2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2006 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/pagevec.h>
25 #include <linux/sched.h>
26 #include <linux/swap.h>
27 #include <linux/uio.h>
28 #include <linux/writeback.h>
31 #include <asm/uaccess.h>
43 * ntfs_file_open - called when an inode is about to be opened
44 * @vi: inode to be opened
45 * @filp: file structure describing the inode
47 * Limit file size to the page cache limit on architectures where unsigned long
48 * is 32-bits. This is the most we can do for now without overflowing the page
49 * cache page index. Doing it this way means we don't run into problems because
50 * of existing too large files. It would be better to allow the user to read
51 * the beginning of the file but I doubt very much anyone is going to hit this
52 * check on a 32-bit architecture, so there is no point in adding the extra
53 * complexity required to support this.
55 * On 64-bit architectures, the check is hopefully optimized away by the
58 * After the check passes, just call generic_file_open() to do its work.
60 static int ntfs_file_open(struct inode *vi, struct file *filp)
62 if (sizeof(unsigned long) < 8) {
63 if (i_size_read(vi) > MAX_LFS_FILESIZE)
66 return generic_file_open(vi, filp);
72 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
73 * @ni: ntfs inode of the attribute to extend
74 * @new_init_size: requested new initialized size in bytes
75 * @cached_page: store any allocated but unused page here
76 * @lru_pvec: lru-buffering pagevec of the caller
78 * Extend the initialized size of an attribute described by the ntfs inode @ni
79 * to @new_init_size bytes. This involves zeroing any non-sparse space between
80 * the old initialized size and @new_init_size both in the page cache and on
81 * disk (if relevant complete pages are already uptodate in the page cache then
82 * these are simply marked dirty).
84 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
85 * in the resident attribute case, it is tied to the initialized size and, in
86 * the non-resident attribute case, it may not fall below the initialized size.
88 * Note that if the attribute is resident, we do not need to touch the page
89 * cache at all. This is because if the page cache page is not uptodate we
90 * bring it uptodate later, when doing the write to the mft record since we
91 * then already have the page mapped. And if the page is uptodate, the
92 * non-initialized region will already have been zeroed when the page was
93 * brought uptodate and the region may in fact already have been overwritten
94 * with new data via mmap() based writes, so we cannot just zero it. And since
95 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
96 * is unspecified, we choose not to do zeroing and thus we do not need to touch
97 * the page at all. For a more detailed explanation see ntfs_truncate() in
100 * @cached_page and @lru_pvec are just optimizations for dealing with multiple
103 * Return 0 on success and -errno on error. In the case that an error is
104 * encountered it is possible that the initialized size will already have been
105 * incremented some way towards @new_init_size but it is guaranteed that if
106 * this is the case, the necessary zeroing will also have happened and that all
107 * metadata is self-consistent.
109 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
110 * held by the caller.
112 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size,
113 struct page **cached_page, struct pagevec *lru_pvec)
117 pgoff_t index, end_index;
119 struct inode *vi = VFS_I(ni);
121 MFT_RECORD *m = NULL;
123 ntfs_attr_search_ctx *ctx = NULL;
124 struct address_space *mapping;
125 struct page *page = NULL;
130 read_lock_irqsave(&ni->size_lock, flags);
131 old_init_size = ni->initialized_size;
132 old_i_size = i_size_read(vi);
133 BUG_ON(new_init_size > ni->allocated_size);
134 read_unlock_irqrestore(&ni->size_lock, flags);
135 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
136 "old_initialized_size 0x%llx, "
137 "new_initialized_size 0x%llx, i_size 0x%llx.",
138 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
139 (unsigned long long)old_init_size,
140 (unsigned long long)new_init_size, old_i_size);
144 base_ni = ni->ext.base_ntfs_ino;
145 /* Use goto to reduce indentation and we need the label below anyway. */
146 if (NInoNonResident(ni))
147 goto do_non_resident_extend;
148 BUG_ON(old_init_size != old_i_size);
149 m = map_mft_record(base_ni);
155 ctx = ntfs_attr_get_search_ctx(base_ni, m);
156 if (unlikely(!ctx)) {
160 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
161 CASE_SENSITIVE, 0, NULL, 0, ctx);
169 BUG_ON(a->non_resident);
170 /* The total length of the attribute value. */
171 attr_len = le32_to_cpu(a->data.resident.value_length);
172 BUG_ON(old_i_size != (loff_t)attr_len);
174 * Do the zeroing in the mft record and update the attribute size in
177 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
178 memset(kattr + attr_len, 0, new_init_size - attr_len);
179 a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
180 /* Finally, update the sizes in the vfs and ntfs inodes. */
181 write_lock_irqsave(&ni->size_lock, flags);
182 i_size_write(vi, new_init_size);
183 ni->initialized_size = new_init_size;
184 write_unlock_irqrestore(&ni->size_lock, flags);
186 do_non_resident_extend:
188 * If the new initialized size @new_init_size exceeds the current file
189 * size (vfs inode->i_size), we need to extend the file size to the
190 * new initialized size.
192 if (new_init_size > old_i_size) {
193 m = map_mft_record(base_ni);
199 ctx = ntfs_attr_get_search_ctx(base_ni, m);
200 if (unlikely(!ctx)) {
204 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
205 CASE_SENSITIVE, 0, NULL, 0, ctx);
213 BUG_ON(!a->non_resident);
214 BUG_ON(old_i_size != (loff_t)
215 sle64_to_cpu(a->data.non_resident.data_size));
216 a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
217 flush_dcache_mft_record_page(ctx->ntfs_ino);
218 mark_mft_record_dirty(ctx->ntfs_ino);
219 /* Update the file size in the vfs inode. */
220 i_size_write(vi, new_init_size);
221 ntfs_attr_put_search_ctx(ctx);
223 unmap_mft_record(base_ni);
226 mapping = vi->i_mapping;
227 index = old_init_size >> PAGE_CACHE_SHIFT;
228 end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
231 * Read the page. If the page is not present, this will zero
232 * the uninitialized regions for us.
234 page = read_cache_page(mapping, index,
235 (filler_t*)mapping->a_ops->readpage, NULL);
240 wait_on_page_locked(page);
241 if (unlikely(!PageUptodate(page) || PageError(page))) {
242 page_cache_release(page);
247 * Update the initialized size in the ntfs inode. This is
248 * enough to make ntfs_writepage() work.
250 write_lock_irqsave(&ni->size_lock, flags);
251 ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
252 if (ni->initialized_size > new_init_size)
253 ni->initialized_size = new_init_size;
254 write_unlock_irqrestore(&ni->size_lock, flags);
255 /* Set the page dirty so it gets written out. */
256 set_page_dirty(page);
257 page_cache_release(page);
259 * Play nice with the vm and the rest of the system. This is
260 * very much needed as we can potentially be modifying the
261 * initialised size from a very small value to a really huge
263 * f = open(somefile, O_TRUNC);
264 * truncate(f, 10GiB);
267 * And this would mean we would be marking dirty hundreds of
268 * thousands of pages or as in the above example more than
269 * two and a half million pages!
271 * TODO: For sparse pages could optimize this workload by using
272 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
273 * would be set in readpage for sparse pages and here we would
274 * not need to mark dirty any pages which have this bit set.
