2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
25 * Pedro Roque : Fast Retransmit/Recovery.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
58 * J Hadi Salim: ECN support
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
108 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
109 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
110 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
111 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
112 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
115 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
116 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
118 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
120 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 /* Adapt the MSS value used to make delayed ack decision to the
125 static void tcp_measure_rcv_mss(struct sock *sk,
126 const struct sk_buff *skb)
128 struct inet_connection_sock *icsk = inet_csk(sk);
129 const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 icsk->icsk_ack.last_seg_size = 0;
134 /* skb->len may jitter because of SACKs, even if peer
135 * sends good full-sized frames.
137 len = skb_shinfo(skb)->gso_size ?: skb->len;
138 if (len >= icsk->icsk_ack.rcv_mss) {
139 icsk->icsk_ack.rcv_mss = len;
141 /* Otherwise, we make more careful check taking into account,
142 * that SACKs block is variable.
144 * "len" is invariant segment length, including TCP header.
146 len += skb->data - skb_transport_header(skb);
147 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
148 /* If PSH is not set, packet should be
149 * full sized, provided peer TCP is not badly broken.
150 * This observation (if it is correct 8)) allows
151 * to handle super-low mtu links fairly.
153 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
154 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
155 /* Subtract also invariant (if peer is RFC compliant),
156 * tcp header plus fixed timestamp option length.
157 * Resulting "len" is MSS free of SACK jitter.
159 len -= tcp_sk(sk)->tcp_header_len;
160 icsk->icsk_ack.last_seg_size = len;
162 icsk->icsk_ack.rcv_mss = len;
166 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
167 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172 static void tcp_incr_quickack(struct sock *sk)
174 struct inet_connection_sock *icsk = inet_csk(sk);
175 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179 if (quickacks > icsk->icsk_ack.quick)
180 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 void tcp_enter_quickack_mode(struct sock *sk)
185 struct inet_connection_sock *icsk = inet_csk(sk);
186 tcp_incr_quickack(sk);
187 icsk->icsk_ack.pingpong = 0;
188 icsk->icsk_ack.ato = TCP_ATO_MIN;
191 /* Send ACKs quickly, if "quick" count is not exhausted
192 * and the session is not interactive.
195 static inline int tcp_in_quickack_mode(const struct sock *sk)
197 const struct inet_connection_sock *icsk = inet_csk(sk);
198 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 /* Buffer size and advertised window tuning.
203 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
206 static void tcp_fixup_sndbuf(struct sock *sk)
208 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
209 sizeof(struct sk_buff);
211 if (sk->sk_sndbuf < 3 * sndmem)
212 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
215 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
217 * All tcp_full_space() is split to two parts: "network" buffer, allocated
218 * forward and advertised in receiver window (tp->rcv_wnd) and
219 * "application buffer", required to isolate scheduling/application
220 * latencies from network.
221 * window_clamp is maximal advertised window. It can be less than
222 * tcp_full_space(), in this case tcp_full_space() - window_clamp
223 * is reserved for "application" buffer. The less window_clamp is
224 * the smoother our behaviour from viewpoint of network, but the lower
225 * throughput and the higher sensitivity of the connection to losses. 8)
227 * rcv_ssthresh is more strict window_clamp used at "slow start"
228 * phase to predict further behaviour of this connection.
229 * It is used for two goals:
230 * - to enforce header prediction at sender, even when application
231 * requires some significant "application buffer". It is check #1.
232 * - to prevent pruning of receive queue because of misprediction
233 * of receiver window. Check #2.
235 * The scheme does not work when sender sends good segments opening
236 * window and then starts to feed us spaghetti. But it should work
237 * in common situations. Otherwise, we have to rely on queue collapsing.
240 /* Slow part of check#2. */
241 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
243 struct tcp_sock *tp = tcp_sk(sk);
245 int truesize = tcp_win_from_space(skb->truesize)/2;
246 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
248 while (tp->rcv_ssthresh <= window) {
249 if (truesize <= skb->len)
250 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
258 static void tcp_grow_window(struct sock *sk,
261 struct tcp_sock *tp = tcp_sk(sk);
264 if (tp->rcv_ssthresh < tp->window_clamp &&
265 (int)tp->rcv_ssthresh < tcp_space(sk) &&
266 !tcp_memory_pressure) {
269 /* Check #2. Increase window, if skb with such overhead
270 * will fit to rcvbuf in future.
272 if (tcp_win_from_space(skb->truesize) <= skb->len)
275 incr = __tcp_grow_window(sk, skb);
278 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
279 inet_csk(sk)->icsk_ack.quick |= 1;
284 /* 3. Tuning rcvbuf, when connection enters established state. */
286 static void tcp_fixup_rcvbuf(struct sock *sk)
288 struct tcp_sock *tp = tcp_sk(sk);
289 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
291 /* Try to select rcvbuf so that 4 mss-sized segments
292 * will fit to window and corresponding skbs will fit to our rcvbuf.
293 * (was 3; 4 is minimum to allow fast retransmit to work.)
295 while (tcp_win_from_space(rcvmem) < tp->advmss)
297 if (sk->sk_rcvbuf < 4 * rcvmem)
298 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
301 /* 4. Try to fixup all. It is made immediately after connection enters
304 static void tcp_init_buffer_space(struct sock *sk)
306 struct tcp_sock *tp = tcp_sk(sk);
309 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
310 tcp_fixup_rcvbuf(sk);
311 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
312 tcp_fixup_sndbuf(sk);
314 tp->rcvq_space.space = tp->rcv_wnd;
316 maxwin = tcp_full_space(sk);
318 if (tp->window_clamp >= maxwin) {
319 tp->window_clamp = maxwin;
321 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
322 tp->window_clamp = max(maxwin -
323 (maxwin >> sysctl_tcp_app_win),
327 /* Force reservation of one segment. */
328 if (sysctl_tcp_app_win &&
329 tp->window_clamp > 2 * tp->advmss &&
330 tp->window_clamp + tp->advmss > maxwin)
331 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
333 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
334 tp->snd_cwnd_stamp = tcp_time_stamp;
337 /* 5. Recalculate window clamp after socket hit its memory bounds. */
338 static void tcp_clamp_window(struct sock *sk)
340 struct tcp_sock *tp = tcp_sk(sk);
341 struct inet_connection_sock *icsk = inet_csk(sk);
343 icsk->icsk_ack.quick = 0;
345 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
346 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
347 !tcp_memory_pressure &&
348 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
349 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
352 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
353 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
357 /* Initialize RCV_MSS value.
358 * RCV_MSS is an our guess about MSS used by the peer.
359 * We haven't any direct information about the MSS.
360 * It's better to underestimate the RCV_MSS rather than overestimate.
361 * Overestimations make us ACKing less frequently than needed.
362 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
364 void tcp_initialize_rcv_mss(struct sock *sk)
366 struct tcp_sock *tp = tcp_sk(sk);
367 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
369 hint = min(hint, tp->rcv_wnd/2);
370 hint = min(hint, TCP_MIN_RCVMSS);
371 hint = max(hint, TCP_MIN_MSS);
373 inet_csk(sk)->icsk_ack.rcv_mss = hint;
376 /* Receiver "autotuning" code.
378 * The algorithm for RTT estimation w/o timestamps is based on
379 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
380 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
382 * More detail on this code can be found at
383 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
384 * though this reference is out of date. A new paper
387 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
389 u32 new_sample = tp->rcv_rtt_est.rtt;
395 if (new_sample != 0) {
396 /* If we sample in larger samples in the non-timestamp
397 * case, we could grossly overestimate the RTT especially
398 * with chatty applications or bulk transfer apps which
399 * are stalled on filesystem I/O.
401 * Also, since we are only going for a minimum in the
402 * non-timestamp case, we do not smooth things out
403 * else with timestamps disabled convergence takes too
407 m -= (new_sample >> 3);
409 } else if (m < new_sample)
412 /* No previous measure. */
416 if (tp->rcv_rtt_est.rtt != new_sample)
417 tp->rcv_rtt_est.rtt = new_sample;
420 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
422 if (tp->rcv_rtt_est.time == 0)
424 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
426 tcp_rcv_rtt_update(tp,
427 jiffies - tp->rcv_rtt_est.time,
431 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
432 tp->rcv_rtt_est.time = tcp_time_stamp;
435 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
437 struct tcp_sock *tp = tcp_sk(sk);
438 if (tp->rx_opt.rcv_tsecr &&
439 (TCP_SKB_CB(skb)->end_seq -
440 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
441 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
445 * This function should be called every time data is copied to user space.
446 * It calculates the appropriate TCP receive buffer space.
448 void tcp_rcv_space_adjust(struct sock *sk)
450 struct tcp_sock *tp = tcp_sk(sk);
454 if (tp->rcvq_space.time == 0)
457 time = tcp_time_stamp - tp->rcvq_space.time;
458 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
459 tp->rcv_rtt_est.rtt == 0)
462 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
464 space = max(tp->rcvq_space.space, space);
466 if (tp->rcvq_space.space != space) {
469 tp->rcvq_space.space = space;
471 if (sysctl_tcp_moderate_rcvbuf &&
472 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
473 int new_clamp = space;
475 /* Receive space grows, normalize in order to
476 * take into account packet headers and sk_buff
477 * structure overhead.
482 rcvmem = (tp->advmss + MAX_TCP_HEADER +
483 16 + sizeof(struct sk_buff));
484 while (tcp_win_from_space(rcvmem) < tp->advmss)
487 space = min(space, sysctl_tcp_rmem[2]);
488 if (space > sk->sk_rcvbuf) {
489 sk->sk_rcvbuf = space;
491 /* Make the window clamp follow along. */
492 tp->window_clamp = new_clamp;
498 tp->rcvq_space.seq = tp->copied_seq;
499 tp->rcvq_space.time = tcp_time_stamp;
502 /* There is something which you must keep in mind when you analyze the
503 * behavior of the tp->ato delayed ack timeout interval. When a
504 * connection starts up, we want to ack as quickly as possible. The
505 * problem is that "good" TCP's do slow start at the beginning of data
506 * transmission. The means that until we send the first few ACK's the
507 * sender will sit on his end and only queue most of his data, because
508 * he can only send snd_cwnd unacked packets at any given time. For
509 * each ACK we send, he increments snd_cwnd and transmits more of his
512 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
514 struct tcp_sock *tp = tcp_sk(sk);
515 struct inet_connection_sock *icsk = inet_csk(sk);
518 inet_csk_schedule_ack(sk);
520 tcp_measure_rcv_mss(sk, skb);
522 tcp_rcv_rtt_measure(tp);
524 now = tcp_time_stamp;
526 if (!icsk->icsk_ack.ato) {
527 /* The _first_ data packet received, initialize
528 * delayed ACK engine.
530 tcp_incr_quickack(sk);
531 icsk->icsk_ack.ato = TCP_ATO_MIN;
533 int m = now - icsk->icsk_ack.lrcvtime;
535 if (m <= TCP_ATO_MIN/2) {
536 /* The fastest case is the first. */
537 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
538 } else if (m < icsk->icsk_ack.ato) {
539 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
540 if (icsk->icsk_ack.ato > icsk->icsk_rto)
541 icsk->icsk_ack.ato = icsk->icsk_rto;
542 } else if (m > icsk->icsk_rto) {
543 /* Too long gap. Apparently sender failed to
544 * restart window, so that we send ACKs quickly.
546 tcp_incr_quickack(sk);
547 sk_stream_mem_reclaim(sk);
550 icsk->icsk_ack.lrcvtime = now;
552 TCP_ECN_check_ce(tp, skb);
555 tcp_grow_window(sk, skb);
558 /* Called to compute a smoothed rtt estimate. The data fed to this
559 * routine either comes from timestamps, or from segments that were
560 * known _not_ to have been retransmitted [see Karn/Partridge
561 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
562 * piece by Van Jacobson.
563 * NOTE: the next three routines used to be one big routine.
564 * To save cycles in the RFC 1323 implementation it was better to break
565 * it up into three procedures. -- erics
567 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
569 struct tcp_sock *tp = tcp_sk(sk);
570 long m = mrtt; /* RTT */
572 /* The following amusing code comes from Jacobson's
573 * article in SIGCOMM '88. Note that rtt and mdev
574 * are scaled versions of rtt and mean deviation.
575 * This is designed to be as fast as possible
576 * m stands for "measurement".
578 * On a 1990 paper the rto value is changed to:
579 * RTO = rtt + 4 * mdev
581 * Funny. This algorithm seems to be very broken.
582 * These formulae increase RTO, when it should be decreased, increase
583 * too slowly, when it should be increased quickly, decrease too quickly
584 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
585 * does not matter how to _calculate_ it. Seems, it was trap
586 * that VJ failed to avoid. 8)
591 m -= (tp->srtt >> 3); /* m is now error in rtt est */
592 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
594 m = -m; /* m is now abs(error) */
595 m -= (tp->mdev >> 2); /* similar update on mdev */
596 /* This is similar to one of Eifel findings.
597 * Eifel blocks mdev updates when rtt decreases.
598 * This solution is a bit different: we use finer gain
599 * for mdev in this case (alpha*beta).
600 * Like Eifel it also prevents growth of rto,
601 * but also it limits too fast rto decreases,
602 * happening in pure Eifel.
607 m -= (tp->mdev >> 2); /* similar update on mdev */
609 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
610 if (tp->mdev > tp->mdev_max) {
611 tp->mdev_max = tp->mdev;
612 if (tp->mdev_max > tp->rttvar)
613 tp->rttvar = tp->mdev_max;
615 if (after(tp->snd_una, tp->rtt_seq)) {
616 if (tp->mdev_max < tp->rttvar)
617 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
618 tp->rtt_seq = tp->snd_nxt;
619 tp->mdev_max = TCP_RTO_MIN;
622 /* no previous measure. */
623 tp->srtt = m<<3; /* take the measured time to be rtt */
624 tp->mdev = m<<1; /* make sure rto = 3*rtt */
625 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
626 tp->rtt_seq = tp->snd_nxt;
630 /* Calculate rto without backoff. This is the second half of Van Jacobson's
631 * routine referred to above.
633 static inline void tcp_set_rto(struct sock *sk)
635 const struct tcp_sock *tp = tcp_sk(sk);
636 /* Old crap is replaced with new one. 8)
639 * 1. If rtt variance happened to be less 50msec, it is hallucination.
640 * It cannot be less due to utterly erratic ACK generation made
641 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
642 * to do with delayed acks, because at cwnd>2 true delack timeout
643 * is invisible. Actually, Linux-2.4 also generates erratic
644 * ACKs in some circumstances.
646 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
648 /* 2. Fixups made earlier cannot be right.
649 * If we do not estimate RTO correctly without them,
650 * all the algo is pure shit and should be replaced
651 * with correct one. It is exactly, which we pretend to do.
655 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
656 * guarantees that rto is higher.
658 static inline void tcp_bound_rto(struct sock *sk)
660 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
661 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
664 /* Save metrics learned by this TCP session.
