms();
1287         for (i = 0; i < e820.nr_map; i++) {
1288                 struct resource *res;
1289                 res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1290                 switch (e820.map[i].type) {
1291                 case E820_RAM:  res->name = "System RAM"; break;
1292                 case E820_ACPI: res->name = "ACPI Tables"; break;
1293                 case E820_NVS:  res->name = "ACPI Non-volatile Storage"; break;
1294                 default:        res->name = "reserved";
1295                 }
1296                 res->start = e820.map[i].addr;
1297                 res->end = res->start + e820.map[i].size - 1;
1298                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1299                 request_resource(&iomem_resource, res);
1300                 if (e820.map[i].type == E820_RAM) {
1301                         /*
1302                          *  We don't know which RAM region contains kernel data,
1303                          *  so we try it repeatedly and let the resource manager
1304                          *  test it.
1305                          */
1306                         request_resource(res, code_resource);
1307                         request_resource(res, data_resource);
1308 #ifdef CONFIG_KEXEC
1309                         request_resource(res, &crashk_res);
1310 #endif
1311                 }
1312         }
1313 }
1314
1315 /*
1316  * Request address space for all standard resources
1317  *
1318  * This is called just before pcibios_assign_resources(), which is also
1319  * an fs_initcall, but is linked in later (in arch/i386/pci/i386.c).
1320  */
1321 static int __init request_standard_resources(void)
1322 {
1323         int i;
1324
1325         printk("Setting up standard PCI resources\n");
1326         if (efi_enabled)
1327                 efi_initialize_iomem_resources(&code_resource, &data_resource);
1328         else
1329                 legacy_init_iomem_resources(&code_resource, &data_resource);
1330
1331         /* EFI systems may still have VGA */
1332         request_resource(&iomem_resource, &video_ram_resource);
1333
1334         /* request I/O space for devices used on all i[345]86 PCs */
1335         for (i = 0; i < STANDARD_IO_RESOURCES; i++)
1336                 request_resource(&ioport_resource, &standard_io_resources[i]);
1337         return 0;
1338 }
1339
1340 fs_initcall(request_standard_resources);
1341
1342 static void __init register_memory(void)
1343 {
1344         unsigned long gapstart, gapsize, round;
1345         unsigned long long last;
1346         int i;
1347
1348         /*
1349          * Search for the bigest gap in the low 32 bits of the e820
1350          * memory space.
1351          */
1352         last = 0x100000000ull;
1353         gapstart = 0x10000000;
1354         gapsize = 0x400000;
1355         i = e820.nr_map;
1356         while (--i >= 0) {
1357                 unsigned long long start = e820.map[i].addr;
1358                 unsigned long long end = start + e820.map[i].size;
1359
1360                 /*
1361                  * Since "last" is at most 4GB, we know we'll
1362                  * fit in 32 bits if this condition is true
1363                  */
1364                 if (last > end) {
1365                         unsigned long gap = last - end;
1366
1367                         if (gap > gapsize) {
1368                                 gapsize = gap;
1369                                 gapstart = end;
1370                         }
1371                 }
1372                 if (start < last)
1373                         last = start;
1374         }
1375
1376         /*
1377          * See how much we want to round up: start off with
1378          * rounding to the next 1MB area.
1379          */
1380         round = 0x100000;
1381         while ((gapsize >> 4) > round)
1382                 round += round;
1383         /* Fun with two's complement */
1384         pci_mem_start = (gapstart + round) & -round;
1385
1386         printk("Allocating PCI resources starting at %08lx (gap: %08lx:%08lx)\n",
1387                 pci_mem_start, gapstart, gapsize);
1388 }
1389
1390 static char * __init machine_specific_memory_setup(void);
1391
1392 #ifdef CONFIG_MCA
1393 static void set_mca_bus(int x)
1394 {
1395         MCA_bus = x;
1396 }
1397 #else
1398 static void set_mca_bus(int x) { }
1399 #endif
1400
1401 /*
1402  * Determine if we were loaded by an EFI loader.  If so, then we have also been
1403  * passed the efi memmap, systab, etc., so we should use these data structures
1404  * for initialization.  Note, the efi init code path is determined by the
1405  * global efi_enabled. This allows the same kernel image to be used on existing
1406  * systems (with a traditional BIOS) as well as on EFI systems.
1407  */
1408 void __init setup_arch(char **cmdline_p)
1409 {
1410         unsigned long max_low_pfn;
1411
1412         memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
1413         pre_setup_arch_hook();
1414         early_cpu_init();
1415
1416         /*
1417          * FIXME: This isn't an official loader_type right
1418          * now but does currently work with elilo.
1419          * If we were configured as an EFI kernel, check to make
1420          * sure that we were loaded correctly from elilo and that
1421          * the system table is valid.  If not, then initialize normally.