275 * The only caveat is that we have to clear the bit everywhere
276 * where we allocate any clusters that lie in the page or that
279 * TODO: An even greater optimization would be for us to only
280 * call readpage() on pages which are not in sparse regions as
281 * determined from the runlist. This would greatly reduce the
282 * number of pages we read and make dirty in the case of sparse
285 balance_dirty_pages_ratelimited(mapping);
287 } while (++index < end_index);
288 read_lock_irqsave(&ni->size_lock, flags);
289 BUG_ON(ni->initialized_size != new_init_size);
290 read_unlock_irqrestore(&ni->size_lock, flags);
291 /* Now bring in sync the initialized_size in the mft record. */
292 m = map_mft_record(base_ni);
298 ctx = ntfs_attr_get_search_ctx(base_ni, m);
299 if (unlikely(!ctx)) {
303 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
304 CASE_SENSITIVE, 0, NULL, 0, ctx);
312 BUG_ON(!a->non_resident);
313 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
315 flush_dcache_mft_record_page(ctx->ntfs_ino);
316 mark_mft_record_dirty(ctx->ntfs_ino);
318 ntfs_attr_put_search_ctx(ctx);
320 unmap_mft_record(base_ni);
321 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
322 (unsigned long long)new_init_size, i_size_read(vi));
325 write_lock_irqsave(&ni->size_lock, flags);
326 ni->initialized_size = old_init_size;
327 write_unlock_irqrestore(&ni->size_lock, flags);
330 ntfs_attr_put_search_ctx(ctx);
332 unmap_mft_record(base_ni);
333 ntfs_debug("Failed. Returning error code %i.", err);
338 * ntfs_fault_in_pages_readable -
340 * Fault a number of userspace pages into pagetables.
342 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
343 * with more than two userspace pages as well as handling the single page case
346 * If you find this difficult to understand, then think of the while loop being
347 * the following code, except that we do without the integer variable ret:
350 * ret = __get_user(c, uaddr);
351 * uaddr += PAGE_SIZE;
352 * } while (!ret && uaddr < end);
354 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
355 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
356 * this is only a read and not a write, and since it is still in the same page,
357 * it should not matter and this makes the code much simpler.
359 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
362 const char __user *end;
365 /* Set @end to the first byte outside the last page we care about. */
366 end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes);
368 while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
373 * ntfs_fault_in_pages_readable_iovec -
375 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
377 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
378 size_t iov_ofs, int bytes)
381 const char __user *buf;
384 buf = iov->iov_base + iov_ofs;
385 len = iov->iov_len - iov_ofs;
388 ntfs_fault_in_pages_readable(buf, len);
396 * __ntfs_grab_cache_pages - obtain a number of locked pages
397 * @mapping: address space mapping from which to obtain page cache pages
398 * @index: starting index in @mapping at which to begin obtaining pages
399 * @nr_pages: number of page cache pages to obtain
400 * @pages: array of pages in which to return the obtained page cache pages
401 * @cached_page: allocated but as yet unused page
402 * @lru_pvec: lru-buffering pagevec of caller
404 * Obtain @nr_pages locked page cache pages from the mapping @maping and
405 * starting at index @index.
407 * If a page is newly created, increment its refcount and add it to the
408 * caller's lru-buffering pagevec @lru_pvec.
410 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
411 * are obtained at once instead of just one page and that 0 is returned on
412 * success and -errno on error.
414 * Note, the page locks are obtained in ascending page index order.
416 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
417 pgoff_t index, const unsigned nr_pages, struct page **pages,
418 struct page **cached_page, struct pagevec *lru_pvec)
425 pages[nr] = find_lock_page(mapping, index);
428 *cached_page = page_cache_alloc(mapping);
429 if (unlikely(!*cached_page)) {
434 err = add_to_page_cache(*cached_page, mapping, index,
441 pages[nr] = *cached_page;
442 page_cache_get(*cached_page);
443 if (unlikely(!pagevec_add(lru_pvec, *cached_page)))
444 __pagevec_lru_add(lru_pvec);
449 } while (nr < nr_pages);
454 unlock_page(pages[--nr]);
455 page_cache_release(pages[nr]);
460 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
464 bh->b_end_io = end_buffer_read_sync;
465 return submit_bh(READ, bh);
469 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
470 * @pages: array of destination pages
471 * @nr_pages: number of pages in @pages
472 * @pos: byte position in file at which the write begins
473 * @bytes: number of bytes to be written
475 * This is called for non-resident attributes from ntfs_file_buffered_write()
476 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
477 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
478 * data has not yet been copied into the @pages.
480 * Need to fill any holes with actual clusters, allocate buffers if necessary,
481 * ensure all the buffers are mapped, and bring uptodate any buffers that are
482 * only partially being written to.
484 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
485 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
486 * the same cluster and that they are the entirety of that cluster, and that
487 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
489 * i_size is not to be modified yet.
491 * Return 0 on success or -errno on error.
493 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
494 unsigned nr_pages, s64 pos, size_t bytes)
496 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
498 s64 bh_pos, vcn_len, end, initialized_size;
502 ntfs_inode *ni, *base_ni = NULL;
504 runlist_element *rl, *rl2;
505 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
506 ntfs_attr_search_ctx *ctx = NULL;
507 MFT_RECORD *m = NULL;
508 ATTR_RECORD *a = NULL;
510 u32 attr_rec_len = 0;
511 unsigned blocksize, u;
513 BOOL rl_write_locked, was_hole, is_retry;
514 unsigned char blocksize_bits;
517 u8 mft_attr_mapped:1;
520 } status = { 0, 0, 0, 0 };
525 vi = pages[0]->mapping->host;
528 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
529 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
530 vi->i_ino, ni->type, pages[0]->index, nr_pages,
531 (long long)pos, bytes);
532 blocksize = vol->sb->s_blocksize;
533 blocksize_bits = vol->sb->s_blocksize_bits;
536 struct page *page = pages[u];
538 * create_empty_buffers() will create uptodate/dirty buffers if
539 * the page is uptodate/dirty.
541 if (!page_has_buffers(page)) {
542 create_empty_buffers(page, blocksize, 0);
543 if (unlikely(!page_has_buffers(page)))
546 } while (++u < nr_pages);
547 rl_write_locked = FALSE;
554 cpos = pos >> vol->cluster_size_bits;
556 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
558 * Loop over each page and for each page over each buffer. Use goto to
559 * reduce indentation.
564 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
565 bh = head = page_buffers(page);
571 /* Clear buffer_new on all buffers to reinitialise state. */
573 clear_buffer_new(bh);
574 bh_end = bh_pos + blocksize;
575 bh_cpos = bh_pos >> vol->cluster_size_bits;
576 bh_cofs = bh_pos & vol->cluster_size_mask;
577 if (buffer_mapped(bh)) {
579 * The buffer is already mapped. If it is uptodate,
582 if (buffer_uptodate(bh))
585 * The buffer is not uptodate. If the page is uptodate
586 * set the buffer uptodate and otherwise ignore it.
588 if (PageUptodate(page)) {
589 set_buffer_uptodate(bh);
593 * Neither the page nor the buffer are uptodate. If
594 * the buffer is only partially being written to, we
595 * need to read it in before the write, i.e. now.
597 if ((bh_pos < pos && bh_end > pos) ||
598 (bh_pos < end && bh_end > end)) {
600 * If the buffer is fully or partially within
601 * the initialized size, do an actual read.
602 * Otherwise, simply zero the buffer.
604 read_lock_irqsave(&ni->size_lock, flags);
605 initialized_size = ni->initialized_size;
606 read_unlock_irqrestore(&ni->size_lock, flags);
607 if (bh_pos < initialized_size) {
608 ntfs_submit_bh_for_read(bh);
611 u8 *kaddr = kmap_atomic(page, KM_USER0);
612 memset(kaddr + bh_offset(bh), 0,
614 kunmap_atomic(kaddr, KM_USER0);
615 flush_dcache_page(page);
616 set_buffer_uptodate(bh);
621 /* Unmapped buffer. Need to map it. */
622 bh->b_bdev = vol->sb->s_bdev;
624 * If the current buffer is in the same clusters as the map
625 * cache, there is no need to check the runlist again. The
626 * map cache is made up of @vcn, which is the first cached file
627 * cluster, @vcn_len which is the number of cached file
628 * clusters, @lcn is the device cluster corresponding to @vcn,
629 * and @lcn_block is the block number corresponding to @lcn.