665 This function is called only, when TCP finishes successfully
666 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
668 void tcp_update_metrics(struct sock *sk)
670 struct tcp_sock *tp = tcp_sk(sk);
671 struct dst_entry *dst = __sk_dst_get(sk);
673 if (sysctl_tcp_nometrics_save)
678 if (dst && (dst->flags&DST_HOST)) {
679 const struct inet_connection_sock *icsk = inet_csk(sk);
682 if (icsk->icsk_backoff || !tp->srtt) {
683 /* This session failed to estimate rtt. Why?
684 * Probably, no packets returned in time.
687 if (!(dst_metric_locked(dst, RTAX_RTT)))
688 dst->metrics[RTAX_RTT-1] = 0;
692 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
694 /* If newly calculated rtt larger than stored one,
695 * store new one. Otherwise, use EWMA. Remember,
696 * rtt overestimation is always better than underestimation.
698 if (!(dst_metric_locked(dst, RTAX_RTT))) {
700 dst->metrics[RTAX_RTT-1] = tp->srtt;
702 dst->metrics[RTAX_RTT-1] -= (m>>3);
705 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
709 /* Scale deviation to rttvar fixed point */
714 if (m >= dst_metric(dst, RTAX_RTTVAR))
715 dst->metrics[RTAX_RTTVAR-1] = m;
717 dst->metrics[RTAX_RTTVAR-1] -=
718 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
721 if (tp->snd_ssthresh >= 0xFFFF) {
722 /* Slow start still did not finish. */
723 if (dst_metric(dst, RTAX_SSTHRESH) &&
724 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
725 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
726 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
727 if (!dst_metric_locked(dst, RTAX_CWND) &&
728 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
729 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
730 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
731 icsk->icsk_ca_state == TCP_CA_Open) {
732 /* Cong. avoidance phase, cwnd is reliable. */
733 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
734 dst->metrics[RTAX_SSTHRESH-1] =
735 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
736 if (!dst_metric_locked(dst, RTAX_CWND))
737 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
739 /* Else slow start did not finish, cwnd is non-sense,
740 ssthresh may be also invalid.
742 if (!dst_metric_locked(dst, RTAX_CWND))
743 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
744 if (dst->metrics[RTAX_SSTHRESH-1] &&
745 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
746 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
747 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
750 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
751 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
752 tp->reordering != sysctl_tcp_reordering)
753 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
758 /* Numbers are taken from RFC2414. */
759 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
761 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
764 if (tp->mss_cache > 1460)
767 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
769 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
772 /* Set slow start threshold and cwnd not falling to slow start */
773 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
775 struct tcp_sock *tp = tcp_sk(sk);
776 const struct inet_connection_sock *icsk = inet_csk(sk);
778 tp->prior_ssthresh = 0;
780 if (icsk->icsk_ca_state < TCP_CA_CWR) {
783 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
784 tp->snd_cwnd = min(tp->snd_cwnd,
785 tcp_packets_in_flight(tp) + 1U);
786 tp->snd_cwnd_cnt = 0;
787 tp->high_seq = tp->snd_nxt;
788 tp->snd_cwnd_stamp = tcp_time_stamp;
789 TCP_ECN_queue_cwr(tp);
791 tcp_set_ca_state(sk, TCP_CA_CWR);
795 /* Initialize metrics on socket. */
797 static void tcp_init_metrics(struct sock *sk)
799 struct tcp_sock *tp = tcp_sk(sk);
800 struct dst_entry *dst = __sk_dst_get(sk);
807 if (dst_metric_locked(dst, RTAX_CWND))
808 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
809 if (dst_metric(dst, RTAX_SSTHRESH)) {
810 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
811 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
812 tp->snd_ssthresh = tp->snd_cwnd_clamp;
814 if (dst_metric(dst, RTAX_REORDERING) &&
815 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
816 tp->rx_opt.sack_ok &= ~2;
817 tp->reordering = dst_metric(dst, RTAX_REORDERING);
820 if (dst_metric(dst, RTAX_RTT) == 0)
823 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
826 /* Initial rtt is determined from SYN,SYN-ACK.
827 * The segment is small and rtt may appear much
828 * less than real one. Use per-dst memory
829 * to make it more realistic.
831 * A bit of theory. RTT is time passed after "normal" sized packet
832 * is sent until it is ACKed. In normal circumstances sending small
833 * packets force peer to delay ACKs and calculation is correct too.
834 * The algorithm is adaptive and, provided we follow specs, it
835 * NEVER underestimate RTT. BUT! If peer tries to make some clever
836 * tricks sort of "quick acks" for time long enough to decrease RTT
837 * to low value, and then abruptly stops to do it and starts to delay
838 * ACKs, wait for troubles.
840 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
841 tp->srtt = dst_metric(dst, RTAX_RTT);
842 tp->rtt_seq = tp->snd_nxt;
844 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
845 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
846 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
850 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
852 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
853 tp->snd_cwnd_stamp = tcp_time_stamp;
857 /* Play conservative. If timestamps are not
858 * supported, TCP will fail to recalculate correct
859 * rtt, if initial rto is too small. FORGET ALL AND RESET!
861 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
863 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
864 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
868 static void tcp_update_reordering(struct sock *sk, const int metric,
871 struct tcp_sock *tp = tcp_sk(sk);
872 if (metric > tp->reordering) {
873 tp->reordering = min(TCP_MAX_REORDERING, metric);
875 /* This exciting event is worth to be remembered. 8) */
877 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
879 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
881 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
883 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
884 #if FASTRETRANS_DEBUG > 1
885 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
886 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
890 tp->undo_marker ? tp->undo_retrans : 0);
892 /* Disable FACK yet. */
893 tp->rx_opt.sack_ok &= ~2;
897 /* This procedure tags the retransmission queue when SACKs arrive.
899 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
900 * Packets in queue with these bits set are counted in variables
901 * sacked_out, retrans_out and lost_out, correspondingly.
903 * Valid combinations are:
904 * Tag InFlight Description
905 * 0 1 - orig segment is in flight.
906 * S 0 - nothing flies, orig reached receiver.
907 * L 0 - nothing flies, orig lost by net.
908 * R 2 - both orig and retransmit are in flight.
909 * L|R 1 - orig is lost, retransmit is in flight.
910 * S|R 1 - orig reached receiver, retrans is still in flight.
911 * (L|S|R is logically valid, it could occur when L|R is sacked,
912 * but it is equivalent to plain S and code short-curcuits it to S.
913 * L|S is logically invalid, it would mean -1 packet in flight 8))
915 * These 6 states form finite state machine, controlled by the following events:
916 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
917 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
918 * 3. Loss detection event of one of three flavors:
919 * A. Scoreboard estimator decided the packet is lost.
920 * A'. Reno "three dupacks" marks head of queue lost.
921 * A''. Its FACK modfication, head until snd.fack is lost.
922 * B. SACK arrives sacking data transmitted after never retransmitted
924 * C. SACK arrives sacking SND.NXT at the moment, when the
925 * segment was retransmitted.
926 * 4. D-SACK added new rule: D-SACK changes any tag to S.
928 * It is pleasant to note, that state diagram turns out to be commutative,
929 * so that we are allowed not to be bothered by order of our actions,
930 * when multiple events arrive simultaneously. (see the function below).
932 * Reordering detection.
933 * --------------------
934 * Reordering metric is maximal distance, which a packet can be displaced
935 * in packet stream. With SACKs we can estimate it:
937 * 1. SACK fills old hole and the corresponding segment was not
938 * ever retransmitted -> reordering. Alas, we cannot use it
939 * when segment was retransmitted.
940 * 2. The last flaw is solved with D-SACK. D-SACK arrives
941 * for retransmitted and already SACKed segment -> reordering..
942 * Both of these heuristics are not used in Loss state, when we cannot
943 * account for retransmits accurately.
946 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
948 const struct inet_connection_sock *icsk = inet_csk(sk);
949 struct tcp_sock *tp = tcp_sk(sk);
950 unsigned char *ptr = (skb_transport_header(ack_skb) +
951 TCP_SKB_CB(ack_skb)->sacked);
952 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
953 struct sk_buff *cached_skb;
954 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
955 int reord = tp->packets_out;
957 u32 lost_retrans = 0;
959 int found_dup_sack = 0;
960 int cached_fack_count;
962 int first_sack_index;
966 prior_fackets = tp->fackets_out;
968 /* Check for D-SACK. */
969 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
970 flag |= FLAG_DSACKING_ACK;
972 tp->rx_opt.sack_ok |= 4;
973 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
974 } else if (num_sacks > 1 &&
975 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
976 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
977 flag |= FLAG_DSACKING_ACK;
979 tp->rx_opt.sack_ok |= 4;
980 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
983 /* D-SACK for already forgotten data...
984 * Do dumb counting. */
985 if (found_dup_sack &&
986 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
987 after(ntohl(sp[0].end_seq), tp->undo_marker))
990 /* Eliminate too old ACKs, but take into
991 * account more or less fresh ones, they can
992 * contain valid SACK info.
994 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
998 * if the only SACK change is the increase of the end_seq of
999 * the first block then only apply that SACK block
1000 * and use retrans queue hinting otherwise slowpath */
1002 for (i = 0; i < num_sacks; i++) {
1003 __be32 start_seq = sp[i].start_seq;
1004 __be32 end_seq = sp[i].end_seq;
1007 if (tp->recv_sack_cache[i].start_seq != start_seq)
1010 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1011 (tp->recv_sack_cache[i].end_seq != end_seq))
1014 tp->recv_sack_cache[i].start_seq = start_seq;
1015 tp->recv_sack_cache[i].end_seq = end_seq;
1017 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1018 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1019 tp->recv_sack_cache[i].start_seq = 0;
1020 tp->recv_sack_cache[i].end_seq = 0;
1023 first_sack_index = 0;
1028 tp->fastpath_skb_hint = NULL;
1030 /* order SACK blocks to allow in order walk of the retrans queue */
1031 for (i = num_sacks-1; i > 0; i--) {
1032 for (j = 0; j < i; j++){
1033 if (after(ntohl(sp[j].start_seq),
1034 ntohl(sp[j+1].start_seq))){
1035 struct tcp_sack_block_wire tmp;
1041 /* Track where the first SACK block goes to */
1042 if (j == first_sack_index)
1043 first_sack_index = j+1;
1050 /* clear flag as used for different purpose in following code */
1053 /* Use SACK fastpath hint if valid */
1054 cached_skb = tp->fastpath_skb_hint;
1055 cached_fack_count = tp->fastpath_cnt_hint;
1057 cached_skb = tcp_write_queue_head(sk);
1058 cached_fack_count = 0;
1061 for (i=0; i<num_sacks; i++, sp++) {
1062 struct sk_buff *skb;
1063 __u32 start_seq = ntohl(sp->start_seq);
1064 __u32 end_seq = ntohl(sp->end_seq);
1066 int dup_sack = (found_dup_sack && (i == first_sack_index));
1069 fack_count = cached_fack_count;
1071 /* Event "B" in the comment above. */
1072 if (after(end_seq, tp->high_seq))
1073 flag |= FLAG_DATA_LOST;
1075 tcp_for_write_queue_from(skb, sk) {
1076 int in_sack, pcount;
1079 if (skb == tcp_send_head(sk))
1083 cached_fack_count = fack_count;
1084 if (i == first_sack_index) {
1085 tp->fastpath_skb_hint = skb;
1086 tp->fastpath_cnt_hint = fack_count;
1089 /* The retransmission queue is always in order, so
1090 * we can short-circuit the walk early.
1092 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1095 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1096 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1098 pcount = tcp_skb_pcount(skb);
1100 if (pcount > 1 && !in_sack &&
1101 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1102 unsigned int pkt_len;
1104 in_sack = !after(start_seq,
1105 TCP_SKB_CB(skb)->seq);
1108 pkt_len = (start_seq -
1109 TCP_SKB_CB(skb)->seq);
1111 pkt_len = (end_seq -
1112 TCP_SKB_CB(skb)->seq);
1113 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1115 pcount = tcp_skb_pcount(skb);
1118 fack_count += pcount;
1120 sacked = TCP_SKB_CB(skb)->sacked;
1122 /* Account D-SACK for retransmitted packet. */
1123 if ((dup_sack && in_sack) &&
1124 (sacked & TCPCB_RETRANS) &&
1125 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1128 /* The frame is ACKed. */
1129 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1130 if (sacked&TCPCB_RETRANS) {
1131 if ((dup_sack && in_sack) &&
1132 (sacked&TCPCB_SACKED_ACKED))
1133 reord = min(fack_count, reord);
1135 /* If it was in a hole, we detected reordering. */
1136 if (fack_count < prior_fackets &&
1137 !(sacked&TCPCB_SACKED_ACKED))
1138 reord = min(fack_count, reord);
1141 /* Nothing to do; acked frame is about to be dropped. */
1145 if ((sacked&TCPCB_SACKED_RETRANS) &&
1146 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1147 (!lost_retrans || after(end_seq, lost_retrans)))
1148 lost_retrans = end_seq;
1153 if (!(sacked&TCPCB_SACKED_ACKED)) {
1154 if (sacked & TCPCB_SACKED_RETRANS) {
1155 /* If the segment is not tagged as lost,
1156 * we do not clear RETRANS, believing
1157 * that retransmission is still in flight.
1159 if (sacked & TCPCB_LOST) {
1160 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1161 tp->lost_out -= tcp_skb_pcount(skb);
1162 tp->retrans_out -= tcp_skb_pcount(skb);
1164 /* clear lost hint */
1165 tp->retransmit_skb_hint = NULL;
1168 /* New sack for not retransmitted frame,
1169 * which was in hole. It is reordering.
1171 if (!(sacked & TCPCB_RETRANS) &&
1172 fack_count < prior_fackets)
1173 reord = min(fack_count, reord);
1175 if (sacked & TCPCB_LOST) {
1176 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1177 tp->lost_out -= tcp_skb_pcount(skb);
1179 /* clear lost hint */
1180 tp->retransmit_skb_hint = NULL;
1182 /* SACK enhanced F-RTO detection.
1183 * Set flag if and only if non-rexmitted
1184 * segments below frto_highmark are
1185 * SACKed (RFC4138; Appendix B).
1186 * Clearing correct due to in-order walk
1188 if (after(end_seq, tp->frto_highmark)) {
1189 flag &= ~FLAG_ONLY_ORIG_SACKED;
1191 if (!(sacked & TCPCB_RETRANS))
1192 flag |= FLAG_ONLY_ORIG_SACKED;
1196 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1197 flag |= FLAG_DATA_SACKED;
1198 tp->sacked_out += tcp_skb_pcount(skb);
1200 if (fack_count > tp->fackets_out)
1201 tp->fackets_out = fack_count;
1203 if (dup_sack && (sacked&TCPCB_RETRANS))
1204 reord = min(fack_count, reord);
1207 /* D-SACK. We can detect redundant retransmission
1208 * in S|R and plain R frames and clear it.
1209 * undo_retrans is decreased above, L|R frames
1210 * are accounted above as well.
1213 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1214 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1215 tp->retrans_out -= tcp_skb_pcount(skb);
1216 tp->retransmit_skb_hint = NULL;
1221 /* Check for lost retransmit. This superb idea is
1222 * borrowed from "ratehalving". Event "C".