1422          */
1423 #ifdef CONFIG_EFI
1424         if ((LOADER_TYPE == 0x50) && EFI_SYSTAB)
1425                 efi_enabled = 1;
1426 #endif
1427
1428         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
1429         drive_info = DRIVE_INFO;
1430         screen_info = SCREEN_INFO;
1431         edid_info = EDID_INFO;
1432         apm_info.bios = APM_BIOS_INFO;
1433         ist_info = IST_INFO;
1434         saved_videomode = VIDEO_MODE;
1435         if( SYS_DESC_TABLE.length != 0 ) {
1436                 set_mca_bus(SYS_DESC_TABLE.table[3] & 0x2);
1437                 machine_id = SYS_DESC_TABLE.table[0];
1438                 machine_submodel_id = SYS_DESC_TABLE.table[1];
1439                 BIOS_revision = SYS_DESC_TABLE.table[2];
1440         }
1441         bootloader_type = LOADER_TYPE;
1442
1443 #ifdef CONFIG_BLK_DEV_RAM
1444         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
1445         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
1446         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
1447 #endif
1448         ARCH_SETUP
1449         if (efi_enabled)
1450                 efi_init();
1451         else {
1452                 printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1453                 print_memory_map(machine_specific_memory_setup());
1454         }
1455
1456         copy_edd();
1457
1458         if (!MOUNT_ROOT_RDONLY)
1459                 root_mountflags &= ~MS_RDONLY;
1460         init_mm.start_code = (unsigned long) _text;
1461         init_mm.end_code = (unsigned long) _etext;
1462         init_mm.end_data = (unsigned long) _edata;
1463         init_mm.brk = init_pg_tables_end + PAGE_OFFSET;
1464
1465         code_resource.start = virt_to_phys(_text);
1466         code_resource.end = virt_to_phys(_etext)-1;
1467         data_resource.start = virt_to_phys(_etext);
1468         data_resource.end = virt_to_phys(_edata)-1;
1469
1470         parse_cmdline_early(cmdline_p);
1471
1472 #ifdef CONFIG_EARLY_PRINTK
1473         {
1474                 char *s = strstr(*cmdline_p, "earlyprintk=");
1475                 if (s) {
1476                         setup_early_printk(strchr(s, '=') + 1);
1477                         printk("early console enabled\n");
1478                 }
1479         }
1480 #endif
1481
1482         max_low_pfn = setup_memory();
1483
1484         /*
1485          * NOTE: before this point _nobody_ is allowed to allocate
1486          * any memory using the bootmem allocator.  Although the
1487          * alloctor is now initialised only the first 8Mb of the kernel
1488          * virtual address space has been mapped.  All allocations before
1489          * paging_init() has completed must use the alloc_bootmem_low_pages()
1490          * variant (which allocates DMA'able memory) and care must be taken
1491          * not to exceed the 8Mb limit.
1492          */
1493
1494 #ifdef CONFIG_SMP
1495         smp_alloc_memory(); /* AP processor realmode stacks in low memory*/
1496 #endif
1497         paging_init();
1498         remapped_pgdat_init();
1499         sparse_init();
1500         zone_sizes_init();
1501
1502         /*
1503          * NOTE: at this point the bootmem allocator is fully available.
1504          */
1505
1506         dmi_scan_machine();
1507
1508 #ifdef CONFIG_X86_GENERICARCH
1509         generic_apic_probe(*cmdline_p);
1510 #endif  
1511         if (efi_enabled)
1512                 efi_map_memmap();
1513
1514 #ifdef CONFIG_X86_IO_APIC
1515         check_acpi_pci();       /* Checks more than just ACPI actually */
1516 #endif
1517
1518 #ifdef CONFIG_ACPI
1519         /*
1520          * Parse the ACPI tables for possible boot-time SMP configuration.
1521          */
1522         acpi_boot_table_init();
1523         acpi_boot_init();
1524
1525 #if defined(CONFIG_SMP) && defined(CONFIG_X86_PC)
1526         if (def_to_bigsmp)
1527                 printk(KERN_WARNING "More than 8 CPUs detected and "
1528                         "CONFIG_X86_PC cannot handle it.\nUse "
1529                         "CONFIG_X86_GENERICARCH or CONFIG_X86_BIGSMP.\n");
1530 #endif
1531 #endif
1532 #ifdef CONFIG_X86_LOCAL_APIC
1533         if (smp_found_config)
1534                 get_smp_config();
1535 #endif
1536
1537         register_memory();
1538
1539 #ifdef CONFIG_VT
1540 #if defined(CONFIG_VGA_CONSOLE)
1541         if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1542                 conswitchp = &vga_con;
1543 #elif defined(CONFIG_DUMMY_CONSOLE)
1544         conswitchp = &dummy_con;
1545 #endif
1546 #endif
1547 }
1548
1549 #include "setup_arch_post.h"
1550 /*
1551  * Local Variables:
1552  * mode:c
1553  * c-file-style:"k&r"
1554  * c-basic-offset:8
1555  * End:
1556  */