631 cdelta = bh_cpos - vcn;
632 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
635 bh->b_blocknr = lcn_block +
636 (cdelta << (vol->cluster_size_bits -
638 (bh_cofs >> blocksize_bits);
639 set_buffer_mapped(bh);
641 * If the page is uptodate so is the buffer. If the
642 * buffer is fully outside the write, we ignore it if
643 * it was already allocated and we mark it dirty so it
644 * gets written out if we allocated it. On the other
645 * hand, if we allocated the buffer but we are not
646 * marking it dirty we set buffer_new so we can do
649 if (PageUptodate(page)) {
650 if (!buffer_uptodate(bh))
651 set_buffer_uptodate(bh);
652 if (unlikely(was_hole)) {
653 /* We allocated the buffer. */
654 unmap_underlying_metadata(bh->b_bdev,
656 if (bh_end <= pos || bh_pos >= end)
657 mark_buffer_dirty(bh);
663 /* Page is _not_ uptodate. */
664 if (likely(!was_hole)) {
666 * Buffer was already allocated. If it is not
667 * uptodate and is only partially being written
668 * to, we need to read it in before the write,
671 if (!buffer_uptodate(bh) && bh_pos < end &&
676 * If the buffer is fully or partially
677 * within the initialized size, do an
678 * actual read. Otherwise, simply zero
681 read_lock_irqsave(&ni->size_lock,
683 initialized_size = ni->initialized_size;
684 read_unlock_irqrestore(&ni->size_lock,
686 if (bh_pos < initialized_size) {
687 ntfs_submit_bh_for_read(bh);
690 u8 *kaddr = kmap_atomic(page,
692 memset(kaddr + bh_offset(bh),
694 kunmap_atomic(kaddr, KM_USER0);
695 flush_dcache_page(page);
696 set_buffer_uptodate(bh);
701 /* We allocated the buffer. */
702 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
704 * If the buffer is fully outside the write, zero it,
705 * set it uptodate, and mark it dirty so it gets
706 * written out. If it is partially being written to,
707 * zero region surrounding the write but leave it to
708 * commit write to do anything else. Finally, if the
709 * buffer is fully being overwritten, do nothing.
711 if (bh_end <= pos || bh_pos >= end) {
712 if (!buffer_uptodate(bh)) {
713 u8 *kaddr = kmap_atomic(page, KM_USER0);
714 memset(kaddr + bh_offset(bh), 0,
716 kunmap_atomic(kaddr, KM_USER0);
717 flush_dcache_page(page);
718 set_buffer_uptodate(bh);
720 mark_buffer_dirty(bh);
724 if (!buffer_uptodate(bh) &&
725 (bh_pos < pos || bh_end > end)) {
729 kaddr = kmap_atomic(page, KM_USER0);
731 pofs = bh_pos & ~PAGE_CACHE_MASK;
732 memset(kaddr + pofs, 0, pos - bh_pos);
735 pofs = end & ~PAGE_CACHE_MASK;
736 memset(kaddr + pofs, 0, bh_end - end);
738 kunmap_atomic(kaddr, KM_USER0);
739 flush_dcache_page(page);
744 * Slow path: this is the first buffer in the cluster. If it
745 * is outside allocated size and is not uptodate, zero it and
748 read_lock_irqsave(&ni->size_lock, flags);
749 initialized_size = ni->allocated_size;
750 read_unlock_irqrestore(&ni->size_lock, flags);
751 if (bh_pos > initialized_size) {
752 if (PageUptodate(page)) {
753 if (!buffer_uptodate(bh))
754 set_buffer_uptodate(bh);
755 } else if (!buffer_uptodate(bh)) {
756 u8 *kaddr = kmap_atomic(page, KM_USER0);
757 memset(kaddr + bh_offset(bh), 0, blocksize);
758 kunmap_atomic(kaddr, KM_USER0);
759 flush_dcache_page(page);
760 set_buffer_uptodate(bh);
766 down_read(&ni->runlist.lock);
770 if (likely(rl != NULL)) {
771 /* Seek to element containing target cluster. */
772 while (rl->length && rl[1].vcn <= bh_cpos)
774 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
775 if (likely(lcn >= 0)) {
777 * Successful remap, setup the map cache and
778 * use that to deal with the buffer.
782 vcn_len = rl[1].vcn - vcn;
783 lcn_block = lcn << (vol->cluster_size_bits -
787 * If the number of remaining clusters touched
788 * by the write is smaller or equal to the
789 * number of cached clusters, unlock the
790 * runlist as the map cache will be used from
793 if (likely(vcn + vcn_len >= cend)) {
794 if (rl_write_locked) {
795 up_write(&ni->runlist.lock);
796 rl_write_locked = FALSE;
798 up_read(&ni->runlist.lock);
801 goto map_buffer_cached;
804 lcn = LCN_RL_NOT_MAPPED;
806 * If it is not a hole and not out of bounds, the runlist is
807 * probably unmapped so try to map it now.
809 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
810 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
811 /* Attempt to map runlist. */
812 if (!rl_write_locked) {
814 * We need the runlist locked for
815 * writing, so if it is locked for
816 * reading relock it now and retry in
817 * case it changed whilst we dropped
820 up_read(&ni->runlist.lock);
821 down_write(&ni->runlist.lock);
822 rl_write_locked = TRUE;
825 err = ntfs_map_runlist_nolock(ni, bh_cpos,
832 * If @vcn is out of bounds, pretend @lcn is
833 * LCN_ENOENT. As long as the buffer is out
834 * of bounds this will work fine.
836 if (err == -ENOENT) {
839 goto rl_not_mapped_enoent;
843 /* Failed to map the buffer, even after retrying. */
845 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
846 "attribute type 0x%x, vcn 0x%llx, "
847 "vcn offset 0x%x, because its "
848 "location on disk could not be "
849 "determined%s (error code %i).",
850 ni->mft_no, ni->type,
851 (unsigned long long)bh_cpos,
853 vol->cluster_size_mask,
854 is_retry ? " even after retrying" : "",
858 rl_not_mapped_enoent:
860 * The buffer is in a hole or out of bounds. We need to fill
861 * the hole, unless the buffer is in a cluster which is not
862 * touched by the write, in which case we just leave the buffer
863 * unmapped. This can only happen when the cluster size is
864 * less than the page cache size.
866 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
867 bh_cend = (bh_end + vol->cluster_size - 1) >>
868 vol->cluster_size_bits;
869 if ((bh_cend <= cpos || bh_cpos >= cend)) {
872 * If the buffer is uptodate we skip it. If it
873 * is not but the page is uptodate, we can set
874 * the buffer uptodate. If the page is not
875 * uptodate, we can clear the buffer and set it
876 * uptodate. Whether this is worthwhile is
877 * debatable and this could be removed.
879 if (PageUptodate(page)) {
880 if (!buffer_uptodate(bh))
881 set_buffer_uptodate(bh);
882 } else if (!buffer_uptodate(bh)) {
883 u8 *kaddr = kmap_atomic(page, KM_USER0);
884 memset(kaddr + bh_offset(bh), 0,
886 kunmap_atomic(kaddr, KM_USER0);
887 flush_dcache_page(page);
888 set_buffer_uptodate(bh);
894 * Out of bounds buffer is invalid if it was not really out of
897 BUG_ON(lcn != LCN_HOLE);
899 * We need the runlist locked for writing, so if it is locked
900 * for reading relock it now and retry in case it changed
901 * whilst we dropped the lock.