1223 * Later note: FACK people cheated me again 8),
1224 * we have to account for reordering! Ugly,
1227 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1228 struct sk_buff *skb;
1230 tcp_for_write_queue(skb, sk) {
1231 if (skb == tcp_send_head(sk))
1233 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1235 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1237 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1238 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1240 !before(lost_retrans,
1241 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1243 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1244 tp->retrans_out -= tcp_skb_pcount(skb);
1246 /* clear lost hint */
1247 tp->retransmit_skb_hint = NULL;
1249 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1250 tp->lost_out += tcp_skb_pcount(skb);
1251 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1252 flag |= FLAG_DATA_SACKED;
1253 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1259 tp->left_out = tp->sacked_out + tp->lost_out;
1261 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1262 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1263 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1265 #if FASTRETRANS_DEBUG > 0
1266 BUG_TRAP((int)tp->sacked_out >= 0);
1267 BUG_TRAP((int)tp->lost_out >= 0);
1268 BUG_TRAP((int)tp->retrans_out >= 0);
1269 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1274 /* F-RTO can only be used if TCP has never retransmitted anything other than
1275 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1277 int tcp_use_frto(struct sock *sk)
1279 const struct tcp_sock *tp = tcp_sk(sk);
1280 struct sk_buff *skb;
1282 if (!sysctl_tcp_frto)
1288 /* Avoid expensive walking of rexmit queue if possible */
1289 if (tp->retrans_out > 1)
1292 skb = tcp_write_queue_head(sk);
1293 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1294 tcp_for_write_queue_from(skb, sk) {
1295 if (skb == tcp_send_head(sk))
1297 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1299 /* Short-circuit when first non-SACKed skb has been checked */
1300 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1306 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1307 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1308 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1309 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1310 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1311 * bits are handled if the Loss state is really to be entered (in
1312 * tcp_enter_frto_loss).
1314 * Do like tcp_enter_loss() would; when RTO expires the second time it
1316 * "Reduce ssthresh if it has not yet been made inside this window."
1318 void tcp_enter_frto(struct sock *sk)
1320 const struct inet_connection_sock *icsk = inet_csk(sk);
1321 struct tcp_sock *tp = tcp_sk(sk);
1322 struct sk_buff *skb;
1324 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1325 tp->snd_una == tp->high_seq ||
1326 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1327 !icsk->icsk_retransmits)) {
1328 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1329 /* Our state is too optimistic in ssthresh() call because cwnd
1330 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1331 * recovery has not yet completed. Pattern would be this: RTO,
1332 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1334 * RFC4138 should be more specific on what to do, even though
1335 * RTO is quite unlikely to occur after the first Cumulative ACK
1336 * due to back-off and complexity of triggering events ...
1338 if (tp->frto_counter) {
1340 stored_cwnd = tp->snd_cwnd;
1342 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1343 tp->snd_cwnd = stored_cwnd;
1345 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1347 /* ... in theory, cong.control module could do "any tricks" in
1348 * ssthresh(), which means that ca_state, lost bits and lost_out
1349 * counter would have to be faked before the call occurs. We
1350 * consider that too expensive, unlikely and hacky, so modules
1351 * using these in ssthresh() must deal these incompatibility
1352 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1354 tcp_ca_event(sk, CA_EVENT_FRTO);
1357 tp->undo_marker = tp->snd_una;
1358 tp->undo_retrans = 0;
1360 skb = tcp_write_queue_head(sk);
1361 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1362 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1363 tp->retrans_out -= tcp_skb_pcount(skb);
1365 tcp_sync_left_out(tp);
1367 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1368 * The last condition is necessary at least in tp->frto_counter case.
1370 if (IsSackFrto() && (tp->frto_counter ||
1371 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1372 after(tp->high_seq, tp->snd_una)) {
1373 tp->frto_highmark = tp->high_seq;
1375 tp->frto_highmark = tp->snd_nxt;
1377 tcp_set_ca_state(sk, TCP_CA_Disorder);
1378 tp->high_seq = tp->snd_nxt;
1379 tp->frto_counter = 1;
1382 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1383 * which indicates that we should follow the traditional RTO recovery,
1384 * i.e. mark everything lost and do go-back-N retransmission.
1386 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1388 struct tcp_sock *tp = tcp_sk(sk);
1389 struct sk_buff *skb;
1394 tp->fackets_out = 0;
1395 tp->retrans_out = 0;
1397 tcp_for_write_queue(skb, sk) {
1398 if (skb == tcp_send_head(sk))
1400 cnt += tcp_skb_pcount(skb);
1402 * Count the retransmission made on RTO correctly (only when
1403 * waiting for the first ACK and did not get it)...
1405 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1406 /* For some reason this R-bit might get cleared? */
1407 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1408 tp->retrans_out += tcp_skb_pcount(skb);
1409 /* ...enter this if branch just for the first segment */
1410 flag |= FLAG_DATA_ACKED;
1412 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1414 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1416 /* Do not mark those segments lost that were
1417 * forward transmitted after RTO
1419 if (!after(TCP_SKB_CB(skb)->end_seq,
1420 tp->frto_highmark)) {
1421 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1422 tp->lost_out += tcp_skb_pcount(skb);
1425 tp->sacked_out += tcp_skb_pcount(skb);
1426 tp->fackets_out = cnt;
1429 tcp_sync_left_out(tp);
1431 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1432 tp->snd_cwnd_cnt = 0;
1433 tp->snd_cwnd_stamp = tcp_time_stamp;
1434 tp->undo_marker = 0;
1435 tp->frto_counter = 0;
1437 tp->reordering = min_t(unsigned int, tp->reordering,
1438 sysctl_tcp_reordering);
1439 tcp_set_ca_state(sk, TCP_CA_Loss);
1440 tp->high_seq = tp->frto_highmark;
1441 TCP_ECN_queue_cwr(tp);
1443 clear_all_retrans_hints(tp);
1446 void tcp_clear_retrans(struct tcp_sock *tp)
1449 tp->retrans_out = 0;
1451 tp->fackets_out = 0;
1455 tp->undo_marker = 0;
1456 tp->undo_retrans = 0;
1459 /* Enter Loss state. If "how" is not zero, forget all SACK information
1460 * and reset tags completely, otherwise preserve SACKs. If receiver
1461 * dropped its ofo queue, we will know this due to reneging detection.
1463 void tcp_enter_loss(struct sock *sk, int how)
1465 const struct inet_connection_sock *icsk = inet_csk(sk);
1466 struct tcp_sock *tp = tcp_sk(sk);
1467 struct sk_buff *skb;
1470 /* Reduce ssthresh if it has not yet been made inside this window. */
1471 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1472 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1473 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1474 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1475 tcp_ca_event(sk, CA_EVENT_LOSS);
1478 tp->snd_cwnd_cnt = 0;
1479 tp->snd_cwnd_stamp = tcp_time_stamp;
1481 tp->bytes_acked = 0;
1482 tcp_clear_retrans(tp);
1484 /* Push undo marker, if it was plain RTO and nothing
1485 * was retransmitted. */
1487 tp->undo_marker = tp->snd_una;
1489 tcp_for_write_queue(skb, sk) {
1490 if (skb == tcp_send_head(sk))
1492 cnt += tcp_skb_pcount(skb);
1493 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1494 tp->undo_marker = 0;
1495 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1496 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1497 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1498 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1499 tp->lost_out += tcp_skb_pcount(skb);
1501 tp->sacked_out += tcp_skb_pcount(skb);
1502 tp->fackets_out = cnt;
1505 tcp_sync_left_out(tp);
1507 tp->reordering = min_t(unsigned int, tp->reordering,
1508 sysctl_tcp_reordering);
1509 tcp_set_ca_state(sk, TCP_CA_Loss);
1510 tp->high_seq = tp->snd_nxt;
1511 TCP_ECN_queue_cwr(tp);
1512 /* Abort FRTO algorithm if one is in progress */
1513 tp->frto_counter = 0;
1515 clear_all_retrans_hints(tp);
1518 static int tcp_check_sack_reneging(struct sock *sk)
1520 struct sk_buff *skb;
1522 /* If ACK arrived pointing to a remembered SACK,
1523 * it means that our remembered SACKs do not reflect
1524 * real state of receiver i.e.
1525 * receiver _host_ is heavily congested (or buggy).
1526 * Do processing similar to RTO timeout.
1528 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1529 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1530 struct inet_connection_sock *icsk = inet_csk(sk);
1531 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1533 tcp_enter_loss(sk, 1);
1534 icsk->icsk_retransmits++;
1535 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1536 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1537 icsk->icsk_rto, TCP_RTO_MAX);
1543 static inline int tcp_fackets_out(struct tcp_sock *tp)
1545 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1548 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1550 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1553 static inline int tcp_head_timedout(struct sock *sk)
1555 struct tcp_sock *tp = tcp_sk(sk);
1557 return tp->packets_out &&
1558 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1561 /* Linux NewReno/SACK/FACK/ECN state machine.
1562 * --------------------------------------
1564 * "Open" Normal state, no dubious events, fast path.
1565 * "Disorder" In all the respects it is "Open",
1566 * but requires a bit more attention. It is entered when
1567 * we see some SACKs or dupacks. It is split of "Open"
1568 * mainly to move some processing from fast path to slow one.
1569 * "CWR" CWND was reduced due to some Congestion Notification event.
1570 * It can be ECN, ICMP source quench, local device congestion.
1571 * "Recovery" CWND was reduced, we are fast-retransmitting.
1572 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1574 * tcp_fastretrans_alert() is entered:
1575 * - each incoming ACK, if state is not "Open"
1576 * - when arrived ACK is unusual, namely:
1581 * Counting packets in flight is pretty simple.
1583 * in_flight = packets_out - left_out + retrans_out
1585 * packets_out is SND.NXT-SND.UNA counted in packets.
1587 * retrans_out is number of retransmitted segments.
1589 * left_out is number of segments left network, but not ACKed yet.
1591 * left_out = sacked_out + lost_out
1593 * sacked_out: Packets, which arrived to receiver out of order
1594 * and hence not ACKed. With SACKs this number is simply
1595 * amount of SACKed data. Even without SACKs
1596 * it is easy to give pretty reliable estimate of this number,
1597 * counting duplicate ACKs.
1599 * lost_out: Packets lost by network. TCP has no explicit
1600 * "loss notification" feedback from network (for now).
1601 * It means that this number can be only _guessed_.
1602 * Actually, it is the heuristics to predict lossage that
1603 * distinguishes different algorithms.
1605 * F.e. after RTO, when all the queue is considered as lost,
1606 * lost_out = packets_out and in_flight = retrans_out.
1608 * Essentially, we have now two algorithms counting
1611 * FACK: It is the simplest heuristics. As soon as we decided
1612 * that something is lost, we decide that _all_ not SACKed
1613 * packets until the most forward SACK are lost. I.e.
1614 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1615 * It is absolutely correct estimate, if network does not reorder
1616 * packets. And it loses any connection to reality when reordering
1617 * takes place. We use FACK by default until reordering
1618 * is suspected on the path to this destination.
1620 * NewReno: when Recovery is entered, we assume that one segment
1621 * is lost (classic Reno). While we are in Recovery and
1622 * a partial ACK arrives, we assume that one more packet
1623 * is lost (NewReno). This heuristics are the same in NewReno
1626 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1627 * deflation etc. CWND is real congestion window, never inflated, changes
1628 * only according to classic VJ rules.
1630 * Really tricky (and requiring careful tuning) part of algorithm
1631 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1632 * The first determines the moment _when_ we should reduce CWND and,
1633 * hence, slow down forward transmission. In fact, it determines the moment
1634 * when we decide that hole is caused by loss, rather than by a reorder.
1636 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1637 * holes, caused by lost packets.
1639 * And the most logically complicated part of algorithm is undo
1640 * heuristics. We detect false retransmits due to both too early
1641 * fast retransmit (reordering) and underestimated RTO, analyzing
1642 * timestamps and D-SACKs. When we detect that some segments were
1643 * retransmitted by mistake and CWND reduction was wrong, we undo
1644 * window reduction and abort recovery phase. This logic is hidden
1645 * inside several functions named tcp_try_undo_<something>.
1648 /* This function decides, when we should leave Disordered state
1649 * and enter Recovery phase, reducing congestion window.
1651 * Main question: may we further continue forward transmission
1652 * with the same cwnd?
1654 static int tcp_time_to_recover(struct sock *sk)
1656 struct tcp_sock *tp = tcp_sk(sk);
1659 /* Do not perform any recovery during FRTO algorithm */
1660 if (tp->frto_counter)
1663 /* Trick#1: The loss is proven. */
1667 /* Not-A-Trick#2 : Classic rule... */
1668 if (tcp_fackets_out(tp) > tp->reordering)
1671 /* Trick#3 : when we use RFC2988 timer restart, fast
1672 * retransmit can be triggered by timeout of queue head.
1674 if (tcp_head_timedout(sk))
1677 /* Trick#4: It is still not OK... But will it be useful to delay
1680 packets_out = tp->packets_out;
1681 if (packets_out <= tp->reordering &&
1682 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1683 !tcp_may_send_now(sk)) {
1684 /* We have nothing to send. This connection is limited
1685 * either by receiver window or by application.
1693 /* If we receive more dupacks than we expected counting segments
1694 * in assumption of absent reordering, interpret this as reordering.
1695 * The only another reason could be bug in receiver TCP.
1697 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1699 struct tcp_sock *tp = tcp_sk(sk);
1702 holes = max(tp->lost_out, 1U);
1703 holes = min(holes, tp->packets_out);
1705 if ((tp->sacked_out + holes) > tp->packets_out) {
1706 tp->sacked_out = tp->packets_out - holes;
1707 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1711 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1713 static void tcp_add_reno_sack(struct sock *sk)
1715 struct tcp_sock *tp = tcp_sk(sk);
1717 tcp_check_reno_reordering(sk, 0);
1718 tcp_sync_left_out(tp);
1721 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1723 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1725 struct tcp_sock *tp = tcp_sk(sk);
1728 /* One ACK acked hole. The rest eat duplicate ACKs. */
1729 if (acked-1 >= tp->sacked_out)
1732 tp->sacked_out -= acked-1;
1734 tcp_check_reno_reordering(sk, acked);
1735 tcp_sync_left_out(tp);
1738 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1741 tp->left_out = tp->lost_out;
1744 /* Mark head of queue up as lost. */
1745 static void tcp_mark_head_lost(struct sock *sk,
1746 int packets, u32 high_seq)
1748 struct tcp_sock *tp = tcp_sk(sk);
1749 struct sk_buff *skb;
1752 BUG_TRAP(packets <= tp->packets_out);
1753 if (tp->lost_skb_hint) {
1754 skb = tp->lost_skb_hint;
1755 cnt = tp->lost_cnt_hint;
1757 skb = tcp_write_queue_head(sk);
1761 tcp_for_write_queue_from(skb, sk) {
1762 if (skb == tcp_send_head(sk))
1764 /* TODO: do this better */
1765 /* this is not the most efficient way to do this... */
1766 tp->lost_skb_hint = skb;
1767 tp->lost_cnt_hint = cnt;
1768 cnt += tcp_skb_pcount(skb);
1769 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1771 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1772 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1773 tp->lost_out += tcp_skb_pcount(skb);
1775 /* clear xmit_retransmit_queue hints
1776 * if this is beyond hint */
1777 if (tp->retransmit_skb_hint != NULL &&
1778 before(TCP_SKB_CB(skb)->seq,
1779 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1780 tp->retransmit_skb_hint = NULL;
1784 tcp_sync_left_out(tp);
1787 /* Account newly detected lost packet(s) */
1789 static void tcp_update_scoreboard(struct sock *sk)
1791 struct tcp_sock *tp = tcp_sk(sk);
1794 int lost = tp->fackets_out - tp->reordering;
1797 tcp_mark_head_lost(sk, lost, tp->high_seq);
1799 tcp_mark_head_lost(sk, 1, tp->high_seq);
1802 /* New heuristics: it is possible only after we switched
1803 * to restart timer each time when something is ACKed.