904 if (!rl_write_locked) {
905 up_read(&ni->runlist.lock);
906 down_write(&ni->runlist.lock);
907 rl_write_locked = TRUE;
910 /* Find the previous last allocated cluster. */
911 BUG_ON(rl->lcn != LCN_HOLE);
914 while (--rl2 >= ni->runlist.rl) {
916 lcn = rl2->lcn + rl2->length;
920 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
924 ntfs_debug("Failed to allocate cluster, error code %i.",
929 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
934 if (ntfs_cluster_free_from_rl(vol, rl2)) {
935 ntfs_error(vol->sb, "Failed to release "
936 "allocated cluster in error "
937 "code path. Run chkdsk to "
938 "recover the lost cluster.");
945 status.runlist_merged = 1;
946 ntfs_debug("Allocated cluster, lcn 0x%llx.",
947 (unsigned long long)lcn);
948 /* Map and lock the mft record and get the attribute record. */
952 base_ni = ni->ext.base_ntfs_ino;
953 m = map_mft_record(base_ni);
958 ctx = ntfs_attr_get_search_ctx(base_ni, m);
959 if (unlikely(!ctx)) {
961 unmap_mft_record(base_ni);
964 status.mft_attr_mapped = 1;
965 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
966 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
975 * Find the runlist element with which the attribute extent
976 * starts. Note, we cannot use the _attr_ version because we
977 * have mapped the mft record. That is ok because we know the
978 * runlist fragment must be mapped already to have ever gotten
979 * here, so we can just use the _rl_ version.
981 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
982 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
984 BUG_ON(!rl2->length);
985 BUG_ON(rl2->lcn < LCN_HOLE);
986 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
988 * If @highest_vcn is zero, calculate the real highest_vcn
989 * (which can really be zero).
992 highest_vcn = (sle64_to_cpu(
993 a->data.non_resident.allocated_size) >>
994 vol->cluster_size_bits) - 1;
996 * Determine the size of the mapping pairs array for the new
997 * extent, i.e. the old extent with the hole filled.
999 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
1001 if (unlikely(mp_size <= 0)) {
1002 if (!(err = mp_size))
1004 ntfs_debug("Failed to get size for mapping pairs "
1005 "array, error code %i.", err);
1009 * Resize the attribute record to fit the new mapping pairs
1012 attr_rec_len = le32_to_cpu(a->length);
1013 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1014 a->data.non_resident.mapping_pairs_offset));
1015 if (unlikely(err)) {
1016 BUG_ON(err != -ENOSPC);
1017 // TODO: Deal with this by using the current attribute
1018 // and fill it with as much of the mapping pairs
1019 // array as possible. Then loop over each attribute
1020 // extent rewriting the mapping pairs arrays as we go
1021 // along and if when we reach the end we have not
1022 // enough space, try to resize the last attribute
1023 // extent and if even that fails, add a new attribute
1025 // We could also try to resize at each step in the hope
1026 // that we will not need to rewrite every single extent.
1027 // Note, we may need to decompress some extents to fill
1028 // the runlist as we are walking the extents...
1029 ntfs_error(vol->sb, "Not enough space in the mft "
1030 "record for the extended attribute "
1031 "record. This case is not "
1032 "implemented yet.");
1036 status.mp_rebuilt = 1;
1038 * Generate the mapping pairs array directly into the attribute
1041 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1042 a->data.non_resident.mapping_pairs_offset),
1043 mp_size, rl2, vcn, highest_vcn, NULL);
1044 if (unlikely(err)) {
1045 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1046 "attribute type 0x%x, because building "
1047 "the mapping pairs failed with error "
1048 "code %i.", vi->i_ino,
1049 (unsigned)le32_to_cpu(ni->type), err);
1053 /* Update the highest_vcn but only if it was not set. */
1054 if (unlikely(!a->data.non_resident.highest_vcn))
1055 a->data.non_resident.highest_vcn =
1056 cpu_to_sle64(highest_vcn);
1058 * If the attribute is sparse/compressed, update the compressed
1059 * size in the ntfs_inode structure and the attribute record.
1061 if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1063 * If we are not in the first attribute extent, switch
1064 * to it, but first ensure the changes will make it to
1067 if (a->data.non_resident.lowest_vcn) {
1068 flush_dcache_mft_record_page(ctx->ntfs_ino);
1069 mark_mft_record_dirty(ctx->ntfs_ino);
1070 ntfs_attr_reinit_search_ctx(ctx);
1071 err = ntfs_attr_lookup(ni->type, ni->name,
1072 ni->name_len, CASE_SENSITIVE,
1074 if (unlikely(err)) {
1075 status.attr_switched = 1;
1078 /* @m is not used any more so do not set it. */
1081 write_lock_irqsave(&ni->size_lock, flags);
1082 ni->itype.compressed.size += vol->cluster_size;
1083 a->data.non_resident.compressed_size =
1084 cpu_to_sle64(ni->itype.compressed.size);
1085 write_unlock_irqrestore(&ni->size_lock, flags);
1087 /* Ensure the changes make it to disk. */
1088 flush_dcache_mft_record_page(ctx->ntfs_ino);
1089 mark_mft_record_dirty(ctx->ntfs_ino);
1090 ntfs_attr_put_search_ctx(ctx);
1091 unmap_mft_record(base_ni);
1092 /* Successfully filled the hole. */
1093 status.runlist_merged = 0;
1094 status.mft_attr_mapped = 0;
1095 status.mp_rebuilt = 0;
1096 /* Setup the map cache and use that to deal with the buffer. */
1100 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1103 * If the number of remaining clusters in the @pages is smaller
1104 * or equal to the number of cached clusters, unlock the
1105 * runlist as the map cache will be used from now on.
1107 if (likely(vcn + vcn_len >= cend)) {
1108 up_write(&ni->runlist.lock);
1109 rl_write_locked = FALSE;
1112 goto map_buffer_cached;
1113 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1114 /* If there are no errors, do the next page. */
1115 if (likely(!err && ++u < nr_pages))
1117 /* If there are no errors, release the runlist lock if we took it. */
1119 if (unlikely(rl_write_locked)) {
1120 up_write(&ni->runlist.lock);
1121 rl_write_locked = FALSE;
1122 } else if (unlikely(rl))
1123 up_read(&ni->runlist.lock);
1126 /* If we issued read requests, let them complete. */
1127 read_lock_irqsave(&ni->size_lock, flags);
1128 initialized_size = ni->initialized_size;
1129 read_unlock_irqrestore(&ni->size_lock, flags);
1130 while (wait_bh > wait) {
1133 if (likely(buffer_uptodate(bh))) {
1135 bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1138 * If the buffer overflows the initialized size, need
1139 * to zero the overflowing region.
1141 if (unlikely(bh_pos + blocksize > initialized_size)) {
1145 if (likely(bh_pos < initialized_size))
1146 ofs = initialized_size - bh_pos;
1147 kaddr = kmap_atomic(page, KM_USER0);
1148 memset(kaddr + bh_offset(bh) + ofs, 0,
1150 kunmap_atomic(kaddr, KM_USER0);
1151 flush_dcache_page(page);
1153 } else /* if (unlikely(!buffer_uptodate(bh))) */
1157 /* Clear buffer_new on all buffers. */
1160 bh = head = page_buffers(pages[u]);
1163 clear_buffer_new(bh);
1164 } while ((bh = bh->b_this_page) != head);
1165 } while (++u < nr_pages);
1166 ntfs_debug("Done.");
1169 if (status.attr_switched) {
1170 /* Get back to the attribute extent we modified. */
1171 ntfs_attr_reinit_search_ctx(ctx);
1172 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1173 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1174 ntfs_error(vol->sb, "Failed to find required "
1175 "attribute extent of attribute in "
1176 "error code path. Run chkdsk to "
1178 write_lock_irqsave(&ni->size_lock, flags);
1179 ni->itype.compressed.size += vol->cluster_size;
1180 write_unlock_irqrestore(&ni->size_lock, flags);
1181 flush_dcache_mft_record_page(ctx->ntfs_ino);
1182 mark_mft_record_dirty(ctx->ntfs_ino);
1184 * The only thing that is now wrong is the compressed
1185 * size of the base attribute extent which chkdsk
1186 * should be able to fix.
1192 status.attr_switched = 0;
1196 * If the runlist has been modified, need to restore it by punching a
1197 * hole into it and we then need to deallocate the on-disk cluster as
1198 * well. Note, we only modify the runlist if we are able to generate a
1199 * new mapping pairs array, i.e. only when the mapped attribute extent
1202 if (status.runlist_merged && !status.attr_switched) {
1203 BUG_ON(!rl_write_locked);
1204 /* Make the file cluster we allocated sparse in the runlist. */
1205 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1206 ntfs_error(vol->sb, "Failed to punch hole into "
1207 "attribute runlist in error code "
1208 "path. Run chkdsk to recover the "
1211 } else /* if (success) */ {
1212 status.runlist_merged = 0;
1214 * Deallocate the on-disk cluster we allocated but only
1215 * if we succeeded in punching its vcn out of the
1218 down_write(&vol->lcnbmp_lock);
1219 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1220 ntfs_error(vol->sb, "Failed to release "
1221 "allocated cluster in error "
1222 "code path. Run chkdsk to "
1223 "recover the lost cluster.");
1226 up_write(&vol->lcnbmp_lock);
1230 * Resize the attribute record to its old size and rebuild the mapping
1231 * pairs array. Note, we only can do this if the runlist has been
1232 * restored to its old state which also implies that the mapped
1233 * attribute extent is not switched.
1235 if (status.mp_rebuilt && !status.runlist_merged) {
1236 if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1237 ntfs_error(vol->sb, "Failed to restore attribute "
1238 "record in error code path. Run "
1239 "chkdsk to recover.");
1241 } else /* if (success) */ {
1242 if (ntfs_mapping_pairs_build(vol, (u8*)a +
1243 le16_to_cpu(a->data.non_resident.
1244 mapping_pairs_offset), attr_rec_len -
1245 le16_to_cpu(a->data.non_resident.
1246 mapping_pairs_offset), ni->runlist.rl,
1247 vcn, highest_vcn, NULL)) {
1248 ntfs_error(vol->sb, "Failed to restore "
1249 "mapping pairs array in error "
1250 "code path. Run chkdsk to "
1254 flush_dcache_mft_record_page(ctx->ntfs_ino);
1255 mark_mft_record_dirty(ctx->ntfs_ino);
1258 /* Release the mft record and the attribute. */
1259 if (status.mft_attr_mapped) {
1260 ntfs_attr_put_search_ctx(ctx);
1261 unmap_mft_record(base_ni);
1263 /* Release the runlist lock. */
1264 if (rl_write_locked)
1265 up_write(&ni->runlist.lock);
1267 up_read(&ni->runlist.lock);
1269 * Zero out any newly allocated blocks to avoid exposing stale data.
1270 * If BH_New is set, we know that the block was newly allocated above
1271 * and that it has not been fully zeroed and marked dirty yet.
1275 end = bh_cpos << vol->cluster_size_bits;
1278 bh = head = page_buffers(page);
1280 if (u == nr_pages &&
1281 ((s64)page->index << PAGE_CACHE_SHIFT) +
1282 bh_offset(bh) >= end)
1284 if (!buffer_new(bh))
1286 clear_buffer_new(bh);
1287 if (!buffer_uptodate(bh)) {
1288 if (PageUptodate(page))
1289 set_buffer_uptodate(bh);
1291 u8 *kaddr = kmap_atomic(page, KM_USER0);
1292 memset(kaddr + bh_offset(bh), 0,
1294 kunmap_atomic(kaddr, KM_USER0);
1295 flush_dcache_page(page);
1296 set_buffer_uptodate(bh);
1299 mark_buffer_dirty(bh);
1300 } while ((bh = bh->b_this_page) != head);
1301 } while (++u <= nr_pages);
1302 ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
1307 * Copy as much as we can into the pages and return the number of bytes which
1308 * were sucessfully copied. If a fault is encountered then clear the pages
1309 * out to (ofs + bytes) and return the number of bytes which were copied.
1311 static inline size_t ntfs_copy_from_user(struct page **pages,
1312 unsigned nr_pages, unsigned ofs, const char __user *buf,
1315 struct page **last_page = pages + nr_pages;
1322 len = PAGE_CACHE_SIZE - ofs;
1325 kaddr = kmap_atomic(*pages, KM_USER0);
1326 left = __copy_from_user_inatomic(kaddr + ofs, buf, len);
1327 kunmap_atomic(kaddr, KM_USER0);
1328 if (unlikely(left)) {
1329 /* Do it the slow way. */
1330 kaddr = kmap(*pages);
1331 left = __copy_from_user(kaddr + ofs, buf, len);
1342 } while (++pages < last_page);
1346 total += len - left;
1347 /* Zero the rest of the target like __copy_from_user(). */
1348 while (++pages < last_page) {
1352 len = PAGE_CACHE_SIZE;
1355 kaddr = kmap_atomic(*pages, KM_USER0);
1356 memset(kaddr, 0, len);
1357 kunmap_atomic(kaddr, KM_USER0);
1362 static size_t __ntfs_copy_from_user_iovec(char *vaddr,
1363 const struct iovec *iov, size_t iov_ofs, size_t bytes)
1368 const char __user *buf = iov->iov_base + iov_ofs;
1372 len = iov->iov_len - iov_ofs;
1375 left = __copy_from_user_inatomic(vaddr, buf, len);
1379 if (unlikely(left)) {
1381 * Zero the rest of the target like __copy_from_user().
1383 memset(vaddr, 0, bytes);
1395 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1396 size_t *iov_ofsp, size_t bytes)
1398 const struct iovec *iov = *iovp;
1399 size_t iov_ofs = *iov_ofsp;
1404 len = iov->iov_len - iov_ofs;
1409 if (iov->iov_len == iov_ofs) {
1415 *iov_ofsp = iov_ofs;
1419 * This has the same side-effects and return value as ntfs_copy_from_user().
1420 * The difference is that on a fault we need to memset the remainder of the
1421 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1422 * single-segment behaviour.
1424 * We call the same helper (__ntfs_copy_from_user_iovec()) both when atomic and
1425 * when not atomic. This is ok because __ntfs_copy_from_user_iovec() calls
1426 * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In
1427 * fact, the only difference between __copy_from_user_inatomic() and
1428 * __copy_from_user() is that the latter calls might_sleep(). And on many
1429 * architectures __copy_from_user_inatomic() is just defined to
1430 * __copy_from_user() so it makes no difference at all on those architectures.
1432 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1433 unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1434 size_t *iov_ofs, size_t bytes)
1436 struct page **last_page = pages + nr_pages;
1438 size_t copied, len, total = 0;
1441 len = PAGE_CACHE_SIZE - ofs;
1444 kaddr = kmap_atomic(*pages, KM_USER0);
1445 copied = __ntfs_copy_from_user_iovec(kaddr + ofs,
1446 *iov, *iov_ofs, len);
1447 kunmap_atomic(kaddr, KM_USER0);
1448 if (unlikely(copied != len)) {
1449 /* Do it the slow way. */
1450 kaddr = kmap(*pages);
1451 copied = __ntfs_copy_from_user_iovec(kaddr + ofs,
1452 *iov, *iov_ofs, len);
1454 if (unlikely(copied != len))
1461 ntfs_set_next_iovec(iov, iov_ofs, len);
1463 } while (++pages < last_page);
1468 /* Zero the rest of the target like __copy_from_user(). */
1469 while (++pages < last_page) {
1473 len = PAGE_CACHE_SIZE;
1476 kaddr = kmap_atomic(*pages, KM_USER0);
1477 memset(kaddr, 0, len);
1478 kunmap_atomic(kaddr, KM_USER0);
1483 static inline void ntfs_flush_dcache_pages(struct page **pages,
1488 * Warning: Do not do the decrement at the same time as the call to
1489 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1490 * decrement never happens so the loop never terminates.