1804 * Hence, we can detect timed out packets during fast
1805 * retransmit without falling to slow start.
1807 if (!IsReno(tp) && tcp_head_timedout(sk)) {
1808 struct sk_buff *skb;
1810 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1811 : tcp_write_queue_head(sk);
1813 tcp_for_write_queue_from(skb, sk) {
1814 if (skb == tcp_send_head(sk))
1816 if (!tcp_skb_timedout(sk, skb))
1819 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1820 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1821 tp->lost_out += tcp_skb_pcount(skb);
1823 /* clear xmit_retrans hint */
1824 if (tp->retransmit_skb_hint &&
1825 before(TCP_SKB_CB(skb)->seq,
1826 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1828 tp->retransmit_skb_hint = NULL;
1832 tp->scoreboard_skb_hint = skb;
1834 tcp_sync_left_out(tp);
1838 /* CWND moderation, preventing bursts due to too big ACKs
1839 * in dubious situations.
1841 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1843 tp->snd_cwnd = min(tp->snd_cwnd,
1844 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1845 tp->snd_cwnd_stamp = tcp_time_stamp;
1848 /* Lower bound on congestion window is slow start threshold
1849 * unless congestion avoidance choice decides to overide it.
1851 static inline u32 tcp_cwnd_min(const struct sock *sk)
1853 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1855 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1858 /* Decrease cwnd each second ack. */
1859 static void tcp_cwnd_down(struct sock *sk, int flag)
1861 struct tcp_sock *tp = tcp_sk(sk);
1862 int decr = tp->snd_cwnd_cnt + 1;
1864 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
1865 (IsReno(tp) && !(flag&FLAG_NOT_DUP))) {
1866 tp->snd_cwnd_cnt = decr&1;
1869 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1870 tp->snd_cwnd -= decr;
1872 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1873 tp->snd_cwnd_stamp = tcp_time_stamp;
1877 /* Nothing was retransmitted or returned timestamp is less
1878 * than timestamp of the first retransmission.
1880 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1882 return !tp->retrans_stamp ||
1883 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1884 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1887 /* Undo procedures. */
1889 #if FASTRETRANS_DEBUG > 1
1890 static void DBGUNDO(struct sock *sk, const char *msg)
1892 struct tcp_sock *tp = tcp_sk(sk);
1893 struct inet_sock *inet = inet_sk(sk);
1895 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1897 NIPQUAD(inet->daddr), ntohs(inet->dport),
1898 tp->snd_cwnd, tp->left_out,
1899 tp->snd_ssthresh, tp->prior_ssthresh,
1903 #define DBGUNDO(x...) do { } while (0)
1906 static void tcp_undo_cwr(struct sock *sk, const int undo)
1908 struct tcp_sock *tp = tcp_sk(sk);
1910 if (tp->prior_ssthresh) {
1911 const struct inet_connection_sock *icsk = inet_csk(sk);
1913 if (icsk->icsk_ca_ops->undo_cwnd)
1914 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1916 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1918 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1919 tp->snd_ssthresh = tp->prior_ssthresh;
1920 TCP_ECN_withdraw_cwr(tp);
1923 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1925 tcp_moderate_cwnd(tp);
1926 tp->snd_cwnd_stamp = tcp_time_stamp;
1928 /* There is something screwy going on with the retrans hints after
1930 clear_all_retrans_hints(tp);
1933 static inline int tcp_may_undo(struct tcp_sock *tp)
1935 return tp->undo_marker &&
1936 (!tp->undo_retrans || tcp_packet_delayed(tp));
1939 /* People celebrate: "We love our President!" */
1940 static int tcp_try_undo_recovery(struct sock *sk)
1942 struct tcp_sock *tp = tcp_sk(sk);
1944 if (tcp_may_undo(tp)) {
1945 /* Happy end! We did not retransmit anything
1946 * or our original transmission succeeded.
1948 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1949 tcp_undo_cwr(sk, 1);
1950 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1951 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1953 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1954 tp->undo_marker = 0;
1956 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1957 /* Hold old state until something *above* high_seq
1958 * is ACKed. For Reno it is MUST to prevent false
1959 * fast retransmits (RFC2582). SACK TCP is safe. */
1960 tcp_moderate_cwnd(tp);
1963 tcp_set_ca_state(sk, TCP_CA_Open);
1967 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1968 static void tcp_try_undo_dsack(struct sock *sk)
1970 struct tcp_sock *tp = tcp_sk(sk);
1972 if (tp->undo_marker && !tp->undo_retrans) {
1973 DBGUNDO(sk, "D-SACK");
1974 tcp_undo_cwr(sk, 1);
1975 tp->undo_marker = 0;
1976 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1980 /* Undo during fast recovery after partial ACK. */
1982 static int tcp_try_undo_partial(struct sock *sk, int acked)
1984 struct tcp_sock *tp = tcp_sk(sk);
1985 /* Partial ACK arrived. Force Hoe's retransmit. */
1986 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1988 if (tcp_may_undo(tp)) {
1989 /* Plain luck! Hole if filled with delayed
1990 * packet, rather than with a retransmit.
1992 if (tp->retrans_out == 0)
1993 tp->retrans_stamp = 0;
1995 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1998 tcp_undo_cwr(sk, 0);
1999 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2001 /* So... Do not make Hoe's retransmit yet.
2002 * If the first packet was delayed, the rest
2003 * ones are most probably delayed as well.
2010 /* Undo during loss recovery after partial ACK. */
2011 static int tcp_try_undo_loss(struct sock *sk)
2013 struct tcp_sock *tp = tcp_sk(sk);
2015 if (tcp_may_undo(tp)) {
2016 struct sk_buff *skb;
2017 tcp_for_write_queue(skb, sk) {
2018 if (skb == tcp_send_head(sk))
2020 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2023 clear_all_retrans_hints(tp);
2025 DBGUNDO(sk, "partial loss");
2027 tp->left_out = tp->sacked_out;
2028 tcp_undo_cwr(sk, 1);
2029 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2030 inet_csk(sk)->icsk_retransmits = 0;
2031 tp->undo_marker = 0;
2033 tcp_set_ca_state(sk, TCP_CA_Open);
2039 static inline void tcp_complete_cwr(struct sock *sk)
2041 struct tcp_sock *tp = tcp_sk(sk);
2042 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2043 tp->snd_cwnd_stamp = tcp_time_stamp;
2044 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2047 static void tcp_try_to_open(struct sock *sk, int flag)
2049 struct tcp_sock *tp = tcp_sk(sk);
2051 tcp_sync_left_out(tp);
2053 if (tp->retrans_out == 0)
2054 tp->retrans_stamp = 0;
2057 tcp_enter_cwr(sk, 1);
2059 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2060 int state = TCP_CA_Open;
2062 if (tp->left_out || tp->retrans_out || tp->undo_marker)
2063 state = TCP_CA_Disorder;
2065 if (inet_csk(sk)->icsk_ca_state != state) {
2066 tcp_set_ca_state(sk, state);
2067 tp->high_seq = tp->snd_nxt;
2069 tcp_moderate_cwnd(tp);
2071 tcp_cwnd_down(sk, flag);
2075 static void tcp_mtup_probe_failed(struct sock *sk)
2077 struct inet_connection_sock *icsk = inet_csk(sk);
2079 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2080 icsk->icsk_mtup.probe_size = 0;
2083 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2085 struct tcp_sock *tp = tcp_sk(sk);
2086 struct inet_connection_sock *icsk = inet_csk(sk);
2088 /* FIXME: breaks with very large cwnd */
2089 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2090 tp->snd_cwnd = tp->snd_cwnd *
2091 tcp_mss_to_mtu(sk, tp->mss_cache) /
2092 icsk->icsk_mtup.probe_size;
2093 tp->snd_cwnd_cnt = 0;
2094 tp->snd_cwnd_stamp = tcp_time_stamp;
2095 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2097 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2098 icsk->icsk_mtup.probe_size = 0;
2099 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2103 /* Process an event, which can update packets-in-flight not trivially.
2104 * Main goal of this function is to calculate new estimate for left_out,
2105 * taking into account both packets sitting in receiver's buffer and
2106 * packets lost by network.
2108 * Besides that it does CWND reduction, when packet loss is detected
2109 * and changes state of machine.
2111 * It does _not_ decide what to send, it is made in function
2112 * tcp_xmit_retransmit_queue().
2115 tcp_fastretrans_alert(struct sock *sk, int prior_packets, int flag)
2117 struct inet_connection_sock *icsk = inet_csk(sk);
2118 struct tcp_sock *tp = tcp_sk(sk);
2119 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2120 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2121 (tp->fackets_out > tp->reordering));
2123 /* Some technical things:
2124 * 1. Reno does not count dupacks (sacked_out) automatically. */
2125 if (!tp->packets_out)
2127 /* 2. SACK counts snd_fack in packets inaccurately. */
2128 if (tp->sacked_out == 0)
2129 tp->fackets_out = 0;
2131 /* Now state machine starts.
2132 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2134 tp->prior_ssthresh = 0;
2136 /* B. In all the states check for reneging SACKs. */
2137 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2140 /* C. Process data loss notification, provided it is valid. */
2141 if ((flag&FLAG_DATA_LOST) &&
2142 before(tp->snd_una, tp->high_seq) &&
2143 icsk->icsk_ca_state != TCP_CA_Open &&
2144 tp->fackets_out > tp->reordering) {
2145 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2146 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2149 /* D. Synchronize left_out to current state. */
2150 tcp_sync_left_out(tp);
2152 /* E. Check state exit conditions. State can be terminated
2153 * when high_seq is ACKed. */
2154 if (icsk->icsk_ca_state == TCP_CA_Open) {
2155 BUG_TRAP(tp->retrans_out == 0);
2156 tp->retrans_stamp = 0;
2157 } else if (!before(tp->snd_una, tp->high_seq)) {
2158 switch (icsk->icsk_ca_state) {
2160 icsk->icsk_retransmits = 0;
2161 if (tcp_try_undo_recovery(sk))
2166 /* CWR is to be held something *above* high_seq
2167 * is ACKed for CWR bit to reach receiver. */
2168 if (tp->snd_una != tp->high_seq) {
2169 tcp_complete_cwr(sk);
2170 tcp_set_ca_state(sk, TCP_CA_Open);
2174 case TCP_CA_Disorder:
2175 tcp_try_undo_dsack(sk);
2176 if (!tp->undo_marker ||
2177 /* For SACK case do not Open to allow to undo
2178 * catching for all duplicate ACKs. */
2179 IsReno(tp) || tp->snd_una != tp->high_seq) {
2180 tp->undo_marker = 0;
2181 tcp_set_ca_state(sk, TCP_CA_Open);
2185 case TCP_CA_Recovery:
2187 tcp_reset_reno_sack(tp);
2188 if (tcp_try_undo_recovery(sk))
2190 tcp_complete_cwr(sk);
2195 /* F. Process state. */
2196 switch (icsk->icsk_ca_state) {
2197 case TCP_CA_Recovery:
2198 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2199 if (IsReno(tp) && is_dupack)
2200 tcp_add_reno_sack(sk);
2202 int acked = prior_packets - tp->packets_out;
2204 tcp_remove_reno_sacks(sk, acked);
2205 do_lost = tcp_try_undo_partial(sk, acked);
2209 if (flag&FLAG_DATA_ACKED)
2210 icsk->icsk_retransmits = 0;
2211 if (!tcp_try_undo_loss(sk)) {
2212 tcp_moderate_cwnd(tp);
2213 tcp_xmit_retransmit_queue(sk);
2216 if (icsk->icsk_ca_state != TCP_CA_Open)
2218 /* Loss is undone; fall through to processing in Open state. */
2221 if (flag & FLAG_SND_UNA_ADVANCED)
2222 tcp_reset_reno_sack(tp);
2224 tcp_add_reno_sack(sk);
2227 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2228 tcp_try_undo_dsack(sk);
2230 if (!tcp_time_to_recover(sk)) {
2231 tcp_try_to_open(sk, flag);
2235 /* MTU probe failure: don't reduce cwnd */
2236 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2237 icsk->icsk_mtup.probe_size &&
2238 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2239 tcp_mtup_probe_failed(sk);
2240 /* Restores the reduction we did in tcp_mtup_probe() */
2242 tcp_simple_retransmit(sk);
2246 /* Otherwise enter Recovery state */
2249 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2251 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2253 tp->high_seq = tp->snd_nxt;
2254 tp->prior_ssthresh = 0;
2255 tp->undo_marker = tp->snd_una;
2256 tp->undo_retrans = tp->retrans_out;
2258 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2259 if (!(flag&FLAG_ECE))
2260 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2261 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2262 TCP_ECN_queue_cwr(tp);
2265 tp->bytes_acked = 0;
2266 tp->snd_cwnd_cnt = 0;
2267 tcp_set_ca_state(sk, TCP_CA_Recovery);
2270 if (do_lost || tcp_head_timedout(sk))
2271 tcp_update_scoreboard(sk);
2272 tcp_cwnd_down(sk, flag);
2273 tcp_xmit_retransmit_queue(sk);
2276 /* Read draft-ietf-tcplw-high-performance before mucking
2277 * with this code. (Supersedes RFC1323)
2279 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2281 /* RTTM Rule: A TSecr value received in a segment is used to
2282 * update the averaged RTT measurement only if the segment
2283 * acknowledges some new data, i.e., only if it advances the
2284 * left edge of the send window.
2286 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2287 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2289 * Changed: reset backoff as soon as we see the first valid sample.
2290 * If we do not, we get strongly overestimated rto. With timestamps
2291 * samples are accepted even from very old segments: f.e., when rtt=1
2292 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2293 * answer arrives rto becomes 120 seconds! If at least one of segments
2294 * in window is lost... Voila. --ANK (010210)
2296 struct tcp_sock *tp = tcp_sk(sk);
2297 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2298 tcp_rtt_estimator(sk, seq_rtt);
2300 inet_csk(sk)->icsk_backoff = 0;
2304 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2306 /* We don't have a timestamp. Can only use
2307 * packets that are not retransmitted to determine
2308 * rtt estimates. Also, we must not reset the
2309 * backoff for rto until we get a non-retransmitted
2310 * packet. This allows us to deal with a situation
2311 * where the network delay has increased suddenly.