1494 flush_dcache_page(pages[nr_pages]);
1495 } while (nr_pages > 0);
1499 * ntfs_commit_pages_after_non_resident_write - commit the received data
1500 * @pages: array of destination pages
1501 * @nr_pages: number of pages in @pages
1502 * @pos: byte position in file at which the write begins
1503 * @bytes: number of bytes to be written
1505 * See description of ntfs_commit_pages_after_write(), below.
1507 static inline int ntfs_commit_pages_after_non_resident_write(
1508 struct page **pages, const unsigned nr_pages,
1509 s64 pos, size_t bytes)
1511 s64 end, initialized_size;
1513 ntfs_inode *ni, *base_ni;
1514 struct buffer_head *bh, *head;
1515 ntfs_attr_search_ctx *ctx;
1518 unsigned long flags;
1519 unsigned blocksize, u;
1522 vi = pages[0]->mapping->host;
1524 blocksize = vi->i_sb->s_blocksize;
1533 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1534 bh = head = page_buffers(page);
1539 bh_end = bh_pos + blocksize;
1540 if (bh_end <= pos || bh_pos >= end) {
1541 if (!buffer_uptodate(bh))
1544 set_buffer_uptodate(bh);
1545 mark_buffer_dirty(bh);
1547 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1549 * If all buffers are now uptodate but the page is not, set the
1552 if (!partial && !PageUptodate(page))
1553 SetPageUptodate(page);
1554 } while (++u < nr_pages);
1556 * Finally, if we do not need to update initialized_size or i_size we
1559 read_lock_irqsave(&ni->size_lock, flags);
1560 initialized_size = ni->initialized_size;
1561 read_unlock_irqrestore(&ni->size_lock, flags);
1562 if (end <= initialized_size) {
1563 ntfs_debug("Done.");
1567 * Update initialized_size/i_size as appropriate, both in the inode and
1573 base_ni = ni->ext.base_ntfs_ino;
1574 /* Map, pin, and lock the mft record. */
1575 m = map_mft_record(base_ni);
1582 BUG_ON(!NInoNonResident(ni));
1583 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1584 if (unlikely(!ctx)) {
1588 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1589 CASE_SENSITIVE, 0, NULL, 0, ctx);
1590 if (unlikely(err)) {
1596 BUG_ON(!a->non_resident);
1597 write_lock_irqsave(&ni->size_lock, flags);
1598 BUG_ON(end > ni->allocated_size);
1599 ni->initialized_size = end;
1600 a->data.non_resident.initialized_size = cpu_to_sle64(end);
1601 if (end > i_size_read(vi)) {
1602 i_size_write(vi, end);
1603 a->data.non_resident.data_size =
1604 a->data.non_resident.initialized_size;
1606 write_unlock_irqrestore(&ni->size_lock, flags);
1607 /* Mark the mft record dirty, so it gets written back. */
1608 flush_dcache_mft_record_page(ctx->ntfs_ino);
1609 mark_mft_record_dirty(ctx->ntfs_ino);
1610 ntfs_attr_put_search_ctx(ctx);
1611 unmap_mft_record(base_ni);
1612 ntfs_debug("Done.");
1616 ntfs_attr_put_search_ctx(ctx);
1618 unmap_mft_record(base_ni);
1619 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1622 NVolSetErrors(ni->vol);
1627 * ntfs_commit_pages_after_write - commit the received data
1628 * @pages: array of destination pages
1629 * @nr_pages: number of pages in @pages
1630 * @pos: byte position in file at which the write begins
1631 * @bytes: number of bytes to be written
1633 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1634 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1635 * locked but not kmap()ped. The source data has already been copied into the
1636 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1637 * the data was copied (for non-resident attributes only) and it returned
1640 * Need to set uptodate and mark dirty all buffers within the boundary of the
1641 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1643 * Setting the buffers dirty ensures that they get written out later when
1644 * ntfs_writepage() is invoked by the VM.
1646 * Finally, we need to update i_size and initialized_size as appropriate both
1647 * in the inode and the mft record.
1649 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1650 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1651 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1652 * that case, it also marks the inode dirty.
1654 * If things have gone as outlined in
1655 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1656 * content modifications here for non-resident attributes. For resident
1657 * attributes we need to do the uptodate bringing here which we combine with
1658 * the copying into the mft record which means we save one atomic kmap.
1660 * Return 0 on success or -errno on error.
1662 static int ntfs_commit_pages_after_write(struct page **pages,
1663 const unsigned nr_pages, s64 pos, size_t bytes)
1665 s64 end, initialized_size;
1668 ntfs_inode *ni, *base_ni;
1670 ntfs_attr_search_ctx *ctx;
1673 char *kattr, *kaddr;
1674 unsigned long flags;
1682 vi = page->mapping->host;
1684 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1685 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1686 vi->i_ino, ni->type, page->index, nr_pages,
1687 (long long)pos, bytes);
1688 if (NInoNonResident(ni))
1689 return ntfs_commit_pages_after_non_resident_write(pages,
1690 nr_pages, pos, bytes);
1691 BUG_ON(nr_pages > 1);
1693 * Attribute is resident, implying it is not compressed, encrypted, or
1699 base_ni = ni->ext.base_ntfs_ino;
1700 BUG_ON(NInoNonResident(ni));
1701 /* Map, pin, and lock the mft record. */
1702 m = map_mft_record(base_ni);
1709 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1710 if (unlikely(!ctx)) {
1714 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1715 CASE_SENSITIVE, 0, NULL, 0, ctx);
1716 if (unlikely(err)) {
1722 BUG_ON(a->non_resident);
1723 /* The total length of the attribute value. */
1724 attr_len = le32_to_cpu(a->data.resident.value_length);
1725 i_size = i_size_read(vi);
1726 BUG_ON(attr_len != i_size);
1727 BUG_ON(pos > attr_len);
1729 BUG_ON(end > le32_to_cpu(a->length) -
1730 le16_to_cpu(a->data.resident.value_offset));
1731 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1732 kaddr = kmap_atomic(page, KM_USER0);
1733 /* Copy the received data from the page to the mft record. */
1734 memcpy(kattr + pos, kaddr + pos, bytes);
1735 /* Update the attribute length if necessary. */
1736 if (end > attr_len) {
1738 a->data.resident.value_length = cpu_to_le32(attr_len);
1741 * If the page is not uptodate, bring the out of bounds area(s)
1742 * uptodate by copying data from the mft record to the page.
1744 if (!PageUptodate(page)) {
1746 memcpy(kaddr, kattr, pos);
1748 memcpy(kaddr + end, kattr + end, attr_len - end);
1749 /* Zero the region outside the end of the attribute value. */
1750 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1751 flush_dcache_page(page);
1752 SetPageUptodate(page);
1754 kunmap_atomic(kaddr, KM_USER0);
1755 /* Update initialized_size/i_size if necessary. */
1756 read_lock_irqsave(&ni->size_lock, flags);
1757 initialized_size = ni->initialized_size;
1758 BUG_ON(end > ni->allocated_size);
1759 read_unlock_irqrestore(&ni->size_lock, flags);
1760 BUG_ON(initialized_size != i_size);
1761 if (end > initialized_size) {
1762 unsigned long flags;
1764 write_lock_irqsave(&ni->size_lock, flags);
1765 ni->initialized_size = end;
1766 i_size_write(vi, end);
1767 write_unlock_irqrestore(&ni->size_lock, flags);
1769 /* Mark the mft record dirty, so it gets written back. */
1770 flush_dcache_mft_record_page(ctx->ntfs_ino);
1771 mark_mft_record_dirty(ctx->ntfs_ino);
1772 ntfs_attr_put_search_ctx(ctx);
1773 unmap_mft_record(base_ni);
1774 ntfs_debug("Done.");
1777 if (err == -ENOMEM) {
1778 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1779 "commit the write.");
1780 if (PageUptodate(page)) {
1781 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1782 "dirty so the write will be retried "
1783 "later on by the VM.");
1785 * Put the page on mapping->dirty_pages, but leave its
1786 * buffers' dirty state as-is.