2312 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2315 if (flag & FLAG_RETRANS_DATA_ACKED)
2318 tcp_rtt_estimator(sk, seq_rtt);
2320 inet_csk(sk)->icsk_backoff = 0;
2324 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2327 const struct tcp_sock *tp = tcp_sk(sk);
2328 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2329 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2330 tcp_ack_saw_tstamp(sk, flag);
2331 else if (seq_rtt >= 0)
2332 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2335 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2336 u32 in_flight, int good)
2338 const struct inet_connection_sock *icsk = inet_csk(sk);
2339 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2340 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2343 /* Restart timer after forward progress on connection.
2344 * RFC2988 recommends to restart timer to now+rto.
2347 static void tcp_ack_packets_out(struct sock *sk)
2349 struct tcp_sock *tp = tcp_sk(sk);
2351 if (!tp->packets_out) {
2352 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2354 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2358 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2359 __u32 now, __s32 *seq_rtt)
2361 struct tcp_sock *tp = tcp_sk(sk);
2362 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2363 __u32 seq = tp->snd_una;
2364 __u32 packets_acked;
2367 /* If we get here, the whole TSO packet has not been
2370 BUG_ON(!after(scb->end_seq, seq));
2372 packets_acked = tcp_skb_pcount(skb);
2373 if (tcp_trim_head(sk, skb, seq - scb->seq))
2375 packets_acked -= tcp_skb_pcount(skb);
2377 if (packets_acked) {
2378 __u8 sacked = scb->sacked;
2380 acked |= FLAG_DATA_ACKED;
2382 if (sacked & TCPCB_RETRANS) {
2383 if (sacked & TCPCB_SACKED_RETRANS)
2384 tp->retrans_out -= packets_acked;
2385 acked |= FLAG_RETRANS_DATA_ACKED;
2387 } else if (*seq_rtt < 0)
2388 *seq_rtt = now - scb->when;
2389 if (sacked & TCPCB_SACKED_ACKED)
2390 tp->sacked_out -= packets_acked;
2391 if (sacked & TCPCB_LOST)
2392 tp->lost_out -= packets_acked;
2393 if (sacked & TCPCB_URG) {
2395 !before(seq, tp->snd_up))
2398 } else if (*seq_rtt < 0)
2399 *seq_rtt = now - scb->when;
2401 if (tp->fackets_out) {
2402 __u32 dval = min(tp->fackets_out, packets_acked);
2403 tp->fackets_out -= dval;
2405 tp->packets_out -= packets_acked;
2407 BUG_ON(tcp_skb_pcount(skb) == 0);
2408 BUG_ON(!before(scb->seq, scb->end_seq));
2414 /* Remove acknowledged frames from the retransmission queue. */
2415 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2417 struct tcp_sock *tp = tcp_sk(sk);
2418 const struct inet_connection_sock *icsk = inet_csk(sk);
2419 struct sk_buff *skb;
2420 __u32 now = tcp_time_stamp;
2422 int prior_packets = tp->packets_out;
2424 ktime_t last_ackt = net_invalid_timestamp();
2426 while ((skb = tcp_write_queue_head(sk)) &&
2427 skb != tcp_send_head(sk)) {
2428 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2429 __u8 sacked = scb->sacked;
2431 /* If our packet is before the ack sequence we can
2432 * discard it as it's confirmed to have arrived at
2435 if (after(scb->end_seq, tp->snd_una)) {
2436 if (tcp_skb_pcount(skb) > 1 &&
2437 after(tp->snd_una, scb->seq))
2438 acked |= tcp_tso_acked(sk, skb,
2443 /* Initial outgoing SYN's get put onto the write_queue
2444 * just like anything else we transmit. It is not
2445 * true data, and if we misinform our callers that
2446 * this ACK acks real data, we will erroneously exit
2447 * connection startup slow start one packet too
2448 * quickly. This is severely frowned upon behavior.
2450 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2451 acked |= FLAG_DATA_ACKED;
2453 acked |= FLAG_SYN_ACKED;
2454 tp->retrans_stamp = 0;
2457 /* MTU probing checks */
2458 if (icsk->icsk_mtup.probe_size) {
2459 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2460 tcp_mtup_probe_success(sk, skb);
2465 if (sacked & TCPCB_RETRANS) {
2466 if (sacked & TCPCB_SACKED_RETRANS)
2467 tp->retrans_out -= tcp_skb_pcount(skb);
2468 acked |= FLAG_RETRANS_DATA_ACKED;
2470 } else if (seq_rtt < 0) {
2471 seq_rtt = now - scb->when;
2472 last_ackt = skb->tstamp;
2474 if (sacked & TCPCB_SACKED_ACKED)
2475 tp->sacked_out -= tcp_skb_pcount(skb);
2476 if (sacked & TCPCB_LOST)
2477 tp->lost_out -= tcp_skb_pcount(skb);
2478 if (sacked & TCPCB_URG) {
2480 !before(scb->end_seq, tp->snd_up))
2483 } else if (seq_rtt < 0) {
2484 seq_rtt = now - scb->when;
2485 last_ackt = skb->tstamp;
2487 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2488 tcp_packets_out_dec(tp, skb);
2489 tcp_unlink_write_queue(skb, sk);
2490 sk_stream_free_skb(sk, skb);
2491 clear_all_retrans_hints(tp);
2494 if (acked&FLAG_ACKED) {
2495 u32 pkts_acked = prior_packets - tp->packets_out;
2496 const struct tcp_congestion_ops *ca_ops
2497 = inet_csk(sk)->icsk_ca_ops;
2499 tcp_ack_update_rtt(sk, acked, seq_rtt);
2500 tcp_ack_packets_out(sk);
2502 if (ca_ops->pkts_acked) {
2505 /* Is the ACK triggering packet unambiguous? */
2506 if (!(acked & FLAG_RETRANS_DATA_ACKED)) {
2507 /* High resolution needed and available? */
2508 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2509 !ktime_equal(last_ackt,
2510 net_invalid_timestamp()))
2511 rtt_us = ktime_us_delta(ktime_get_real(),
2513 else if (seq_rtt > 0)
2514 rtt_us = jiffies_to_usecs(seq_rtt);
2517 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2521 #if FASTRETRANS_DEBUG > 0
2522 BUG_TRAP((int)tp->sacked_out >= 0);
2523 BUG_TRAP((int)tp->lost_out >= 0);
2524 BUG_TRAP((int)tp->retrans_out >= 0);
2525 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2526 const struct inet_connection_sock *icsk = inet_csk(sk);
2528 printk(KERN_DEBUG "Leak l=%u %d\n",
2529 tp->lost_out, icsk->icsk_ca_state);
2532 if (tp->sacked_out) {
2533 printk(KERN_DEBUG "Leak s=%u %d\n",
2534 tp->sacked_out, icsk->icsk_ca_state);
2537 if (tp->retrans_out) {
2538 printk(KERN_DEBUG "Leak r=%u %d\n",
2539 tp->retrans_out, icsk->icsk_ca_state);
2540 tp->retrans_out = 0;
2544 *seq_rtt_p = seq_rtt;
2548 static void tcp_ack_probe(struct sock *sk)
2550 const struct tcp_sock *tp = tcp_sk(sk);
2551 struct inet_connection_sock *icsk = inet_csk(sk);
2553 /* Was it a usable window open? */
2555 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2556 tp->snd_una + tp->snd_wnd)) {
2557 icsk->icsk_backoff = 0;
2558 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2559 /* Socket must be waked up by subsequent tcp_data_snd_check().
2560 * This function is not for random using!
2563 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2564 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2569 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2571 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2572 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2575 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2577 const struct tcp_sock *tp = tcp_sk(sk);
2578 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2579 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2582 /* Check that window update is acceptable.
2583 * The function assumes that snd_una<=ack<=snd_next.
2585 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2586 const u32 ack_seq, const u32 nwin)
2588 return (after(ack, tp->snd_una) ||
2589 after(ack_seq, tp->snd_wl1) ||
2590 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2593 /* Update our send window.
2595 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2596 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2598 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2601 struct tcp_sock *tp = tcp_sk(sk);
2603 u32 nwin = ntohs(tcp_hdr(skb)->window);
2605 if (likely(!tcp_hdr(skb)->syn))
2606 nwin <<= tp->rx_opt.snd_wscale;
2608 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2609 flag |= FLAG_WIN_UPDATE;
2610 tcp_update_wl(tp, ack, ack_seq);
2612 if (tp->snd_wnd != nwin) {
2615 /* Note, it is the only place, where
2616 * fast path is recovered for sending TCP.
2619 tcp_fast_path_check(sk);
2621 if (nwin > tp->max_window) {
2622 tp->max_window = nwin;
2623 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2633 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2634 * continue in congestion avoidance.
2636 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2638 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2639 tp->snd_cwnd_cnt = 0;
2640 TCP_ECN_queue_cwr(tp);
2641 tcp_moderate_cwnd(tp);
2644 /* A conservative spurious RTO response algorithm: reduce cwnd using
2645 * rate halving and continue in congestion avoidance.
2647 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2649 tcp_enter_cwr(sk, 0);
2652 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2655 tcp_ratehalving_spur_to_response(sk);
2657 tcp_undo_cwr(sk, 1);
2660 /* F-RTO spurious RTO detection algorithm (RFC4138)
2662 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2663 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2664 * window (but not to or beyond highest sequence sent before RTO):
2665 * On First ACK, send two new segments out.
2666 * On Second ACK, RTO was likely spurious. Do spurious response (response
2667 * algorithm is not part of the F-RTO detection algorithm
2668 * given in RFC4138 but can be selected separately).
2669 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2670 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2671 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2672 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2674 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2675 * original window even after we transmit two new data segments.
2678 * on first step, wait until first cumulative ACK arrives, then move to
2679 * the second step. In second step, the next ACK decides.
2681 * F-RTO is implemented (mainly) in four functions:
2682 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2683 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2684 * called when tcp_use_frto() showed green light
2685 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2686 * - tcp_enter_frto_loss() is called if there is not enough evidence
2687 * to prove that the RTO is indeed spurious. It transfers the control
2688 * from F-RTO to the conventional RTO recovery
2690 static int tcp_process_frto(struct sock *sk, int flag)
2692 struct tcp_sock *tp = tcp_sk(sk);
2694 tcp_sync_left_out(tp);
2696 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2697 if (flag&FLAG_DATA_ACKED)
2698 inet_csk(sk)->icsk_retransmits = 0;
2700 if (!before(tp->snd_una, tp->frto_highmark)) {
2701 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2705 if (!IsSackFrto() || IsReno(tp)) {
2706 /* RFC4138 shortcoming in step 2; should also have case c):
2707 * ACK isn't duplicate nor advances window, e.g., opposite dir
2710 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2713 if (!(flag&FLAG_DATA_ACKED)) {
2714 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2719 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2720 /* Prevent sending of new data. */
2721 tp->snd_cwnd = min(tp->snd_cwnd,
2722 tcp_packets_in_flight(tp));
2726 if ((tp->frto_counter >= 2) &&
2727 (!(flag&FLAG_FORWARD_PROGRESS) ||
2728 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2729 /* RFC4138 shortcoming (see comment above) */
2730 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2733 tcp_enter_frto_loss(sk, 3, flag);
2738 if (tp->frto_counter == 1) {
2739 /* Sending of the next skb must be allowed or no FRTO */
2740 if (!tcp_send_head(sk) ||
2741 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2742 tp->snd_una + tp->snd_wnd)) {
2743 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2748 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2749 tp->frto_counter = 2;
2752 switch (sysctl_tcp_frto_response) {
2754 tcp_undo_spur_to_response(sk, flag);
2757 tcp_conservative_spur_to_response(tp);
2760 tcp_ratehalving_spur_to_response(sk);
2763 tp->frto_counter = 0;
2768 /* This routine deals with incoming acks, but not outgoing ones. */
2769 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2771 struct inet_connection_sock *icsk = inet_csk(sk);
2772 struct tcp_sock *tp = tcp_sk(sk);
2773 u32 prior_snd_una = tp->snd_una;
2774 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2775 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2776 u32 prior_in_flight;
2781 /* If the ack is newer than sent or older than previous acks
2782 * then we can probably ignore it.
2784 if (after(ack, tp->snd_nxt))
2785 goto uninteresting_ack;
2787 if (before(ack, prior_snd_una))
2790 if (after(ack, prior_snd_una))
2791 flag |= FLAG_SND_UNA_ADVANCED;
2793 if (sysctl_tcp_abc) {
2794 if (icsk->icsk_ca_state < TCP_CA_CWR)
2795 tp->bytes_acked += ack - prior_snd_una;
2796 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2797 /* we assume just one segment left network */
2798 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2801 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2802 /* Window is constant, pure forward advance.
2803 * No more checks are required.
2804 * Note, we use the fact that SND.UNA>=SND.WL2.
2806 tcp_update_wl(tp, ack, ack_seq);
2808 flag |= FLAG_WIN_UPDATE;
2810 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2812 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2814 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2817 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2819 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2821 if (TCP_SKB_CB(skb)->sacked)
2822 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2824 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2827 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2830 /* We passed data and got it acked, remove any soft error
2831 * log. Something worked...
2833 sk->sk_err_soft = 0;
2834 tp->rcv_tstamp = tcp_time_stamp;
2835 prior_packets = tp->packets_out;
2839 prior_in_flight = tcp_packets_in_flight(tp);
2841 /* See if we can take anything off of the retransmit queue. */
2842 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2844 if (tp->frto_counter)
2845 frto_cwnd = tcp_process_frto(sk, flag);
2847 if (tcp_ack_is_dubious(sk, flag)) {
2848 /* Advance CWND, if state allows this. */
2849 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2850 tcp_may_raise_cwnd(sk, flag))
2851 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
2852 tcp_fastretrans_alert(sk, prior_packets, flag);
2854 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2855 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
2858 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2859 dst_confirm(sk->sk_dst_cache);
2864 icsk->icsk_probes_out = 0;
2866 /* If this ack opens up a zero window, clear backoff. It was
2867 * being used to time the probes, and is probably far higher than
2868 * it needs to be for normal retransmission.
2870 if (tcp_send_head(sk))
2875 if (TCP_SKB_CB(skb)->sacked)
2876 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2879 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2884 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2885 * But, this can also be called on packets in the established flow when
2886 * the fast version below fails.
2888 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2891 struct tcphdr *th = tcp_hdr(skb);
2892 int length=(th->doff*4)-sizeof(struct tcphdr);
2894 ptr = (unsigned char *)(th + 1);
2895 opt_rx->saw_tstamp = 0;
2897 while (length > 0) {
2904 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2909 if (opsize < 2) /* "silly options" */
2911 if (opsize > length)
2912 return; /* don't parse partial options */
2915 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2916 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2918 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2919 in_mss = opt_rx->user_mss;
2920 opt_rx->mss_clamp = in_mss;
2925 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2926 if (sysctl_tcp_window_scaling) {
2927 __u8 snd_wscale = *(__u8 *) ptr;
2928 opt_rx->wscale_ok = 1;
2929 if (snd_wscale > 14) {
2930 if (net_ratelimit())
2931 printk(KERN_INFO "tcp_parse_options: Illegal window "
2932 "scaling value %d >14 received.\n",
2936 opt_rx->snd_wscale = snd_wscale;
2939 case TCPOPT_TIMESTAMP:
2940 if (opsize==TCPOLEN_TIMESTAMP) {
2941 if ((estab && opt_rx->tstamp_ok) ||
2942 (!estab && sysctl_tcp_timestamps)) {
2943 opt_rx->saw_tstamp = 1;
2944 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2945 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2949 case TCPOPT_SACK_PERM:
2950 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2951 if (sysctl_tcp_sack) {
2952 opt_rx->sack_ok = 1;
2953 tcp_sack_reset(opt_rx);
2959 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2960 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2962 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2965 #ifdef CONFIG_TCP_MD5SIG
2968 * The MD5 Hash has already been
2969 * checked (see tcp_v{4,6}_do_rcv()).