1788 __set_page_dirty_nobuffers(page);
1791 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
1792 "data has been lost.");
1794 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1795 "with error %i.", err);
1796 NVolSetErrors(ni->vol);
1799 ntfs_attr_put_search_ctx(ctx);
1801 unmap_mft_record(base_ni);
1806 * ntfs_file_buffered_write -
1808 * Locking: The vfs is holding ->i_mutex on the inode.
1810 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1811 const struct iovec *iov, unsigned long nr_segs,
1812 loff_t pos, loff_t *ppos, size_t count)
1814 struct file *file = iocb->ki_filp;
1815 struct address_space *mapping = file->f_mapping;
1816 struct inode *vi = mapping->host;
1817 ntfs_inode *ni = NTFS_I(vi);
1818 ntfs_volume *vol = ni->vol;
1819 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1820 struct page *cached_page = NULL;
1821 char __user *buf = NULL;
1825 unsigned long flags;
1826 size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */
1827 ssize_t status, written;
1830 struct pagevec lru_pvec;
1832 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1833 "pos 0x%llx, count 0x%lx.",
1834 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1835 (unsigned long long)pos, (unsigned long)count);
1836 if (unlikely(!count))
1838 BUG_ON(NInoMstProtected(ni));
1840 * If the attribute is not an index root and it is encrypted or
1841 * compressed, we cannot write to it yet. Note we need to check for
1842 * AT_INDEX_ALLOCATION since this is the type of both directory and
1845 if (ni->type != AT_INDEX_ALLOCATION) {
1846 /* If file is encrypted, deny access, just like NT4. */
1847 if (NInoEncrypted(ni)) {
1849 * Reminder for later: Encrypted files are _always_
1850 * non-resident so that the content can always be
1853 ntfs_debug("Denying write access to encrypted file.");
1856 if (NInoCompressed(ni)) {
1857 /* Only unnamed $DATA attribute can be compressed. */
1858 BUG_ON(ni->type != AT_DATA);
1859 BUG_ON(ni->name_len);
1861 * Reminder for later: If resident, the data is not
1862 * actually compressed. Only on the switch to non-
1863 * resident does compression kick in. This is in
1864 * contrast to encrypted files (see above).
1866 ntfs_error(vi->i_sb, "Writing to compressed files is "
1867 "not implemented yet. Sorry.");
1872 * If a previous ntfs_truncate() failed, repeat it and abort if it
1875 if (unlikely(NInoTruncateFailed(ni))) {
1876 down_write(&vi->i_alloc_sem);
1877 err = ntfs_truncate(vi);
1878 up_write(&vi->i_alloc_sem);
1879 if (err || NInoTruncateFailed(ni)) {
1882 ntfs_error(vol->sb, "Cannot perform write to inode "
1883 "0x%lx, attribute type 0x%x, because "
1884 "ntfs_truncate() failed (error code "
1886 (unsigned)le32_to_cpu(ni->type), err);
1890 /* The first byte after the write. */
1893 * If the write goes beyond the allocated size, extend the allocation
1894 * to cover the whole of the write, rounded up to the nearest cluster.
1896 read_lock_irqsave(&ni->size_lock, flags);
1897 ll = ni->allocated_size;
1898 read_unlock_irqrestore(&ni->size_lock, flags);
1900 /* Extend the allocation without changing the data size. */
1901 ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1902 if (likely(ll >= 0)) {
1904 /* If the extension was partial truncate the write. */
1906 ntfs_debug("Truncating write to inode 0x%lx, "
1907 "attribute type 0x%x, because "
1908 "the allocation was only "
1909 "partially extended.",
1910 vi->i_ino, (unsigned)
1911 le32_to_cpu(ni->type));
1917 read_lock_irqsave(&ni->size_lock, flags);
1918 ll = ni->allocated_size;
1919 read_unlock_irqrestore(&ni->size_lock, flags);
1920 /* Perform a partial write if possible or fail. */
1922 ntfs_debug("Truncating write to inode 0x%lx, "
1923 "attribute type 0x%x, because "
1924 "extending the allocation "
1925 "failed (error code %i).",
1926 vi->i_ino, (unsigned)
1927 le32_to_cpu(ni->type), err);
1931 ntfs_error(vol->sb, "Cannot perform write to "
1932 "inode 0x%lx, attribute type "
1933 "0x%x, because extending the "
1934 "allocation failed (error "
1935 "code %i).", vi->i_ino,
1937 le32_to_cpu(ni->type), err);
1942 pagevec_init(&lru_pvec, 0);
1945 * If the write starts beyond the initialized size, extend it up to the
1946 * beginning of the write and initialize all non-sparse space between
1947 * the old initialized size and the new one. This automatically also
1948 * increments the vfs inode->i_size to keep it above or equal to the
1951 read_lock_irqsave(&ni->size_lock, flags);
1952 ll = ni->initialized_size;
1953 read_unlock_irqrestore(&ni->size_lock, flags);
1955 err = ntfs_attr_extend_initialized(ni, pos, &cached_page,
1958 ntfs_error(vol->sb, "Cannot perform write to inode "
1959 "0x%lx, attribute type 0x%x, because "
1960 "extending the initialized size "
1961 "failed (error code %i).", vi->i_ino,
1962 (unsigned)le32_to_cpu(ni->type), err);
1968 * Determine the number of pages per cluster for non-resident
1972 if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1973 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1974 /* Finally, perform the actual write. */
1976 if (likely(nr_segs == 1))
1977 buf = iov->iov_base;
1980 pgoff_t idx, start_idx;
1981 unsigned ofs, do_pages, u;
1984 start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1985 ofs = pos & ~PAGE_CACHE_MASK;
1986 bytes = PAGE_CACHE_SIZE - ofs;
1989 vcn = pos >> vol->cluster_size_bits;
1990 if (vcn != last_vcn) {
1993 * Get the lcn of the vcn the write is in. If
1994 * it is a hole, need to lock down all pages in
1997 down_read(&ni->runlist.lock);
1998 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1999 vol->cluster_size_bits, FALSE);
2000 up_read(&ni->runlist.lock);
2001 if (unlikely(lcn < LCN_HOLE)) {
2003 if (lcn == LCN_ENOMEM)
2006 ntfs_error(vol->sb, "Cannot "
2009 "attribute type 0x%x, "
2010 "because the attribute "
2012 vi->i_ino, (unsigned)
2013 le32_to_cpu(ni->type));
2016 if (lcn == LCN_HOLE) {
2017 start_idx = (pos & ~(s64)
2018 vol->cluster_size_mask)
2019 >> PAGE_CACHE_SHIFT;
2020 bytes = vol->cluster_size - (pos &
2021 vol->cluster_size_mask);
2022 do_pages = nr_pages;
2029 * Bring in the user page(s) that we will copy from _first_.
2030 * Otherwise there is a nasty deadlock on copying from the same
2031 * page(s) as we are writing to, without it/them being marked
2032 * up-to-date. Note, at present there is nothing to stop the
2033 * pages being swapped out between us bringing them into memory
2034 * and doing the actual copying.
2036 if (likely(nr_segs == 1))
2037 ntfs_fault_in_pages_readable(buf, bytes);
2039 ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2040 /* Get and lock @do_pages starting at index @start_idx. */
2041 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2042 pages, &cached_page, &lru_pvec);
2043 if (unlikely(status))
2046 * For non-resident attributes, we need to fill any holes with
2047 * actual clusters and ensure all bufferes are mapped. We also
2048 * need to bring uptodate any buffers that are only partially
2051 if (NInoNonResident(ni)) {
2052 status = ntfs_prepare_pages_for_non_resident_write(
2053 pages, do_pages, pos, bytes);
2054 if (unlikely(status)) {
2058 unlock_page(pages[--do_pages]);
2059 page_cache_release(pages[do_pages]);
2062 * The write preparation may have instantiated
2063 * allocated space outside i_size. Trim this
2064 * off again. We can ignore any errors in this
2065 * case as we will just be waisting a bit of
2066 * allocated space, which is not a disaster.
2068 i_size = i_size_read(vi);
2069 if (pos + bytes > i_size)
2070 vmtruncate(vi, i_size);
2074 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2075 if (likely(nr_segs == 1)) {
2076 copied = ntfs_copy_from_user(pages + u, do_pages - u,
2080 copied = ntfs_copy_from_user_iovec(pages + u,
2081 do_pages - u, ofs, &iov, &iov_ofs,
2083 ntfs_flush_dcache_pages(pages + u, do_pages - u);
2084 status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2086 if (likely(!status)) {
2090 if (unlikely(copied != bytes))
2094 unlock_page(pages[--do_pages]);
2095 mark_page_accessed(pages[do_pages]);
2096 page_cache_release(pages[do_pages]);
2098 if (unlikely(status))
2100 balance_dirty_pages_ratelimited(mapping);
2106 page_cache_release(cached_page);
2107 /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
2108 if (likely(!status)) {
2109 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) {
2110 if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb))
2111 status = generic_osync_inode(vi, mapping,
2112 OSYNC_METADATA|OSYNC_DATA);
2115 pagevec_lru_add(&lru_pvec);
2116 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2117 written ? "written" : "status", (unsigned long)written,
2119 return written ? written : status;
2123 * ntfs_file_aio_write_nolock -
2125 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2126 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2128 struct file *file = iocb->ki_filp;
2129 struct address_space *mapping = file->f_mapping;
2130 struct inode *inode = mapping->host;
2133 size_t count; /* after file limit checks */
2134 ssize_t written, err;
2137 for (seg = 0; seg < nr_segs; seg++) {
2138 const struct iovec *iv = &iov[seg];
2140 * If any segment has a negative length, or the cumulative
2141 * length ever wraps negative then return -EINVAL.
2143 count += iv->iov_len;
2144 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
2146 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2151 count -= iv->iov_len; /* This segment is no good */
2155 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2156 /* We can write back this queue in page reclaim. */
2157 current->backing_dev_info = mapping->backing_dev_info;
2159 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2164 err = remove_suid(file->f_dentry);
2167 file_update_time(file);
2168 written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2171 current->backing_dev_info = NULL;
2172 return written ? written : err;
2176 * ntfs_file_aio_write -
2178 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const char __user *buf,
2179 size_t count, loff_t pos)
2181 struct file *file = iocb->ki_filp;
2182 struct address_space *mapping = file->f_mapping;
2183 struct inode *inode = mapping->host;
2185 struct iovec local_iov = { .iov_base = (void __user *)buf,
2188 BUG_ON(iocb->ki_pos != pos);
2190 mutex_lock(&inode->i_mutex);
2191 ret = ntfs_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos);
2192 mutex_unlock(&inode->i_mutex);
2193 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2194 int err = sync_page_range(inode, mapping, pos, ret);
2202 * ntfs_file_writev -
2204 * Basically the same as generic_file_writev() except that it ends up calling
2205 * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
2207 static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov,
2208 unsigned long nr_segs, loff_t *ppos)
2210 struct address_space *mapping = file->f_mapping;
2211 struct inode *inode = mapping->host;
2215 mutex_lock(&inode->i_mutex);
2216 init_sync_kiocb(&kiocb, file);
2217 ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2218 if (ret == -EIOCBQUEUED)
2219 ret = wait_on_sync_kiocb(&kiocb);
2220 mutex_unlock(&inode->i_mutex);
2221 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2222 int err = sync_page_range(inode, mapping, *ppos - ret, ret);
2230 * ntfs_file_write - simple wrapper for ntfs_file_writev()
2232 static ssize_t ntfs_file_write(struct file *file, const char __user *buf,
2233 size_t count, loff_t *ppos)
2235 struct iovec local_iov = { .iov_base = (void __user *)buf,
2238 return ntfs_file_writev(file, &local_iov, 1, ppos);
2242 * ntfs_file_fsync - sync a file to disk
2243 * @filp: file to be synced
2244 * @dentry: dentry describing the file to sync
2245 * @datasync: if non-zero only flush user data and not metadata
2247 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
2248 * system calls. This function is inspired by fs/buffer.c::file_fsync().
2250 * If @datasync is false, write the mft record and all associated extent mft
2251 * records as well as the $DATA attribute and then sync the block device.
2253 * If @datasync is true and the attribute is non-resident, we skip the writing
2254 * of the mft record and all associated extent mft records (this might still
2255 * happen due to the write_inode_now() call).
2257 * Also, if @datasync is true, we do not wait on the inode to be written out
2258 * but we always wait on the page cache pages to be written out.
2260 * Note: In the past @filp could be NULL so we ignore it as we don't need it
2263 * Locking: Caller must hold i_mutex on the inode.
2265 * TODO: We should probably also write all attribute/index inodes associated
2266 * with this inode but since we have no simple way of getting to them we ignore
2267 * this problem for now.
2269 static int ntfs_file_fsync(struct file *filp, struct dentry *dentry,
2272 struct inode *vi = dentry->d_inode;
2275 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2276 BUG_ON(S_ISDIR(vi->i_mode));
2277 if (!datasync || !NInoNonResident(NTFS_I(vi)))
2278 ret = ntfs_write_inode(vi, 1);
2279 write_inode_now(vi, !datasync);
2281 * NOTE: If we were to use mapping->private_list (see ext2 and
2282 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2283 * sync_mapping_buffers(vi->i_mapping).
2285 err = sync_blockdev(vi->i_sb->s_bdev);
2286 if (unlikely(err && !ret))
2289 ntfs_debug("Done.");
2291 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
2292 "%u.", datasync ? "data" : "", vi->i_ino, -ret);
2296 #endif /* NTFS_RW */
2298 const struct file_operations ntfs_file_ops = {
2299 .llseek = generic_file_llseek, /* Seek inside file. */
2300 .read = generic_file_read, /* Read from file. */
2301 .aio_read = generic_file_aio_read, /* Async read from file. */
2302 .readv = generic_file_readv, /* Read from file. */
2304 .write = ntfs_file_write, /* Write to file. */
2305 .aio_write = ntfs_file_aio_write, /* Async write to file. */
2306 .writev = ntfs_file_writev, /* Write to file. */
2307 /*.release = ,*/ /* Last file is closed. See
2309 ext2_release_file() for
2310 how to use this to discard
2311 preallocated space for
2312 write opened files. */
2313 .fsync = ntfs_file_fsync, /* Sync a file to disk. */
2314 /*.aio_fsync = ,*/ /* Sync all outstanding async
2317 #endif /* NTFS_RW */
2318 /*.ioctl = ,*/ /* Perform function on the
2319 mounted filesystem. */
2320 .mmap = generic_file_mmap, /* Mmap file. */
2321 .open = ntfs_file_open, /* Open file. */
2322 .sendfile = generic_file_sendfile, /* Zero-copy data send with
2323 the data source being on
2324 the ntfs partition. We do
2325 not need to care about the
2326 data destination. */
2327 /*.sendpage = ,*/ /* Zero-copy data send with
2328 the data destination being
2329 on the ntfs partition. We
2330 do not need to care about
2334 struct inode_operations ntfs_file_inode_ops = {
2336 .truncate = ntfs_truncate_vfs,
2337 .setattr = ntfs_setattr,
2338 #endif /* NTFS_RW */
2341 const struct file_operations ntfs_empty_file_ops = {};
2343 struct inode_operations ntfs_empty_inode_ops = {};