2981 /* Fast parse options. This hopes to only see timestamps.
2982 * If it is wrong it falls back on tcp_parse_options().
2984 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2985 struct tcp_sock *tp)
2987 if (th->doff == sizeof(struct tcphdr)>>2) {
2988 tp->rx_opt.saw_tstamp = 0;
2990 } else if (tp->rx_opt.tstamp_ok &&
2991 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2992 __be32 *ptr = (__be32 *)(th + 1);
2993 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2994 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2995 tp->rx_opt.saw_tstamp = 1;
2997 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2999 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3003 tcp_parse_options(skb, &tp->rx_opt, 1);
3007 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3009 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3010 tp->rx_opt.ts_recent_stamp = get_seconds();
3013 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3015 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3016 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3017 * extra check below makes sure this can only happen
3018 * for pure ACK frames. -DaveM
3020 * Not only, also it occurs for expired timestamps.
3023 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3024 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3025 tcp_store_ts_recent(tp);
3029 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3031 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3032 * it can pass through stack. So, the following predicate verifies that
3033 * this segment is not used for anything but congestion avoidance or
3034 * fast retransmit. Moreover, we even are able to eliminate most of such
3035 * second order effects, if we apply some small "replay" window (~RTO)
3036 * to timestamp space.
3038 * All these measures still do not guarantee that we reject wrapped ACKs
3039 * on networks with high bandwidth, when sequence space is recycled fastly,
3040 * but it guarantees that such events will be very rare and do not affect
3041 * connection seriously. This doesn't look nice, but alas, PAWS is really
3044 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3045 * states that events when retransmit arrives after original data are rare.
3046 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3047 * the biggest problem on large power networks even with minor reordering.
3048 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3049 * up to bandwidth of 18Gigabit/sec. 8) ]
3052 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3054 struct tcp_sock *tp = tcp_sk(sk);
3055 struct tcphdr *th = tcp_hdr(skb);
3056 u32 seq = TCP_SKB_CB(skb)->seq;
3057 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3059 return (/* 1. Pure ACK with correct sequence number. */
3060 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3062 /* 2. ... and duplicate ACK. */
3063 ack == tp->snd_una &&
3065 /* 3. ... and does not update window. */
3066 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3068 /* 4. ... and sits in replay window. */
3069 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3072 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3074 const struct tcp_sock *tp = tcp_sk(sk);
3075 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3076 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3077 !tcp_disordered_ack(sk, skb));
3080 /* Check segment sequence number for validity.
3082 * Segment controls are considered valid, if the segment
3083 * fits to the window after truncation to the window. Acceptability
3084 * of data (and SYN, FIN, of course) is checked separately.
3085 * See tcp_data_queue(), for example.
3087 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3088 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3089 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3090 * (borrowed from freebsd)
3093 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3095 return !before(end_seq, tp->rcv_wup) &&
3096 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3099 /* When we get a reset we do this. */
3100 static void tcp_reset(struct sock *sk)
3102 /* We want the right error as BSD sees it (and indeed as we do). */
3103 switch (sk->sk_state) {
3105 sk->sk_err = ECONNREFUSED;
3107 case TCP_CLOSE_WAIT:
3113 sk->sk_err = ECONNRESET;
3116 if (!sock_flag(sk, SOCK_DEAD))
3117 sk->sk_error_report(sk);
3123 * Process the FIN bit. This now behaves as it is supposed to work
3124 * and the FIN takes effect when it is validly part of sequence
3125 * space. Not before when we get holes.
3127 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3128 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3131 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3132 * close and we go into CLOSING (and later onto TIME-WAIT)
3134 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3136 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3138 struct tcp_sock *tp = tcp_sk(sk);
3140 inet_csk_schedule_ack(sk);
3142 sk->sk_shutdown |= RCV_SHUTDOWN;
3143 sock_set_flag(sk, SOCK_DONE);
3145 switch (sk->sk_state) {
3147 case TCP_ESTABLISHED:
3148 /* Move to CLOSE_WAIT */
3149 tcp_set_state(sk, TCP_CLOSE_WAIT);
3150 inet_csk(sk)->icsk_ack.pingpong = 1;
3153 case TCP_CLOSE_WAIT:
3155 /* Received a retransmission of the FIN, do
3160 /* RFC793: Remain in the LAST-ACK state. */
3164 /* This case occurs when a simultaneous close
3165 * happens, we must ack the received FIN and
3166 * enter the CLOSING state.
3169 tcp_set_state(sk, TCP_CLOSING);
3172 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3174 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3177 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3178 * cases we should never reach this piece of code.
3180 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3181 __FUNCTION__, sk->sk_state);
3185 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3186 * Probably, we should reset in this case. For now drop them.
3188 __skb_queue_purge(&tp->out_of_order_queue);
3189 if (tp->rx_opt.sack_ok)
3190 tcp_sack_reset(&tp->rx_opt);
3191 sk_stream_mem_reclaim(sk);
3193 if (!sock_flag(sk, SOCK_DEAD)) {
3194 sk->sk_state_change(sk);
3196 /* Do not send POLL_HUP for half duplex close. */
3197 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3198 sk->sk_state == TCP_CLOSE)
3199 sk_wake_async(sk, 1, POLL_HUP);
3201 sk_wake_async(sk, 1, POLL_IN);
3205 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3207 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3208 if (before(seq, sp->start_seq))
3209 sp->start_seq = seq;
3210 if (after(end_seq, sp->end_seq))
3211 sp->end_seq = end_seq;
3217 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3219 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3220 if (before(seq, tp->rcv_nxt))
3221 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3223 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3225 tp->rx_opt.dsack = 1;
3226 tp->duplicate_sack[0].start_seq = seq;
3227 tp->duplicate_sack[0].end_seq = end_seq;
3228 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3232 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3234 if (!tp->rx_opt.dsack)
3235 tcp_dsack_set(tp, seq, end_seq);
3237 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3240 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3242 struct tcp_sock *tp = tcp_sk(sk);
3244 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3245 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3246 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3247 tcp_enter_quickack_mode(sk);
3249 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3250 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3252 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3253 end_seq = tp->rcv_nxt;
3254 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3261 /* These routines update the SACK block as out-of-order packets arrive or
3262 * in-order packets close up the sequence space.
3264 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3267 struct tcp_sack_block *sp = &tp->selective_acks[0];
3268 struct tcp_sack_block *swalk = sp+1;
3270 /* See if the recent change to the first SACK eats into
3271 * or hits the sequence space of other SACK blocks, if so coalesce.
3273 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3274 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3277 /* Zap SWALK, by moving every further SACK up by one slot.
3278 * Decrease num_sacks.
3280 tp->rx_opt.num_sacks--;
3281 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3282 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3286 this_sack++, swalk++;
3290 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3294 tmp = sack1->start_seq;
3295 sack1->start_seq = sack2->start_seq;
3296 sack2->start_seq = tmp;
3298 tmp = sack1->end_seq;
3299 sack1->end_seq = sack2->end_seq;
3300 sack2->end_seq = tmp;
3303 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3305 struct tcp_sock *tp = tcp_sk(sk);
3306 struct tcp_sack_block *sp = &tp->selective_acks[0];
3307 int cur_sacks = tp->rx_opt.num_sacks;
3313 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3314 if (tcp_sack_extend(sp, seq, end_seq)) {
3315 /* Rotate this_sack to the first one. */
3316 for (; this_sack>0; this_sack--, sp--)
3317 tcp_sack_swap(sp, sp-1);
3319 tcp_sack_maybe_coalesce(tp);
3324 /* Could not find an adjacent existing SACK, build a new one,
3325 * put it at the front, and shift everyone else down. We
3326 * always know there is at least one SACK present already here.
3328 * If the sack array is full, forget about the last one.
3330 if (this_sack >= 4) {
3332 tp->rx_opt.num_sacks--;
3335 for (; this_sack > 0; this_sack--, sp--)
3339 /* Build the new head SACK, and we're done. */
3340 sp->start_seq = seq;
3341 sp->end_seq = end_seq;
3342 tp->rx_opt.num_sacks++;
3343 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3346 /* RCV.NXT advances, some SACKs should be eaten. */
3348 static void tcp_sack_remove(struct tcp_sock *tp)
3350 struct tcp_sack_block *sp = &tp->selective_acks[0];
3351 int num_sacks = tp->rx_opt.num_sacks;
3354 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3355 if (skb_queue_empty(&tp->out_of_order_queue)) {
3356 tp->rx_opt.num_sacks = 0;
3357 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3361 for (this_sack = 0; this_sack < num_sacks; ) {
3362 /* Check if the start of the sack is covered by RCV.NXT. */
3363 if (!before(tp->rcv_nxt, sp->start_seq)) {
3366 /* RCV.NXT must cover all the block! */
3367 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3369 /* Zap this SACK, by moving forward any other SACKS. */
3370 for (i=this_sack+1; i < num_sacks; i++)
3371 tp->selective_acks[i-1] = tp->selective_acks[i];
3378 if (num_sacks != tp->rx_opt.num_sacks) {
3379 tp->rx_opt.num_sacks = num_sacks;
3380 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3384 /* This one checks to see if we can put data from the
3385 * out_of_order queue into the receive_queue.
3387 static void tcp_ofo_queue(struct sock *sk)
3389 struct tcp_sock *tp = tcp_sk(sk);
3390 __u32 dsack_high = tp->rcv_nxt;
3391 struct sk_buff *skb;
3393 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3394 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3397 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3398 __u32 dsack = dsack_high;
3399 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3400 dsack_high = TCP_SKB_CB(skb)->end_seq;
3401 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3404 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3405 SOCK_DEBUG(sk, "ofo packet was already received \n");
3406 __skb_unlink(skb, &tp->out_of_order_queue);
3410 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3411 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3412 TCP_SKB_CB(skb)->end_seq);
3414 __skb_unlink(skb, &tp->out_of_order_queue);
3415 __skb_queue_tail(&sk->sk_receive_queue, skb);
3416 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3417 if (tcp_hdr(skb)->fin)
3418 tcp_fin(skb, sk, tcp_hdr(skb));
3422 static int tcp_prune_queue(struct sock *sk);
3424 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3426 struct tcphdr *th = tcp_hdr(skb);
3427 struct tcp_sock *tp = tcp_sk(sk);
3430 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3433 __skb_pull(skb, th->doff*4);
3435 TCP_ECN_accept_cwr(tp, skb);
3437 if (tp->rx_opt.dsack) {
3438 tp->rx_opt.dsack = 0;
3439 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3440 4 - tp->rx_opt.tstamp_ok);
3443 /* Queue data for delivery to the user.
3444 * Packets in sequence go to the receive queue.
3445 * Out of sequence packets to the out_of_order_queue.
3447 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3448 if (tcp_receive_window(tp) == 0)
3451 /* Ok. In sequence. In window. */
3452 if (tp->ucopy.task == current &&
3453 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3454 sock_owned_by_user(sk) && !tp->urg_data) {
3455 int chunk = min_t(unsigned int, skb->len,
3458 __set_current_state(TASK_RUNNING);
3461 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3462 tp->ucopy.len -= chunk;
3463 tp->copied_seq += chunk;
3464 eaten = (chunk == skb->len && !th->fin);
3465 tcp_rcv_space_adjust(sk);
3473 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3474 !sk_stream_rmem_schedule(sk, skb))) {
3475 if (tcp_prune_queue(sk) < 0 ||
3476 !sk_stream_rmem_schedule(sk, skb))
3479 sk_stream_set_owner_r(skb, sk);
3480 __skb_queue_tail(&sk->sk_receive_queue, skb);
3482 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3484 tcp_event_data_recv(sk, skb);
3486 tcp_fin(skb, sk, th);
3488 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3491 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3492 * gap in queue is filled.
3494 if (skb_queue_empty(&tp->out_of_order_queue))
3495 inet_csk(sk)->icsk_ack.pingpong = 0;
3498 if (tp->rx_opt.num_sacks)
3499 tcp_sack_remove(tp);
3501 tcp_fast_path_check(sk);
3505 else if (!sock_flag(sk, SOCK_DEAD))
3506 sk->sk_data_ready(sk, 0);
3510 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3511 /* A retransmit, 2nd most common case. Force an immediate ack. */
3512 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3513 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3516 tcp_enter_quickack_mode(sk);
3517 inet_csk_schedule_ack(sk);
3523 /* Out of window. F.e. zero window probe. */
3524 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3527 tcp_enter_quickack_mode(sk);
3529 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3530 /* Partial packet, seq < rcv_next < end_seq */
3531 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3532 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3533 TCP_SKB_CB(skb)->end_seq);
3535 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3537 /* If window is closed, drop tail of packet. But after
3538 * remembering D-SACK for its head made in previous line.
3540 if (!tcp_receive_window(tp))
3545 TCP_ECN_check_ce(tp, skb);
3547 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3548 !sk_stream_rmem_schedule(sk, skb)) {
3549 if (tcp_prune_queue(sk) < 0 ||
3550 !sk_stream_rmem_schedule(sk, skb))
3554 /* Disable header prediction. */
3556 inet_csk_schedule_ack(sk);
3558 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3559 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3561 sk_stream_set_owner_r(skb, sk);
3563 if (!skb_peek(&tp->out_of_order_queue)) {
3564 /* Initial out of order segment, build 1 SACK. */
3565 if (tp->rx_opt.sack_ok) {
3566 tp->rx_opt.num_sacks = 1;
3567 tp->rx_opt.dsack = 0;
3568 tp->rx_opt.eff_sacks = 1;
3569 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3570 tp->selective_acks[0].end_seq =
3571 TCP_SKB_CB(skb)->end_seq;
3573 __skb_queue_head(&tp->out_of_order_queue,skb);
3575 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3576 u32 seq = TCP_SKB_CB(skb)->seq;
3577 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3579 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3580 __skb_append(skb1, skb, &tp->out_of_order_queue);
3582 if (!tp->rx_opt.num_sacks ||
3583 tp->selective_acks[0].end_seq != seq)
3586 /* Common case: data arrive in order after hole. */
3587 tp->selective_acks[0].end_seq = end_seq;
3591 /* Find place to insert this segment. */
3593 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3595 } while ((skb1 = skb1->prev) !=
3596 (struct sk_buff*)&tp->out_of_order_queue);
3598 /* Do skb overlap to previous one? */
3599 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3600 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3601 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3602 /* All the bits are present. Drop. */
3604 tcp_dsack_set(tp, seq, end_seq);
3607 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3608 /* Partial overlap. */
3609 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3614 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3616 /* And clean segments covered by new one as whole. */
3617 while ((skb1 = skb->next) !=
3618 (struct sk_buff*)&tp->out_of_order_queue &&
3619 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3620 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3621 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3624 __skb_unlink(skb1, &tp->out_of_order_queue);
3625 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3630 if (tp->rx_opt.sack_ok)
3631 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3635 /* Collapse contiguous sequence of skbs head..tail with
3636 * sequence numbers start..end.
3637 * Segments with FIN/SYN are not collapsed (only because this
3641 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3642 struct sk_buff *head, struct sk_buff *tail,
3645 struct sk_buff *skb;
3647 /* First, check that queue is collapsible and find
3648 * the point where collapsing can be useful. */
3649 for (skb = head; skb != tail; ) {
3650 /* No new bits? It is possible on ofo queue. */
3651 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3652 struct sk_buff *next = skb->next;
3653 __skb_unlink(skb, list);
3655 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3660 /* The first skb to collapse is:
3662 * - bloated or contains data before "start" or
3663 * overlaps to the next one.
3665 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3666 (tcp_win_from_space(skb->truesize) > skb->len ||
3667 before(TCP_SKB_CB(skb)->seq, start) ||
3668 (skb->next != tail &&
3669 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3672 /* Decided to skip this, advance start seq. */
3673 start = TCP_SKB_CB(skb)->end_seq;
3676 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3679 while (before(start, end)) {
3680 struct sk_buff *nskb;
3681 int header = skb_headroom(skb);
3682 int copy = SKB_MAX_ORDER(header, 0);
3684 /* Too big header? This can happen with IPv6. */
3687 if (end-start < copy)
3689 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3693 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3694 skb_set_network_header(nskb, (skb_network_header(skb) -
3696 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3698 skb_reserve(nskb, header);
3699 memcpy(nskb->head, skb->head, header);
3700 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3701 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3702 __skb_insert(nskb, skb->prev, skb, list);
3703 sk_stream_set_owner_r(nskb, sk);
3705 /* Copy data, releasing collapsed skbs. */
3707 int offset = start - TCP_SKB_CB(skb)->seq;
3708 int size = TCP_SKB_CB(skb)->end_seq - start;
3712 size = min(copy, size);
3713 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3715 TCP_SKB_CB(nskb)->end_seq += size;
3719 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3720 struct sk_buff *next = skb->next;
3721 __skb_unlink(skb, list);
3723 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3726 tcp_hdr(skb)->syn ||
3734 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3735 * and tcp_collapse() them until all the queue is collapsed.
3737 static void tcp_collapse_ofo_queue(struct sock *sk)
3739 struct tcp_sock *tp = tcp_sk(sk);
3740 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3741 struct sk_buff *head;
3747 start = TCP_SKB_CB(skb)->seq;
3748 end = TCP_SKB_CB(skb)->end_seq;
3754 /* Segment is terminated when we see gap or when
3755 * we are at the end of all the queue. */
3756 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3757 after(TCP_SKB_CB(skb)->seq, end) ||
3758 before(TCP_SKB_CB(skb)->end_seq, start)) {
3759 tcp_collapse(sk, &tp->out_of_order_queue,
3760 head, skb, start, end);
3762 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3764 /* Start new segment */
3765 start = TCP_SKB_CB(skb)->seq;
3766 end = TCP_SKB_CB(skb)->end_seq;
3768 if (before(TCP_SKB_CB(skb)->seq, start))
3769 start = TCP_SKB_CB(skb)->seq;
3770 if (after(TCP_SKB_CB(skb)->end_seq, end))
3771 end = TCP_SKB_CB(skb)->end_seq;
3776 /* Reduce allocated memory if we can, trying to get
3777 * the socket within its memory limits again.
3779 * Return less than zero if we should start dropping frames
3780 * until the socket owning process reads some of the data
3781 * to stabilize the situation.
3783 static int tcp_prune_queue(struct sock *sk)
3785 struct tcp_sock *tp = tcp_sk(sk);
3787 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3789 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3791 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3792 tcp_clamp_window(sk);
3793 else if (tcp_memory_pressure)
3794 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3796 tcp_collapse_ofo_queue(sk);
3797 tcp_collapse(sk, &sk->sk_receive_queue,
3798 sk->sk_receive_queue.next,
3799 (struct sk_buff*)&sk->sk_receive_queue,
3800 tp->copied_seq, tp->rcv_nxt);
3801 sk_stream_mem_reclaim(sk);
3803 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3806 /* Collapsing did not help, destructive actions follow.
3807 * This must not ever occur. */
3809 /* First, purge the out_of_order queue. */
3810 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3811 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3812 __skb_queue_purge(&tp->out_of_order_queue);
3814 /* Reset SACK state. A conforming SACK implementation will
3815 * do the same at a timeout based retransmit. When a connection
3816 * is in a sad state like this, we care only about integrity
3817 * of the connection not performance.
3819 if (tp->rx_opt.sack_ok)
3820 tcp_sack_reset(&tp->rx_opt);
3821 sk_stream_mem_reclaim(sk);
3824 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3827 /* If we are really being abused, tell the caller to silently
3828 * drop receive data on the floor. It will get retransmitted
3829 * and hopefully then we'll have sufficient space.
3831 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3833 /* Massive buffer overcommit. */
3839 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3840 * As additional protections, we do not touch cwnd in retransmission phases,
3841 * and if application hit its sndbuf limit recently.
3843 void tcp_cwnd_application_limited(struct sock *sk)
3845 struct tcp_sock *tp = tcp_sk(sk);
3847 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3848 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3849 /* Limited by application or receiver window. */
3850 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3851 u32 win_used = max(tp->snd_cwnd_used, init_win);
3852 if (win_used < tp->snd_cwnd) {
3853 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3854 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3856 tp->snd_cwnd_used = 0;
3858 tp->snd_cwnd_stamp = tcp_time_stamp;
3861 static int tcp_should_expand_sndbuf(struct sock *sk)
3863 struct tcp_sock *tp = tcp_sk(sk);
3865 /* If the user specified a specific send buffer setting, do
3868 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3871 /* If we are under global TCP memory pressure, do not expand. */
3872 if (tcp_memory_pressure)
3875 /* If we are under soft global TCP memory pressure, do not expand. */
3876 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3879 /* If we filled the congestion window, do not expand. */
3880 if (tp->packets_out >= tp->snd_cwnd)
3886 /* When incoming ACK allowed to free some skb from write_queue,
3887 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3888 * on the exit from tcp input handler.
3890 * PROBLEM: sndbuf expansion does not work well with largesend.
3892 static void tcp_new_space(struct sock *sk)
3894 struct tcp_sock *tp = tcp_sk(sk);
3896 if (tcp_should_expand_sndbuf(sk)) {
3897 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3898 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3899 demanded = max_t(unsigned int, tp->snd_cwnd,
3900 tp->reordering + 1);
3901 sndmem *= 2*demanded;
3902 if (sndmem > sk->sk_sndbuf)
3903 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3904 tp->snd_cwnd_stamp = tcp_time_stamp;
3907 sk->sk_write_space(sk);
3910 static void tcp_check_space(struct sock *sk)
3912 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3913 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3914 if (sk->sk_socket &&
3915 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3920 static inline void tcp_data_snd_check(struct sock *sk)
3922 tcp_push_pending_frames(sk);
3923 tcp_check_space(sk);
3927 * Check if sending an ack is needed.
3929 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3931 struct tcp_sock *tp = tcp_sk(sk);
3933 /* More than one full frame received... */
3934 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3935 /* ... and right edge of window advances far enough.
3936 * (tcp_recvmsg() will send ACK otherwise). Or...
3938 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3939 /* We ACK each frame or... */
3940 tcp_in_quickack_mode(sk) ||
3941 /* We have out of order data. */
3943 skb_peek(&tp->out_of_order_queue))) {
3944 /* Then ack it now */
3947 /* Else, send delayed ack. */
3948 tcp_send_delayed_ack(sk);
3952 static inline void tcp_ack_snd_check(struct sock *sk)
3954 if (!inet_csk_ack_scheduled(sk)) {
3955 /* We sent a data segment already. */
3958 __tcp_ack_snd_check(sk, 1);
3962 * This routine is only called when we have urgent data
3963 * signaled. Its the 'slow' part of tcp_urg. It could be
3964 * moved inline now as tcp_urg is only called from one
3965 * place. We handle URGent data wrong. We have to - as
3966 * BSD still doesn't use the correction from RFC961.
3967 * For 1003.1g we should support a new option TCP_STDURG to permit
3968 * either form (or just set the sysctl tcp_stdurg).
3971 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3973 struct tcp_sock *tp = tcp_sk(sk);
3974 u32 ptr = ntohs(th->urg_ptr);
3976 if (ptr && !sysctl_tcp_stdurg)
3978 ptr += ntohl(th->seq);
3980 /* Ignore urgent data that we've already seen and read. */
3981 if (after(tp->copied_seq, ptr))
3984 /* Do not replay urg ptr.
3986 * NOTE: interesting situation not covered by specs.
3987 * Misbehaving sender may send urg ptr, pointing to segment,
3988 * which we already have in ofo queue. We are not able to fetch
3989 * such data and will stay in TCP_URG_NOTYET until will be eaten
3990 * by recvmsg(). Seems, we are not obliged to handle such wicked
3991 * situations. But it is worth to think about possibility of some
3992 * DoSes using some hypothetical application level deadlock.
3994 if (before(ptr, tp->rcv_nxt))
3997 /* Do we already have a newer (or duplicate) urgent pointer? */
3998 if (tp->urg_data && !after(ptr, tp->urg_seq))
4001 /* Tell the world about our new urgent pointer. */
4004 /* We may be adding urgent data when the last byte read was
4005 * urgent. To do this requires some care. We cannot just ignore
4006 * tp->copied_seq since we would read the last urgent byte again
4007 * as data, nor can we alter copied_seq until this data arrives
4008 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4010 * NOTE. Double Dutch. Rendering to plain English: author of comment
4011 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4012 * and expect that both A and B disappear from stream. This is _wrong_.
4013 * Though this happens in BSD with high probability, this is occasional.
4014 * Any application relying on this is buggy. Note also, that fix "works"
4015 * only in this artificial test. Insert some normal data between A and B and we will
4016 * decline of BSD again. Verdict: it is better to remove to trap
4019 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4020 !sock_flag(sk, SOCK_URGINLINE) &&
4021 tp->copied_seq != tp->rcv_nxt) {
4022 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4024 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4025 __skb_unlink(skb, &sk->sk_receive_queue);
4030 tp->urg_data = TCP_URG_NOTYET;
4033 /* Disable header prediction. */
4037 /* This is the 'fast' part of urgent handling. */
4038 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4040 struct tcp_sock *tp = tcp_sk(sk);
4042 /* Check if we get a new urgent pointer - normally not. */
4044 tcp_check_urg(sk,th);
4046 /* Do we wait for any urgent data? - normally not... */
4047 if (tp->urg_data == TCP_URG_NOTYET) {
4048 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4051 /* Is the urgent pointer pointing into this packet? */
4052 if (ptr < skb->len) {
4054 if (skb_copy_bits(skb, ptr, &tmp, 1))
4056 tp->urg_data = TCP_URG_VALID | tmp;
4057 if (!sock_flag(sk, SOCK_DEAD))
4058 sk->sk_data_ready(sk, 0);
4063 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4065 struct tcp_sock *tp = tcp_sk(sk);
4066 int chunk = skb->len - hlen;
4070 if (skb_csum_unnecessary(skb))
4071 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4073 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4077 tp->ucopy.len -= chunk;
4078 tp->copied_seq += chunk;
4079 tcp_rcv_space_adjust(sk);
4086 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4090 if (sock_owned_by_user(sk)) {
4092 result = __tcp_checksum_complete(skb);
4095 result = __tcp_checksum_complete(skb);
4100 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4102 return !skb_csum_unnecessary(skb) &&
4103 __tcp_checksum_complete_user(sk, skb);
4106 #ifdef CONFIG_NET_DMA
4107 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4109 struct tcp_sock *tp = tcp_sk(sk);
4110 int chunk = skb->len - hlen;
4112 int copied_early = 0;
4114 if (tp->ucopy.wakeup)
4117 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4118 tp->ucopy.dma_chan = get_softnet_dma();
4120 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4122 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4123 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4128 tp->ucopy.dma_cookie = dma_cookie;
4131 tp->ucopy.len -= chunk;
4132 tp->copied_seq += chunk;
4133 tcp_rcv_space_adjust(sk);
4135 if ((tp->ucopy.len == 0) ||
4136 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4137 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4138 tp->ucopy.wakeup = 1;
4139 sk->sk_data_ready(sk, 0);
4141 } else if (chunk > 0) {
4142 tp->ucopy.wakeup = 1;
4143 sk->sk_data_ready(sk, 0);
4146 return copied_early;
4148 #endif /* CONFIG_NET_DMA */
4151 * TCP receive function for the ESTABLISHED state.
4153 * It is split into a fast path and a slow path. The fast path is
4155 * - A zero window was announced from us - zero window probing
4156 * is only handled properly in the slow path.
4157 * - Out of order segments arrived.
4158 * - Urgent data is expected.
4159 * - There is no buffer space left
4160 * - Unexpected TCP flags/window values/header lengths are received
4161 * (detected by checking the TCP header against pred_flags)
4162 * - Data is sent in both directions. Fast path only supports pure senders
4163 * or pure receivers (this means either the sequence number or the ack
4164 * value must stay constant)
4165 * - Unexpected TCP option.
4167 * When these conditions are not satisfied it drops into a standard
4168 * receive procedure patterned after RFC793 to handle all cases.
4169 * The first three cases are guaranteed by proper pred_flags setting,
4170 * the rest is checked inline. Fast processing is turned on in
4171 * tcp_data_queue when everything is OK.
4173 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4174 struct tcphdr *th, unsigned len)
4176 struct tcp_sock *tp = tcp_sk(sk);
4179 * Header prediction.
4180 * The code loosely follows the one in the famous
4181 * "30 instruction TCP receive" Van Jacobson mail.
4183 * Van's trick is to deposit buffers into socket queue
4184 * on a device interrupt, to call tcp_recv function
4185 * on the receive process context and checksum and copy
4186 * the buffer to user space. smart...
4188 * Our current scheme is not silly either but we take the
4189 * extra cost of the net_bh soft interrupt processing...
4190 * We do checksum and copy also but from device to kernel.
4193 tp->rx_opt.saw_tstamp = 0;
4195 /* pred_flags is 0xS?10 << 16 + snd_wnd
4196 * if header_prediction is to be made
4197 * 'S' will always be tp->tcp_header_len >> 2
4198 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4199 * turn it off (when there are holes in the receive
4200 * space for instance)
4201 * PSH flag is ignored.
4204 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4205 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4206 int tcp_header_len = tp->tcp_header_len;
4208 /* Timestamp header prediction: tcp_header_len
4209 * is automatically equal to th->doff*4 due to pred_flags
4213 /* Check timestamp */
4214 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4215 __be32 *ptr = (__be32 *)(th + 1);
4217 /* No? Slow path! */
4218 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4219 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4222 tp->rx_opt.saw_tstamp = 1;
4224 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4226 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4228 /* If PAWS failed, check it more carefully in slow path */
4229 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4232 /* DO NOT update ts_recent here, if checksum fails
4233 * and timestamp was corrupted part, it will result
4234 * in a hung connection since we will drop all
4235 * future packets due to the PAWS test.
4239 if (len <= tcp_header_len) {
4240 /* Bulk data transfer: sender */
4241 if (len == tcp_header_len) {
4242 /* Predicted packet is in window by definition.
4243 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4244 * Hence, check seq<=rcv_wup reduces to:
4246 if (tcp_header_len ==
4247 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4248 tp->rcv_nxt == tp->rcv_wup)
4249 tcp_store_ts_recent(tp);
4251 /* We know that such packets are checksummed
4254 tcp_ack(sk, skb, 0);
4256 tcp_data_snd_check(sk);
4258 } else { /* Header too small */
4259 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4264 int copied_early = 0;
4266 if (tp->copied_seq == tp->rcv_nxt &&
4267 len - tcp_header_len <= tp->ucopy.len) {
4268 #ifdef CONFIG_NET_DMA
4269 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4274 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4275 __set_current_state(TASK_RUNNING);
4277 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4281 /* Predicted packet is in window by definition.
4282 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4283 * Hence, check seq<=rcv_wup reduces to:
4285 if (tcp_header_len ==
4286 (sizeof(struct tcphdr) +
4287 TCPOLEN_TSTAMP_ALIGNED) &&
4288 tp->rcv_nxt == tp->rcv_wup)
4289 tcp_store_ts_recent(tp);
4291 tcp_rcv_rtt_measure_ts(sk, skb);
4293 __skb_pull(skb, tcp_header_len);
4294 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4295 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4298 tcp_cleanup_rbuf(sk, skb->len);
4301 if (tcp_checksum_complete_user(sk, skb))
4304 /* Predicted packet is in window by definition.
4305 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4306 * Hence, check seq<=rcv_wup reduces to:
4308 if (tcp_header_len ==
4309 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4310 tp->rcv_nxt == tp->rcv_wup)
4311 tcp_store_ts_recent(tp);
4313 tcp_rcv_rtt_measure_ts(sk, skb);
4315 if ((int)skb->truesize > sk->sk_forward_alloc)
4318 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4320 /* Bulk data transfer: receiver */
4321 __skb_pull(skb,tcp_header_len);
4322 __skb_queue_tail(&sk->sk_receive_queue, skb);
4323 sk_stream_set_owner_r(skb, sk);
4324 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4327 tcp_event_data_recv(sk, skb);
4329 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4330 /* Well, only one small jumplet in fast path... */
4331 tcp_ack(sk, skb, FLAG_DATA);
4332 tcp_data_snd_check(sk);
4333 if (!inet_csk_ack_scheduled(sk))
4337 __tcp_ack_snd_check(sk, 0);
4339 #ifdef CONFIG_NET_DMA
4341 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4347 sk->sk_data_ready(sk, 0);
4353 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4357 * RFC1323: H1. Apply PAWS check first.
4359 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4360 tcp_paws_discard(sk, skb)) {
4362 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4363 tcp_send_dupack(sk, skb);
4366 /* Resets are accepted even if PAWS failed.
4368 ts_recent update must be made after we are sure
4369 that the packet is in window.
4374 * Standard slow path.
4377 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4378 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4379 * (RST) segments are validated by checking their SEQ-fields."
4380 * And page 69: "If an incoming segment is not acceptable,
4381 * an acknowledgment should be sent in reply (unless the RST bit
4382 * is set, if so drop the segment and return)".
4385 tcp_send_dupack(sk, skb);
4394 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4396 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4397 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4398 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4405 tcp_ack(sk, skb, FLAG_SLOWPATH);
4407 tcp_rcv_rtt_measure_ts(sk, skb);
4409 /* Process urgent data. */
4410 tcp_urg(sk, skb, th);
4412 /* step 7: process the segment text */
4413 tcp_data_queue(sk, skb);
4415 tcp_data_snd_check(sk);
4416 tcp_ack_snd_check(sk);
4420 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4427 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4428 struct tcphdr *th, unsigned len)
4430 struct tcp_sock *tp = tcp_sk(sk);
4431 struct inet_connection_sock *icsk = inet_csk(sk);
4432 int saved_clamp = tp->rx_opt.mss_clamp;
4434 tcp_parse_options(skb, &tp->rx_opt, 0);
4438 * "If the state is SYN-SENT then
4439 * first check the ACK bit
4440 * If the ACK bit is set
4441 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4442 * a reset (unless the RST bit is set, if so drop
4443 * the segment and return)"
4445 * We do not send data with SYN, so that RFC-correct
4448 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4449 goto reset_and_undo;
4451 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4452 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4454 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4455 goto reset_and_undo;
4458 /* Now ACK is acceptable.
4460 * "If the RST bit is set
4461 * If the ACK was acceptable then signal the user "error:
4462 * connection reset", drop the segment, enter CLOSED state,
4463 * delete TCB, and return."
4472 * "fifth, if neither of the SYN or RST bits is set then
4473 * drop the segment and return."
4479 goto discard_and_undo;
4482 * "If the SYN bit is on ...
4483 * are acceptable then ...
4484 * (our SYN has been ACKed), change the connection
4485 * state to ESTABLISHED..."
4488 TCP_ECN_rcv_synack(tp, th);
4490 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4491 tcp_ack(sk, skb, FLAG_SLOWPATH);
4493 /* Ok.. it's good. Set up sequence numbers and
4494 * move to established.
4496 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4497 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4499 /* RFC1323: The window in SYN & SYN/ACK segments is
4502 tp->snd_wnd = ntohs(th->window);
4503 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4505 if (!tp->rx_opt.wscale_ok) {
4506 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4507 tp->window_clamp = min(tp->window_clamp, 65535U);
4510 if (tp->rx_opt.saw_tstamp) {
4511 tp->rx_opt.tstamp_ok = 1;
4512 tp->tcp_header_len =
4513 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4514 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4515 tcp_store_ts_recent(tp);
4517 tp->tcp_header_len = sizeof(struct tcphdr);
4520 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4521 tp->rx_opt.sack_ok |= 2;
4524 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4525 tcp_initialize_rcv_mss(sk);
4527 /* Remember, tcp_poll() does not lock socket!
4528 * Change state from SYN-SENT only after copied_seq
4529 * is initialized. */
4530 tp->copied_seq = tp->rcv_nxt;
4532 tcp_set_state(sk, TCP_ESTABLISHED);
4534 security_inet_conn_established(sk, skb);
4536 /* Make sure socket is routed, for correct metrics. */
4537 icsk->icsk_af_ops->rebuild_header(sk);
4539 tcp_init_metrics(sk);
4541 tcp_init_congestion_control(sk);
4543 /* Prevent spurious tcp_cwnd_restart() on first data
4546 tp->lsndtime = tcp_time_stamp;
4548 tcp_init_buffer_space(sk);
4550 if (sock_flag(sk, SOCK_KEEPOPEN))
4551 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4553 if (!tp->rx_opt.snd_wscale)
4554 __tcp_fast_path_on(tp, tp->snd_wnd);
4558 if (!sock_flag(sk, SOCK_DEAD)) {
4559 sk->sk_state_change(sk);
4560 sk_wake_async(sk, 0, POLL_OUT);
4563 if (sk->sk_write_pending ||
4564 icsk->icsk_accept_queue.rskq_defer_accept ||
4565 icsk->icsk_ack.pingpong) {
4566 /* Save one ACK. Data will be ready after
4567 * several ticks, if write_pending is set.
4569 * It may be deleted, but with this feature tcpdumps
4570 * look so _wonderfully_ clever, that I was not able
4571 * to stand against the temptation 8) --ANK
4573 inet_csk_schedule_ack(sk);
4574 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4575 icsk->icsk_ack.ato = TCP_ATO_MIN;
4576 tcp_incr_quickack(sk);
4577 tcp_enter_quickack_mode(sk);
4578 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4579 TCP_DELACK_MAX, TCP_RTO_MAX);
4590 /* No ACK in the segment */
4594 * "If the RST bit is set
4596 * Otherwise (no ACK) drop the segment and return."
4599 goto discard_and_undo;
4603 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4604 goto discard_and_undo;
4607 /* We see SYN without ACK. It is attempt of
4608 * simultaneous connect with crossed SYNs.
4609 * Particularly, it can be connect to self.
4611 tcp_set_state(sk, TCP_SYN_RECV);
4613 if (tp->rx_opt.saw_tstamp) {
4614 tp->rx_opt.tstamp_ok = 1;
4615 tcp_store_ts_recent(tp);
4616 tp->tcp_header_len =
4617 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4619 tp->tcp_header_len = sizeof(struct tcphdr);
4622 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4623 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4625 /* RFC1323: The window in SYN & SYN/ACK segments is
4628 tp->snd_wnd = ntohs(th->window);
4629 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4630 tp->max_window = tp->snd_wnd;
4632 TCP_ECN_rcv_syn(tp, th);
4635 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4636 tcp_initialize_rcv_mss(sk);
4639 tcp_send_synack(sk);
4641 /* Note, we could accept data and URG from this segment.
4642 * There are no obstacles to make this.
4644 * However, if we ignore data in ACKless segments sometimes,
4645 * we have no reasons to accept it sometimes.
4646 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4647 * is not flawless. So, discard packet for sanity.
4648 * Uncomment this return to process the data.
4655 /* "fifth, if neither of the SYN or RST bits is set then
4656 * drop the segment and return."
4660 tcp_clear_options(&tp->rx_opt);
4661 tp->rx_opt.mss_clamp = saved_clamp;
4665 tcp_clear_options(&tp->rx_opt);
4666 tp->rx_opt.mss_clamp = saved_clamp;
4672 * This function implements the receiving procedure of RFC 793 for
4673 * all states except ESTABLISHED and TIME_WAIT.
4674 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4675 * address independent.
4678 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4679 struct tcphdr *th, unsigned len)
4681 struct tcp_sock *tp = tcp_sk(sk);
4682 struct inet_connection_sock *icsk = inet_csk(sk);
4685 tp->rx_opt.saw_tstamp = 0;
4687 switch (sk->sk_state) {
4699 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4702 /* Now we have several options: In theory there is
4703 * nothing else in the frame. KA9Q has an option to
4704 * send data with the syn, BSD accepts data with the
4705 * syn up to the [to be] advertised window and
4706 * Solaris 2.1 gives you a protocol error. For now
4707 * we just ignore it, that fits the spec precisely
4708 * and avoids incompatibilities. It would be nice in
4709 * future to drop through and process the data.
4711 * Now that TTCP is starting to be used we ought to
4713 * But, this leaves one open to an easy denial of
4714 * service attack, and SYN cookies can't defend
4715 * against this problem. So, we drop the data
4716 * in the interest of security over speed unless
4717 * it's still in use.
4725 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4729 /* Do step6 onward by hand. */
4730 tcp_urg(sk, skb, th);
4732 tcp_data_snd_check(sk);
4736 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4737 tcp_paws_discard(sk, skb)) {
4739 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4740 tcp_send_dupack(sk, skb);
4743 /* Reset is accepted even if it did not pass PAWS. */
4746 /* step 1: check sequence number */
4747 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4749 tcp_send_dupack(sk, skb);
4753 /* step 2: check RST bit */
4759 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4761 /* step 3: check security and precedence [ignored] */
4765 * Check for a SYN in window.
4767 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4768 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4773 /* step 5: check the ACK field */
4775 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4777 switch (sk->sk_state) {
4780 tp->copied_seq = tp->rcv_nxt;
4782 tcp_set_state(sk, TCP_ESTABLISHED);
4783 sk->sk_state_change(sk);
4785 /* Note, that this wakeup is only for marginal
4786 * crossed SYN case. Passively open sockets
4787 * are not waked up, because sk->sk_sleep ==
4788 * NULL and sk->sk_socket == NULL.
4790 if (sk->sk_socket) {
4791 sk_wake_async(sk,0,POLL_OUT);
4794 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4795 tp->snd_wnd = ntohs(th->window) <<
4796 tp->rx_opt.snd_wscale;
4797 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4798 TCP_SKB_CB(skb)->seq);
4800 /* tcp_ack considers this ACK as duplicate
4801 * and does not calculate rtt.
4802 * Fix it at least with timestamps.
4804 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4806 tcp_ack_saw_tstamp(sk, 0);
4808 if (tp->rx_opt.tstamp_ok)
4809 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4811 /* Make sure socket is routed, for
4814 icsk->icsk_af_ops->rebuild_header(sk);
4816 tcp_init_metrics(sk);
4818 tcp_init_congestion_control(sk);
4820 /* Prevent spurious tcp_cwnd_restart() on
4821 * first data packet.
4823 tp->lsndtime = tcp_time_stamp;
4826 tcp_initialize_rcv_mss(sk);
4827 tcp_init_buffer_space(sk);
4828 tcp_fast_path_on(tp);
4835 if (tp->snd_una == tp->write_seq) {
4836 tcp_set_state(sk, TCP_FIN_WAIT2);
4837 sk->sk_shutdown |= SEND_SHUTDOWN;
4838 dst_confirm(sk->sk_dst_cache);
4840 if (!sock_flag(sk, SOCK_DEAD))
4841 /* Wake up lingering close() */
4842 sk->sk_state_change(sk);
4846 if (tp->linger2 < 0 ||
4847 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4848 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4850 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4854 tmo = tcp_fin_time(sk);
4855 if (tmo > TCP_TIMEWAIT_LEN) {
4856 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4857 } else if (th->fin || sock_owned_by_user(sk)) {
4858 /* Bad case. We could lose such FIN otherwise.
4859 * It is not a big problem, but it looks confusing
4860 * and not so rare event. We still can lose it now,
4861 * if it spins in bh_lock_sock(), but it is really
4864 inet_csk_reset_keepalive_timer(sk, tmo);
4866 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4874 if (tp->snd_una == tp->write_seq) {
4875 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4881 if (tp->snd_una == tp->write_seq) {
4882 tcp_update_metrics(sk);
4891 /* step 6: check the URG bit */
4892 tcp_urg(sk, skb, th);
4894 /* step 7: process the segment text */
4895 switch (sk->sk_state) {
4896 case TCP_CLOSE_WAIT:
4899 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4903 /* RFC 793 says to queue data in these states,
4904 * RFC 1122 says we MUST send a reset.
4905 * BSD 4.4 also does reset.
4907 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4908 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4909 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4910 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4916 case TCP_ESTABLISHED:
4917 tcp_data_queue(sk, skb);
4922 /* tcp_data could move socket to TIME-WAIT */
4923 if (sk->sk_state != TCP_CLOSE) {
4924 tcp_data_snd_check(sk);
4925 tcp_ack_snd_check(sk);
4935 EXPORT_SYMBOL(sysctl_tcp_ecn);
4936 EXPORT_SYMBOL(sysctl_tcp_reordering);
4937 EXPORT_SYMBOL(tcp_parse_options);
4938 EXPORT_SYMBOL(tcp_rcv_established);
4939 EXPORT_SYMBOL(tcp_rcv_state_process);
4940 EXPORT_SYMBOL(tcp_initialize_rcv_mss);